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Abstract

The moving mesh nite element method (MMFEM) is a highly useful tool for the numerical
solution of partial differential equations. In particular, for reaction-diffusion equations and
multi-phase equations, the method provides the ability to track features of interest such as
blow-up, the ability to track a free boundary, and the ability to model a dynamic interface
between phases. This is achieved through a geometric conservation approach, whereby the
integral of a suitable quantity is constant within a given patch of elements, but the footprint
and location of those elements are dynamic. We apply the MMFEM to a variety of systems,
including for the rst time to various forms of the Lotka-Volterra competition equations.

We derive a Lotka-Volterra based reaction-diffusion-aggregation system with two phases,
representing spatially segregated species separated by a competitive interface. We model
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Chapter 1
Introduction

In a great many areas of study, partial differential equations (PDESs) are used to describe
models, laws and systems. From the simplest of examples, the equations governing heat
transfer, through to trading models for global nancial markets, the PDE gives us an ap-
proach that can tackle a vast and ever-growing range of real-world problems. We may
understand and make predictions about the behaviour of complex mechanical systems, we
may study the weather, or we may gain insights into biological systems. The scope of PDEs
and their relevance to our lives is beyond doubt. In many of these systems we have very
complex interactions for which analytical solutions are not practicable or even possible.
Direct experimentation and measurement may likewise not be practical and is generally ex-
pensive. Numerical modelling is therefore the key tool to unlock our understanding of how
these systems are working or how they might evolve in time. Techniques for doing so are
well established and are subject to continual re nement and improvement. One particular
modelling technique, the use of nite elements, has plenty to recommend it. It involves di-
viding the domain into small discrete elements, and calculating the effect of each part upon
its neighbours. In doing so an approximation to the whole system is produced. The size
and spacing of these elements can be chosen to particularly suit the shape or dynamics of
the domain, and is speci ed by a grid or mesh. The mesh may be uniformly distributed
or otherwise. In the particular case of time dependent PDESs, there may be advantages to
having a mesh that moves with time, so that features of interest may be tracked with accu-
racy without the computational expense of increasing the resolution everywhere. For certain
phenomena such as boundary layers, interior moving interfaces and blow-up problems this
can be especially true. This is the eld of moving mesh nite element modelling, and this
eld is the subject of this thesis.
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1.1 Mesh adaptation

In the body of work concerning mesh adaptation, there are three basic approaches which are
usually given the following names:

h-re nement is the insertion of extra mesh points around an area of interest;

p-re nement is the use of a higher-order polynomial in each interval between mesh points,
so that values between mesh points are better approximated;

r-re nement is the dynamic movement of existing mesh points to track a feature of interest.

Most commonly, h-re nement and p-re nement techniques are used and are often com-
bined together. Their strength is that the algorithms produced are versatile; they do not
need to utilise any particular dynamic properties of the underlying solution. This is also a
weakness, since the dynamic properties of the solution can be an excellent guide to the most
ef cient mesh adaptations.

In r-re nement, the mesh nodes are assigned a velocity at each time step. This approach
naturally lends itself to the solving of time dependent systems, as the time integration for the
mesh movement and the solution evolution can be performed alongside one another, using
any chosen integration scheme. Also, the node velocity can be chosen to work with useful
properties of the system; for example one might wish to conserve mass within each element.
Taking advantage of this sort of property means that, if our scheme is well chosen, the mesh
evolves to re ect the solution in an ef cient and elegant way. The nodes move smoothly
along with the solution. We do not need to add or remove nodes, and we do not need to
interpolate the solution between nodes. The node positions and the solution are completely
linked. An excellent summary of the theory and practice of r-re nement techniques can be
found in Huang and Russell's book [49].

1.2 Scope of work

In this thesis, we consider in particular the application of one r-re nement technique. The
technique of interest is termed the moving mesh nite element method (MMFEM). This
method was developed in 2005 by Baines, Hubbard and Jimack [5], and uses a geometric
conservation approach to generate mesh adaptation. A nite element construction provides
the framework. We apply this method to a variety of reaction-diffusion PDE systems. We
have a particular focus on multi-phase systems, where a dynamic interface exists between
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phases. The MMFEM has previously been applied to the Stefan problem [8] where the
dynamic interface represents the melting of ice into water. We extend this work with a sim-
pli ed method. We then consider the application of the MMFEM to models of population
dynamics. We take a version of the Lotka-Volterra competition model that, like Stefan, de-
scribes a two-phase reaction-diffusion system, and implement the MMFEM for this system.
We then consider the application of the MMFEM to systems of intraspecies and interspecies
interactions with aggregating dynamics. Finally, we present a new model for interspecies
reactions that permits a dynamic interface combined with aggregating dynamics, as well as
the more familiar reaction-diffusion dynamics. We implement the MMFEM for this model

in chapter 7, and demonstrate its utility.

1.3 Novel material

This thesis contains the following novel material

» An application of the equidistribution method to a vertical water column under wind
shear;

* A two dimensional MMFEM implementation for the Fisher's equation for the rst
time;

A two dimensional MMFEM implementation for the Keller-Segel model for the rst
time;

The rst numerical model of the two phase Lotka Volterra competition system derived
by Hilhorstet al. [31]. We use the MMFEM to achieve this;



Chapter 2
Technical background

In this thesis we apply a moving mesh nite element method to a variety of systems, with a
particular focus on population dynamics. Here we set out the historical evolution of moving
mesh methods, and also a history of PDE systems for population modelling.

2.1 Moving mesh methods

In moving the mesh, we have two fundamentally different approaches. We may use a system
that provides a mapping to move the nodes at each time step in a xed, Eulerian frame,
or we may construct the entire system in a Lagrangian, or moving, co-ordinate system.
Following [18], we will call these location-based, and velocity-based methods, respectively.
An overview of these methods is given here. For a more detailed summary, the 2009 paper
by Budd, Huang and Russell [15] is recommended.

2.1.1 Location-based methods

The common feature of this class of methods is that the location of the mesh nodes at
a particular time step is directly controlled by a mapping function. The principle most
often used to achieve this is equidistribution. Equidistribution is a term used to describe
the locating of points such that a particular monitor function, for example arc length, is
the same for all intervals between nodes. This is achieved either directly, or by de ning
the mapping as the minimiser of a functional. In one dimension, consider the case of an
adaptive mapping(x;t) from a computational domaW, to a physical domaiWw. If we

are using a uniform computational mesh tl%ﬁis the density of the mesh oM. We then
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choose a monitor functioM (x) > 0 and require the mesh density to be proportional to it,

ix _ ,
> ¢ M(X): (2.1)

The equivalence to a functional approach is apparent if we take the quadratic functional:

z

2
K= M) Ix

X dx (2.2)

for which the corresponding Euler-Lagrange equation is:

1 1Ix
X M()] > 0 (2.3)
which is the same as dividing (2.1) i(x) and differentiating, and can be solved with a
given M to givex in terms ofx. The functional approach is useful as it is comparatively
easily extended to higher dimensions.

An early example of the use of equidistribution is given by White [52]. He uses the

integral version of the equidistribution principle (2.1) which is, in continuous form:

z Z,

M(x(x;t);t)dx=x . M(x(x;t);t)dx 8t: (2.4)

xX(x;t)

If this is differentiated with respect to we obtain

M(x(x;t);t)ﬂlxx(x;t) = q() (2.5)

where Z
a(t) = . M(x(x;t);t)dx

and differentiating with respect to again gives

ﬂﬂ_x M(x(x;t);t)ﬂlxx(x;t) =0 (2.6)
This will generally be nonlinear and so has been solved using an iterative approach by
Baines [3]. We use this approach in Chapter 4, where we use an arc length monitor function

to update the node spacing for a water column model with coriolis forces.
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2.1.2 Moving mesh partial differential equations (MMPDES)

It is recommended by Huang, Ren and Russell in their 1994 paper [32] to choose a method
that generates moving mesh equations in a continuous form. A simple algorithm is also very
desirable. This is achieved in their work by constructing moving mesh partial differential
equations (MMPDES) directly from an equidistribution principle. This is a neat and elegant
construction that avoids having to consider user-de ned input parameters in the mesh map-
ping. In taking this approach a more stable and more general algorithm can be produced. A
simple example is given here. Huaagal. derive a MMPDE by differentiating (2.6) with
respect to time to give

d

1 ey T _
§ x M(x(x,t),t)ﬂ—xx(x,t) =0 (2.7)

which can be rearranged to give the MMPDE

ogIx L1 M _ 1 IMix
ix fx Ix 9qx ix 9t 9x

(2.8)

wherex(x;t) is the mesh velocity. A great variety of MMPDESs exist, which vary in their
approach to temporal and spatial smoothing and regularisation. The power of selecting the
right one was demonstrated by Budtal. in 1996 [14]. They took an MMPDE from a
1986 paper [1] and applied it to a blow up problem. The MMPDE they used was derived
from (2.7) using temporal smoothing and is

11 M ix

Px_ 19
x2

“ox M (2.9)

wherer is a small relaxation time after which the mesh is to reach equidistribution. This
form has scale invariance properties. Here it is demonstrated that the use of monitor func-
tions which incorporate such key properties of the original PDE can be particularly useful,
as they allow features such as scaling invariance to be preserved. Natural spatial features
of the PDE are inherited by the MMPDE. In this paper, self-similar or approximately self-
similar solutions of blow-up equations are shown to be successful.

Another key concept was introduced by Budd and Williams in their 2006 paper [16].
They solve a relaxed form of the Monge—Ampere equation to compute a transformation
from a regular (computational) to the desired spatially non-uniform mesh. The method
involves the creation of a mesh potential which determines the location of the mesh points.
Using the Legendre transformation, the equidistribution principle is transformed into the
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Monge—Ampere equation giving the mesh potential.

2.1.3 Velocity-based methods

The following velocity based methods make use of the Arbitrary Langrangian Eulerian
(ALE) form of the PDE; that is to say that a moving co-ordinate system is used to directly
provide the mesh velocity. The form provides a mapping from the xed to the moving
frame. Consider the time dependent PDE

I =Lu; (2.10)

whereu = u(x;t) is de ned in a xed (Eulerian) reference frame, ahd is a differential
operator involving only space derivatives. To rewrite this in a moving (Lagrangian) frame,
we allowx to be a moving co-ordinatdt), which is related to a set of reference co-ordinates
a by the invertible mapping

X = X(a;t) (2.12)

where the hat denotes a mapping from the Eulerian frame to the moving frame. We can then
de ne the solutioru(x;t) in the moving frame:

u(x;t) = u(X(a;t);t) = d(a;t) (2.12)
and then by the chain rule A A
_f5 1t 213
where we clarify that A
u:’%_‘tj;x:%‘; (2.14)

The ALE form of the PDE is then
u x u=Lu (2.15)

There are now two unknownsg,andx, so we must know the mesh velocities before we
are able to nd the solution. The speci ¢ method for constructing these velocities varies
from using a real physical motion that provides a natural reference frame, through to de n-
ing the motion with the sole aim of optimizing geometric properties of the mesh. The
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Moving nite elements

The MFE method of Miller and Miller, [38] and [39], involves taking the PDE (2.10) and
determining the solution and the mesh simultaneously. This is achieved by minimising a
discrete residual of the ALE form of the PDE (2.15) in a moving frame. Miller and Miller
made the rst attempts at a moving mesh of nite elements to deal with a model involving

a sharp transition layer. These attempts made use of Burgers' equation as a test equation
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innovation in the paper is the use of a mesh velocity potential in the calculation of grid veloc-
ities; this can make the nite element formulation better conditioned as certain asymmetric
matrices can be substituted out. Furthermore, velocities in two or more space dimensions
can be uniquely calculated from it. The mesh velocity potential idea is extensively used in
this eld after this publication.

The conservation method

The 2005 paper by Baines, Hubbard and Jimack [5] takes the GCL concept and rmly
establishes it from a nite element perspective. This method shares common roots with
the GCL, but instead of using the variational principle to nd the mesh velocities they are
directly calculated from the integral form of the PDE. This is achieved by taking a weak
form of the PDE that includes a set of weight functions that move with the mesh. Then
the Reynolds Transport Theorem is used to provide a link between the Eulerian and La-
grangian perspectives. A system is constructed where the mesh velocity is given in terms
of a potential at a particular location (Eulerian view), but the elements themselves track the
movement of mass (Lagrangian view). This gives rise to the Arbitrary Lagrangian Eulerian
(ALE) equation, where a single equation ties together the relationship between the moving
and static reference frames. The examples demonstrated each conserve a proportion of a
guantity within each patch of elements. This may be mass itself for systems where mass is
conserved overall, in which case the simplest form of the theory can be used. This is demon-
strated for the porous medium equation and a fourth-order nonlinear diffusion equation. For
non-conservative systems, the theory uses the concept of relative mass, the proportion of
total mass associated with each element patch, and this is applied to a Stefan problem and
a diffusion problem with a negative source term. The method is extended in their 2006
paper [7] to include the solution of scale invariant PDEs. This exploits the inherent inde-
pendence of physical systems from any given unit system. Again using moving mesh nite
element systems, the time stepping is coupled to the mesh resolution, resulting in a scheme
that provides uniform local accuracy in time. This exploitation of scale invariance is not an
option for xed mesh models since they are time-independent and therefore cannot exploit
the coupling of dependent and independent variables in time.

2.1.4 Monitor functions

The choice of a suitable monitor function is of course key. The choice will be in uenced by
the underlying physics of the system as well as the moving mesh method itself. There are
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three classes of construction:

* An estimate of a quantity related to the solution such as arc length or mass, that can
be made at the prior time step;

* An estimate of the error at each node or across each element, which can then be
corrected by a suitable mesh adjustment. This is the approach used in moving nite
element methods, where the mesh movement is determined by the velocity term in an
ALE equation;
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wherek; andky are the carrying capacities of species 1 and 2 respectkelg a measure

of the effect that species 1 has on species 2,kgnd a measure of the effect species 2 has
on species 1. The parametefsandr, are a measure of the timescales upon which births
and deaths operate.

These early sets of equations did not consider spatial effects, so an important develop-
ment was made by Conway and Smoller in 1977 [22], where a diffusion term was included
along with spatial dependence. This allowed the study of a vastly increased range of phe-
nomena, such as the geographic spread of invasive species, or of disease, or the effect of
non-homogenous resource distribution. When random motion of the individuals is consid-
ered in the form of a diffusion term, the Lotka-Volterra equations are of reaction-diffusion
form. We have

% =d; 2up+ f(uguu
19 _ 4y 20+ guy; 2.18
T Uz +g(ug; Up)up (2.18)

whereds, do are constant diffusion coef cients, and witt{u; u2) andg(uz; uz) given by
the logistic equations

fupuw)=ry 1 UKt
ky
up  Koug
g(ug;up)=ry 1 T (2.19)

It is this set of equations which is of interest to us here.



Chapter 3

The MMFEM and existing applications

3.1 The moving mesh nite element method

The conservation method of Baines, Hubbard and Jimack [5] can be implemented from
either a nite difference or nite element perspective. Using the nite element method can

be more computationally expensive than the nite difference method, but can be more easily
extended to higher dimensions, and depending on the system, more stable. Furthermore,
nite elements lend themselves well to being applied to complex geometries, although that
is beyond the scope of this work. In this thesis we will take a nite element approach.
This approach is termed the Moving Mesh Finite Element Method (MMFEM), and is the
foundation of the methods in this thesis. The mass conservation concept involves assigning
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equation (3.7) we can cancel out terms
Z Tu
wi—+w (ux) dwW=0 (3.12)
W(t) Mt
giving us the weak form of a PDE in the moving frame,
Z Z
w  (ux)dw = w;Lu dW (3.13)
W(t) w(t)
or, after integration by parts,
Z Z Z
wiux h dS+ ux wdw= w;Lu dW (3.14)

() W(t) W(t)

wheren
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form of the de nition (3.15) off,

Z Z
wix dW = w; Fdw: (3.17)
W(t) W(t)

The Eulerian velocity is now known, and a moving reference frame can be generated. This
can be considered as a deformatioll X in time, derived from the ODE system

dx

— = x(X;t 3.18

5 = X&) (3.18)
with initial conditionX = x. OnceX has been found we can recover the solution from the
mass conservation principle (3.8) in the form

z z
Wi (X(1); u(k(t); t)dwW = Wi (X(0); 0)u(x(0); 0)ydw (3.19)
W(t) W(0)

at any later time.

