
A Moving Mesh Finite Element Method
And Its Application To Population

Dynamics

Anna Watkins

Department of Mathematics

Reading University

This dissertation is submitted for the degree of

Doctor of Philosophy

June 2017



Declaration

I con�rm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged.

Anna Watkins

June 2017



Acknowledgements

There are many who deserve acknowledgement for their part in the completion of this thesis.

The work here must be one of the longest running PhD theses of all time at 11 years, and has

been completed in part-time bursts whenever life and time allowed. The beginning was as a

new graduate in a rented �at, coding on my �rst laptop. During the course of the work, there

have been two house moves, a wedding, a house renovation, a career as an athlete spanning

two Olympic games, a start-up business, a new career in analytics, and two children. The

work was done on planes, buses and commuter trains, at home with a baby in a sling, in

any number of hotel rooms whilst on training camp and and even greater number of coffee

shops, and even occasionally in the department at Reading. Therefore the support of those

around me has been fundamental.

I'm very grateful to Paul Thompson, my rowing coach, who believed that space needs to

be made for things like this in an athletic career. This attitude meant that I have been able to

cope with retirement from sport much better than I would have otherwise. I'm also grateful

to Reading University Boat Club, who gave me a sports scholarship, and to UK Sport, who

gave me an education grant, between which I was able to make ends meet in the early days

when money was tight. I'm grateful to my parents for the encouragement they gave. I'd also

like to thank Paul Glaister and Peter Grindrod for their generous time and friendly support,

in supervising me and sharing ideas and research.

There are certain people I'd like to thank simply for putting up with me. In this group

are my rowing partners, particularly Annie Vernon, Elise Sherwell and Katherine Grainger,

who put up with me ignoring them as we shared rooms whilst training, and even as I zoned

out to think about maths in the middle of a training session in the boat. The other two

important people who have put up with me are my sons William and Richard, aged 2 and 3

now. I'm sorry I was tired and busy and that you weren't allowed to mash the keys on the

keyboard or watch train videos on the screen.

However I do have two very major acknowledgements to share. I'm incredibly grateful

to my main supervisor Mike Baines. Mike and I have always spent our time together with

equal time given to maths and life in general. Mike has heard and advised on the trials and



iii

tribulations of my rowing career and motherhood as well as the ups and downs of research.

His relentless support, friendly hello and interest in discussing any and every challenge in

life means that I will count him as a lifelong friend. I always looked forward to our time,

even when things weren't going well. I'm sorry Mike that I took so long and was often

absent for long periods.

Finally I would like to thank my wonderful husband Oliver. His contributions to this

work are too numerous to detail, but stretch comprehensively across all three of the �nan-

cial, practical and emotional ranges. Thanks for paying for our �at when we �rst started out.



Abstract

The moving mesh �nite element method (MMFEM) is a highly useful tool for the numerical

solution of partial differential equations. In particular, for reaction-diffusion equations and

multi-phase equations, the method provides the ability to track features of interest such as

blow-up, the ability to track a free boundary, and the ability to model a dynamic interface

between phases. This is achieved through a geometric conservation approach, whereby the

integral of a suitable quantity is constant within a given patch of elements, but the footprint

and location of those elements are dynamic. We apply the MMFEM to a variety of systems,

including for the �rst time to various forms of the Lotka-Volterra competition equations.

We derive a Lotka-Volterra based reaction-diffusion-aggregation system with two phases,

representing spatially segregated species separated by a competitive interface. We model
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Chapter 1

Introduction

In a great many areas of study, partial differential equations (PDEs) are used to describe

models, laws and systems. From the simplest of examples, the equations governing heat

transfer, through to trading models for global �nancial markets, the PDE gives us an ap-

proach that can tackle a vast and ever-growing range of real-world problems. We may

understand and make predictions about the behaviour of complex mechanical systems, we

may study the weather, or we may gain insights into biological systems. The scope of PDEs

and their relevance to our lives is beyond doubt. In many of these systems we have very

complex interactions for which analytical solutions are not practicable or even possible.

