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Notations

Throughout this report we follow the usual notations given below:

K - strike price

T - time to expiry / residual maturity

Si - price of the stock i

σi - volatility of the stock i

ρ
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In addition to this, the early-exercise feature of American options makes it

even worse. Although there has been extensive research in this field, no

efficient and accurate pricing model has yet been developed.

Some of the work done so far for pricing American spread options can be
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spread options.

We then move on to price American spread options in chapter 4, by

introducing the 3-D binomial tree model. How these models mentioned so

far are extended to price American spread options, consistent with the market

model 2 is explained in sec. 4.2.

The implementation of these approaches using C++ and the various mod-

ules in the program are explained in chapter. 5.2. The last two chapters deal

with the output and analysis of the program results where we do a compar-

ative study of the performance of the code and the market models.

2A model that is consistent with the market data and behaviour
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for a call or put respectively. Since the payoff depends only on the stock price

for a particular strike, tracking the stock price movement would be a useful

tool in option pricing. Hence we have volatility
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Figure 2.1: Volatility smile (source: www.investopedia.com)

maturity. Although the Black-Scholes(BS) model performs well the assump-

tion is proved to be flawed. When the volatility is computed (implied) by

a model for a set of market prices for different strikes, the volatility is not

observed to be a constant rather it is skewed. In the case of currency option

markets the implied volatility of in-the-money and out-of-the-money options

is greater than the at-the-money options as shown in the figure. Hence the

volatility smiles in this case! This is explained by the fact that traders spec-

ulate a larger price movement than is assumed in the BS model. Since every

other parameter is a constant in the BS model the disparity in the computed

and market prices can be explained only by increasing the volatility.
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2.3 Spread options

Spread options are derivative products on two or more assets. Most often

they are referred to those written on the difference between the values of two

indexes. For example, a European call spread on two underlying assets with

prices S1 and S2 will have a pay off function [S1−S2−K]+. The + superscript

denotes that payoff can only be positive, for any negative value it equals zero.
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implied correlation. It is similar to the former in all respects except that it

frowns and does not smile! That is, the implied correlation is lesser for in-
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Option Pricing
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detailed illustration the reader is advised to refer to the works suggested

therein.

3.2 Vanilla Option pricing

3.2.1 Black-Scholes(BS) model

The most earliest and powerful tool to compute the price of European options

was discovered by Black and Scholes(1973). Even thirty years later it remains

to be one of the most preferred model and serves as the basis for many others

in the world of options theory. It states that the price of a call option at a

time t is given by the solution of the backward parabolic partial differential

equation

δp0

δT
= (r − q)S0

δp0

δS r
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where r is the short rate of interest. We then have,

p = S(0)Φ(d1) − Ke−rT Φ(d2) (3.3)

where

d1 =
ln (S(0)erT

K
)

σ
√

T
+

1

2
σ

√
T and d2 = d1 − σ

√
T (3.4)

Here Φ(x) represents the cumulative distribution function of the standard

normal N(0, 1) distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞

e
−u

2

2 du (3.5)
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•
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Figure 3.1: 2-D Binomial tree

the latter and continue calculating the option price in the preceding

level.

• The price thus obtained at the initial node corresponding to time t = 0,

is the required American option price.

Figure 3.1 shows how the American option price is calculated.

3.3 Spread option pricing
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was based on the Black-Scholes price for spread options expressed as an

expectation of the payoff function, as in 3.6. The formula is as follows:

p̂ = x2Φ

(

ln

(

x2

x1+Ke−rT

)

σK + σK

2

)

− (x1 + Ke−rT )Φ

(

ln

(

x2

x1+Ke−rT

)

σK − σK

2

)

where

σK =

√

σ2
2 − 2ρσ1σ2

x1

x1+K exp−rT + σ2
1

(

x1

x1+K exp−rT

)2

(3.10)

Carmona and Durrleman performs a comparative study of how this model
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σiC , σiT are the volatilities of core and tail normal densities. P2GBM is the

price of 2-Geometric Brownian motion model(2GBM). The 2GBM models as-

sume two correlated log-normal diffusions to model European spread options

(Ravindran 1993, Shimko 1994, Kirk 1995, James 2002 and others).