Algorithm 1

The solution of the mass conserving equation (3.1) on the moving mesh therefore consists
of the following steps.
Given functionsu andx initially, for each timet:

1.
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and the test volum&V/(t) is de ned to be the total spatial domain of the model at time
t, moving with velocityx. We introduce again our weight function, also moving with
velocity x, as in (3.7). Again we require that is part of a set of functions that together
form a partition of unity. We now de ne the moving co-ordinate system by requiring that
the integral ofu multiplied by that moving weight function is a constant proportion of the
total mass in the systeme. 7

wiu dW = ciq(t) (3.21)
w(t)

where the constarg is determined by the initial; and the initial data. Since;w; =1, it
follows that ;¢ =1 also. Differentiating with respect to time gives

Z
dq
— wiu dW = ¢i— = ¢iq (t): 3.22
dt we [ dt iq(t) ( )
As in the case of conserved total mass, we de ne a reference test déf@imtt =0
and a moving test volum@(t) in the moving framex. Applying the Reynolds Transport
Theorem tow;u, we obtain

z z z

— wiu dW = 1(Wiu)dW+ wiux A dS
dt w) ZW(t) it St

= Wi Tu + uM +  (wiux) dw (3.23)
W(t) it fit

for the generalised weak form of the PDE. Using the advection equation (3.7) we can cancel
out terms as before, giving us the weak form of the PDE in the moving frame,

d Z Z Z

— wiu dwW wi  (ux)dw = w;Lu dw: (3.24)

dt wa) W(b) W(t)
We now use the relative conservation principle (3.21) to make a substitution. We use the
weak form (3.22) to give

Z Z
ciq(t) wi  (ux)dw = w;iLu dw: (3.25)
W) W)

After integration by parts we obtain

z YA z

ciq(t) + ux wdwW= w;Lu dW + wiux h dS (3.26)
W(t) w(t) ()

The boundary uxux f is again assumed to be given by the boundary conditions. We now
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have an expression farin terms ofu andq. So long as we select weight functionsthat
form a partition of unity, ;w; =1, we can calculatg by summing this expression over all
weight functions in the model and using the boundary conditions. Recalling tloat 1,
we sum equation (3.26) over ajlto give

Z YA Z

ciq(t) + ux. wdwW = wiLu dw + wiux H dS :
i ERTO) Pow i SO

(3.27)

Noting that w; =0,
Z Z
q(t) = Lu dw + ux A dS (3.28)
w(t)

S0
will determineq, providing that the boundary ux is indeed known.
A velocity potential is then introduced in the same way as for the conservative case. A
velocity potential;f is de ned,
x= f (3.29)

so that equation (3.26) can be rewritten as

Z Z Z
ciq(t) + u f wdw= wiLu dwW + wiux A dS (3.30)
W(t) W(t) S(t)
and we are now able to uniquely determihén terms ofu andq, as long as is given at
one point at least. As before, the recoverxa made using the weak form of the de nition
(3.29) of f 7 7

wix dW = w; Fdw: (3.31)
w(t) W(t)

Having update&(t) from x andq (t) from g using a suitable integration procedure, we can
now recoveiu from the relative conservation principle,

1 z

TORT (X(t); huk(
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1. Findq(t) from (3.28)
2. Find the velocity potential by solving equation (3.30) fdx;t);
3. Find the deformation velocity by solving equation (3.31)X(;

4. Generate the moving co-ordinatet the next time-step+ dt by integrating (3.18).
Similarly, updateg (t + dt) from q (t);

5. Find the solutioru(X(t + dt);t + dt)
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form of (3.28), 7
b(t)

— b(t) .
q= “© Lu dx+ [ux]a(t).

The weak integral form de ning the one dimensional velocity poterttied

Z b(t) Zbt) qf
WX dx= Wi

(3.36)
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Fig. 3.1 Weight or basis functions for nodesandx;

ically uses the weight functionsf(x) rather than the generic weight functiaf so

b®)  Z p(r) Z pty
ciq(t) V\,‘.uE + UEde= WLu dx (i=0;:;N+1):
it a(t) at)y Tx Tx a(t)
(3.39)

Now we can substitute nite element approximatidfRs X andU for f, x andu re-
spectively. These are also piecewise linear in form, and are linear combinations of basis
functionsWi(t). The basis function#/;(t) are often chosen to be the same set of functions
as the weight function®\{(t), although this does not have to be the case. Here we will
use the same de nitions faW;(t) andW(t) unless we specify otherwise. We will use the
subscripti for weight functions, and the subscripfor basis functions. For example, the
function F(x;t) is de ned as

N+1
F(xt) = Fi(OW,;(x1): (3.40)
j=0
In this formulation each of thil + 2 nodes will have a coef cienfFj associated with it and
(3.40) will form a linear spline. Similarly we also de ne

N+1
X(xt)=  XOWxt) (3.41)
j=0
and
N+1
U(xt) = Ui (W, (xt): (3.42)
j=0
We can also use the result that -
TF_ " 1w,

J
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The process for assembly B{U) is outlined in section 3.1.2. The matrix is singular but a
value off is imposed at one point.

The right hand sidé& of equation (3.49) can take many forms depending on the nature
of the operatoL. and the boundary conditions. It may be necessary to make substitutions
and/or perform integration by parts to obtain a computable form: a weak form requiring
functions once-differentiable between nodes only. Note that if we sum over all rows of
(3.49) the rows of the stiffness terk(U) of (3.49) will sum to zero, and thg values will

R
sum to unity. Providing that"® LUdxis known, this makes it possible to recowgas the

a(t)
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RecoveringU

Equation (3.34) is
Z b

wiu dx= ¢iq (t): (3.56)
a(t)

Since thec; are constant, we may write

1 < b
qt) aw
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Fig. 3.2 Weight function or basis function centred at the néfle

variety of suitable functions available but in this thesis we will use the simplest option, that
of piecewise linear functions on a triangulated domain.
We triangulate the domalfi(t) of the PDE we wish to solve. The nodes of the triangulation
will be TX;g; (i =1;::;;N).

We de ne the two-dimensional weight functio(x) as the piecewise linear function
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We use the result that N

F= Fj W (3.65)
=1

and make a substitution forf andu into equation (3.62), giving

N Z y y

g ) + UW Wdw Fj= WLUdW+ WUx AdS (3.66)
=1 WO w(t) )

We also use the weight functions to evaluate the values foecalling equation (3.21)

1Z

= U dx: 3.67
. q() W(t)W X (3.67)

We may construct (3.66) for every triangle and node combination, and thus obtain a linear
system of equations. When doing so we must take special care to include the boundary term
for domain edge boundary triangles. The boundary terms for internal triangle edges will
cancel out, since each edge connects two triangles which will have opposite outwards point-
ing normalsh, andU is continuous. Each triangle with an edge lying along the boundary
does make a contribution to the boundary term, so that in the sum of these contributions the
whole boundary has been considered.

The assembled matrix equation has exactly the same form as the 1D case,

Cq(t)+KU)E=L: (3.68)

However, the weighted stiffness matrix in 2D is given by

Z
K@= U0 WG WiGodw: (3.69)

As in the 1-D case, we can use (3.68) to obtaiby summing over all rows. The stiffness
term will sum to zero and theg values will sum to unity, leaving the boundary terms as-
sumed known and as the only unknown. We can then use (3.68) in full form to determine
the vectorF, imposing a value oF; at one point.

RecoveringX

To nd x, we work from the de nition off (3.16)

x= f (3.70)
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for which a weak form is

z z

wixdW = w; Tdw: (3.71)
w(t) W(t)

Using again the linear weight functiong = W (x;t), and (using basis function®) the
piecewise linear approximations= ; Xjt)Wj(x;t)and F= ;F;(t) Wj(xt) jFt
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Algorithm 4

The nite element solution of the non mass conserving equation (3.1) on the moving mesh
therefore consists of the following steps. Given the initlahnd X, and having calculated
C and the initialg from the de nition (3.20), then for each tinte

1. Findq(t) by summing over all rows of the matrix equation (3.68);
2. Find the velocity potential by solving equation (3.68) for Eagt) values;
3. Find the node velocity by solving equation (3.73) for ¥y&t) values;

4. Generate the moving nod&s(t + dt) at the next time-step by solving (3.18) using
the forward Euler approximation. Updaiét + dt) from q(t) in the same way;

5. Find the solutiorJ (t + dt) by solving the relative conservation equation in the form
(3.75).

Constructing the 2-D weighted stiffness matrix

The entries of the weighted stiffness matrix (3.69) are

Z
KV)ij = W(t)U(x;t) WIGGE)  Wi(x;t)dw:

In order to determine the entries for each element matrix we examine a weight or basis
function Wa on trianglew, represented by the co-ordinateg labelled (A;B;C) ( gure

3.3). The triangle has anglesb ;g as shown in gure 3.3. Such a triangle actually contains
three local linear functiond/a; Ws; We, one associated with each node. The gradient of each
weight or basis function can be calculated from the properties of the triangle. If Qésght

the height of triangleve in the direction of the normal to sidgC,

) WA = heiglgh;\ - bs?ng: (3.76)
Likewise,

o 1

) WeI = feight, ~ csima 3.77)
and 1 1

j Wej = (3.78)

height ~ asib’
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Fig. 3.3 Weight or basis functioi centred at the node A
The area of the triangle can be calculated from any of these heights as

areg = %a(heighg) = %b(heighg) = %c(heighg)
1
2

. 1 1. .
= —bcsina = Ecasmb = éabsmg: (3.79)
The piecewise linear construction of functidnmeans thalt) is linear in each triangle. We
can therefore use the mean to given any triangle. Taking each combination of two nodes
at a time, the entries for the element stiffness matrix can be determined. For example,

Z
KBCZ U VVB V\bdX
We
_ Ua+Us+Uc area
- 3 (heighiy) (heighy ¢ %)
Ua+Ug+Uc 3bcsina
— cosa
3 b@inza( )
_ Up+Ug+Uc 1
B 3 Zsira( cosa)

(Ua+Ug+Uc) ( cof) a
3 2

(3.80)
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and since (Wa+Wg+
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after integration by parts, and imposing the boundary conditien0. In [5] F was com-
puted using a nite element approximation in both one and two dimensions. The model was
found to be second-order accurate for= 1, although of lower accuracy fon= 3. An
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3.2.3 A Stefan problem

A non mass conserving example is given in the original 2005 Baines paper [5]. The single
phase Stefan problem describes heat diffusion in two dimensions given by the PDE

flu 2
it u (3.89)
with different values fok and an interface boundary condition
fu
— =CXxn Ug, = U 3.90
n g, L G, = UB ( )

whereC_ is the heat of phase change per unit volume, and the tempetgtuaéthe inter-
face is the constaniz. HereG; represents a moving boundary. This is the basis for the later
two-phase method in [8].

3.2.4 Finite difference implementations

As has been mentioned, the underlying conservation method behind the MMFEM can also
be implemented numerically from a nite difference perspective. The conservation method
with a nite difference approach has been applied to a wide variety of problems in one
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A different combined system of equations was studied by S.Cole in [21]. Models of
chemotaxis using the Keller-Segel equations were solved in one and two (radial) dimen-
sions using a nite difference conservation method. The system involves a substrate and a
reactant, and the PDEs are

W= :(ki(u;v) u ko(u;v)u v)+Kks(u;v) (3.93)

and
Vi =Dy Vt+ka(uV)  ks(u;V)v (3.94)

whereu is cell density,v is concentration of substratky is diffusivity, k> is chemotactic
sensitivity,ks is cell growth and deatli, is production of substrate aikg is degradation of
substrate.

Free boundary problems

In their 2015 paper [36], Lee, Baines and Langdon use the nite difference implementation
of the method to examine free boundary problems in one dimension. These included the
Porous Medium equation, Richards equation and the Crank Gupta problem. A moving
boundary is introduced with a ux boundary condition. For a boundary atb(t), the
boundary conditions are

u(b(t);t) =0; u(b(t);t)%) =0 (3.95)

This is found to provide solutions accurate to second order.
In this thesis we will take a selection of these nite difference implementations and
derive, implement and study the corresponding MMFEM.

3.3 Extensions to the MMFEM

Since the Baines, Hubbard and Jimack papers [5] and [7], a variety of interesting applica-
tions and extensions to the method have been investigated. Excellent overviews are given
in the review papers [6] and [36]. It has been demonstrated that forms of the method can
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High order nonlinear diffusion

In his PhD thesis [10], N.Bird considers nonlinear diffusion of second, fourth and sixth
order. The MMFEM is applied, and interestingly an alternative type of higher order ba-
sis function is also tried. In one dimension Lagrange polynomials of linear, quadratic and
fourth-order forms are used to provide a basis for the nite element approximation. The
MMFEM is compared with a nite difference method. Some practical dif culties in ap-
plying the nite difference method are considered. These arise when the boundaries are
permitted to move, resulting in certain functions becoming unbounded and singularities be-
ing introduced. It is found that the MMFEM alleviates this problem partially, although
undesirable oscillations are still observed.

Two phase Stefan problem

In 2009, Baines, Hubbard and Jimack together with Mahmood [8] present a version of the
algorithm from [5] in the form of an Arbitrary Lagrangian-Eulerian equation (ALE) that is
suf ciently general to be able to model a two phase problem with a moving interface. Each
phase is a diffusion system with driving PDEs

Tu

K -
STt
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solved as a single system to provide the mesh velocities. The masses are recovered for each
phase separately since they are decoupled by the interface; these are again obtained from the
conservation properties. This work is extended and developed for a new system in Chapter
5 of this thesis.

Ice sheets

In the 2013 PhD thesis [40] by Partridge and the subsequent paper in collaboration with
Bonanet al. [11], a 1-D MMFEM is applied to dynamic ice ow equations to model the
evolution of a glacier. The method is able to accurately capture and track the glacial front
using a moving boundary framework, and the model is extended to two dimensions. In
addition real world data is assimilated using the 3d-var scheme. This is found to work well in
one dimension and to improve the accuracy of the pro le of the ice front. In two dimensions
the moving mesh alone works well, but the data assimilation aspect of the problem remains
open-ended.

Explicit and implicit time-stepping schemes

In the methods described above, the time-stepping schemes are usually simple choices such
as the explicit Euler method. These can place considerable constraints on the size of the
time-step that can be made, because mesh tangling can occur. This is caused by nodes
overtaking one another, and imposes a limitation on the speed of computation such that
it becomes impractical to run models for long time horizons. A particular semi implicit

or implicit method is proposed by Baines and Lee in the 2014 paper [9] that can make it
impossible for nodes to tangle in one dimension. This allows us to choose a larger time-step.
The method involves manipulating the structure of the velocity equation so that it makes use
of its similarity to a variable co-ef cient heat equation. A maximum/minimum principle can
then be employed which makes it impossible for nodes to overtake. An alternative explicit
method is given by Baines in his 2015 paper [4]. This method focuses on the node spacings
or edge lengths (in 2D) and employs an ampli cation factor to calculate the distances. This
factor is always positive and prevents overtaking. This is implemented in a nite difference
framework in one dimension and the extension to two dimensions is outlined. It is noted
that smoothness problems in ancillary variables may occur in certain circumstances.
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Phase eld models

Another approach to the study of phase transitions and interfaces is to attempt the modelling
of a small but nite transition layer between two uniform bulk phases. These are known as
phase eld models, and a moving mesh nite element approach is discussed by Zhang and
Du [53]. In these models the eld varies smoothly but with a steep gradient in the transition
layer. The example used is the Allen-Cahn equation, and the challenge of suitably resolving
the thin interface layer is discussed with reference to appropriate time-stepping schemes and
numerical stability. The paper also examines cases where such layers move over time such
that dynamically evolving fronts can be tracked with an appropriately adapting mesh.



Chapter 4
New applications for MMFEMSs

We shall begin this chapter by illustrating methods that form a part of a development path-
way for MMFEMSs. This will allow us to become familiar with useful techniques as well as

to assess the incremental bene ts offered by each evolutionary step in the development of
the MMFEM.

4.1 An lllustration of the Equidistribution Method: a ver-
tical velocity pro le

The Ekman spiral [25] is a structure of currents near the ocean surface in which the ow
direction rotates as one moves away from the surface. Itwas rst noted by Swedish oceanog-
rapher Fridtjof Nansen, who observed an ice oe drifting at a tangent to the wind direction,
and whose observations allowed Ekman to develop his model. The rotation is driven by the
Coriolis effect. A feature of this structure of currents is the development of a shallow layer
(Ekman layer) with behaviour that differs from the water below. The development of this
layer in an initially stationary water column subject to wind stress is an interesting candi-
date for a moving mesh model, because we might wish to adapt the mesh to better resolve
the emerging layer. Here we illustrate the equidistribution method and assess its utility for
resolving the Ekman layer. A column of water is modelled under wind stress and with a
Coriolis effect taken into account. A 1-D nite element method is used, and both the xed
mesh and an adaptive scheme for the mesh are considered. In this example, the adaptive
scheme will be the equidistribution method, using arc length as a monitor function. We
also consider alternative monitor functions. Time integration is performed using an Adams
Bashforth method of third order.
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The PDE of interest is

11]1—?+Fez u:ﬂlz ku% 4.1)
whereu(zt) is the velocity, a function of the depth The velocity has two horizontal
componentsyy anduy. The physical constants afe= 10 4s 1 (the Coriolis force) and
Ky =10 °m ?s ! (eddy viscosity, a function of density, here assumed to be constant). The
boundary condition at the deepest extent of the water colwmnn his the Dirichlet condi-
tionu(z= h;t) =0. Onthe surface,= 0, we have a wind shear providing a ux boundary
condition 11]1—‘; 0 =b with componentd, =10 s ! andby = 0. The initial conditions are
u(zt=0)=0.

We separate (4.1) intoandy components. This generates two interdependent equations in
1-D. The PDEs for each component are

fTux T fTux
_'ﬂt = ﬂ_z ku_‘ﬂz +Fuy (4.2)
fuy _ I Ty .