Direct experimentation and measurement may likewise not be practical and is generally ex-

pensive. Numerical modelling is therefore the key tool to unlock our understanding of how

these systems are working or how they might evolve in time. Techniques for doing so are

well established and are subject to continual re�nement and improvement. One particular

modelling technique, the use of �nite elements, has plenty to recommend it. It involves di-

viding the domain into small discrete elements, and calculating the effect of each part upon

its neighbours. In doing so an approximation to the whole system is produced. The size

and spacing of these elements can be chosen to particularly suit the shape or dynamics of

the domain, and is speci�ed by a grid or mesh. The mesh may be uniformly distributed

or otherwise. In the particular case of time dependent PDEs, there may be advantages to

having a mesh that moves with time, so that features of interest may be tracked with accu-

racy without the computational expense of increasing the resolution everywhere. For certain

phenomena such as boundary layers, interior moving interfaces and blow-up problems this

can be especially true. This is the �eld of moving mesh �nite element modelling, and this

�eld is the subject of this thesis.
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1.1 Mesh adaptation

In the body of work concerning mesh adaptation, there are three basic approaches which are

usually given the following names:

h-re�nement is the insertion of extra mesh points around an area of interest;

p-re�nement is the use of a higher-order polynomial in each interval between mesh points,

so that values between mesh points are better approximated;

r-re�nement is the dynamic movement of existing mesh points to track a feature of interest.

Most commonly, h-re�nement and p-re�nement techniques are used and are often com-

bined together. Their strength is that the algorithms produced are versatile; they do not

need to utilise any particular dynamic properties of the underlying solution. This is also a

weakness, since the dynamic properties of the solution can be an excellent guide to the most

ef�cient mesh adaptations.

In r-re�nement, the mesh nodes are assigned a velocity at each time step. This approach

naturally lends itself to the solving of time dependent systems, as the time integration for the

mesh movement and the solution evolution can be performed alongside one another, using

any chosen integration scheme. Also, the node velocity can be chosen to work with useful

properties of the system; for example one might wish to conserve mass within each element.

Taking advantage of this sort of property means that, if our scheme is well chosen, the mesh

evolves to re�ect the solution in an ef�cient and elegant way. The nodes move smoothly

along with the solution. We do not need to add or remove nodes, and we do not need to

interpolate the solution between nodes. The node positions and the solution are completely

linked. An excellent summary of the theory and practice of r-re�nement techniques can be

found in Huang and Russell's book [49].

1.2 Scope of work

In this thesis, we consider in particular the application of one r-re�nement technique. The

technique of interest is termed the moving mesh �nite element method (MMFEM). This

method was developed in 2005 by Baines, Hubbard and Jimack [5], and uses a geometric

conservation approach to generate mesh adaptation. A �nite element construction provides

the framework. We apply this method to a variety of reaction-diffusion PDE systems. We

have a particular focus on multi-phase systems, where a dynamic interface exists between
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phases. The MMFEM has previously been applied to the Stefan problem [8] where the

dynamic interface represents the melting of ice into water. We extend this work with a sim-

pli�ed method. We then consider the application of the MMFEM to models of population

dynamics. We take a version of the Lotka-Volterra competition model that, like Stefan, de-

scribes a two-phase reaction-diffusion system, and implement the MMFEM for this system.

We then consider the application of the MMFEM to systems of intraspecies and interspecies

interactions with aggregating dynamics. Finally, we present a new model for interspecies

reactions that permits a dynamic interface combined with aggregating dynamics, as well as

the more familiar reaction-diffusion dynamics. We implement the MMFEM for this model

in chapter 7, and demonstrate its utility.

1.3 Novel material

This thesis contains the following novel material

• An application of the equidistribution method to a vertical water column under wind

shear;

• A two dimensional MMFEM implementation for the Fisher's equation for the �rst

time;

• A two dimensional MMFEM implementation for the Keller-Segel model for the �rst

time;

• The �rst numerical model of the two phase Lotka Volterra competition system derived

by Hilhorstet al. [31]. We use the MMFEM to achieve this;

•



Chapter 2

Technical background

In this thesis we apply a moving mesh �nite element method to a variety of systems, with a

particular focus on population dynamics. Here we set out the historical evolution of moving

mesh methods, and also a history of PDE systems for population modelling.