The difference here is that the terminal risk neutral density will be a bi-

variate normal mixture instead of bivariate normal, but the transition prob-

abilities still remains normal. An interesting fact is that although the option

price is a linear combination at time t = 0 and T (bivariate normal mixture),

at time t = υ one can uniquely identify the price (P
′s
2GBM −
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Pricing American Spread

Options

4.1 3-D tree model

The three dimensional binomial tree model for two asset options is shown

in figure 4.1. The space variables used are xt = ln S
(1)
t /S

(1)
0 and yt =

ln S
(2)
t /S

(2)
0 instead of the stock prices themselves. This means that the step

sizes are of constant sizes, rather than proportional to the stock prices, hence

making it simpler. The first node in the tree has value zero. If the risk-neutral

drift of S
(1)
1 is r − q1, then the drift of xt is r − q1 − 1

2
σ2

1 = mx, and yt is

r −q2 − 1
2
σ2

2 = my
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Figure 4.1: 3-D tree structure

The Wiener processes for the two space variables can be written as

δxt = mxδt + σx

√
δtz1

δyt = myδt + σxsqrtδtz2 = myδt + σx

√
δt{ρz1 +

√

1 − ρ2z3}

where z1 and z3 are uncorrelated standard normal variates.

Hence the following equations:

δyα = myδt + σx

√
δt{ρ +

√

1 − ρ2}

δyβ = myδt − σx

√
δt{ρ −

√

1 − ρ2}

δyγ = myδt − σx

√
δt{ρ +

√

1 − ρ2}

δyδ = myδt + σx

√
δt{ρ −

√

1 − ρ2} (4.1)
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For a detailed discussion on 3D tree models see James(2002). A more ad-

vanced 3-D tree approach can be found in Boyle(1988).

4.2 Extension of BNM model

We aim to extend the frown consistent1 bivariate normal mixture model

introduced by Alexander and Scourse (2004) for pricing European spread

options to American Spread Options. The need for American option prices

that are consistent with the market prices of European options requires us

to use prices obtained from a smile consistent model2. We assume that the

marginal distribution of each correlated asset return is a mixture of normal

distributions.

Leaning upon the existing volatility models a substantial time would be

dedicated in extending the Bivariate normal mixture(BNM) model (Alexan-

der and Scourse, 2004) for pricing American spread options calibrated to

both volatility smiles and the correlation frown. Alexander and Scourse as-

sume that each asset return density is a mixture of two normal densities and

that their joint density is a bivariate normal mixture.

Firstly we calibrate the univariate normal mixture(UNM) model and then

the Bivariate normal mixture model to the market prices of European op-

tions. These calibrated models will be used to find the American option

price using a 3-D binomial tree approach as described in James(2002). Since

the BNM model is smile and frown consistent and also the univariate normal

mixture model is smile consistent, the American spread option price obtained

1Computed prices are consistent with the correlation frown
2A option pricing model that is consistent with the volatility smile
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normal mixture model prices are analytic, we do not actually need to do
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of pairs (S1, S2) for which S1 − S2 = K. In order to overcome this it was

assumed that the strike convention used to calculate the implied volatility

was K1 = S1 − (K − S1 + S2)/2 and K2 = S2 − (K − S1 + S2)/2. When

the strike is zero they give rise to exchange options, which are more easier to

handle. An analytic pricing formula for exchange options was first derived

by Margrabe(1978).

For the sake of simplicity, we assume that σi1 > σi and σi2 < σi. One

would expect σi2 ≈ σi as that addresses the core volatility of the normal

mixture. Without loss of generality we assume that 0 < λ < 0.5. This

implies that the higher volatility makes lower contribution and the lower

volatility makes higher contribution to the overall volatility.

A similar argument applies for the correlation as well, where ρCC <

ρ and ρ < ρT T . We assume that ρCT = ρT C and that ρT T takes values

close to twice as that of ρ.

Then, three dimensional binomial trees are constructed using each of the

above correlations ρCC , ρCT , ρT C , and ρT T and the corresponding volatilities.

That is, each of the four covariance matrices, V1, V2, V3, and V4
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option on a single underlying asset. The tolerance value was assumed to be

0.05% of the Black-Scholes price for a call option.

The module involves a straight-forward implementation of equation (3.7).

The BS function calculates the price as in equation (3.3) by calling the func-

tion phi to calculate the cumulative density. Phi in turn uses Simpson’s rule

to evaluate the line integral. The lower limit of integration is restricted to

-25 instead of −∞ without any significant contribution to the error.

