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Figure 1.1: The growth of an avascular tumour
.

growth of cancerous cells. The process by which the tumour obtains its own

blood supply is called ANGIOGENESIS and preventing this from occurring is

of particular interest to drug development. This is because once the tumour

has obtained a blood supply the tumours can leave its primary location via the

circulatory system (metastasis) and settle in multiple areas of the body. The

METASTATIC stage is the final stage of tumour growth, and the most difficult

to treat.

From the moment normal cells mutate to cancer cells, there are three

distinct stages to cancer. The different stages have different characteristics so

require individual investigation. We shall study the primary stage, avascular

tumour growth.

1.1 Avascular tumours

As previously mentioned, the later stages of tumour growth are more critical

since it is usually not until after angiogenesis that cancer is detrimental to the

hosts’ health. During the avascular stage, the tumour is malignant. Indeed,

following a study of human cancers in mice [18] there is recent controversial

hypothesis that we all have small dormant avascular tumours in our bodies.

Regardless of this clinical viewpoint, avascular tumour growth warrants

the interest of scientists. It is beneficial to understand the simple system and

its components prior to attempting analysis of a more complex system. Vascu-

lar tumours have many of the same characteristics as avasuclar tumours, but
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the quantity and quality of data on avascular tumours is of a higher standard.

This is because it is comparatively easier and cheaper to reproduce high quality

avascular tumour experimental evidence in in vitro form.

In summary, we will be investigating a model for avascular tumours (see

Figure 1.1) as they are simpler to model and help give an insight into the

mechanisms of vascular tumour growth.

Figure 1.2: An avascular tumour

5



Chapter 2

The role of mathematics in

cancer research

Ever since complex life evolved, it has been susceptible to cancer. The old-

est description of cancer in humans was found in an Egyptian papyrus written

between 3000-1500 BC. Today specialists are still extensive



experiments - but not always. Through the development and solution of math-

ematical models that describe different aspects of solid tumour growth, applied

mathematics has the potential to prevent excessive experimentation’ [6].

Ideally, experiments and modelling work hand-in-hand. The experiments

can not only prove to be costly, but the subtleties of the many intricate pro-

cesses can easily be overlooked. By modelling tumour growth to mimic data



Chapter 3

A two-phase model of solid

tumour growth

Byrne et al. [7] formulated a two-phase model of solid tumour growth as a more

general version of two different pre-exisiting models for solid tumour growth -

[11] and [17]. Although full details of the modelling are not given in this pa-

per, the biological reasoning and assumptions that contribute to the model are

explicitly described. This is the model that we will be discussing and solving

numerically in this report.

Our first task is to non-dimensionalise the model. This involves the

partial or full removal of units by a suitable substitution of variables. Non-

dimensionalisation can simplify a problem by reducing the number of variables.

It also aids analysis of the behaviour of a system by recovering characteristic

properties. In our case, the key motivator to non-dimensionalising the system

is to enable us to take advantage of parameterisations studied elsewhere.

In this report we shall approximately solve the non-dimensionalised mov-

ing boundary problem by applying a moving mesh approach. We move the

mesh in three different ways: by ensuring that mass fractions in an element re-

main constant over time; by moving the mesh with the cell velocity; by driving

mesh movement iin proportion to that of the moving boundary.

The results generated from these methods are discussed and compared

with previous results.

3.1 Model formulation

In [7] it is assumed that a tumour consists of cells and water, with respective

volume fractions α and β (with α + β = 1). The two phases have an associ-

8





where

• Σc(α) is the pressure difference between the two phases and may include

contributions due to, for example, cell-cell interactions and membrane

stress. It is defined by

Σc(α) =

{

0 0 ≤ α < αmin

Σ̂c|α−α∗|r−1

(1−α)q (α − α∗) αmin ≤ α < 1

for positive constants q, r, 0 < αmin < α∗ < 1 and Σ̂c.