2.1 Moving mesh methods

In moving the mesh, we have two fundamentally different approaches. We may use a system

that provides a mapping to move the nodes at each time step in a �xed, Eulerian frame,

or we may construct the entire system in a Lagrangian, or moving, co-ordinate system.

Following [18], we will call these location-based, and velocity-based methods, respectively.

An overview of these methods is given here. For a more detailed summary, the 2009 paper

by Budd, Huang and Russell [15] is recommended.

2.1.1 Location-based methods

The common feature of this class of methods is that the location of the mesh nodes at

a particular time step is directly controlled by a mapping function. The principle most

often used to achieve this is equidistribution. Equidistribution is a term used to describe

the locating of points such that a particular monitor function, for example arc length, is

the same for all intervals between nodes. This is achieved either directly, or by de�ning

the mapping as the minimiser of a functional. In one dimension, consider the case of an

adaptive mappingx(x , t) from a computational domainWc to a physical domainW. If we

are using a uniform computational mesh then¶x

¶x is the density of the mesh onW. We then
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choose a monitor functionM(x) > 0 and require the mesh density to be proportional to it,

¶x

¶x
= c M(x). (2.1)

The equivalence to a functional approach is apparent if we take the quadratic functional:

I [x ] =
Z

W

[M(x)]−1
�

¶x

¶x

�2

dx (2.2)

for which the corresponding Euler-Lagrange equation is:

¶

¶x

�
[M(x)]−1¶x

¶x

�
= 0 (2.3)

which is the same as dividing (2.1) byM(x) and differentiating, and can be solved with a

given M to give x in terms ofx. The functional approach is useful as it is comparatively

easily extended to higher dimensions.

An early example of the use of equidistribution is given by White [52]. He uses the

integral version of the equidistribution principle (2.1) which is, in continuous form:

Z x(x ,t)

0
M(x(x , t), t)dx= x

Z 1

0
M(x(x , t), t)dx ∀t. (2.4)

If this is differentiated with respect tox we obtain

M(x(x , t), t)
¶

¶x
x(x , t) = q(t) (2.5)

where

q(t) =
Z 1

0
M(x(x , t), t)dx

and differentiating with respect tox again gives

¶

¶x

�
M(x(x , t), t)

¶

¶x
x(x , t)

�
= 0. (2.6)

This will generally be nonlinear and so has been solved using an iterative approach by

Baines [3]. We use this approach in Chapter 4, where we use an arc length monitor function

to update the node spacing for a water column model with coriolis forces.
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2.1.2 Moving mesh partial differential equations (MMPDEs)

It is recommended by Huang, Ren and Russell in their 1994 paper [32] to choose a method

that generates moving mesh equations in a continuous form. A simple algorithm is also very

desirable. This is achieved in their work by constructing moving mesh partial differential

equations (MMPDEs) directly from an equidistribution principle. This is a neat and elegant

construction that avoids having to consider user-de�ned input parameters in the mesh map-

ping. In taking this approach a more stable and more general algorithm can be produced. A

simple example is given here. Huanget al. derive a MMPDE by differentiating (2.6) with

respect to time to give

d
dt

�
¶

¶x

�
M(x(x , t), t)

¶

¶x
x(x , t)

��
= 0 (2.7)

which can be rearranged to give the MMPDE

¶

¶x

�
M

¶ �x
¶x

�
+

¶

¶x

�
¶M
¶x

�x
�

= − ¶

¶x

�
¶M
¶ t

¶x
¶x

�
(2.8)

where �x(x , t) is the mesh velocity. A great variety of MMPDEs exist, which vary in their

approach to temporal and spatial smoothing and regularisation. The power of selecting the

right one was demonstrated by Buddet al. in 1996 [14]. They took an MMPDE from a

1986 paper [1] and applied it to a blow up problem. The MMPDE they used was derived

from (2.7) using temporal smoothing and is

¶ 2 �x
¶x 2 = −1

r
¶

¶x

�
M

¶x
¶x

�
(2.9)

wherer is a small relaxation time after which the mesh is to reach equidistribution. This

form has scale invariance properties. Here it is demonstrated that the use of monitor func-

tions which incorporate such key properties of the original PDE can be particularly useful,

as they allow features such as scaling invariance to be preserved. Natural spatial features

of the PDE are inherited by the MMPDE. In this paper, self-similar or approximately self-

similar solutions of blow-up equations are shown to be successful.