4.1.1 Weak forms

To enable substitution of piecewise linear forms suitable for the nite element method, we
must obtain the weak forms of the PDEs. The rst step is to multiply the PDEs by a weight
functionw;,

Tux _ 1 T ux .
W,W =W 12 k”_ﬂz +WwiFuy 4.4)
Moy _ T Ty .
W,—‘”t _W"ﬂz k”_ﬂz Wi F uy (4.5)

and integrate from hto 0. Then integration by parts gives the weak forms. These are, for
each component respectively,

Zo qu.. ‘o
wW,——dz= W,
h o It h

1
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and
N+1 U.ZO U 0 N+1 Zo W TW: N+1 ZO

M WW; dz= ku\MM Uy, kuhhdz Uy, FWW,dz
j=0 it h 1z h j=0 h 1z 1z j=0 h

(4.15)
The Dirichlet boundary condition(z= h;t) = 0, is strongly imposed; therefore we will
not need to calculate (4.14) and (4.15) for the zeroth node=at h. However, atz=0
we will need to incorporate the boundary condit%z b. For the weight functionsy, a
convenient choice is the collection of piecewise lindafunctions from Chapter 3. These
functions are also used as the basis functions for the piecewise linear approximations (4.8)
and (4.9), so that in this case basis functions and weight functions are the same. The weak
forms are now

N"'lﬂUX-ZO N+1 Zo ﬂW ﬂW N+1 Zo

— Wi dz= kWibyj Uy, — 2 )dz+ Uy, FWwd
j=1 it h\M jaz kW Ko j=1 % hku 1z Yz z j=1 Yi h dz

(4.16)
and

N+1 U-ZO N+1 Zo W TW N+1 Zo

1% WW; dz= Uy, ko VTV o, Uy, WFWdz (4.17)
iy Mt h i=1 h Yz Yz i=1 h

J

This pair of equations can be written for any choice,a$o thatN + 1 pairs of equations

must be considered (recall that the zeroth node due to the Dirichlet condition need not be
considered). The equations hold for all internal nodes, with the boundaryKghfbyj,

being relevant to thg = N + 1 case only. This set of equations lends itself therefore to be
written in matrix form. We de ne matrice! = fM;j;g, K = fKj;g andF = fFjg with the
following entries 7

Mij = z+1V\:‘.(Z)V\/j(2)0|2 (4.18)
Z 1
Z
21 W W,
Kij = = d 4.19
! zq.1 Yz (z z ( )
Z
Fi= FWEW@dz (4.20)

Z 1
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We may now write (4.16) and (4.17) in matrix form. Rar [1:::N], this will be:

MU, +KU, =FU, (4.21)

MU, +KU, = FU, (4.22)

with U, denoting a vector of entrieBUy.g and so on. The boundary term is evaluated
separately and added on to tNe++
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where 1
Z 2 =1=2
s(2) = 1+g % dz (4.25)

Hereg is a scaling factor appropriate to the scaling of the system being studied. For this
example,g = 1000 is used since the lateral velocity variations are three or four orders of
magnitude smaller than the vertical scale. For our system this function can be expressed as

!
2

NI

Z,

fTux 2
= 1 _ -
W= 1+g o

fTuy

= dz (4.26)

whereuy anduy are the horizontal components of the veloaity New grid pointsz are

selected such that R,
nM(2)dz

Ro

nM(2)dz
for a set of regularly spaced grid points th; 1. By differentiating (4.27) with respect to
h twice, we arrive at the differential equation

h(2) = (4.27)

LW [

h M(Z'ﬂ_h =0 (4.28)

This is a nonlinear PDE, so we will solve it iteratively and therefore write

M(ZP)—= =0 (p=0;1;::) (4.29)

with an initial guess for a vector of discrete poigts As we have only discrete values of
and therefordV(z) to work with, we aim for approximate equidistribution and approximate
(4.29) as

M@, 1)@ 2 M@ @ =0 (4.30)
with our discretised monitor functiod as
Ucar Uy 2 Uy, Uy, 5" 122

Lo+ J , (4.31)

M(Zj+1=2) = 1+9 —————
: Zj+1 Z Zj+1 Zj

We assemble (4.30) into a matrix system,

T2 =b (4.32)
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3. Steps 1 and 2 are repeated for 10 iterations;

4. Using equation (4.32), calculard*! from zP and repeat until satisfactory conver-
gence jzZP*1  zPj <10 ) is achieved between the two. This is thgh+ dt);

5. Interpolate the solutionid, (t +dt) andU, (t + dt) onto the new grid(t).

Figure 4.2 shows a comparison of the xed grid and an adapted grid at t=100s. It is
easy to see the clear improvements to the model that come with increased resolution. The
xed grid with 160 elements is the highest resolution that the current MATLAB implemen-
tation can reasonably compute. If we take this as our reference solution, we see that the
moving mesh equidistribution models are more accurate than the xed mesh models with
the same number of elements, without a corresponding leap in the computational cost. The
improvement is primarily in the gradient of the top portion of the line. Figure 4.3 shows
where the grid adaptation has taken place. We see most adaptation around node 8, where
the accelerations of the uid integrated over time have been the greatest. Node 8 is at a
depth of around 7m. However, there is a physically important transition from a shearing of
the uid to a stationary uid (Ekman layer) at around 10-20m depth at tirel 00 and this
is poorly resolved. We investigate an alternative monitor function in search of a method that
can better resolve this transition.

Equidistribution by curvature

As the region we wish to better resolve is a region of high curvature, we shall attempt
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Fig. 4.2 A comparison of the solution given by xed and equidistributed grids for 40, 100
and 160 elements at t=100. See gure 4.1 for a detailed explanation of how this chart
represents a velocity pro le. The reference solution (red) is computed on a xed grid with
160 elements. Assuming this higher resolution computation to be the most accurate, we
compare the green and purple solutions, computed on 100 elements. We see that we can
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total movement/m
(]
b
T
1

Fig. 4.3 Overall mesh movement for 40 nodes. Total movement for naslgiven by
z(t) = z(0).

on the size of the interval im for accuracy. A sensible solution to this would be to
integrateC(z) along the curve;

» Using the integral of curvature as a monitor function we nd, at the iterative stage
(4.29), many cases that do not converge;

* We achieve suf cient stability to run the model in limited cases (t<¢&; 1000).
However, the node movement cannot take place in advance of the feature of interest
forming, so the transition zone is not better resolved. Instead, the increased resolution
is observed where the transition zone had previously been located.

From these examples we can see that the equidistribution method has improved the res-
olution of the Ekman layer for the arc length monitor function, but does not compare well
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based method, interesting features in the ow should be tracked as they develop, and there-
fore be tracked before they are observed in the features of the solution. The grid will not
need remeshing periodically so we will not need to interpolate the solution at any point, in-
stead the solution is tied to the grid at all times by the moving basis functions. Furthermore,
the need for an iterative step is eliminated. We will now illustrate the conservation method
using Fisher's equation.
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4.2 An lllustration of the Conservation Method: Fisher's
Equation

Fisher's equation is a reaction diffusion system that describes a balance between linear dif-
fusion and nonlinear reaction. It arises in ecology where it is known as a population growth
model, but it can also be used to describe biological invasion, or a simple combustion model
for ame propagation, amongst others. In contrast to the alternative population models de-
scribed later, it involves only a reactamg. any substrate is not relevant. The Fisher's
equation is known for exhibiting blow-up, which makes it a particularly interesting target
for an adaptive mesh method. We consider here an illustration of Fisher's equation using
the conservation method. The aim will be to derive a moving mesh that increases resolution
around the blow-up.

4.2.1 Fisher's Equationin 1D

Fisher's equation has a variety of common forms but following the Betdal. paper [14],

we look at the particular form describing the temperatuiaf a reacting or combusting
medium. The Masters theses by Edgington, 2011 [24], and Cole, 2009 [21], both examine
this same version of Fisher's equation on moving meshes from a nite difference perspec-
tive, but here we look at a nite element perspective. As discussed in Chapter 3, for ease
of comparison between studies, we will referutas mass rather than temperature. Fisher's

equation is
Tu_ T2

i 27 p
wone Y



4.2 An lllustration of the Conservation Method: Fisher's Equation 51

conditions arai(a(t);t) = u(b(t);t) = 0 where the pointa(t) andb(t) may have a non zero
velocity. We call this case 2. This allows all nodes including boundary nodes to respond to
the mass dynamics. This is a useful alternative system to model because it will allow us to
develop the approach that can later be used for a two phase system with a moving interface.

Conservation of relative mass

The approach to moving the nodes is now driven entirely by a conservation of mass in each
patch of elements; we have no specialised monitor function with this approach. As the
domain moves, the elements must shrink or grow to keep the proportions of mass constant
in each. However, for this particular problem we do not have the advantage of a conservative
total mass. Instead, as in the generic example in Chapter 3, we will introduce the concept
of a relative total mass. This will be de ned as theoportion of mass in each patch of
elements. These proportions will remain constant with respect to time. This principle is set
out as follows for the Fisher's equation. De nigt) to be the area (mass) under the entire

solution curve at time t, 7
b(t)

qt) = u(x;t) dx (4.412)
a(t)

We may use (4.41) to calculate
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Using Leibnitz' integral rule we have

) )
q R0 1w Lodb o da_
q wudx+ 0 ﬂt(w.u)dx+ (Wiw)j, at (wiw)j, at =0 (4.45)

o Z bty Z bty 0
q 1
— wiudx+ —(wu)dx+ —(xwiu)dx=0 (4.46)
g a) at) Tt att)y TXx
wherex is any velocity consistent witdb=dt andda=dt, and then
Z pt Z bt . _
il w;udx+ W, Tu + uM + W, 1(ux) + uxM dx=0: (4.47)
q act) a(t) fit Mt fix ix

After substitution of (4.43)

£o0 qu fw

Twi
W — +U——
a(t) Mt it

+Wi1;”—x(ux)+ux— dx=0: (4.48)

Gq + x

We x our weight functionsw; to the domain that moves with velocity Therefore we can
argue, by analogy to a convecting system, that

Twi | Tw,

— +X— =0 4.49
We can multiply (4.49) by and take out this term from equation (4.48). Rearrangement

ields
Y Z bt Z b

u
Wi — (Xu)dx = wi—dx+ciq: 4.50
0 IﬂX( ) () gt i ( )
Substituting from the weak form of Fisher's equation (4.40),
Zbe) g Zbe) g2y
Wi — (xu)dx = W —— +U? dx+cqQ: 4.51
() IﬂX( ) () i % iq ( )

Integrating the rst term on the left hand side by parts (assuming suf ciently smooth),

Z bty g Z b 2
o fw dx= Wi M+u

2
~yu
at)  ap TX a() X2

[wixul] dx+cq: (4.52)

For both case 1 and case 2, we note that the boundary term on the left hand side of (4.52)
is zero due to the Dirichlet conditionga(t);t) = u(b(t);t) = 0. We noF87 11.9552 Tf 4.639 0 Td [(a)]
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right hand side
Z bt) bt)  Z bt) g Z pt
qudxz WiM MM dx+ wiu2dx Gid: (4.53)
at) x X 2 a® TxTx a(t)

We refer to thew; as weight functions. Equation (4.53) is now in a suitable form for nite
element functions to be substituted.

Finite elements

\P{Ve chloose the set of functiohy for our weight functions. Consider the boundary term

Wi%—)li 0 in (4.53). In a nite element framework with Dirichlet conditions, the usual
approach is to solve (4.53) for internal nodes only, and in those cases the boundary term
would be equal to zero. Therefore the boundary term disappears. The given solution on the
boundary can then be strongly imposed. However, in a conservation based system, ignoring
boundary terms would destroy conservation in general. In this circumstance, following [33]
we switch to a modi ed set of weight functions, which we will céi{. These weight func-
tions include a combined weight function for the boundary node and its nearest neighbour.
This will allow us to strongly impose the Dirichlet conditions without destroying mass con-
servation. Our approach from here varies depending on the presence or otherwise of a free

boundary.

Case 1: Fixed boundaries: Boundary conditions are1=0,x =0

For the static boundary, case 1, we work in modi ed weight functions throughout. The mod-
i ed weight functions\W are constructed from the original weight functidfisas follows,

WA (t; X) = Wo(t; X) +WA(t; X) (4.54)

and
Wi () = WA (t; ) +Whi+1(8 %) (4.55)

with the remainingM unaltered. These modi ed weight functions are illustrated in gure
4.4. Note the dimension of the subspace in which these functions reside is reduced from
N+ 2 toN. Thec; values of equation (4.43) must be adjusted accordingly,
Zy 1
Ci=cCp+C = a(\/\/0+W1)u dx (4.56)

a
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Fig. 4.4 Modi ed weight functions in 1-D for boundary nodgand internal node&;. These
W form a partition of unity and are compatible with strongly imposed Dirichlet conditions.

and Zp,

CN=CN+ONn+1 = a(WN +W+1)u dx (4.57)
a

We then have naggp or cy+1 vValues. The remaining are unaltered. The use W andc
ensure that global conservation is not violated in (4.43
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whereX



ation (4.61
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I§(Q) could be singular itJ were constant and it had an odd number of rows and columns.
However, the second caveat is that when we consider the system in two dimensions, the
velocity is not unique because we could add an arbitrary curl vectox {@ee equation
(3.5)). By introducing a velocity potenti&t, we can avoid this problem since the velocity
potentialis unique. We then specify a curl of zero when we recodrom F. In order to

keep the method consistent between one and two dimensions then, we will also work with
a velocity potential in one dimension. We proceed therefore by introducing the velocity
potentialF, de ned by

1F
x (4.67)
where
N+1
Fixt)=  Wi(xt)F;(t) (4.68)
j=0
so that a1
TE_"Iw
It (4.69)
j=0
Substituting this into equation (4.61), equation (4.62) becomes
KWE=4§ (4.70)

whereF is the vector containindF;g(fm298.762 410.028 .ieA87 401 18Td [( 4.yion)npning)]TJ/ |
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Getting X

We then obtairX from a nite element approximation of (4.67) at each node. From the
de nition (4.67) we write the weak form,

F
wiX dx= wiﬂ—dx (4.74)

a a x

For case 1, the xed boundaries are equivalent to imposing the boundary conditions
0 and xj, = 0. To impose these without violating relative mass conservation in (4.43),
modi ed weight functions are again required. We select the modi ed weight functions
w; = W of (4.54), (4.55) and use the piecewise linear approximations (4.58) and (4.68). We

obtain
N+1 Zp N+ 1 Zp oy
a Wwjdx Xj= §  W-—dx Fj: (4.75)
j:0 a j:0 a ﬂx
In matrix form this is
MX = L5>f_j: (4.76)

The matrixM is a positive de nite and well-conditioned mass matrix with entries

Mij = WWdx (4.77)

Bj= W-—_dx (4.78)

a

Note that we will only need to inveN in order to recoveK.

Finding X

A time integration approximation such as forward Euler is used to generate the grid at the
next time step from the values Xt
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RecoveringU

To generate the new solution fdrat the new time step we return to our relative conservation
principle (4.43), with our modi ed basis functiong = W,

Zy
—— Wudx=§&:
qt) a I

In discretised form this becomes, with(x;t) = ;W;(x;t)U;(t),
N+1 Zp
WWw;dx Uj = &iq(t) (4.79)
j=0 @

where thec"are given by the modi ed values
~ 1 ~ 1 ~
G =—— WUpdx=——  Wug dx (4.80)

for initial dataug, if the Ug is theL? best t to up. Then (4.79) is equivalent to the mass
matrix system
MU = q(t)¢ (4.81)

with € as the vector containing entries andM the mass matrix calculated for the new
nodal positions. We may then solve fdwith the boundary conditionV{xU 2: 0 strongly
imposed orJ, without violating relative mass conservation.

Algorithm 7

For case 1 with xed boundaries.

Having initial ug andxp, and having calculated the piecewise linear functigrat the nodes
Xo, as well agg from (4.41), the nite element solution of Fisher's equation (4.39) on the
moving mesh in 1-D consists of the following steps at each time

1. FingxUfrom (
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4. Generate the co-ordinate systit + dt) at the next time-step by evaluating (3.18)
using the forward Euler approximation. Similarly, updgtérom q (t);

5. Find the solutiotd (t + dt) by solving the relative conservation equation (4.81) using
the strong form of the boundary conditions.

Case 2: Moving boundaries: Boundary conditions aret =0, ux =0

For the free boundary, case 2, whilst we have Dirichlet conditions ¥e& do not have them

for x. In fact there are no boundary conditions to imposeole will not need modi ed

weight functions to obtairx and indeed, using them would prevent us from obtaining a

solution forx at the boundaries = a andx = b. For this reas.82 Tf2(we)-291(t)-3a45 0 Td [(0)]TJ/F
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andB is the asymmetric matrix of (4.78):

Z b
Bij =
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using the modi ed conservation principle.

Recovering U

U can now be recovered in exactly the same way as in case 1, as described in section 4.2.1.

Algorithm 8

For case 2 with free boundaries.