When specifying Σc(α), α∗ denotes a natural cell packing density: if α >

α∗ cells move to reduce their stress, while if α < α∗, they aggregate, if

they are not too sparsely populated (α ≥ αmin) By definition we have

ΣcΣ � α



These equations are defined on a moving domain, and in the model are subject

to the boundary conditions and initial conditions below,

vc = vw =
∂C

∂x
= 0 at x = 0, (3.5)

p = 0, (2µc + λc)
∂vc

∂x
− Σc(α) = 0, C = C∞ at x = xN (t) (3.6)

α = α0(x), x = x0 at t = 0. (3.7)

Equations (3.5) ensure symmetry about x = 0. In (3.6), C∞ denotes the nutri-





x̂N (0) = 1, α = α0 at t̂ = 0 (3.12)

v̂ =
∂Ĉ

∂x̂
= 0 at x̂0 = 0 (3.13)

⇒ µ
∂v̂

∂x̂
− χ(α̂) = 0,

∂x̂N

∂t̂
= v̂, Ĉ = 1 at x̂ = x̂N (3.14)

In equations (3.9) to (3.14) we have introduced the parameters

ŝ1 = s1C∞, ŝ2 =
(1 + s1C∞)

1 + s1C∞
s2, ŝ3 =

1 + s1C∞

s0
s3, ŝ4 = s4C∞,

k̂ =
k0x2

N (0)s0C∞

1 + s1C∞
, µ = (2µc + λc)

s0C∞

(1 + s1C∞)
,

χ(α̂) =

{

0 0 ≤ α̂ < αmin

Σ̂c|α̂−α∗|r−1

(1−α̂)q (α̂ − α∗) αmin ≤ α̂ < 1
,

Q = Q0x2
N (0), Q̂1 = Q1C∞.

In what follows the hats ( .̂ ) are dropped from the variables and param-

eters.

In this study we shall solve this model numerically using three moving

mesh methods.

13



Chapter 4

Moving meshes

Generally, for the numerical solution of time-dependent diff





4.2 Different methods to move the mesh

We will investigate three strategies for moving the mesh, i.e., different ways to

define the mesh velocity ẋ. The three mesh velocities will be:

A: based on conserving mass fractions,

B: the cell velocity v,

C: proportional to the boundary movement dxN



Chapter 5



which can be written as

T l
jCj−1 + T d

j Cj + T u
j Cj+1 = w(Cj) (j = 1, 2, ..., N − 2), (5.1)



the function is symmetrical about x0. Hence, we conclude that at x1 = −x−1

we have C1 = C−1. Substituting these values into (5.1) for j = 0 gives

−2

x2
1 − x2

0

C0 +
2

x2
1 − x2

0

C1 =
QC0α0

1 + Q1C0
. (5.3)

Therefore, we have values for T d
0 , T u

0 and w0(C)

T d
0 = −T u

0 =
−2

x2
1 − x2

0

,

w(C0) =
QC0α0

1 + Q1C0
.

Boundary Conditions: j = N − 1

For the right boundary we return again to (5.1), this time for j = N − 1

with the substitution CN = 1 (from (3.14)),

2

(xN−1 − xN−2)(xN − xN−2)
CN−2 −

2

(xN − xN−1)(xN−1 − xN−2)
CN−1

=
QCN−1αN−1

1 + Q1CN−1
−

2

(xN − xN−1)(xN − xN−2)
.

So T l
N−1 and T d

N−1 remain as defined by equation (5.1), but the final entry in

w(C) has an extra term due to the boundary condition.

Now we have our complete matrix system, T , to obtain Cj (j = 0, 1, ...N−

1), but note that the right hand side is nonlinear.

Numerically solving the discretized PDE

For the solution of (5.2) we use Newton’s method, where the residual vector R

of (5.2) is

R = TC − w(C).

We seek C such that R = 0, so equation (5.2) holds. Note that if Q1 = 0

the equations are linear and no iteration is needed. Otherwise, we carry out

Newton’s Method.
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5.3 Finding α using a moving mesh

Once C and v are determined over the region, we seek the solution of the time-

dependent PDE (3.9) using a moving mesh approach. We will examine three

different ways to move the mesh. For all three methods, the updated mesh is

obtained from the mesh velocity used in an explicit time-stepping scheme.

The first way of moving the mesh (Method A) defines the mesh movement

by keeping the cell mass fractions constant in time. The second uses the cell



It is worth noting that this corresponds to the global mass balance result
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Recovering the Solution α

To find an equation that allows us to calculate the solution, α, from

the mesh we return to (5.11) and equate
∫

α dx at times t and 0 between the

two points (j + 1) and (j − 1) , as in

1

θ(t)

∫ xj+1(t)

xj−1(t)
α(x, t) dx =

1

θ(0)

∫ xj+1(0)

xj−1(0)
α(x, 0) dx.

Applying the mean value theorem for integrals and taking the mean value to

be at xj(t), we obtain the approximation

1

θ(t)
(xj+1(t) − xj−1(t)) α(xj , t) =

1

θ(0)
(xj+1(0) − xj−1(0))



We now move on to Method B.