Another key concept was introduced by Budd and Williams in their 2006 paper [16].

They solve a relaxed form of the Monge–Ampere equation to compute a transformation

from a regular (computational) to the desired spatially non-uniform mesh. The method

involves the creation of a mesh potential which determines the location of the mesh points.

Using the Legendre transformation, the equidistribution principle is transformed into the



2.1 Moving mesh methods 7

Monge–Ampere equation giving the mesh potential.

2.1.3 Velocity-based methods

The following velocity based methods make use of the Arbitrary Langrangian Eulerian

(ALE) form of the PDE; that is to say that a moving co-ordinate system is used to directly

provide the mesh velocity. The form provides a mapping from the �xed to the moving

frame. Consider the time dependent PDE

¶u
¶ t

= L u, (2.10)

whereu = u(x, t) is de�ned in a �xed (Eulerian) reference frame, andL is a differential

operator involving only space derivatives. To rewrite this in a moving (Lagrangian) frame,

we allowx to be a moving co-ordinatex(t), which is related to a set of reference co-ordinates

a by the invertible mapping

x = x̂(a, t) (2.11)

where the hat denotes a mapping from the Eulerian frame to the moving frame. We can then

de�ne the solutionu(x, t) in the moving frame:

u(x, t) = u(x̂(a, t), t) = û(a, t) (2.12)

and then by the chain rule
¶ û
¶ t

=
¶ x̂
¶ t

·Ñu+
¶u
¶ t

(2.13)

where we clarify that

�u =
¶ û
¶ t

, �x =
¶ x̂
¶ t

. (2.14)

The ALE form of the PDE is then

�u− �x ·Ñu = L u. (2.15)

There are now two unknowns, �u and�x, so we must know the mesh velocities before we

are able to �nd the solution. The speci�c method for constructing these velocities varies

from using a real physical motion that provides a natural reference frame, through to de�n-

ing the motion with the sole aim of optimizing geometric properties of the mesh. The
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Moving �nite elements

The MFE method of Miller and Miller, [38] and [39], involves taking the PDE (2.10) and

determining the solution and the mesh simultaneously. This is achieved by minimising a

discrete residual of the ALE form of the PDE (2.15) in a moving frame. Miller and Miller

made the �rst attempts at a moving mesh of �nite elements to deal with a model involving

a sharp transition layer. These attempts made use of Burgers' equation as a test equation
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innovation in the paper is the use of a mesh velocity potential in the calculation of grid veloc-

ities; this can make the �nite element formulation better conditioned as certain asymmetric

matrices can be substituted out. Furthermore, velocities in two or more space dimensions

can be uniquely calculated from it. The mesh velocity potential idea is extensively used in

this �eld after this publication.

The conservation method

The 2005 paper by Baines, Hubbard and Jimack [5] takes the GCL concept and �rmly

establishes it from a �nite element perspective. This method shares common roots with

the GCL, but instead of using the variational principle to �nd the mesh velocities they are

directly calculated from the integral form of the PDE. This is achieved by taking a weak

form of the PDE that includes a set of weight functions that move with the mesh. Then

the Reynolds Transport Theorem is used to provide a link between the Eulerian and La-

grangian perspectives. A system is constructed where the mesh velocity is given in terms

of a potential at a particular location (Eulerian view), but the elements themselves track the

movement of mass (Lagrangian view). This gives rise to the Arbitrary Lagrangian Eulerian

(ALE) equation, where a single equation ties together the relationship between the moving

and static reference frames. The examples demonstrated each conserve a proportion of a

quantity within each patch of elements. This may be mass itself for systems where mass is

conserved overall, in which case the simplest form of the theory can be used. This is demon-

strated for the porous medium equation and a fourth-order nonlinear diffusion equation. For

non-conservative systems, the theory uses the concept of relative mass, the proportion of

total mass associated with each element patch, and this is applied to a Stefan problem and

a diffusion problem with a negative source term. The method is extended in their 2006

paper [7] to include the solution of scale invariant PDEs. This exploits the inherent inde-

pendence of physical systems from any given unit system. Again using moving mesh �nite

element systems, the time stepping is coupled to the mesh resolution, resulting in a scheme

that provides uniform local accuracy in time. This exploitation of scale invariance is not an

option for �xed mesh models since they are time-independent and therefore cannot exploit

the coupling of dependent and independent variables in time.