Having initial ug andxg, and having calculated the piecewise linear functigrat the nodes
Xo, as well agg from (4.41), the nite element solution of Fisher's equation (4.39) on the
moving mesh in 1-D consists of the following steps at each time

=

. Findq(t) by evaluating (4.66);

2. Find the velocity potential by solving equation (4.88) for fhgt) values, withF
speci ed at the central node;

3. Find the node velocity by calculating (4.91) for tKevalues at all nodes including
boundary nodes;

4. Generate the co-ordinaté¢t + dt) at the next time-step from (3.18) using the forward
Euler approximation. Similarly, updatefrom q(t);

5. Find the solutiotJ (t + dt) by solving the relative conservation equation (4.81) using
the strong form of the boundary conditions.
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%10 u at blow-up for & variety of timesteps
T T T T T T

T T
uix )
Ar=1x105
16k A=5x10%
Ar=2.5x10°8
£1=1.25:10% ||

u at blow-up for a variety of timesteps
T T T T

Fig. 4.6 Blow-up of solutioru(x;t) of Fisher's equation (4.39), with case 1 boundary con-
ditions ( xed boundaries). The model is run to t=0.0825, beyond which solutions begin to
suffer from node crossing and other instabilities. The precise time that this occurs for each
choice ofDt andDx is given in table 4.1. The grid resolution is 6 nodes (top), 11 nodes (cen-
tre) and 21 nodes (bottom) in the half domain shown. Initial spa@ig regular. Various

Dt choices are tested for each initial grid resolution. The gures on the right show the detail
atx close to 0. ADx is reduced a small improvement in the de nition of the peak is noted.
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tion, that
0;5 2

Dt < Dx* =
N

(4.95)

which limits Dt to a maximum of 125x10 3. In both [21], and [24], Cole and Edgington
attempt a moving mesh solution of the same problem. They use an implicit nite difference
method to compute a conservation-based approach to moving the mesh. The results from
our nite element method are consistent with the approximate blow up Time0:082372

given in [13], as table 4.1 shows. We de ne the blow-up time of the model as the point
of failure of the model to further resolve a solutiore. nodes are crossing or some other
catastrophic instability. Looking in more detail, we are able to resolve a higher peak for

at blow-up with values of the order of= 10° ( gure 4.6) rather than thes = 10* in [21].

We also observe a narrower, more de ned peak et all values oDx andDt than in the

Cole dissertation. Furthermore, we note from the results in [24] that the 11 node model
performs better than the 6 node or 21 node models (de ned as the number of nodes in the
half-domain0 x 0:5). Presumably the 6 node model is limited by lack of resolution and
the 21 node model is limited by node tangling. We do not see the same node tangling limit
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Dx, when the variable time steps are used.

Results for the moving boundary problem: Case 2

Edgington extends the work in [21] by examining the effect of allowing the boundary nodes
to move. He nds that in the nite difference model, the maximunachieved is reduced
when the boundaries are allowed to move, except in the coarsest 11 node model.

Fig. 4.7 A solution of the 1D Fisher's equation using a moving mesh with the free boundary
of case 2. Here we use 20 elements and a time step of 0.00005.

We nd that our results are somewhat mixed. The maximuachieved is equalled or
improved when the boundaries are allowed to move, when compared to the xed boundary
case. However it must be recognised that the problem is de ned differently for each case.
For the 21 node model, the maximum resolvablgxis broadly unchanged at (near) blowup
when the moving (case 2) and xed boundary (case 1) versions are compared. For the 11
node model, allowing the moving boundary increases the resolvghleat blow-up by
about a factor of 5. For the 6 node model, allowing the moving boundary increases the
resolvableumax at blow-up by about a factor of 10. However, the time taken to blow up is
much less accurate with a moving boundary than with a static boundary. The model stops
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running due to nodes crossing at arouner 0:065 in the moving boundary case, whereas
we would aim for the model to run 6= 0:0823. Itis probable that this is due to the greater
nodal velocities observed when a free boundary is present.



4.2 An lllustration of the Conservation Method: Fisher's Equation 68

Table 4.1 Blow-up times from MMFEM implementation of Fisher's equation, case 1 with
xed time step

6 1x10° 8411 0.08411
6 5x10°% 16815 0.08408
6 25x10° 33622 0.08406

6 1:25x10 66
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Table 4.3 Blow-up times from MMFEM implementation of Fisher's equation, case 1 with
smoothing, and xed time steps. Blow-up happens later with smoothing.

6 1x10° 9821 0.0982
6 5x10% 19653 0.0983
6 25x10° 39317 0.0983

6 125x10° 78645 0.0983

11 1x10° 9892 0.0989
11 5x10°% 19865 0.0993
11 25x10 % 39817 0.0995

11 125x10 % 79727 0.0997

21 1x10° 9691 0.0969
21 5x10% 19664 0.0983
21 25x10 6 39663 0.0992

21 125x108 79669 0.0996

Smoothing

We also note some saw-tooth instability in both the constant time step case and, to a lesser
extent, the variable time step case nite element models. This is a common problem with
nite element methods because of the central differences involved combined with explicit
time stepping. We will attempt to smooth this out by introducing a viscosity term (Laplacian

smoothing),
new

1
X! =xi+Zd2xi; d2=x41 2%+X 1 (4.97)
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u at blow-up for variable timesteps u at blow-up for variable timesteps

Fig. 4.8 Blow-up of the solutiom(x;t) of Fisher's equation (4.39) with xed boundaries
(case 1) and variable time steps. The models are run until t=0.0825. Grid resolutions are
from top to bottom, 6 nodes, 11 nodes and 21 nodes. Variable time steps for comparison
with [21] are used. The gures on the right show the results with a normalised
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Order of convergence

Since we have a value for the blow up time from [13], we may examine the orders of
convergence or g with respect to time or space respectively. Wingns varied withDx
held constant, we expect a xed non-zero component of the spatial error, so we may estimate
p andq by looking at the rate at which the differences between successive errors decrease.
We assume

En=C
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10 u at hlowe-up for fixed timesteps, with smoothing
T T T T T T T

T T
ufx 0]

_ 5
A=l

At =0
At =2 5108

At=1 2550TE

%10 u at blow-up for fixed timesteps, with smoothing

4«10 U at bloweup for fixed timesteps, with smoothing

ufx 0}
_ s
At=Tx10
= e
At=5x10

Al=25:10F

Fig. 4.9 The smoothed, xed time step results at t=0.0825 for blow-up of the solufiot)

of Fisher's equation (4.39) with xed boundaries (case 1). Grid resolutions are from top to
bottom, 6 nodes, 11 nodes and 21 nodes in the half domain. The gures on the right show
the same results as the gures on the left but with a change of scale on the x aXig.if\s
reduced the peak actually gets wider as the smoothing becomes more effective.
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Table 4.4 Errors in blow-up time from MMFEM implementation of Fisher's equation, case

1 with xed time step, and their variation by time step and node spacing

N  Dx Dt En En En1 g
21 0.025  1x105 0.000248

21 0.025  5x10° 0.000213 -0.000035 1.6
21 0.025 25x10° 0.000191 -0.000022 2.0
21 0.025 125x10° 0.000180 -0.00011 2.2
21 0.025 625x10 7 0.000175 -0.00005

6 0.1 125x10° 0.001674

11 0.05 125x10% 0.000508 -0.001166 3.6
21 0.025 125x10° 0.000180 -0.000328 4.0
41 0.0125 125x10® 0.000099 -0.000081 4.8
81 0.00625 15x10° 0.000082 -0.000082

We see in table 4.4 that successive differences between errors as yoDthgbvdown
by a factor of about 2, suggesting 1 or rst order in time. When you halv®x these
differences go down by a factor of about 4, suggesting2 or second-order accuracy in
space. This is as expected from forward Euler in time and linear nite elements in space.
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4.2.2 Fisher's Equation in 2D

The two dimensional solution of the Fisher's equation has not previously been attempted
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We de ne a reference test domai(0) att = 0 and a moving test domaiti(t). Applying
the Reynolds Transport Theorem we obtain

Z Z Z
1

— wju dW = —(wu) dW+ wiux h dS
dt w) ZW(t) it w(t)
= Wl I ) dw (4.111)
W(t) it it

for the generalised weak form, whetefi is any normal velocity consistent with the normal

boundary velocity. Using the advection equation (3.7) we can cancel out terms giving us the
weak form of the Reynolds Transport Theorem in the moving frame,

d Z Z Z Tu
— wiu dwW wi  (ux) dwW = wi— dW: (4.112)
dt wa W(t) we Tt

We now consider the speci ¢ system described by Fisher's equation. We substitute the weak
form of Fisher's equation (4.106), and obtain
Z Z z

Z
d wiu dwW wi  (ux) dW = (W 2u+vY;-’>_,_dOJO.478WOOm 13.366 0| S C
W Wt W now EBFBA[GonoBl FEd[Z]TIFEFaA[W]TIF
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wheref is the outward pointing unit normal. The boundary ux f is zero due to the
Dirichlet condition onu. We now have an equation farin terms ofu andq,

Z Z Z Z
ciq + ux w dwW= w, u nhdS w, udw+ wiZ dw: (4.117)
w(t) S 0) w(t) w(t)
Providing that we select weight functiong that form a partition of unity, w; = 1, we can
calculateq by summing this expression over all weight functions in the model and using the
boundary conditions. From (4.109), we de neas the proportion of mass associated with
a particular weight functiom;. The sum is

cq()
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giving
N
F(x;t) = W (x;t)F;(t): (4.126)
j=1
We can now write (4.122) in the form
N Z Z
UW WwWdw F;= W U AdS
j=1 W@ S(t)
N Z Z
W W dW Uj+  WU2dwW cq(t) (4.127)
j=1 WO w(t)
or in matrix form
KWE=f (4.128)

with the vectorE= containing the valueEs;, and the vectoff containing the value$§ given
by

y N Z y

fi= W U AdS W W dW Uj+  WU2dW cq(t): (4.129)
S(t) =1 WO w(t)

The nonlinear termF,{\,v(t)V\,{U2 dW, is evaluated using Gaussian quadrature (see Appendix
B). Whilst not exact, the order of accuracy is high enough not to affect the order of accuracy
of the complete algorithm.

K(U) is the weighted stiffness matrix with elements

Z
KUWij= U W W dw: (4.130)

w(t)
We obtainX from the nite element approximation of (4.120), for which the process is
described in detail in Chapter 3, section 3.1.3. This gives the matrix form

MX = BE (4.131)

whereX = fx;g, M is the standard mass matrix alBds an asymmetric matrix with elements

z

Bj= W W dw: (4.132)
W(t)
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Modi ed weight functions in 2-D

Having obtaineX we now rewrite the system in terms of modi ed weight functions, so that
the Dirichlet condition otJ can be imposed. Modi ed weight functions in this context are
any suitable set of piecewise linear weight functions where the weighting normally associ-
ated with a boundary node has been transferred to an internal node, and where a partition of
unity is preserved. We turn our attention rstly to describing our system in terms of modi-
ed weight functions, and afterwards will take a closer look at the form of these functions
and how they may be used in calculating matrices. We use the tilde to denote the use of the
modi ed weight functionsj.e. w =W (X y).

For the approximations to variables, we continue to make piecewise linear approxima-
tions in terms of standard (unmodi ed) basis functions,

u(x;t) = " W, (x;t)U; (1) (4.133)
j=1

X(x;t) = " W, (x; 1) X (t): (4.134)
j=1

The ALE equation (4.117) can now be written, with a little rearrangement, in terms of
modi ed weight functiondM and unmodi ed basis functiond/j as

N Z Z y

~

UW W dw X;+ W U AdS+ WUX AdS
a®) =1 wo SO SQ)
N Z Z -
W W, dw Uj+ WUz dw (4.135)
=1 WO w()

~ 1

We impose ouX obtained from the unmodi ed system into this modi ed system, and thus
obtain the correct values af for the modi ed system. The nonlinear term is calculated
using Gaussian quadrature (see Appendix B). After time integration, we redousing
the nite element version of (4.109) with modi ed weight functions

N Z

WW, dW U; = éq(t) (4.136)
j=1jas WO

which references internal nodes only. In matrix form this is

MU =

I

v (4.137)
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for mass matriM, and vector§) containing theJ j values and Containing theg"values.

We now turn our attention to selecting a form for the modi ed weight functions and
consider the implications for matrix construction. Following Hubbard, Baines and Jimack,
2009 [33] we are presented with the choice between two approaches for modifying the
weight functions. These are termed the 'averaged modi ed approach' and the ‘compact
modi ed approach’. The two approaches are both derived and discussed only in the context
of the mass matrix. The modi ed mass matrix alone is suf cient to solve the conservation
equation (4.137), but here we require a more extensive implementation of the modi ed
weight functions. In order to solve (4.135) we will require an evaluation of both a stiffness
matrix and an asymmetric matrix. We must therefore extend one of the approaches from
[33] in order to provide a way to construct any matrix from the modi ed weight functions.
The averaged modi ed approach of [33] lends itself best to this, since it is de ned in terms
of the weight functions themselves. In [33] the modi ed weight functions are constructed in
a similar way to the 1-D case, but with the added complication of increased connectivity. It
is stated that the weight functions associated with boundary nodes are redistributed equally
between their adjacent internal nodes. Therefore all basis functions de ned on fully internal
elements remain unaffected. With regard to the construction of the mass matrix, [33] sets
out the following process. For triangles with two nodes on the boundary, all the weight
associated with that triangle has only one internal node to go to, and the calculation is
simple. For a given internal nodeon a triangle with vertice§j; J; K] whereJ andK are
boundary nodes, the modi ed weight functiwj [:3:K] for triangle[j; J; K] is given by

Wi (kg = Wi+ W+ Wk (4.138)

An example of such a triangle is number 3 of gure 4.10.

For triangles with one node on the boundary, the weight associated with that node is
split equally between the two internal nodes. For a given internal pnactea triangle with
verticed]i; j;J] where onlyJ is on the boundary, the modi ed weight functiaﬁj i1 for
triangleli; j;J] is given by
Wj: (4.139)

An example of such a triangle is number 2 of gure 4.10.

These sums are presented visually in gure 4.11. Recalling the standard 2-D basis func-
tionsW of gure 3.2, we obtain from equations (4.138) and (4.139) the coloured prisms
W of gure (4.11). The red volume represent (j. the contribution from triangle 3
to the modi ed basis function at internal node j. All the mass from triangle 3 has been as-
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Fig. 4.10 Connectivity between boundary nodes (I,J and K) and internal nodes (i,j, and k).
The arrows show where the weight function from each triangle will be transferred to under
the modi ed system

signed to node j, so the red modi ed basis function is a triangular prism with height 1 at all
three corners. The purple volume repres@ﬁﬁi;m], the contribution from triangle 2 to the
modi ed basis function at internal node j. Half of the mass normally assigned to boundary
node J is transferred to internal node j, with the remaining half being transferred to internal
node i. The purple modi ed basis function is therefore a modi ed prism with height 1 at j,
height O at i and height 0.5 at J.

The practical implementation of this modi cation process takes place at the level of ma-
trix assembly. The 2-D matrices are assembled as part of the algorithm by summing the
element contributions from each triangle. When we require a matrix calculated from mod-
i ed weight functions such as thil of (4.137), the contributions from boundary triangles
are adjusted before assembly according to (4.138) and (4.139). Contributions from triangles
with no boundary nodes are unaffected.

The matrix assembly using these modi ed functions must consider the interactions be-
tween modi ed weight functions and unmodi ed basis functions. A generalised matrix
de ned in terms of function§ andG with standard weight functions{ and basis functions
W, has entries 7

Aj= FOMGN) dw (4.140)
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Fig. 4.11 Modi ed basis functions for internal nodes. The red modi ed weight function
represents the mass contribution from triangle 3 to internal node j, and is a triangular prism
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W g (4.144)

and
Waii; ooy (4.145)

The modi ed weight functiondM for triangle 2 are, in terms of those unmodi ed basis
functions,

~ . 1 .
W g = Wil QWJJ[i;j;J] (4.146)
1 .
WJ [i:5:9] =W i+ WJJ[i;j;J] (4.147)
and
Wy iy = O (4.148)

The entries for the modi ed element matrix as de ned by (4.142) can be calculated for
triangle 2 from the localy, andW functions , (4.143) to (4.148). By reference to (4.140)
and (4.141), the entries can be given in terms of the unmodi ed elements of (4.141) as

o) 1
ei+3e)  @j+iey  enid+iendd

Ae= Beji+1einid anjj+ienjd ennjd+3end s (4.149)

o

0 0

The matrix is partitioned into an upper left 22 matrix, a bottom row of all zeros, and a
right hand column which refers to a known value obtained from the Dirichlet condition. For
example to calculatdU, we can see that we have

o 1

1 0O
enii + 3ennid @) +3ej | &y + 3endJ Ui
eji +senid  ejj+ ey | e+ ey u; & (4.150)

0 0

whereU; andUj are free andJ; is xed. The known terms generated by the right hand
column of the matrix can be added directly into the rows of the calculation, allowing us to
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use only the square matrix of the upper left in the matrix operation. This has the advantage
of being invertible.