5.1.2 Bivariate normal mixture module

This implements the model described by Alexander and Scourse (2004) to

price European spread options. It uses the functions g(), dg(), kirk() and

phi(). The calibrated values of the volatilities and lambdas from the UNM

module serve as the input for this module. This module is executed third

chronologically after UNM and calibration module.

This module too involves a straight-forward implementation of equations

3.6 and 3.10. The kirk() function calculates the price using (3.10) by calling

the function phi() given prices of two stocks.

The output of this module is the square of the difference between the

bivariate normal mixture model price and the Kirk’s price.

5.1.3 Calibration module

This is the most important of all the modules. It finds the optimum values

for volatility and correlation for a set of inputs. Moreover, its output can

significantly alter the final output of the program due to the cascading effect

of errors. This module is run twice separately to optimise the volatilities of
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5.1.4 Binomial tree module

This module calculates the American spread option price using the 3-D bino-

mial tree discussed in 4.1. There is no interaction between this module and

the rest. The calibrated values of correlation and volatilities, initial stock

prices, time-step size and other usual data serve as the input to this module.

This module has an array implementation of a 3-D binomial tree where

an array is logically manipulated as a tree with no physical links similar to a



CHAPTER 5. DESCRIPTION OF CODE 30

be 0.25. The maximum profit condition for American options is taken into

consideration by including a conditional statement in the backtracking part.

This statement compares the calculated price and the payoff function at that

node and stores the greatest among them.

5.2 Working of code

Having explained the different modules we shall see how these are linked and

executed as a whole. Figure 5.1 shows the flow of control from one module

to the other. Each arrow represents a function call, with the arrow directed

to the called function. The program was written in C++ and MATLAB was

used for plotting the results. All the modules mentioned below function as

discussed in the previous section.

The various functions defined are given in 5.3 along with their input

parameters and functionalities. One would notice that there are few functions

bearing the same name but have different associated functionalities. This

is called as function overloading in C++. Function overloading allows for

defining multiple functions under the same name, but with different set of

input parameters. When a function is called, C++ automatically chooses

the appropriate function by comparing the parameters. In the program the

functions that are overloaded are g(), dg(), and newton(). g() calculates the

value of function g as in (5.1), dg() calculates the first order differential and

newton() performs the Newton’s method for both volatility and correlation.

This enhances the clarity of the code as name is associated more with the

function of the function and not with a block of code!

Going back to figure 5.1 we can see that the function main() forms the
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core, calling all the other modules. Since our aim is to obtain American

spread option price it is imperative to obtain calibrated values of volatil-

ity and correlation at first. Moreover we need to calibrate volatility before

calibrating correlation.

In order to calibrate the volatility we run the newton()
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dg( )

r, q, T, K, sigma, x, s,

lambda

Finds the first order derivative of the func-

tion g with respect to sigma

dg( )

r, q1, q2, T, K,

sigma1, sigma2,

sigma11, sigma21,

s1, s2, lambda1,

lambda2, rho, rhocc,

rhott

Finds the first order derivative of the func-

tion g with respect to rhocc

newton( )

r, q, T, K, sigma, x, s,

lambda

Finds the value of sigma for which g is a min-

imum using Newton’s method

newton( )

r, q1, q2, T, K,

sigma1, sigma2,

sigma11, sigma21,

s1, s2, lambda1,

lambda2, rho, rho,

rhott

Finds the value of rho for which g is a mini-

mum using Newton’s method

bintree( )

r, q1, q2, T, K,

sigma1, sigma2, s1, s2,

rho, dt

Calculates the value of American Spread Op-

tion price using a 3D Binomial tree model for

a specified time step dt.
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Analysis

In this section we shall look at the results of the program discussed in 5.2 and

discuss its performance. We compare the output of the calibrated Univari-

ate normal mixture(UNM) model with Black-Scholes’ and that of Bivariate

normal mixture (BNM) model with Kirk’s. The behaviour of the prices ob-

tained from each of these models are shown in the figures that follow. Unless

specified the stock prices of assets 1 and 2 are taken to be 100. The volatility

of stock 1 is 25% and stock 2 is 40%. The correlation between the stocks is

-0.5.

Fig. 6.1 shows the Black-Scholes price (pBS) as a function of strike and

maturity. The Black-Scholes price increases linearly with strike as shown and

tries to imitate the actual pay off function.