2.1.4 Monitor functions

The choice of a suitable monitor function is of course key. The choice will be in�uenced by

the underlying physics of the system as well as the moving mesh method itself. There are
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three classes of construction:

• An estimate of a quantity related to the solution such as arc length or mass, that can

be made at the prior time step;

• An estimate of the error at each node or across each element, which can then be

corrected by a suitable mesh adjustment. This is the approach used in moving �nite

element methods, where the mesh movement is determined by the velocity term in an

ALE equation;

•
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wherek1 andk2 are the carrying capacities of species 1 and 2 respectively,K1 is a measure

of the effect that species 1 has on species 2, andK2 is a measure of the effect species 2 has

on species 1. The parametersr1 andr2 are a measure of the timescales upon which births

and deaths operate.

These early sets of equations did not consider spatial effects, so an important develop-

ment was made by Conway and Smoller in 1977 [22], where a diffusion term was included

along with spatial dependence. This allowed the study of a vastly increased range of phe-

nomena, such as the geographic spread of invasive species, or of disease, or the effect of

non-homogenous resource distribution. When random motion of the individuals is consid-

ered in the form of a diffusion term, the Lotka-Volterra equations are of reaction-diffusion

form. We have

¶u1

¶ t
= d1Ñ

2u1 + f (u1,u2)u1

¶u2

¶ t
= d1Ñ

2u2 +g(u1,u2)u2 (2.18)

whered1, d2 are constant diffusion coef�cients, and withf (u1,u2) andg(u1,u2) given by

the logistic equations

f (u1,u2) = r1

�
1− u1 −K1u2

k1

�
g(u1,u2) = r2

�
1− u2 −K2u1

k2

�
. (2.19)

It is this set of equations which is of interest to us here.



Chapter 3

The MMFEM and existing applications

3.1 The moving mesh �nite element method

The conservation method of Baines, Hubbard and Jimack [5] can be implemented from

either a �nite difference or �nite element perspective. Using the �nite element method can

be more computationally expensive than the �nite difference method, but can be more easily

extended to higher dimensions, and depending on the system, more stable. Furthermore,

�nite elements lend themselves well to being applied to complex geometries, although that

is beyond the scope of this work. In this thesis we will take a �nite element approach.

This approach is termed the Moving Mesh Finite Element Method (MMFEM), and is the

foundation of the methods in this thesis. The mass conservation concept involves assigning
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equation (3.7) we can cancel out terms

Z
W(t)

�
wi

¶u
¶ t

+wiÑ · (u�x)

�
dW = 0 (3.12)

giving us the weak form of a PDE in the moving frame,

−
Z

W(t)
wiÑ · (u�x)dW =

Z
W(t)

wiLu dW (3.13)

or, after integration by parts,

−
Z

S(t)
wiu�x · n̂ dS+

Z
W(t)

u�x ·ÑwidW =
Z

W(t)
wiLu dW (3.14)

wheren̂
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form of the de�nition (3.15) off ,Z
W(t)

wi �x dW =
Z

W(t)
wiÑfdW. (3.17)

The Eulerian velocity�x is now known, and a moving reference frame can be generated. This

can be considered as a deformationx → x̂ in time, derived from the ODE system

dx̂
dt

= �x(x̂, t) (3.18)

with initial condition x̂ = x. Oncex̂ has been found we can recover the solution from the

mass conservation principle (3.8) in the formZ
W(t)

wi(x̂(t), t)u(x̂(t), t)dW =
Z

W(0)
wi(x̂(0),0)u(x̂(0),0)dW (3.19)

at any later timet.

Algorithm 1

The solution of the mass conserving equation (3.1) on the moving mesh therefore consists

of the following steps.