We can use this approach to generate the speci ¢ matrices we will use. The unmodi ed
mass matrix given by 7

M= WW dw (4.151)
W

has the element mass matrix

O
1
6
Me = areay gll

N
ol Kl
Nl= Rl
000000 0NN

(4.152)
i 1 1
2 12 6
and the modi ed mass matrix given by
VA
M= WW, dw (4.153)
w

has the element mass matrix (for a triangle suclwgswith two internal nodes and one
boundary node) given by

@) 1
5 3 1
24 24 6
Me, = ar 3 5 1C.: 4.154
e=aACUBS % b (4.154)
0O 0 O
We can calculate modi ed stiffness matrices in the same way. The standard element stiffness
matrix is (o) 1
cofy + cotb cofy cotb
1
Ke=5 coy  cota+cofy cota

cotb cota cotb +cota
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by
u(0) =75sinp(0:5 r): (4.160)

In this case, the reaction does build, and we observe blow-up in a similar manner to the 1-D
case. We observe node movement towards the centrbesomes large there. The solution
tends towards a Dirac delta function before the model collapses due to node tangling. These
results are presented in gures 4.12 to 4.16. We use 5 nodes on 20 concentric circles. The
initial grid is presented in gure 4.17. Note that the outermost circle is different in having
10 nodes. This is to avoid the situation where if only 5 nodes were used, nodes from the
next circle inward from the boundary would form part of the boundary, as a consequence
of the alternating positioning of the nodes on adjacent circles. This would complicate the
implementation of the boundary conditions, so additional nodes are added on the outer
circle only. We use a time step df = 10 °. Figure 4.13 shows the solutiontat 0:01, and

gure 4.14 4.14 t=0:
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Fig. 4.13 Solution of the 2D Fisher's equationtat 0:01. Note change of scale on the
vertical axis.

Fig. 4.14 Solution of the 2D Fisher's equationtat 0:02. Note change of scale on the
vertical axis.
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6000

Fig. 4.15 Solution of the 2D Fisher's equationtat 0:0219. Approaching blow-up. Note
change of scale on the vertical axis.

x10°

Fig. 4.16 Final solution of the 2D Fisher's equation. Here0:0225. The solution approx-
imates a Dirac delta function, and shortly after this time step the nodes become co-located
and the model becomes unstable.
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Fig. 4.17 Initial node positions for 2-D Fisher's equatiort & 0. We have 5 nodes on 20
equally spaced concentric circles.

Fig. 4.18 Node positions for 2-D Fisher's equatiort at 0:0219 as we approach blow up.
When compared to the initial grid, the movement towards the centre is clearly apparent.



4.3 Keller-Segel model in 2D 93

4.3 Keller-Segel model in 2D

The Keller-Segel model [34] is a reaction-diffusion system related to the Fisher's equa-
tion. It differs from the Fisher's equation in that it involves both a substrate and a reactant,
whereas the Fisher's equation is concerned with only the reactant. Both Cole [21] and Budd
[13] consider the Keller-Segel system in two-dimensional, but radially symmetric, terms,
on a moving mesh. Budd's paper [13] contains an equidistribution approach to moving the
mesh, whereas Cole [21] demonstrates a conservation based method with a nite differences
implementation. Here we move to a fully two dimensional approach, with a conservation
based nite element method of solution (MMFEM).
This model, for chemotaxis of cells, takes the form of a pair of interdependent PDEs,

— = (ke(u;v) u ko(u;viu V) +ka(u;v) (4.161)

- =D, v+ Ka(u;v)  Kks(u;v)v (4.162)

where

u=cell density
v=concentration of substrate
ki=diffusivity
ko=chemotactic sensitivity
ks=cell growth and death
ks=production of substrate
ks=degradation of substrate.

We model a system on a xed domamwith boundaryS. We take the Neumann bound-
ary conditions used in [13], given by

u Ajg=0 (4.163)

and
v Njg=0: (4.164)

We also take the initial values forandv from [13], given by

u(r; 0) = 1000 500?) (4.165)
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v(r;0) = 10el 5009 (4.166)

wherer 2 W =fr : krk Rg, andR= 1. A free boundary is unimportant here, since the
initial conditions give a wide margin where
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and 42
— udW=0=q; (4.174)
dt w

i.e., mass is conserved. We de ne a distributed conservation principle using the weight
functionsw;. 7

wiu dW = ¢; (4.175)
W
or q Z
—  wiudw=0: (4.176)
dt w
We differentiate using Leibnitz' rule and obtain
Z f Z
—(w;ju) dW wiux:n dS=0 (4.177)
w it S
or Z
W-E + UM +w; (ux)+ux: wp dW=0: (4.178)
wo Tt it

If wi
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We arrive at

Z Z Z
wi:xu dw = wi: u dW+ ¢ w:u vdw: (4.184)
w w W
This is our weak form fox in terms ofu andv. We will move the nodes using a time
integration scheme, and recoveusing a conservation approach. We do however, require a
weak form forv. We calculater from the de nition of%—‘t’ , (4.168), the known nodal velocity
x and the material derivative q q
Y v
—=_—+ VX 4.185
dt 9t ( )

Thex
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We use the basis functiomg = W (X; y)g and the piecewise linear approximations

F(x;t) = " W (x;t)Fj(t) (4.191)
j=1
N

ug;t) = Wi(x;tuj(t) (4.192)
j=1
N

V)= Wi(xt)Vj(): (4.193)

j=1
We can now write equation (4.184) in a nite element form.
N Z N Z N Z

U W Wdw F;= W W dW Uj+c U W W)dw V:

(4.194)

In matrix form this is

N Z KWE=fN z (4.195)
W W; 3W V; +
with K(U) the welght@glstcwfnormformhteofto fneghapterormhte3,orm73(se]TJ/Fg 0 G [())-rmhte:
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together with the piecewise linear approximationso(4.192) andv (4.193), we obtain
from (4.188
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Table 4.5 Blow up time for 2D Keller-Segel model with= 10 showing variation byt,

andn

Dt

Thlow up

10

10

10

10

4x107
2x10 7
1x10 7

5x10 8

2:00x10 °
1:90x10 °
1:90x10 °

2:00x10 °

10

10

10

10

10

10

10

10

4x107
2x10 7
1x10 7

5x108

1:48x10 °
1:24x10 °
1:10x10 °

1:00x10 °
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Table 4.7 Blow up time for 2D Keller-Segel model with= 40 showing variation byt,
andn

40 5 4x107 552x10°
40 5 2x107 5:54x10°
40 5 1x107 5:56x10°

40 5 5x108 5:56x10°

40 10 4x107 1:52x10°
40 10 2x107 1:52x10°
40 10 1x107 1:52x10°

40 10 5x108 1:52x10°

40 20 4x107 8:80x10 °
40 20 2x107 8:80x10 °©
40 20 1x107 8:80x10°©

40 20 5x108 8:85x10°©

Examples of the graphical results obtained are given in gures 4.19, 4.20 and 4.21. We
observe the increasing height of the peakiiand the much lesser reduction in the height
of v. Figureofofofofofofofofofofofof
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method and it should be noted that for domains which involve large regions with zero mass
or constant mass, node movement cannot occur in those regions.

Fig. 4.19 Initial conditions for the Keller Segel model.
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10000
80004----
60004 :

Fig. 4.20 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
att = 5x100s/F86 11 gl6642 Tf 11.56 (4.54 Td [ x)]TJ/F86 gl6642 Tf6gl663 O Td [6X
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Fig. 4.21 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
as we approach blow-up.
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Fig. 4.22 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line).



4.3 Keller-Segel model in 2D 108

Fig. 4.23 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line), a closer view.



Chapter 5

Moving interface models

5.1 The two phase Stefan problem in 1D

We now consider models with a moving interface between two phases. These models are a
natural development from the free boundary variants of Chapter 4, for example the Fisher's
model of section 4.2 with case (2) boundary conditions. We begin with a model of the
two phase Stefan problem, constructed in a similar manner to that described in the Baines,
Hubbard, Jimack and Mahmood (2009) paper [8]. The model describes the melting of ice
into water. This model differs from those seen in this thesis so far in that the nodes at the
phase boundary are themselves moving, as well as node movement within each phase. The
model explicitly calculates the velocity of the interface between phases as the ice melts.
This velocity comes from an interface condition, and this information is then incorporated
into the model as a Dirichlet condition at the moving boundary. The model is constructed
as a moving mesh nite element model. We present a modi cation to the paper [8]. In this
problem we have Dirichlet boundary conditions on the boundary velocities as well as on the
temperature of the ice or water. This makes it possible to construct the entire nite element
model from start to nish in terms of the modi ed basis functions described in Chapter 4,
section 4.2.1. We therefore do not need to switch basis systems via the ALE equation, as
we did for the free boundary Fisher's problem (4.2) and as is derived in the paper [8]. We
derive this alternative process and demonstrate that results equivalent to [8] can be obtained
by it. The system is driven by the diffusion of heat. We consider the 1-D diffusion PDEs

flu _

1
“sTt = 1x Sx
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Tt Ix  CIx
The parameters used afg andK, the volumetric heat capacities of the solid and liquid
phasesks andk; , the thermal conductivities; angd the temperature.

KL (5.1)

At the interface,u = uy, the temperature at which melting takes place. There is an
energy balance across the phase-change bouggdty. This is described by the Stefan
equation

ks1:T—lj(S kL'lI"LXL = I Xy (5.2)
with I, the heat of phase change per unit volume; gndhe velocity of the interface. We
assume that all parameters are constant within their respective phases. In this system the
derivative}}—)‘j IS not continuous across the moving interface so we will need to be explicit
about in which phase we are evaluating that gradient.

The particular case we will consider uses xed outer boundaxi2d0; 1] with zero
Dirichlet conditions on the velocity for external boundary nodes, and initial conditions taken
from a system with an exact solution,

oy 1 ©Ff (TESTBLO26TE)ITI/F861%9556BT/F9811.9553(p-205
o=
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The following values for the parameters are used:

u= 20

uUp= 10

ks= 2:22

k. = 0:556

Ks= 1:762

KL = 4:226

| = 338

y = 0:2054

tiniial = 0:0012 (in order to avoid a singularity in (5.3))
k = k=K:

We consider a domaiR(t
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it may be helpful to think of this as 'mass' and we will use that shorthand here.

z

q) = u dx (5.11)
R(®)
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In terms ofg and the constants this is

z z

| al _ fu o
Giq R(t)W'ﬂX(UX) dx= R(t)W"ITt dx (5.19)

For consistency of method with the 2-D version, we introduce the velocity potdntat
ned by

X= X (5.20)
so that 7 7
_ 1 9f _ fu
Giq Wi— Uu— dx= Wi — dx (5.21)
Rty Tx Tx Rty Tt
or, after integration by parts
Z
cq + uME dx

rRe)y x fx
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with distributed (weak) forms

Z
csqs(t) = R0 wiu dx (5.27)

S

Z
cLaL(t) = wiu dx (5.28)
RL(t)

We rewrite (5.24) for each phase separately. Skwee0 at the external boundaries and
U= Um
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At the moving interface, the Stefan condition can replace the terms in equations involv-
ing f. We may run into dif culties with this ifuy,, = 0 or changes sign at any point, so as in
[8] we will add a constant to the whole domain when constructing the algorithm. Equations
(5.30) and (5.32) become

z YA

Tw; 1F Tw; fu fu Tu
CsOs+ Uu—-— dx= kKg——— dx+ wiks— Wikg—
ST X T Ret) © TX TX e, xR
4 TS PALE (5.34)
TX ru X R
P 1 PO (75 [COURVS L [
T R TX X R@ X Tx Tl e Xy
Un . Tus fu.
R LWL (5.35)
! X Ry X Ry

We can then sum equations (5.34) and (5.35) &®4ér) andR_(t) respectively, to give
us the rate of change of total ‘massjg andq., in each phase. Providing that we have
chosen a set of basis functiowsthat form a partition of unity, the full integral terms will
sum to zero and the values @fwill sum to 1. We obtain

ek Tt T fu

T (5.36)
™rw  TXgr | X Ru) T ru

u
qL = kl_ﬂ
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directly, i.e., for the interface, the velocityy, is given by

| Wi, ) = kewi 118 w o (5.39)

LR W TX Rt
The boundary conditions (5.7) and (5.8) that give
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5.1.1 Construction of the nite element form

We solve the derived system using a nite element method. Since we have Dirichlet bound-
ary conditions on equation (5.38) for the velocity, and also on (5.43) and (5.44) for the
temperature, we use the modi ed piecewise linear weight functigrs W of 4.2.1. We
de ne an approximation to each of our variables in terms of a weighted linear combination
of theW,. These are given in Appendix A.
We also de ne the weightings of (5.14) in terms of the sam&. These are
Z

WVVJ dx US] = 6isqS(t) (545)
j2zs RO

z

WW; dx Uy, = &, aL(t): (5.46)
j2z, RO

HereZsandZ, are the sets of nodes in the solid and liquid phases respectively. We can now

express the system in nite element form. We make substitutions as necessary from equa-
tions (A.5) to (A.14) into equations (5.34) and (5.35) so that all our variables are expressed

in terms of their piecewise linear approximations. We obtain

z Z

W W, W W, - U
s+ Shb dx Fj= Shb dx Usj +WkSLS
i2zs R ~ Ix 9x 275 Rs(®) ﬂxlﬂx X R
Wik oS 4 9m oy TYs g oL (5.47)
g 1 X Ro X Ratt)
z W TW, z W W U
&, qL+ U ——1 dx Fi= K — " dx UL, + Wk —&
j2z.  Rm(® ix fx j2z. R x ﬂ'x x R
Vi Tk Un ey 1Ys T AL (5.48)
™ R |1 X Ro X Ratt)
In matrix form (5.47) is
KUg) Fs=fg (5.49)

whereK(Qs) is the weighted stiffness matrix of 3.1.2 constructed with modi ed basis func-
tions, andFg is the vector containing the values bk, andfS is a vector with entrie:{c4
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given by
. 2o aWmIwW, U
fs = G&gls kse— —«— dX Us, + Wkg e
i2zs Re® ~ Tx X x RegD)
Wikshos 4 8m yqlds g (550
Tx g 1 LR W) LR
Similarly, (5.48) can be expressed as
KUL F =1 (5.51)
with the vectorf, containing entried;; given by
. z IV TW, U
fu=" & KL e b dx U, + Wk o
j2zz,  R@® x fx fx R |
_qU U - qU - qU )
T L <SR 1)
TX Ry X Ru) X Ru)

The matrix systems can be solved to obtBinandFr. Since the weighted stiffness ma-
tricesK (U)s andK(U), are singular, we have an in nity of solutions available and we set

F = 0 at the interface node to reduce the system in order to give a unique solution. Note that
the expressions fars (5.36) andy, (5.37) can be obtained and solved in a straightforward
manner by simply summing over the rows of (5.49) and (5.51).

To recoverx, we use the approximation

X= XjW: (5.53)
j
We substitute this into equation (5.38) to obtain the nite element form

YA YA
. - W,
WW, dx Xj = I Fi(5.54)
j2zs[z. RO j2zsfze RO X

or in matrix form,
MX = BF: (5.55)

We impose the velocity on the interface obtained from (5.39), and we imes@ on the
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As in [33], we now move the nodes using Heun's scheme [30]. Using the same scheme, we
update the values afs andq, from the values ofjs (5.36) andy. (5.37). The nal step is

the recovery ofJ. We can obtaitJ on the updated grid from the relative conservation of
mass equations (5.45) and (5.46). These can be expressed in matrix form as

MU g = &5 qs(t) (5.56)
and
MQL =&, qu(®): (5.57)

In the initial set up, we sdt= 0 and use (5.56) and (5.57) to nd the constant vectars ~
andg .. Then for each subsequent time step we proceed as follows. Wedaielq. at
the new time step. We calculate the mass maitifor the updated grid. We can then obtain
the updated) s andU, from inversions of (5.56) and (5.57) respectively.