5.3.2 Method B

Under this strategy the velocity of the boundary is equal to the velocity of the

cells at the boundary. Then

dxj

dt
= ẋj = v(xj , t) (j = 1, 2, .., N)

ẋ0 = 0.

Once the mesh velocity is defined as above, the new mesh can be determined

by an explicit time stepping scheme, as in Method A.

To recover α on this new mesh in a conservative manner we define the partial

masses

Θj =

∫ xi+1(t)

xi−1(t)
α dx. (5.13)

Differentiating Θj with respect to time, using Leibnitz integral rule, where

ẋj = vj ,

Θ̇j =
d

dt

∫ xj+1(t)

xj−1(t)
α dx,

=

∫ xj+1(t)

xj−1(t)

∂α

∂t
dx +

[

αẋ
]j+1

j−1

=

∫ xj+1(t)

xj−1(t)

∂α

∂t
+

∂

∂x
(αv) dx.

Hence the terms under the integral are equal to one side of the PDE (3.9), so

can be replaced by the source term,

Θ̇j =

∫ xj+1

xj−1

[

∂α

∂t
+

∂

∂x
(αv)

]

dx

=

∫ xj+1

xj−1

S(α, C).

We update Θj at the new time by using an explicit time stepping scheme.

We then use the new value for Θ and find the updated solution by same the

mid-point approximation as in Method A applied to (5.13),

(xj+1 − xj−1)αj = Θj
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Chapter 6

Breward et al.’s Method

In [4] the same tumour growth problem is solved by mapping the variable x(t)

to a fixed domain ξ ∈ [0, 1] by the transformation ξ = x(t)
ℓ(t) and τ = t, where

ℓ = xN (t). Using the chain rule of Chapter 4.1, the transformed problem reads

∂α

∂τ
−

ξ

ℓ

dℓ

dτ

∂α

∂ξ
+

1

ℓ

∂

∂ξ
(αv) =

(1 + s1)C

1 + s1C
α(1 − α) −

s2 + s3C

1 + s4C
α, (6.1)

ℓ
∂

∂ξ

(

αζ(α)
)

+
kℓ2αv

1 − α
= µ

∂

∂ξ

(

α
∂v

∂ξ

)

, (6.2)

∂2C

∂ξ2
=

Qℓ2αC

1 + Q1C
, (6.3)

with initial and boundary conditions

ℓ = 1, α = α0 at τ = 0, (6.4)

∂C

∂ξ
= v = 0 at ξ = 0, (6.5)

µ
∂v

∂ξ
= ℓζ(α), C = 1 at ξ = 1, (6.6)

dℓ

dτ
= v at ξ = 1, (6.7)

where k and µ have the same definition as before, and the pressure difference

between the two phases χ(α) is defined in the special case Σ̂c = r = 1 and
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q = 2, as

χ(α) = ζ(α) =

{

0 0 ≤ α < αmin

α−α∗

(1−α)2
αmin ≤ α < 1.

To compare the results from the moving mesh method to those in [4] we have

replicated their results. Using the above set of equations we postulate the

algorithm

Preliminary: Obtain an initial C, v, ℓ and α

(1) Find C



have C−1 = C1 and CN = 1, from (6.5) and (6.6) respectively. To correspond

with these conditions, the above equation for the special cases j = 0 and j =

N − 1 are

−2C0 + 2C1 =
Qℓ2αjC0

1+Q1C0
(∆ξ)2 = w(C0)

CN−2 − 2CN−1 =
Qℓ2αjCN−1

1+Q1CN−1
(∆ξ)2 − 1 = w(CN−1)

As in Chapter 5.1, we write the non-linear system as

TC = w(C)

where

C is a vector of C0 to CN−1, j = 0, 1, ..., N − 1,

w(C) is a vector of w(Cj), j = 0, 1, ..., N − 1,

and

T is a tridiagonal matrix of the Cj coefficients,

T =





















−2 2 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −2





















.

The sub-algorithm for calculating C is the same as in Chapter 5, namely

Preliminary: Make an initial guess for C.

1(a): Use Cp to find w(Cp);

1(b): Find the residual, Rp = TCp − w(Cp).

1(c): Calculate the Jacobian of Rp,

Jp =
∂Rp

∂Cp
= T −

{

∂wp
i

∂Cp
j

}
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where i, j = 0, 1, ..., N − 1 and

{

∂w
p
i

∂C
p
j

}

is the diagonal matrix

∂wi

∂Cj
=

















Qℓ2α0

(1+Q1C0)2
(∆ξ)2 0 · · · 0

0 Qℓ2α1

(1+Q1C1)2
(∆ξ)2

. . .
...