Given functionsu andx initially, for each timet:

1.
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and the test volumeW(t) is de�ned to be the total spatial domain of the model at time

t, moving with velocity �x. We introduce again our weight functionwi , also moving with

velocity �x, as in (3.7). Again we require thatwi is part of a set of functions that together

form a partition of unity. We now de�ne the moving co-ordinate system by requiring that

the integral ofu multiplied by that moving weight function is a constant proportion of the

total mass in the system,i.e. Z
W(t)

wiu dW = ciq(t) (3.21)

where the constantci is determined by the initialwi and the initial data. Sinceåi wi = 1, it

follows thatåi ci = 1 also. Differentiating with respect to time gives

d
dt

Z
W(t)

wiu dW = ci
dq

dt
= ci �q(t). (3.22)

As in the case of conserved total mass, we de�ne a reference test domainW(0) at t = 0

and a moving test volumeW(t) in the moving framex. Applying the Reynolds Transport

Theorem towiu, we obtain

d
dt

Z
W(t)

wiu dW =
Z

W(t)

¶

¶ t
(wiu)dW+

Z
S(t)

wiu�x · n̂ dS

=
Z

W(t)

�
wi

¶u
¶ t

+u
¶wi

¶ t
+Ñ · (wiux)

�
dW (3.23)

for the generalised weak form of the PDE. Using the advection equation (3.7) we can cancel

out terms as before, giving us the weak form of the PDE in the moving frame,

d
dt

Z
W(t)

wiu dW−
Z

W(t)
wiÑ · (u�x)dW =

Z
W(t)

wiLu dW. (3.24)

We now use the relative conservation principle (3.21) to make a substitution. We use the

weak form (3.22) to give

ci �q(t)−
Z

W(t)
wiÑ · (u�x)dW =

Z
W(t)

wiLu dW. (3.25)

After integration by parts we obtain

ci �q(t)+
Z

W(t)
u�x ·ÑwidW =

Z
W(t)

wiLu dW+
Z

S(t)
wiu�x · n̂ dS. (3.26)

The boundary �uxu�x · n̂ is again assumed to be given by the boundary conditions. We now
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have an expression for�x in terms ofu and �q . So long as we select weight functionswi that

form a partition of unity,åi wi = 1, we can calculate�q by summing this expression over all

weight functions in the model and using the boundary conditions. Recalling thatåi ci = 1,

we sum equation (3.26) over alli, to give

å
i

ci �q(t)+å
i

�Z
W(t)

u�x ·ÑwidW

�
= å

i

�Z
W(t)

wiLu dW

�
+å

i

�Z
S(t)

wiu�x · n̂ dS
�

.

(3.27)

Noting thatÑåwi = 0,

�q(t) =
Z

W(t)
Lu dW+

Z
S(t)

u�x · n̂ dS (3.28)

will determine �q , providing that the boundary �ux is indeed known.

A velocity potential is then introduced in the same way as for the conservative case. A

velocity potential,f is de�ned,

�x = Ñf (3.29)

so that equation (3.26) can be rewritten as

ci �q(t)+
Z

W(t)
uÑf ·ÑwidW =

Z
W(t)

wiLu dW+
Z

S(t)
wiu�x · n̂ dS (3.30)

and we are now able to uniquely determinef in terms ofu and �q , as long asf is given at

one point at least. As before, the recovery of�x is made using the weak form of the de�nition

(3.29) off Z
W(t)

wi �x dW =
Z

W(t)
wiÑfdW. (3.31)

Having updated̂x(t) from �x andq(t) from �q using a suitable integration procedure, we can

now recoveru from the relative conservation principle,

1
q(t)

Z
W(t)

wi(x̂(t), t)u(x̂(
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1. Find �q(t) from (3.28)

2. Find the velocity potential by solving equation (3.30) forf(x, t);

3. Find the deformation velocity by solving equation (3.31) for�x(t);

4. Generate the moving co-ordinatex̂ at the next time-stept + dt by integrating (3.18).

Similarly, updateq(t +dt) from �q(t);