Algorithm 11

The nite element solution of the Stefan problem given by equations (5.1) and with an

interface condition given by (5.2) on the moving mesh in 1-D therefore consists of the

following steps. We rst add a constant to the domain so that we avoid any zero or negative
values forU. Having obtained the values of andcj; from (5.56) and (5.57):

1. Find the velocity potential by solving equation (5.49) and (5.51) foFtj¢) values;
2. Find the node velocity by solving equation (5.55) for ¥)&) values;

3. Generate the co-ordinate system at the next time-step by solving (3.18) using Heun's
approximation;
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Fig. 5.1 Comparison of? errors in the solution and the magnitudes of the errors in the
interface node position for the two-phase Stefan problem in one space dimen3ienQ&.
We observe an order of convergencepof 2.

the convergence of the? errors atfT = 0:5 as the mesh resolution is increased. Both the
normalised solution error and the interface position error have an order of convergence of
approximatelyp = 2. This is consistent with the order of convergence given in [8] and
demonstrates that this method is an acceptable alternative.
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5.2 The two phase model of competition-diffusion

We now turn our attention to competition-diffusion models, in particular the Lotka-Volterra
systems of theoretical ecology. As described in Chapter 2, there are many variations. After
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whered, d, are constant diffusion coef cients, and with, in general

+ K

flu;u)=ry 1 T Rl (5.60)
Ky
+K

Qi) =r; 1 (5.61)

Hereu; andu, are the population densities of two competing speciek #ne the respective
carrying capacities of the species, tare the species speci c competition rates, ansl

a reproductive rate parameter. The Hilhorst paper [31] demonstrates that this system can be
reduced, if we have two species completely segregated, to

f(uuz) =ri(1  ui=kp) (5.62)

g(ug;up) =r2(1  ux=kp): (5.63)

The resulting system represents the limit wherekhalues are very large; the competition
rate is high enough that the two species cannot coexist in space. In the area populated by
species 1y, = 0, and in the area populated by specieg2= 0. At the interface, we have
a condition that gives the relationship between the uxes of the two species. In essence,
the species both ow into the interface and annihilate each other in a ratio according to the
competition coef cientm. This condition is given by [31] as

mdl% = dz% (5.64)
wherem = Ko=K;. We will call m the interspecies competition rate. We work with Neumann
boundary conditions on the external boundaries, which will be xed,

ra
Tug

x



R1but we select suitable initial conditions and
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principle in terms ofy, as 7
1 udx=1 (5.71)
q(t) re
We write this in a weighted form, introducing the weight functian
Z
— Wil dX=¢; 5.72
a®) ro ' 5.72)
or 7 7
wiu dx=ciq(t) =¢ u dx (5.73)
(t) R(t)

wherec; is independent of time. The constamis determined by the choice of weighting

w;. All of the weightings together should be chosen to provide a partition of unity. We

differentiate (5.73) with respect to time using the Leibnitz integral rule on our moving frame

R(),
Z Z

d wiu dx = T (wi)

1
+ —(wjux) dx 5.7487 11.95p2 Tf
dt  Rrq) R(@) it ﬂX( L) ( h
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or, after integration by parts,

Z Z
cq+ uME dx u .E = WiM dx (5.81)
rRe) Tx Ix % qrey RO T
We substitute in a weak form of the driving PDE, either (5.68) or (5.69), depending on the

phase under consideration. For either phagd1; 2]
Z Z

. 1 F f 2
Cplp+ upMﬂ— dx upwiﬂ— = Widpﬂ—l;p dx
Ro) X fx X qro) ZRp(t) %
u
+ Wilpfp 1 —2  dx 5.82
R® ¢ kp (582

Again integrating by parts, this time on the right hand side

tu
Cp 420552 T6345 Td [(p)]TI/F101 ;54.981 -1.793 .9664 6 Td [(R)]TI/F87 6.9738 Tf 6.002 -1.345 Td [(p)| TIF87 8.9664 Tf 5.966
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Equation (5.83) can be written now for each phase separately. For species 1 it becomes

Z Z
. T F f .
Cyd1+ U1ML dx U1Wiﬂ— = d1MM dx+ widlM
Ry X oix X gry ZRl(t) Tx fix ™ Ry
+ wiugry 1 4 dx (5.88)
Ru(t) ki

At the external boundari% =0 (5.65), and alség = 0 because the boundaries are xed.
Together with the condition that= 0 (5.67
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(5.64) for the competition system is

mdl_x = dy—= (5.93)

which is equivalent to the Stefan condition with= 0 and does not contain the velocity

X. Note also that the Stefan condition is relevant to a situation where the gradiemts of
either side of the interface are of the same sign in general. In contrast, equation (5.64) is
relevant to an interface where the gradients either side are of opposite polarityuSirce

on the interface and we can't have a negative mass, we are in effect considering 'v' shaped
interfaces. We note that whilst the interface velocity is not given by (5.64), the expression
does implicitly contain information about the location of the interface. In particular, if we
know the position of the mesh points adjacent to the interface and also the valued of
those points, we may use the fact that O at the interface to infer an interface position that
satis es (5.64). We select an interface position such that the valu% either side of the
interface are in the ratio m. We proceed as follows. At a given time stigpwe write the
interface condition (5.64) in a nite difference form

mdl
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the interface condition. We must allow the solution around the interface to evolve rst, and
then adapt the interface position in response to that. We cannot generate the position of
the interface that satis es (5.64) at the same time as we nd the node velocities elsewhere,
because we must solve the systemdarn the updated grid before we can see where the
interface ought to be positioned. After we have solveduowe can obtain the interface
position resulting from those values, but we cannot impose it on the system straightaway.
We would violate conservation of mass by doing so. Instead, we determine the new position
at the next time step. A concern this raises is whether the interface position is effectively
imposed one time step behind where it should be. The condition (5.64) is always slightly
violated, since it is this violation that drives the interface movement. Philosophically, we
can reconcile this dif culty by considering that there ought to be a force driving a movement
of the interfacebeforethe interface starts to respond. In the real world, would our species
retreat in anticipation of competition, or else compete and then accept the resulting boundary
change? The subtleties of this interaction, and its timing or lag, are not considered in the
Lotka-Volterra equations. We can therefore be con dent that the explicit nature of our
system does not violate any conditions of the system, and indeed it may better re ect reality
than a predictive approach. Should we determine that a problem does exist in this regard, a
suitable solution would be to use an implicit time integration method, which would accord
the ability to reassign the interface movement to the prior time step if so desired.
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To recover the nodal velocities we rst solve (5.97) and (5.98)fan each phase. We
then solve (5.89) and (5.91) to gifein each phase, but not on the interface node due to
the modi ed basis functions we will use. We then return to our de nitiorfdf.79), now
written in distributed form,

YA z

f
wix dx= w;— dx (5.99)
R(t) rRe) X

which can be solved fox. Having obtainedk, we move the domain using the explicit
Euler integration scheme. We also updgteandqg, from q1 (5.97) andj, (5.98) using the
same time integration procedure. For the interface itself, we calculate the new position by
correcting the interface condition at the prior time step. We obtain the resultant interface
velocity by solving equation (5.96) withh= 0 in the interface node.

We may now recoven. We determine the constant partial massgandcy, from (5.86)
and (5.87) and the initial conditions. We obtain, fer O

Z
— 1 . . .
Cy = 020 RO w; (X; 0)u(x; 0) dx (5.100)
1 Z
Co = wi (X; 0)u(x; 0) dx (5.101)

92(0) Rry(0)

We then use (5.86) and (5.87) again, to recaveandu,. We requireq; andqp at the
new time step. We move the weight functions with the domain. For specigschn be
recovered from

wi (X Hua(Xt) dx=cy;(X)qa(t) (5.102)

1
and for species 2, can be recovered from

Z

" Wi (X t)uz(X;t) dx= ¢z (X)g2(t): (5.103)

2
In each case the Dirichlet condition that= 0 at the interface is strongly imposed, and the
Neumann condition at the external boundaries is also strongly imposed.

We solve the derived system using a nite element method. We have Dirichlet boundary
conditions on equation (5.99) for the velocity, at both the interface and external boundaries.
For the values ofi; andu,, given by equations (5.102) and (5.103), we have a Dirichlet
condition at the interface only. At the external boundaries we have Neumann boundary
conditions instead. However, all these conditions are compatible with using the modi ed
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piecewise linear weight functiong =W of 4.2.1, with a modi ed weight function at each
external boundary, and also at each side of the interface. We may then strongly impose the
values of the velocity and; anduy at the interfaces and external boundaries. The values

of u; andus at the external boundaries can be transferred from their adjacent nodes because
we have the Neumann conditions.

5.2.1 Construction of the nite element form

We begin the nite element method implementation by de ning an approximation to each
of our variables in terms of a weighted linear combination of\Wje These are given in
Appendix A. The weightingsy, of (5.102) and (5.103) are likewise de ned in termsgf

We obtain 7

WW; dx Uy, = E3,0:(t) (5.104)
j2z, RO

z

WW; dx Uz, = &2,02(t) (5.105)
j2z, RO

wherez; is the set of nodes in phaséMe may rewrite the system in nite element form. We
take the approximations (A.1) to (A.9) as necessary, and also (5.104) to (5.105), and make
substitutions as necessary into equations (5.89) and (5.91). We obtain the following, with all
variables now expressed in terms of their piecewise linear approximations. Equation (5.89)
becomes

z z

W TW W Wi
&,01+ A ﬂjdij: d TV, Uy,
2z, Ry (t) ﬂx ix 2z Ry (t) x fx
U, z ~
+Wd1— + WWjry dx Uy, WUl dx (5.106)
1x Rn(t) j2Z3 Ry (t) Ry (t) kl

and equation (5.91) becomes

Z Z
G2+ IV oy = o, IV o o,
i2Z, Ra(t) ﬂx x 22, Ra(t) ﬂx 1x
U £
L VitWir, dx Uy, "2juzdx  (5.107)

ﬂ Rn) j22, Ro(t) Rx(t) k2
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In matrix form (5.106) is expressed as
KUy Fy=f, (5.108)

WhereK(Ql) is the weighted stiffness matrix of Chapter 3, section 3.1.2, constructed with
the modi ed basis functiong, andF, is the vector containing the valuesléf,, andf1 is
a vector with entried;, given by

Z ~
~ W W
fi= & TRLLALLNETH
22 Ri(t) Ix x
~ o TUp ‘ ~ 2 M1~ 2
+Wd—= + WWjrq dx Ulj —WU; dx (5.109)
x Rn(t) j2Z3 Ry (t) Ry (t) kl

Similarly, (5.107) can be expressed as

KUF, =T, (5.110)

with the vectorf, containing entriegy
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for which the nonlinear terms may be computed exactly using Simpson's rule (4.64). To
recoverX, we use the approximation

X= & Xw: (5.114)
241 2,

We substitute this into equation (5.99) to obtain the nite element form
Z z

~ ~ W
3 Ww; dx X = AR/ Fi (5.115)
j2za[ 2, RO 2zz, RO TX
or in matrix form
MX = B(u)F: (5.116)

We imposev = 0 on the external boundaries. We impose the interface velocity obtained

from (5.96). Since we are using modi ed weight functions we will not interfere with the
compatibility condition (5.40) by doing so. We solve (5.116) for the remaining velocities.

We move the nodes using Euler's scheme. Using the same scheme, we update the values

of g1 andqg from the values of; (5.112) andy, (5.113). We may now recover the values

of U; andU,. We can obtaitd 4 to obtain Tf 1G [(5.99)]TJ0 g 0 G [( 5.)-365(W)80(e)-268(may)-«
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ues;
2. Find the internal node velocity by solving equation (5.116) forX|(¢) values;
3. Find the interface node velocity by solving equation (5.96) foiXhé) value;

4. Generate the co-ordinate system at the next timetstegt by solving (3.18) using
Euler's approximation;

5. Update the values ofy andq, from the values of}; (5.112) andy2 (5.113);

6. Find the solution®J;(t + dt) andU,(t + dt) by solving the conservation equations
(5.117) and (5.118).

5.2.2 Results

We nd that the model is stable and robust. Even using the simplest Euler integration
scheme, we observe minimal oscillations affecting the smoothness of results. Figure 5.3
shows convergence in the solution of second or third ordédxa8 0. This estimate is
obtained by comparison of the result generated by each grid spacing with a high-resolution
(641 node) result, since no absolute result is available. This order of convergence is at least
as high as that reported for the very similar method in [8].

In the body of work concerning Lotka-Volterra equations, there are a vast range of pa-
rameter values in use, because there are so many varied but suitable examples of the type
of competition that is described. We therefore select a conservatively representative set of
parameters, chosen to demonstrate some of the interesting behaviours that this model is able
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gains due to this alone ( gure 5.9). However, as time goes on, the growth and competition
characteristics become increasingly important. We see species 1 becoming more dominant
over time, so that the interface velocity actually reverses direction. This is fascinating in-
terface behaviour! Figure 5.10 shows the evolution of the system=at2:3, and gure

5.11 shows the movement of the interface with the direction reversal. These results give
con dence that this model is likely to be able to satisfy the requirements of modelling a
wide variety of competition systems. It is stable to a large choice of set-up parameters and
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Fig. 5.4 Result of competition modeltat 1:7. Here we usd; =d, = 0:01,k; =k, = 100,
ri=r,=1andl =3. We run the model with a time step dt = 0:0001 for 17000
iterations and plot the results evedty = 0:1. We see the internal dynamics of the species
driving population density and interface uxes, and the position of the interface responding
to those uxes. The initial conditions are shown in red, with species 1 in blue and species 2
in green.
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Fig. 5.5 Result of competition modeliat= 6:0. Here we usd; =d, =0:01,k; =k, = 100,

ri =rp,=21andl =3. We run the model with a time stepdaif= 0:0001 for 60000 iterations

and plot the results eveBt = 0:1. The interface continues to evolve and the masses of the
species are now limited by the respective carrying capacities. The initial conditions are
shown in red, with species 1 in blue and species 2 in green
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Fig. 5.6 Result of competition modeliat= 8:8. Here we usd; =d, =0:01,k; =k, = 100,
ri=rp=21andl = 3. We run the model with a time step df = 0:0001 for 122000
iterations and plot the results evally= 0:1. Final step before node crossing occurs. We
observe that whilst species 2 initially grew in mass, it will now be wiped out by competition

with species 1.
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Fig. 5.7 Movement of interface positiof, for competition model with parameteds =

d» =0:01,k; =k, =100,r; =r, =1 andl = 3. We run the model with a time step of

dt =0:0001. We see the interface increase in velocity after a slower initial phase where both
species are experiencing population growth. We see the interface velocity accelerate as we

approach an annihilation event.
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Fig. 5.8 Result of competition model at= 8, considering the effect of altered carrying
capacities. Here we ush =d, = 0:01, k; =50k, = 150,r, =rp, =1 andl = 3. We

run the model with a time step aft = 0:0001 for 80000 iterations and plot the results
everydt = 0:1. We see that with differently chosen carrying capacities we nd the interface
position is approximately steady and these two species are in balance.
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Fig. 5.9 Result of competition model = 3:5, considering the effect of an increased dif-
fusion rate for species 2. Here we uke= 0:01;d, = 0:05,k; =k, = 100,r; =r, =1 and

I = 3. We run the model with a time step d¢f = 0:0001 for 35000 iterations, and plot the
results evenydt = 0:1. We observe that species 2 is able to make initial territory gains due
to its high diffusion rate, even though the competition rate is unaltered.
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Fig. 5.10 Result of competition model at= 12:3, considering the effect of an increased
diffusion rate for species 2. Here we use= 0.01,d» = 0:05,k; =k, =100,r1 =rp, =1

andl = 3. We run the model with a time step df = 0:0001 for 123000 iterations, and

plot the results evergt = 0:1. We see that the initial diffusion-driven gains by species 2

are reversed, and that the overall growth characteristics are dominating so that species 1 is
gaining territory.
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Fig. 5.11 Position of interface;,, showing interface movement for the competition model

at up tot = 123, considering the effect of an increased diffusion rate for speciefs gre

5.7). Here we usd; = 0:01;d»> = 0:05,k; = ko, =100,r; =rp, =1 andl = 3. We run the

model with a time step ofit = 0:0001 for 123000 iterations, and plot the results every

dt = 0:1. Due to the growth characteristics we can see interesting temporal effects. Here
the interface velocity has actually reversed directions as the system changes from diffusion
dominated to growth dominated.



Chapter 6
Aggregation models

In [28] and [29], Grindrod presents a new consideration for population modelling. He points
out that the derivation of the Lotka-Volterra competition models and similar single-species
dispersion models rests on the assumption that the dispersal of individuals is due to ran-
dom diffusive motion. This assumption is dif cult to justify, since it is readily apparent
that in the real world, individuals group together to improve their chances of survival, do
not voluntarily overcrowd themselves to death, and deliberately avoid predators. Grindrod
therefore introduces an element of deterministic behaviour to his model. In the Grindrod
models, we assume that the random motion of individuals is biased by an optimal velocity
n. This velocity is selected so as to increase an individual's expected rate of reproduction.
On average, the population is dispersing in the ideal direction. Grindrod produces results
obtained from this model as derived for a single species, and demonstrates that from an ini-
tially random seeding of individuals, clusters are formed. This work is of interest to us for
three reasons. Firstly, the aggregation model has not previously been constructed in nite
element form, on either a static or moving grid. Secondly, the model has not previously been
implemented for a two species competitive environment. Thirdly, the assumptions made by
Hilhorst in [31] require a zero population condition on the interface that is entirely driven
by high competition rates. Whilst we would need a high competition interface in any multi-
phase scenario, having intelligent aggregation as a component of the model would seem to
add somewhat more justi cation to the imposition of a zero population interface condition.
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We may now derive the PDE giving population density time dependence. We have

ffu_ .
[ToN 1(wv)
= :( d u+un)
=d “u (un)
=d u  (uaq (6.4)
with boundary conditions
A: u=0 X29W; t 0 (6.5)
A:n =0 XxX2TW; t 0 n= q (6.6)

6.1.1 1D population clustering model for a single species

We examine the 1D analogues of the equations described in section 6.1.

fu_ 120 1 19

2
E(u) = e% +q (6.8)
EW=Uu al u): (6.9)

We have the boundary conditions
E—O x=A;B; t O (6.10)
Tx S ’ '

a _ _ AR

Tx =0 x=AB; t 0 (6.11)

whereA andB are xed. We derive the moving-mesh, nite element model for this system.
We consider the system with no births or deaths, so we have a true conservation of mass.

Over the domaix 2 [A; B], 7
B

udx= constant (6.12)
A
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We de ne the distributed conservation principle, for a weight functign

Zg
wiudx= constant (6.13)
A
hence qZe ;
at A wiu dx=0: (6.14)
By the Reynolds Transport Theorem, we can say that
Zg q Zg q
— (wiu)dx+  — (xwu)dx=0 6.15
L qpdx+ o Gau) (6.15)
ce W'E+UM +W'1(UX)+UXM dx=0: (6.16)
At Tt X > =7 '

Assuming the weight functions; move with the domain

v
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We make the velocity potential substltutmn: . We obtain

B qwiff ., fu® ‘B qwu Ja® f8 qqfw
A UWWdX— dW'ﬂ_x A+ A dWﬂ_x dx+ W.Uﬂ—x oA ﬂx ﬂde

(6.22)
We note the presence of the zero ux boundary conditions (6.10), hence the two non-integral
terms on the right hand side will be equal to zero. The equation to be solv&dgdhen
Zg z Z
Tw 1F B Twi Tu B 197w
u——dx= d—— dx u——dx 6.23
ix x A Tx X A Tx Tx ( )
This expression requires knovgn We return to the de nition (6.8). We write this in weak

form,

Zg Zg

2
WiE(u) dx= e ﬂ qu+ wiq dx (6.24)
A A ﬂ A
Integrating by parts on the right hand side, we obtain
Zg B Z
19 B 1w 1q B

WE(U) dx= e w_— +e —dx+  wqdx 6.25
iE(U) rp N A X Tx A iq ( )

Noting again the zero ux boundary condition gnwe may simplify this to

Zg . Z Baw | Zg .
wWiE(u) dx=¢e — —dXx+ wiq dx 6.26
A iE(U) A X X A id ( )

which may be solved fog.