...
. . .

. . . 0

0 · · · 0
Qℓ2αN−1

(1+Q1CN−1)2
(∆ξ)2

















.

1(d): Find Hp = (Jp)−1Rp.

1(e): Set Cp+1 = Cp − Hp.

1(f): With the new approximation Cp+1, return to (a) and repeat until (e)

converges, as measured by ‖Cp+1 − Cp‖2 < 1 × 10−6.

In step (c) the entries to the diagonal matrix
∂w

p
i

∂C
p
j

contain an extra factor of

ℓ2(∆ξ)2 when compared to Chapter 5, to accommodate the different w(Cj).

Finding the velocity v

We find the velocity in the same manner as in Chapter 5.2. We discretise

(6.2) and rearrange so that

Al
jvj−1 + Ad

j vj + Au
j vj+1 = b(αj) (j = 2, ..., N − 1). (6.8)

where Al
j =

(αj+αj−1)µ
2(∆ξ)2

, Ad
j = −

(

−
(αj+αj−1)µ

2(∆ξ)2
−

(αj+αj+1)µ
2(∆ξ)2

−
kℓ2αj

1−αj

)

,

Au
j =

(αj+αj+1)µ
2(∆ξ)2

for j = 1, 2, ..., N − 1 and

b(αj) = ℓ
4∆ξ

(αj + αj+1)ζ
(

1
2(αj + αj+1)

)

− ℓ
4∆ξ

(αj + αj−1)ζ
(

1
2(αj + αj−1)

)

.

As with the moving mesh equations, v0 = 0. For the case when j�v1332.868 Td
[(b)0.163371]TJ
/R21 10.9091 Tf
4.68(a41 7.97011 Tf
6Tf
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Let Al
j , Ad

j and Au
j (j = 1, 2, ..., N) be the respective entries to the lower,

main and upper diagonals of matrix A, and b(αj) = b(α) (j = 1, 2, ..., N).

Hence Step 2, finding the cell velocity v, is determined by solving

Av = b(α).

As intended we have calculated C and v on a fixed mesh in the same way as

we calculated them on a moving mesh. For the fixed mesh there is no mesh

velocity to define, but we still need to compute the change in the tumour radius.

Finding the solution α

Finally, to obtain α on the fixed mesh, we discretise (6.1) explicitly in time,

with a central difference approximation in space,

αi+1
j − αi

j

∆t
−

ξvN

ℓ

αi
j+1 − αi

j−1

2∆ξ
+

vi
j+1αi

j+1 − vi
j−1αi

j−1

2ℓ∆ξ

=
(1 + s1)α

i
j(1 − αi

j)C
i
j

1 + s1Ci
j

−
s2 + s3Ci

j

1 + s4Ci
j

αi
j ,

⇒ αi+1
j =

(

ξvN

ℓ

(αi
j+1 − αi

j−1)

2∆ξ
−

vi
j+1αi

j+1 − vi
j−1αi

j−1

2ℓ∆ξ

+
(1 + s1)α

i
j(1 − αi

j)C
i
j

1 + s1Ci
j

−
s2 + s3Ci

j

1 + s4Ci
j

αi
j

)

αi
j , (6.9)

(j = 0, 1, ..., N).

A one-sided approximation to αξ is used at the boundaries. This scheme is

non-conservative (see Chapter 4.1). We are assuming that the α are updated

in this way in [4].

Finding the tumour radius

By (6.7) the tumour radius ℓ grows at the same rate as the cell velocity at

the boundary vN . We find the tumour radius at the new time level by using

the explicit Euler time-stepping scheme,

ℓ



6.2 Numerical Results for Breward et al.’s Method

It is important to remark that the numerical algorithm specified in this chap-

ter is a surmise based upon the transformed problem given in [4]. However,

solving the transformed problem using this numerical process, we successfully

generate plots which replicate those shown in [4]. We can therefore be reason-

ably confident in our preliminary calculations in Chapter 4 where we find the

concentration C and cell velocity v using finite differences.







for both α and ℓ. Nonetheless, we can be reasonably confident that the solution

and the tumour boundary converges.
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Chapter 7

Numerical results for moving

mesh methods

In this section we use the moving mesh methods described earlier to present nu-

merical simulations of the non-dimensionalised model, equations (3.9) to (3.14),

in several parameter regimes. Our aims are to compare the three different mov-

ing mesh methods, and also to compare the results with existing mesh numerical

simulations in [4].