When K < S, the Black-Scholes price is comparatively low and when

K ≥ S, the price increases linearly with strike as shown in fig. 6.1. The

change of price with respect to time to maturity (T ) is lesser. Fig. 6.2 shows

how the price curve shifts away from the actual payoff as T increases.

Fig. 6.3 shows how the UNM price function behaves with respect to strike

and maturity for the calibrated values of volatility. As discussed in sec. 4.2,

since the UNM model was calibrated to the BS model (with different volatil-

35
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maturity.

Since the Kirks formula was derived based on the Black-Scholes model

by expressing the option price as an expectation of the payoff function, it

is natural to expect Kirks spread option price to behave on the lines of the

BS price. As in fig. 6.13 we can see that the price increases smoothly as the

strike increases. The plot of the surface of the BNM price against sigma1
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Figure 6.16: Square of difference between BNM and Kirk’s prices versus
rhoCC - (zoomed near minimum)

between the calibrated BNM price and the Kirks price is plotted as a func-

tion of strike and maturity in 6.17. Unlike fig. 6.11 which dips when the

strike is near the stock price, we see here that the dip occurs at a different

point. This is explained by the complex relation between the stock prices

of the two assets and the strike of the spread option. One might observe a

different pattern if calibration was done using a different strike convention

as explained in Alexander and Scourse(2004).

Alexander and Scourse show that the BNM price is lesser than or equal

to 2GBM/Kirk’s price due to uncertainty over correlation and greater than

or less than 2GBM/Kirk’s price due to uncertainty over volatility. Fig. 6.17

also shows that the BNM prices can be greater than or lesser than the Kirk’s.

Since our calibrated BNM model conforms to this it is frown consistent !

The graph in fig. 6.18 shows the 3-D tree price of an American spread
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Figure 6.18: American Spread option price using 3-D tree model

option as a function of step size. With decreasing step size the resulting

price increases. The price obtained using the BNM approach is found to be

greater than that of a direct implementation (by substituting σ1, σ2, and ρ)
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Summary and Conclusion

This project aims to price American spread options by extending the BNM
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The values of the American spread options were found to be greater than

that of Europeans’ as expected. But this is by no means an effective tool to

validate the results obtained. A better conclusion can be arrived by compar-

ing the results with the actual market data.

This project has contributed by using an amalgamation of analytic and

numerical approaches to find the American spread option prices. The main

advantage of this method, which has never been implemented so far, is its

simplicity which is mainly borrowed from the BNM and 3-D binomial tree

models. There is a greater scope for further research and one can find innu-

merable ways of pricing American spread options.

The 3-D binomial tree approach used was a basic approach and the results

can be improved if we were to use the model described by Boyle(1988). On

the numerical front, since we were interested in the lambda, sigma and rho

values only up to two decimal places, the choice of the fixing the lambda and

rho values and their step size (see sec. 5.1.3) is justified.

If one were to find more accurate results the univariate approach adopted

would not prove a good choice. In that case we can adopt higher dimen-

sional descent methods, like gradient methods, Krylow subspace method

and others, for optimisation. Proposing the problem as a linear optimisa-

tion problem with a set of constraints would be a more efficient and elegant

approach. In brief, by adopting the extended Kirk’s formula, advanced 3-D

tree approaches and efficient optimisation techniques this new approach can
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Newton-Raphson Method

Let f(x) be a continuous smooth monotonically increasing/decreasing or a

convex function with only one zero. The Newton-Raphson method allows

one to find the zero of the function iteratively considering the function, its

derivative, and an arbitrary initial x-value. The value of the iterate depends

on the value and derivative of the function at the previous point. It is given

by:

xn+1 = xn − f(x)

f ′(x)
where f ′(x) ≈ f(x + ∆x) − f(x)

∆x

where, xn is the current known x-value, f(xn) represents the value of the

function at xn, and f ′(xn) is the derivative (slope) at xn. xn+1 represents the

new x-value that we are trying to find. This method has a quadratic rate of

convergence.

The first order derivative in the program was calculated using a ∆x of

0.005 which produced a satisfactory approximation to the actual value. This

makes a good choice as the values of the Kirk’s and Black-Scholes formulas are

not much altered for small changes in correlation and volatility, respectively.

51
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