6.1.2 Construction of the nite element form

We use the unmodi ed piecewise linear basis functisns= W, since we have only Neu-

mann conditions to consider. We de ne our nite element variatidesQ andE in terms

of the piecewise linear approximatiobs=;WjUj, Q= ;W;Qj, E= ;WE;. Note

that althougtE is itself a nonlinear function dfJ, we simply calculat(we)-31 Tf isd [(E)]TJ/F101 11
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In terms of the standard mass and stiffness matrices this is
eKQ+ MQ= ME (6.28)

for vectorsQ containing the values @@, andE containing the values d;j. To solve this
we rst obtain the values o (u) from equation (6.9). We can now obtdifrom the steady
state system

Q=(eK+ M) ME: (6.29)

We now requird , which can be obtain from equation (6.23). We make the same piecewise
linear approximations and, after substitution, obtain

N+ 1 VA B ﬂW ﬂW N+ 1 z B ﬂW ﬂW N+ 1 VA B ﬂW ﬂW
2 U-—-—ldx Fj= § d——Jdx Uj & U-—-—ldx Qj:
a AT ix N P AT Tx Mx N
(6.30)
We solve for the vectoF = f F jg using the matrix form
K(UE = dKU  K(U)Q (6.31)
with K(U) analogous to the stiffness matrix, and given by
K(U);: = “es W W, dx (6.32)
=1 Xi 1 ﬂX TIX .

OncekF is recovered, we obtai andU in the manner now standard in this thesis. Brie y,
we use the weak form of the de nition for the velocity potentiad
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whereX andE; are the vectors containing the unknown veloci¥gand the knowrf;, and
M andB are the symmetric mass matrix and an asymmetric matrix respectively, as de ned
in section 3.1.2.

In this way, (6.35) can be solved to obtain tHgvalues. We then perform the time
integration step using any chosen scheme. Once the grid position has been recalculated, the
basis functions are likewise moved and the matrices de ned by them are recalculated.

We recoveld from the conservation principle (6.13)

Zg

W
A
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6.1.3 2D population clustering model for a single species

For the 2D model, we remind ourselves of the driving PDE system. This is

fu_ . 2 .

W d 2u  :(u q (6.40)
E(U= e 2q+q (6.41)

E(=@u a@ u (6.42)

with boundary conditions on the xed bounda®y

>
c

=0 x2St 0 (6.43)

nn=0 x2St O (6.44)

In this single species system we consider the case where we have no births or deaths, so that
clustering effects are most apparent even if transient. We therefore have a true conservation
of mass. Over the domain2 W the conservation principle is

z
udW = constant (6.45)
w

We de ne the distributed form, for a weight functiow,

z

wiu dW = ¢ (6.46)
W

where the constar is determined by the choice of. Hence

z

47 wu dw=o: (6.47)
dt w

Using the Reynolds Transport Theorem, we can write

Z Z
1 (wju) dw+ X (xwju) dW =0 (6.48)
w it w
leading to 7
ffu  Tw
Wi rm + uﬁ +w  (ux)+ux w dW=0: (6.49)
w
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We assume that the weight functiomsmove with the domain, which gives

Tt +x w=0 (6.50)
1t
hence (6.49) is ~ ~
wi  (ux) dw= WiM dw: (6.51)
w wo it
We make a substitution from the driving PDE (6.40) to obtain
Z Z
W (ux) dw = wi(d 2u (u g) dw (6.52)
W w
and after integration by parts we obtain
Z Z Z Z
wixu h dS wi (ux)dW= d w u dw wi u qdw
s w 7 W 7 W

+ wu q AdS dw; u ndsS (6.53)
s s

or, because we have xed boundaries,

Z Z Z
wi (ux) dW= d w u dw w u qdw
+ wu gq nds dwi u nds (6.54)
S S

We make the velocity potential substitutigr= . We obtain

z YA YA

uw Fdw= dw, u ANdS+ d w u dw
W 7 S 7 W

+ wu gq AdS ugq wdw (6.55)
s w

subject to zero ux conditions on the boundary (6.43), so the two boundary terms on the
right hand side will be equal to zero. We obtain the equation to be solvefd for

z YA z

uw FdW= d w u dw ugq wdw: (6.56)
w W W

Before this can be solved we need a valuefand this can be obtained, in a similar way to
the 1D casf 6.305 0.c6 Tf 10.949 1.984eady49 1.984athe equation (6.13),
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Writing this in weak form, we have

Z Z Z
WEU) dW= e w 2gdW+ wq dw: (6.58)
w w w
We integrate the right hand side by parts to obtain
Z Z Z Z
WEU) dW= e w q ndS+e wi qdW+ wqdw (6.59)
W S W w
since g A=0onS, the boundary term is equal to zero. We therefore have
Z Z Z
W;E(u) dW =e w, qdW+ wq dw: (6.60)
w w w

This allows us to obtaimm onceE(u) is known. We may obtain the values B{u) from
equation (6.42).

6.1.4 Construction of the nite element form

In order to solve equations (6.56) and (6.60), we use the nite element method. We use
the unmodi ed two dimensional triangular weight functiows= W described in Chap-
ter 3 (3.1.3), since we have no Dirichlet conditions to impose. We de ne our nite ele-
ment variablegQ andE in terms of the same basis functions, using the approximations
Q(xt) = jWi(x)Qj(t) andE(x;t) = ;Wj(X)E|(t). After making the substitutions for
these approximations, (6.60) becomes

N Z N L N Z

WW, dW Ej= e W W, dW Qj+ WW, dW Q;:  (6.61)
W : W . W,

j=1 =1 =1

In terms of mass and stiffness matriddsandK this is written as

eKQ+MQ=ME (6.62)

for vectorsQ containingQ; andE containingE;. Rearranging, we obtai@ from the steady
state system
Q=(eK+M) ME (6.63)

whereE is given by the de nition (6.42). Similarly, we make substitutions into equation
(6.56), de ning our variables in terms of piecewise linear approximations based on the
W. In addition to the approximatio@(x;t) = ;W;(X)Qj(t) already given, we require
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Ut) = jW(x)Uj(t) as the approximation fou, and F(x;t) = ;Wj(x)F;(t) as the
approximation forf. Equation (6.56) becomes

W WUdwW Fj= d W: W, dW Uj+ W U W)dw Q;
j=1 W j=1 W j=1 W
(6.64)
or in matrix form
KWU)E =dKU +KU)Q (6.65)

whereK(U) is the weighted stiffness matrix given by (3.69). Equation (6.65) is now suf-
cient to recoverF. We then calculatX, perform the time integration and lastly recover
U from the conservation of mass equation. This process is described fully in Chapter 3 but
brie y, the de nition of T is

x= f (6.66)

for which a weak form is 7 7

wxdW= w; F dwW: (6.67)
W w

Using again the piecewise linear approximations W (x), X(x;t) = ﬂ-\‘:lxj (HW;(x) and
Foat)= 'L Fjt) W(x) we obtain

N Z N Z
WW, dw X; =
W .

Y dw Fj: (6.68)
J:

j=1
Hence in matrix form, (6.68) can be solved #musing
MX = BF (6.69)

where X = fX;g, M is the symmetric mass matrix, amlis an asymmetric matrix with
elements;j; = ,\W W, dW. Having foundX, the nodes are repositioned using the forward
Euler scheme. We recovigrusing our distributed mass conservation principle (6.13). Using
the piecewise lineaf that together form a partition of unity, equation (6.13) is, for each
nodei, 7
¢ = WU dw:
W
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Using the piecewise linear approximatiorfx;t) = ;U;j(t)W;(x) we obtain
N Z
WW; dW Uj =¢ (6.70)
j=1 W

which is equivalent to the mass matrix system

MU =g¢;: (6.71)

This equation is used to calculate the initial (and constant) values ofing the initial
values ofU; andX;. After repositioning the nodes we may recolgi(t) from the mass
matrix system (6.71).

Algorithm 13

The nite element solution of the single species aggregation model de ned by equations
(6.40), (6.41) and (6.42) on the moving mesh in 2-D therefore consists of the following
steps. We obtain the constant valuegidfom (6.71) calculated dt= 0, and then for each
time step:

1. Calculate the reproductive potential by solving equation (6.4 2k (aj;

2. Find the values of) by solving equation (6.63);

3. Find the velocity potential by solving equation (6.65) for Eagt) values;
4. Find the node velocity by solving equation (6.69) for ¥() values;

5. Generate the co-ordinate system at the next timetstegt by solving (3.18) using
Euler's approximation;

6. Find the solutiotJ (t + dt) by solving the conservation equation (6.71).

6.1.5 Results

In common with [29], we use a random seeding to provide the initial conditions for the
model. The random seeding is selected from a normal distribution with a mead ah@

a standard deviation of@1. The model is stable and robust. We are able to run the model
sometimes to a blow up and sometimes to a solution where population growth and decline
become approximately balanced. The outcome depends on the initial valuesnaf also
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on the parameteid ande. We are familiar from the diffusion models with the parameter
and its effects. As the parameter controlling the rate of diffusion, it has a smoothing effect
when large. The parameters less familiar. From the de nition contained within (
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Fig. 6.1 A solution after 350 iterations ait= 0:35 of the 2D population equations, with
e = 0:005 andd = 0:01. This solution has not yet reached a balance, but is approximating
the 4th eigenmode of the Laplacian.
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Fig. 6.2 A solution after 10 iterations at= 0:01 of the 2D population equations, with
e = 0:001 andd = 0:01. This solution has not yet reached a balance, but is approximating
the 20th eigenmode of the Laplacian.
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Fig. 6.3 An approximately balanced solution of the 2D population equationsewt:001

andd = 0:01. plotting (from left to rightu, g andE(u). Whilst there is overcrowding in the
centres of the clusters, giving a dramatically negakya), the rate of population decline
resulting from that is balanced by the attraction of the cluster to individuals nearby. These
two effects mean that the shape of the solution does not evolve further, with only minor
local effects observed.
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6.2 Population clustering models for two competitive species

We now consider reaction-aggregation-diffusion models with two species. We consider the
case where the species share a domain, so that we may examine clustering into species
speci ¢ groups and the resulting claiming of territory. This may be of use in informing
suitable starting conditions for a two phase model of competition.

A nite element formulation for the xed mesh case

We begin with the Lotka-Volterra competition equations of Chapter 2, section 2.2, for two
competing species with population densitigsandu,. Following [29



6.2 Population clustering models for two competitive species 160




6.2 Population clustering models for two competitive species 161

(6.78) and (6.76) we obtain
A ay bw=e 2g+q (6.86)
We write this in weak form, using a weight functien to give

Z
WA dW
W
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and after integration by parts we have

Z Tu Z Z
Wi—1 dw=d; w u; ndS dj W, u; dwW
wo Tt 7z S z W

Wiup qu dw W gqp  up dw (6.93)
w w

the rst term on the right hand side of which is equal to zero at the domain boundaries due
to the zero ux boundary conditions (6.82), leaving

z U z z z
Wit dW= d; w u dW wiup %gp dW W qi up dW: (6.94)
w o Tt w w w
Turning our attention to the second term on the right hand side, again we integrate by parts
and obtain
VA fu VA z
wi—l dw= d; W, u; dW wiuz qp A dS
wo Tt 7 W 7S

+ (wiup) qp dw Wi o1 up dw: (6.95)
W W

Again the boundary integral is zero from the boundary condition (6.82). Therefore we can
reduce this to

Z Z Z
WiM dw= d; W up dW+ (wiu1) qp dwW Wi g up dw:
w o Tt w w w
(6.96)
By the product rule, this becomes
Z Z
Tu _ _ .
w—— dW= d; wi uwdW+ u w qdw
w o Tt 7 w 7 W
+ W up g dw Wi gqp  up dw (6.97)
W W
which simpli es to
Tu Z Z
Wi—l dw= d; Wi udW+  up w g dW: (6.98)
w o Tt w w

Equation (6.98) determiné]'ﬁl,’tf1 in terms ofg; anduq, and is ready for nite element substi-
tutions to be made. We follow the same procesdigi=t as we did foffu;=1t. Equation
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(6.85), the driving PDE foffuy=1t, is
Uz _ g, 2 6.99
W—Z uz m (U g2 (6.99)
or
% = d2 2U2 muy ZQ2 m Q2 U2l (6.100)
In weak form we rewrite this as
Z Tu Z Z Z
Wis2dW=d, w 2updW m wup 2 dW m w @ Uy dW: (6.101)
w o Tt W W w

The process that follows is identical to the
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We substitute these approximations into (6.89) and obtain

Z N Z N Z
WA dW a WW; dw Uy, b
W ; W

WW; dW Uy,
j=1 W

j=1
N Z N Z
= e WoOW W Q + WW dW Qi (6.107)

We may write (6.107) in terms of our mass and stiffness matitesidK to obtain

MA aMU; bMU,= eKQ,+MQ: (6.108)
HereAis a vector with all entries equal fa We may rewrite this in terms @@,

Q,=( estK+M) 'M(A aU; bUy): (6.109)

In exactly the same manner, we substitute the approximations (6.103) to (6.106) into (6.90)
and obtain

WB dw a WW, dw Uy, b WW, dw U,
W j=1 w j=1 W
N Z N Z
= e W W dw Q2j+ WW; dw sz (6.110)
which is, in matrix form
Q,=( eK+M) 'M(B aU; bUy): (6.111)

HereB is a vector with all entries equal 8. Equations (6.109) and (6.111) can be solved
to obtainQ, andQ,.

We now tackle the solution o?% by constructing equation (6.98) in nite element
form. We again choose; =W and make substitutions for the approximations (6.103) and
(6.104), together with the derivatives

U N
j=1
U2 N
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Thus (6.98) can be rewritten in the form

N Z N Z N Z
WW; dw Ulj= dq W W dw U1j+ U W W, dw Qlj:
(6.114)
In matrix form this is
MU; = diKU; +K(U;)Q, (6.115)

where the entries of matrik (U ;)



6.2 Population clustering models for two competitive species 166

6.2.3 Results

The model has been encoded on the square domain de nedizy x 0:2, 02 vy
0:2. We set 21 by 21 regularly spaced nodes, creating a mesh containing 512 triangular
elements. The default variables used for the simulations are (from [29]):

A=1
B=15
a=1
b=2
a=3
b=1

e = 0:025
e = 0:.025
dp = 0:1
do= 0:1
m= 1:

The initial population is generated randomly. Boundary nodes are sst =at0:4,
u = 0:3fort = 0;x 2 {W. Internal nodes are assigned a random valuefdérom a set with
a mean of & and a standard deviation of0d. Foru, the random values are assigned from
a set with a mean of:8 and a standard deviation afd. These values are chosen so that
andE; are zero (neutral survivability) at the boundaries, and have small perturbations from
neutral elsewhere. These random perturbations seed the evolution of the population densi-
ties towards preferred locations. One such set of preferred locations is shown in gure 6.4.
Att = 0:7, the two species have separated almost completely in space and four clusters are
formed, each species inhabiting two corners of the domain with one favoured corner each.
In gure 6.5, the same simulation is run te= 0:7 with a different random initial seeding
and this time only two larger clusters are formed. For the parameters used in this initial sim-
ulation, all the outputs fall broadly into one of these two categories. By experimenting with
parameters, we are able to affect the number and size of clusters that are formed. Figure 6.6
shows a simulation &t= 0:7 withe; = e = 0:01. The clusters produced are more compact
and the four corners of the domain are more evenly populated. Running further simulations



6.2 Population clustering models for two competitive species 167

with these parameters always produces this four-corner pattern. However, the question of
which species inhabit which diagonal pair of corners is determined by the random seeding.
The simulations run smoothly with an initial diffusion dominated phase lasting to ap-
proximatelyt = 0:05, whilst groupings are established and peak population densities are re-
duced, then a much longer group growth stage where populations tend towards their groups
containing maximum sustainable densiig, iy = 1 andup, = 1:5. Between groups popula-
tions are approximately zero, and the habitat appropriated by each species is clearly de ned.
Steady state is reached at arotirel 0:7. These simulations are robust to signi cant exper-
imentation with parameters and so provide a useful tool for understanding the behaviour
described by the model.