The results given here are the non-dimensionalised values. T



stepping scheme was used. In this case as the number of nodes doubled, the

time-step was quartered. This decision was made as the solution α is recovered

using a mid-point approximation, which is second order in space, and the ex-

plicit Euler time-stepping scheme is first order in time.

We would expect the solutions to converge quicker where using the ODE23

solver because this uses an approximation based upon Runge-Kutta 2 and 3,

which have a higher order of accuracy than Euler time-stepping. However, we

should be careful to note that the timesteps are considerably larger when using

ODE23.

Table 7.1: Relative errors for





convergence behaviour when comparing Euler time-stepping and using ODE23.

Yet, within a chosen time-stepping scheme, Method B and C have nearly iden-

tical convergence rates - especially when when using ODE23 (Tables 8.2 and

8.3). When comparing Methods B and C with the explicit Euler time-stepping

(Tables 8.5 and 8.6), we see that the α converge similarly, but the order of

convergence of x for Method B (Table 8.5) appears to be behaving erratically,

albeit for the small data sample obtained here. The mesh from Method C,

together with Euler’s time-stepping (Table 8.6), seems to have the highest rate

of convergence.

It appears that generally the mesh approaches an order of convergence

larger than two, whilst α may prove to be of second order convergence. However,

we cannot be sure of the order of convergence in any of the cases without having

more data, and comparing the solutions to data retrieved using N >> 80. Even

so, we can be reasonably confident that the solution and mesh converge for all

three moving mesh methods.

7.2 Comparison with Breward et al.’s method [4]

7.2.1 Comparing Figure 3 from [4]

We wish to compare our numerical methods to the mesh method used in [4]. We

generate results using the same parameters above to compare our results with

Figure 3 in [4]. All three methods were investigated, using both the explicit

Euler time-stepping scheme and ODE23. Throughout this section, we take

N = 80, ∆t = 0.0075 and run until t = 75.

Methods A and C produce very similar plots to each other, regardless of

the time-stepping approach. For this reason, only the results from Method A

are included here.

The explicit Euler time-stepping scheme and ODE23 generate v





Method B appears to behave like Method A and [4] at earlier times, but

after approximately t = 45, α appears to grow at the boundary, and no longer

decreases at a regular rate at the centre of the tumour. The plots from Method

B are less smooth, despite the same number of nodes used for both methods.

There is a considerable kink in α and v for t = 45 which appears to dampen

for later times. The solution α does not drop below 0.4 at the centre of the

tumour, even for t = 100 (not shown here). The key characteristics remain even

for smaller ∆t, and also when using ODE23 - suggesting that this behaviour is

due to the numerical method. The processes of Method B and Method C are

very similar, and as Method C behaves as in Figures 8.1 and 8.3, it is reasonable

to conclude that tracking the cell velocity with the mesh nodes can result in the

mesh becoming too coarse in some areas. This is a problem that could be com-

pounded over time, especially where the cell velocities vary between positive

and negative. At this point, the nodes would be moving in opposite directions,

leaving a considerable deficit in between. Indeed if we look at Figure 8.4 for

t
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Chapter 8

Comparing Method C and the

mesh method in [4]

In Chapter 6 we solved the non-conservative form of the tumour growth prob-

lem, as stated in [4],

∂α

∂τ
−

ξ

ℓ

dℓ

dτ

∂α

∂ξ
+

1

ℓ

∂

∂ξ
(αv) = S(α, C).

In [4] there is no mention of the numerical process. So we solved (6.1) by

explicitly time-stepping α by Euler’s method,

αnew = αold + ∆t

(

Snew −
1

ℓold
(αoldvnew)ξ +

ℓ̇

ℓold
ξαold

ξ

)

. (8.1)

Let us compare this to the moving mesh Method C in Section 6.3.3. Here we

use the conservative form
(

d
dt

∫

α dx =
∫

S dx
)

of the PDE

∂α

∂t
+

∂

∂x
(αv) = S(α, C)

to find the integral of α with respect to space. We define Θ =
∫

α dx, thus

discretely

α =
Θ

∆x
. (8.2)

Instead of explicitly time-stepping α we explicitly time-stepped Θ, by Euler’s

method in the form

Θnew
j = Θold

j + ∆t

(

∫





Chapter 9

Further work

9.1 Altering the cell velocity boundary condition

Throughout this report we have not changed the model presented in [7] and [4].