6.2.4 The non-conservative population case

We now consider the evolution of a system that allows births and deaths to take place. This
iS non mass conserving so the treatment is slightly different. The equatiogs, fo, E1

andEy, and the boundary conditions are unchanged from the conservative case. These are
given as

e1 2th+oqp=E; (6.118)
e o+ =E (6.119)
Ei1=A auy bw (6.120)
Eo=B au; buw (6.121)
with boundary conditions
uhn=0 x2q9w;t 0 (6.122)
ghA=0 x2Tw;t O (6.123)

However, for the time dependent PDEs we have a different system. We set the reproduction
parameter = 1, so that (6.80) and (6.81) become
Tug 2

T di “up (uu q)+uk (6.124)
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Fig. 6.4 A conservative, static mesh, two species simulatibr=a0: 7 with e; = e> = 0:025
andd; = do = 0:1. Initial seeding is random, so no two results are identical.
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Fig. 6.5 An alternative result from the conservative, static mesh, two species simulation
t = 0:7, the only difference being in the initial random population seeding. The parameters
are identical to those for gure 6.4; = e, =0:025andd; =d, =0:1.



6.2 Population clustering models for two competitive species 170




6.2 Population clustering models for two competitive species 171

u
% =d, 2U2 m (U2 Q)+ WkEy: (6.125)
This means that we have an extra term to consider in constructing the appropriate weak form

for nite element substitutions. The weak form of (6.124) is

Z Tu Z Z Z Z
Wi—l dw=d; w; 2u; dw W Up qu dw Wi g1 U dW+  wiuE; dW
w o Tt w w w W

(6.126)

wherew; is part of a set of weight functions that together form a partition of unity. We treat
the rst three terms on the right hand side in the same manner as in the conservative case,
given by equations (6.92) to (6.98). We obtain the simpler weak form

Z Tu Z Z Z
Wit ldw= di 0w udW+ u w g dW+ wuE; dW  (6.127)
w0t W W w

and similarly, from (6.125) we obtain the weak form

Z Z Z Z
w2 gw= d,  w wdW+ mp W g dW+  wWibE, dW: (6.128)
wo Tt W w W

6.2.5 Construction of the nite element form

We choose the piecewise linear weight functions= W. We use the piecewise linear
approxim383(the)-384(piece)25(wise)-384(lw(2)2TJ/F 0 g 0 G [())-250(t0)-250(()]TJ O galspiece)
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The matrix form is then
MU, = diKU; +K(U1)Q, +N; (6.132)

R
whereN; =



6.2 Population clustering models for two competitive species 173

U, (t) andU,(t) in forward Euler time integration.

6.2.6 Results

We use the same grid and default variables as in the conservative case, given in section 6.2.3.
The initialisation is also unchanged from the conservative case. Boundary nodes are set at
up =0:4,u, =0:3 fort =0;x 2 {W. Internal nodes are assigned a random valueifat

t = 0 from a set with a mean of.4 and a standard deviation of0d. Foru, att = 0 the

random values are assigned from a set with a mearBoédd a standard deviation of0Qd.

Again the simulations run smoothly with the short initial diffusion dominated phase then
the much longer group growth stage. Steady state, or at least a phase of very slow change, is
reached at approximately= 0:7 with no signi cant change thereafter to at least 25. The

results shown here show a single simulation at different stages. We show progress of clusters
forming att = 0:5 ( gure 6.7), smaller clusters becoming extinctat 1.0 ( gure 6.8) and

a straighter interface forming tit= 1:5 ( gure 6.9). Compared to the conservative case, we

see that only the larger groupings survive, which is to be expected if threatened populations
are now allowed to suffer deaths. We also see the formation of a clear and increasingly
straight interface between the two populations. As regards our aim of generating a system
that truly tends towards a zero population species interface suitable for a spatially segregated
multi-phase model, this is a success.



fffffff
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Fig. 6.8 An example result from the non-conservative static meskdt0. Random seed-
ing is used to produce the initial conditions. As the reproductive terms make impact, the
number of clusters is reduced to one per species.
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6.2.7 A change in the resource space

An interesting consideration is how changing the resource space affects the dynamics of
the group. This is particularly relevant when we move on to restricting each species to
its own domain. We can see how the shape of the interface will come into play, as well
as our later look at the effect of the interface as it is moving. The varighksdB are

the carrying capacities for species 1 and species 2 respectively, and can be considered to
represent the maximum resource a species can access. In this simulation, we look at the
effect of removing the resource from a part of the domain after a period of time during which
groupings have become established. We allow the simulation to run as nortral 2®

(gures 6.10 and 6.11), with the usual random population seeding, and then we rduce
andB to zero in one quadrant of the domain ( gures 6.12 and 6.13). After the removal of
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Fig. 6.10 An example with changing resource space, showing random population seeding at
t = 0:0. At this stage, resource distribution is homogenous.
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Fig. 6.11 An example with changing resource space, showing random population seeding at
t = 1:0. At this stage, resource distribution is still homogenous.
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Fig. 6.12 An example with changing resource space, showing random population seeding at
t = 1:5. At this stage, resource distribution is non-homogenous and species 2 is subject to a
falling population.
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Fig. 6.13 An example with changing resource space, showing random population seeding at
t = 2:0. At this stage, resource distribution is non-homogenous, but species 2 has adapted
to a new domain and is forming a smaller cluster.



Chapter 7

A combined model with a moving
Interface

7.1 The two phase model of competition-diffusion-aggregation

We propose a model for a two component reaction-diffusion-aggregation system based on
the Lotka-Volterra competition system, which will additionally incorporate the aggregation
characteristics proposed by Grindrod [29] and the interface condition proposed by Hilhorst
[31]. We construct the model in such a way that we will be able to utilise the two phase
MMFEM of Baines, Hubbaraet al. [8], with an adapting mesh based on a relative con-
servation principle. The PDE system that de nes the basis of the model is given by the
reaction-diffusion-aggregation PDEs from [29]. See Chapter 6, section 6.2 for a more de-
tailed background. In Chapter 6 we derived a model based upon the same PDEs for two
species sharing a domain, but here we are concerned with a truly two phase model. The
driving PDEs are

fTug 2

W =d; “u (U1 qu) +ruiEp t>0;x2 Wq(t) (7.1)
and
T _ > . .
o d2 “ux r (U2 q)+ruk t > 0;x 2 Wo(t): (7.2)

We use a xed domaitW bounded externally b, butW is divided into two subdomain
classe®V; andW, which are separated by the moving interfac&gt). The 1-D analogies
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are given by

2
flu_, w1 o e t>0x2@mt)  (7.3)

T Ix o ox
and

o, _ TP T Toe
0t d e r.”X U fx rusEs t>0;x2 (m(t);b) (7.4)
for a domain with xed boundariea andb but with a moving interface between species
m(t). The parameter§; andE; are the net reproduction rates for each species, given by the
logistic equations
Ei=A auy bU2 (7.5)

Eo=B au; b u: (7.6)

We can see that this system also has parallels with the competition-diffusion model of Chap-
ter 5. This system differs from that in Chapter 5 in the additional consideration of an ag-
gregation component (the term containiny We note that the parameters used in the
expressions (7.5) and (7.6) for the reproduction Eatere named differently to the com-
petition diffusion model, but we can see that no material difference exists. For simplicity
we adopt the naming conventions used by Hilhorst where we extend her work, and have
followed the naming conventions used by Grindrod where we extend his work. This model
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ﬂ2
ezﬂ—fj +0p = Ey: (7.10)

7.2 1-D competition-aggregation-diffusion in a two phase
model

We have boundary conditions given by

e
c

ﬂ_X:o x=a;b
fla _
ﬂ_x_o
u=20 X =m(t) (7.11)

and we work in the high competition limit de ned by Hilhorst [31], so that the species
cannot exist in the opposite species' domain. Formally,

up=0 x 2 [m(t);b]
u=0 X 2 [a;m(t)]: (7.12)

The interface condition is taken from [31], and is

ndp L = g,

= 2 (7.13)
X may X may

where, once parameter naming conventions are compared between [31] and 29],
aa =bb . We will call m the interspecies competition rate. We work with Neumann bound-
ary conditions on the external boundaries, which will be xed. We use parameter choices
from [29] which are given in Chapter 6, section 6.2.3. In order to set suitable initial con-
ditions, we consider the results of the shared-domain clustering models of Chapter 6. We
note the steady state solutions that arise from the Chapter 6 models, and construct initial
conditions that approximate those steady state results. These are given by gure 7.1. We
begin by rede ning the driving Lotka-Volterra based equations (7.3) and (7.4) in weak form,
incorporating the weight functiow;,

Zy

Zy Zy

Z
Tu 12Uy b fTar _
. W.de— . d1w; e dx N W"ﬂx Uz X dx+ . wirtu By dx - (7.14)



7.2 1-D competition-aggregation-diffusion in a two phase model 185

Fig. 7.1 Initial conditions for the two-phase reaction-diffusion-aggregation model. The am-
plitudes are taken from the steady state results arising from the shared domain model of
Chapter 6. Species 1 in on the left and species 2 is on the right.
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Zy Zy Zy Zy

2
WiMdX: d]_Wiﬂ uzdx Wirl UQ@ dx+ wiroUsEp dx (7.15)

a it a %2 a ix fix a
We substitute the de nitions fdg; (7.5) andE, (7.6), noting that because we have the high
competition limit, the terms containifnganda are equal to zero. We obtain
Zmt)  qu Z m(t) 2 Z m(t)
1 “u l o
L gy = ' 0 ~T d
. W, it dx . diw; e dx . W.ﬂx Up Tx X
Z )
+ wirtu1(A  aw) dx (7.16)

a

andm
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We impose the condition that the basis functisnpsnove with the domain. Hence the basis
functions also have velocity. By analogy with advection, we write,

iwi = TTw; _
Tt + XW =0 (7.22)
hence b 7
d
— wiudx = W,

dt  Rru) R(t)
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Zy
Co q2(t) = o wiu dx (7.32)

Then equation (7.28) becomes, for species 1,

Z mt) 0 f £ MO Zm
C1,01+ ulm‘"—dx ulwiﬂ— = WiMd)C (7.33)

a X A X . a9t

We now substitute (7.16). We obtain

Zmt)  qwf oF "0 Zmy g2
| Uy
o+ —_— —— = L ——e
C1,01 s Uz x ﬂXdX Ui W X R A 1W ﬂXZ dx
Z m B fTa Z m) .
Wi— uj—— dx+ wirtu1(A aw) dx (7.34)
a 1x 1x a

Integration by parts on the right leads to

£mo  qw IF if "0 _ 00 fwfu fu, ™
1+ et — = T T e iy
€101 . up X ‘ﬂxdx ulw"ﬂx . N dy X ‘ﬂxdx w;dy > .
Z mt)  qw; mt) Z m(t)
01 fac
+ ! Uy - + - _
N Uz X fx X Wilp x . N wirtui(A auw) dx (7.35)

We note the zero Neumann boundary conditions (7.110;candu; at the external bound-
ary, and the Dirichlet boundary condition (7.12) onat the interface. We also note the
xed external boundaries which mean thH} = 0 ona. These conditions mean that most
of the boundary terms in (7.35) are equal to zero. The remaining expression is
Zmo  qw
1

CyQy+ u
a
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After substitution of (7.17), equation (7.37) becomes

Twi 1F 1f b Uz
C2(2+ Up——adX  UWj— = diw, —-dx
2,02 TR Wi I Wi g e
Zy Zp
Wir1 u2E dx+ wiroup(B b up) dx (7.38)
mt)  TIX fix m(t)

Integration by parts on the right leads to

Zy b YA b
Tw; 1F qf T w Tw  fup
e TR Lk MO B TR TR T m)
rUZM@dX WirU2E =+ Wil’2U2(B b UZ) dx (739)
m(t) ix fx X e mo

After considering the boundary conditions (7.11) and (7.12) the remaining expression is

Zy

Tw; 1F Twi Tuz Tus
Co(p+ Up———dx= d{————dx wdy——
AT o P X o X T TR
Zy . Zy
+ ruzmwdx+ wiroua(B b wp) dx  (7.40)
m(t) ix Tx m(t)

We may solve (7.36-1.886 Td [(2)]TI/F101 Td [( TI/f.9552 Tf 5.305 9.408 Td [(w)]TI/F87 254pCs
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We have zero ux external boundary conditions (7.11), so the rst term on the right is equal
to zero, leaving
Z Z 4 Z 4 Z 4
W.
WA dx wiaw dx wiblw, dx=e; Tt

b b b b Tx Tx

a Z a
dx+  wiqy dx (7.44)
b
Equation (7.44) will give ug); in terms ofu; anduy. In exactly the same way, from (7.10)
and (7.6) we obtain
Z Z, Z, Z aqu,

w;B dx wia u; dx wib u, dx= ey _—
b b b b

a
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the interface nodey ),

N N N N
Nz (MA1Uy - Xepg + 02U Xy q)

Xty — (mdlulfm 1+d2u'2\lm+1) (7.50)
We use the nite differences approximation to calculate the interface velocity
(maghl N rdal N )
N N
Q= (dyul l+o|f;l:m+l) o (7.50)

This velocity can then be imposed on the interface when the velocity is recovered from
We return to our de nition off (7.26), now written in distributed form,

YA Z

wixdx= WiEdXZ (7.52)
R(@t) rRe) X

This system of equations can be solved for For the interface itself, we calculate the
new position by correcting the interface condition at the prior time step. We obtain the
resultant interface velocity by solving equation (7.51) witks O imposed at the interface
node. Having obtained, we move the domain using Euler integration. We also upgate
andq, from qy (7.47) andqgz (7.48) using the same time integration procedure. We may
now recovetu. We determine the constant partial massgsndcy, from (7.31) and (7.32)
and the initial conditions. We obtain, for= 0

1 £ my
C1 =

" q1(0) a

Wi (266 f
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andu, can be recovered from
Zy

Wi (X t)uz(X;t) dx= cz02(t): (7.56)
t

m(t)

In each case the Dirichlet condition that= 0 at the interface is strongly imposed, and the
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(A.1) to (A.4). We substitute those approximations into equation (7.44) and obtain

VA b N+1 Z b N+1 Z b
WA dx a WW, dx Uy, b WW; dx Uy,
a j=0 a j=0 a
= e ﬂ—x'ﬂ—xjdx Qu+ WWjdx Q;: (7.57)
J:0 a J:O a

In terms of our mass and stiffness matriéégndK, equation (7.57) can be rewritten as
MA aMU; bMU,= e KQ +MQ;: (7.58)

HereA is a vector with all entries equal to the resource paranfeter
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194

the following form for equation (7.36),

Zm oW
Ulh

j2z; @

€, a1+
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with the vectorf | containing entried,, given by
. Zb W, U
fo = G02 do— ~dx U2J Wdz—2
22, mo Ix fx X mey
Z Z
W W b
+ rU,— IALRAL P Qo + WWiroBdx Uy, (7.68)
2z, mo X X 22, MO
Zy
r2b WUZdx (7.69)

m(t)

The nonlinear termsa O r aWfu2 dxand ° b

m(t)
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Obtaining the solutionU; and U
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Fig. 7.2 Comparison of? errors in the solution of algorithm 15. We observe an order of
convergence op 2 in space, with time steps held constanbat 10 .

7.2.2 Results

We nd that the model is robust and the oscillations commonly found in nite element
implementations, which are caused by the central differences approach, are minimal. Figure
7.2 shows convergence in the solution of approximately second order in spdbe ¥aé

and with time steps held constantt= 10 ’. This estimate is obtained by comparison of

the result generated by each grid spacing with a high-resolution (641 node) result, since no
absolute result is available. This order of convergence is as reported for the similar method
in [8].

We are able to observe all the varied effects of diffusion, logistic growth or decline and
aggregation, and we are also able to generate sensible interface movement. We use the pa-
rameters from [29] in order to be con dent that the choices are sensible. We are able to
make comparisons between the aggregating and non aggregating two-phase models. Figure
7.3 shows a non-aggregating model (with thealues set to zero); this is exactly equiva-
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lent to the competition diffusion model in Chapter 5 (5.2). With this choice of parameters,
we observe no interface movement in the non aggregating model. The only development
observed is in the shape of the solution near the interface, which is driven by diffusion.
However, when we introduce aggregation, both species attempt to move away from the in-
terface, resulting in a differently shaped solution ( gure 7.6). We can see from gure 7.4
that the survivability index; for species 1 is raised near the interface due to low popula-
tion density, but then is very low in the domain occupied by species 2. We see in gure
7.5 how theq value takes a longer range average, so that despite the low population den-
sity near the interface, species 1 has an ideal velocity away from the interface. In gure
7.6 we observe that as both species vacate the area close to the interface, the changed in-
terface dynamics favour species 2 and the interface moves to the left. Interestingly, in this
particular scenario the increased ‘intelligence’ of the individuals does not help their longer
term survival, because these additional movements cause mild overcrowding which offsets
the reduced rate of competition at the interface. This suggests that the parameters given by
[29] are potentially not the most representative, when this full model with the interface is
constructed. With the large number of parameters at our disposal, the range of dynamics we
could produce is limitless and very varied. We argue therefore that this model could be of
real use to biologists in the eld studying any spatially segregated competition system.
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Fig. 7.3 The two phase competition model without aggregatidn=a0:24, using the pa-
rameters from Grindrod. Time steps are every 0.01s. We see stable population densities as
the external boundaries, and an evolving shape to the interface.









7.3 2-D competition-aggregation-diffusion in a two phase model 202

Fig. 7.6 Population decline in the two phase model with aggregatios &16. Time steps

are every M1s. We observe decreased movement towards the interface compared to the
non-aggregating model. We see initially higher population densities a short distance away
from the interface as the in