Let us consider the boundary condition on the cell velocity

v = 0 at x = 0.

Possible future work could involve changing the left boundary condition to

dv

dx
= 0 at x = 0,

depending on an internal pressure. Thus v 6= 0 at the inner boundary. This

would mean that the tumour would still remain symmetrical about x = x0, but

the cells in the centre would have a velocity that depends on the viscosity µ,

drag k and the nutrient concentration C. When the necrotic core forms, i.e.

when α → 0, the region occupied by cells moves away from the origin. The

problem would be solved on the region occupied by α 6= 0.

9.2 Examining the effect of χ(α)

Let us return to χ(α) in the form shown in Section 4.2

χ(α) =

{

0 0 ≤ α < αmin,
Σ̂c|α−α∗|r−1

(1−α)q (α − α∗) αmin ≤ α < 1.

For αmin < α∗ there is discontinuity at αmin. This jump may cause inaccuracies

when numerically approximating the derivative of χ(α), used in Chapter 5.2
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since, in this section we solved the equation for the cell velocity (3.10) by

discretising in space. The right hand side of the matrix system (5.10) was a

vector of the numerical approximation of d
dx

(

αχ(α)
)

,

d

dx

(

χ(α)α
)

= αj+ 1

2

χ(αj+ 1

2

) − αj− 1

2

χ(αj− 1

2

)

=
1

2
(αj + αj+1)χ

(

1

2
(αj + αj+1)

)

−
1

2
(αj + αj−1)χ

(

1

2
(αj + αj−1)

)

.

By approximating across the whole region in this manner, we are not account-

ing for the jump in χ(α) at α = αmin. This may cause inaccuracies at this

point, which might account for the severe oscillations in Figures 7.7 to 7.10.

These figures use αmin = 0.6 and α∗ = 0.8, and show that the solution is well

behaved until near the point where α drops down to 0.6.

To assess this error in our discretisation we identify when α = αmin and use a

one-sided approximation for d
dx

(

αχ(α)
)

either side of this point, so as to not

discretise across the jump in χ(α).

As in the velocity calculation, it is necessary to use one-sided approximations

at the same point (α = αmin) when finding the solution α. This is because α
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Appendix A

Examining the effect of χ(α)

Let us identify the node just to the left of the point where α = αmin as the

‘marker node’, which we shall denote as xm. To account for the jump between

xm and xm+1 we use a one-sided discretisation of (3.10) at xm and xm+1.

Downwind discretisation of the velocity (3.10) at xm

1

xm − xm−1

{[

αµ
∂v

∂x
− αχ(α)

]

m

−

[

αµ
∂v

∂x
− αχ(α)

]

m−1

}

=
kαm− 1

2

1 − αm− 1

2

vm− 1

2

Again, we use a one-sided discretisation on the terms in the square brackets,

so as to not approximate a differential across xm. Also, as before, we use

αm− 1

2

≈ 1
2(αm + αm−1).

1

xm − xm−1

{

µαm

(

vm − vm−1

xm − xm−1

)

− χ(αm)αm − µαm−1

(

vm−1 − vm−2

xm−1 − xm−2

)

+ χ(αm−1)αm−1

}

=
k(αm + αm−1)

4 − 2(αm + αm−1)
(vm + vm−1)

µαm

(

vm − vm−1

xm − xm−1

)

− µαm−1

(

vm−1 − vm−2

xm−1 − xm−2

)

−
k(αm + αm−1)(xm − xm−1)

4 − 2(αm + αm−1)
(vm + vm−1)

= χ(αm)αm −





and

b(α) =
(

b(α1) b(α2) · · · b(αm) b(αm+1) · · · b(αN−1) b(αN )
)T

v =
(

v1 v2 · · · vm vm+1 · · · vN−1 vN

)T

.

Recovering αm and αm+1 using one-sided approximations

For consistency, we recover α using a one-sided approximation at xm and xm+1.

Method A:

αm =
θ(t)

θ(0)

xm(0) − xm−1(0)

xm(t) − xm−1(t)
αm

αm+1 =
θ(t)

θ(0)

xm+2(0) − xm+1(0)

xm+2(t) − xm+1(t)
αm+1.

Methods B and C:

αm =
Θm

xm − xm−1

αm+1 =
Θm+1

xm+2 − xm+1
.

We should note that the downwind approximation at xm requires m ≥ 2, but

the position where α = αmin occurs at the right hand boundary, so intially m

is likely to be smaller than 2.
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