5. Find the solutionu(x̂(t + dt), t + dt)
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form of (3.28),

�q =
Z b(t)

a(t)
Lu dx+[u�x]

b(t)
a(t) . (3.36)

The weak integral form de�ning the one dimensional velocity potentialf is

Z b(t)

a(t)
wi �x dx=

Z b(t)

a(t)
wi

¶f
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Fig. 3.1 Weight or basis functions for nodesx0 andxi

ically uses the weight functionsWi(x) rather than the generic weight functionwi , so

ci �q(t)−
�
Wiu

¶f

¶ t

�b(t)

a(t)
+

Z b(t)

a(t)
u

¶f

¶x
¶Wi

¶x
dx=

Z b(t)

a(t)
WiLu dx (i = 0, ...,N +1).

(3.39)

Now we can substitute �nite element approximationsF, �X andU for f , �x andu re-

spectively. These are also piecewise linear in form, and are linear combinations of basis

functionsWj(t). The basis functionsWj(t) are often chosen to be the same set of functions

as the weight functionsWi(t), although this does not have to be the case. Here we will

use the same de�nitions forWj(t) andWi(t) unless we specify otherwise. We will use the

subscripti for weight functions, and the subscriptj for basis functions. For example, the

functionF(x, t) is de�ned as

F(x, t) =
N+1

å
j=0

F j(t)Wj(x, t). (3.40)

In this formulation each of theN+2 nodes will have a coef�cientF j associated with it and

(3.40) will form a linear spline. Similarly we also de�ne

�X(x, t) =
N+1

å
j=0

�Xj(t)Wj(x, t) (3.41)

and

U(x, t) =
N+1

å
j=0

U j(t)Wj(x, t). (3.42)

We can also use the result that
¶F

¶x
=

N+1

å
j=0

F j
¶Wj

¶x
. (3.43)
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The process for assembly ofK(U) is outlined in section 3.1.2. The matrix is singular but a

value off is imposed at one point.

The right hand sideL of equation (3.49) can take many forms depending on the nature

of the operatorL and the boundary conditions. It may be necessary to make substitutions

and/or perform integration by parts to obtain a computable form: a weak form requiring

functions once-differentiable between nodes only. Note that if we sum over all rows of

(3.49) the rows of the stiffness termK(U) of (3.49) will sum to zero, and theci values will

sum to unity. Providing that
R b(t)

a(t) LUdx is known, this makes it possible to recover�q as the
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RecoveringU

Equation (3.34) is Z b(t)

a(t)
wiu dx= ciq(t). (3.56)

Since theci are constant, we may write

1
q(t)

Z b(t)

a(t)
wi
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Fig. 3.2 Weight function or basis function centred at the nodeWi

variety of suitable functions available but in this thesis we will use the simplest option, that

of piecewise linear functions on a triangulated domain.

We triangulate the domainW(t) of the PDE we wish to solve. The nodes of the triangulation

will be {X i},(i = 1, ...,N).

We de�ne the two-dimensional weight functionWi(x) as the piecewise linear function
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We use the result that

ÑF =
N

å
j=1

F jÑWj (3.65)

and make a substitution forÑf andu into equation (3.62), giving

ci �q(t)+
N

å
j=1

�Z
W(t)

UÑWj ·ÑWidW

�
F j =

Z
W(t)

WiLU dW+
Z

S(t)
WiU �x · n̂ dS. (3.66)

We also use the weight functions to evaluate the values forci , recalling equation (3.21)

ci =
1

q(t)

Z
W(t)

WiU dx. (3.67)

We may construct (3.66) for every triangle and node combination, and thus obtain a linear

system of equations. When doing so we must take special care to include the boundary term

for domain edge boundary triangles. The boundary terms for internal triangle edges will

cancel out, since each edge connects two triangles which will have opposite outwards point-

ing normalsn̂, andU is continuous. Each triangle with an edge lying along the boundary

does make a contribution to the boundary term, so that in the sum of these contributions the

whole boundary has been considered.

The assembled matrix equation has exactly the same form as the 1D case,

C �q(t)+K(U)F = L . (3.68)

However, the weighted stiffness matrix in 2D is given by

K(U)i j =
Z

W(t)
U(x)ÑWi(x) ·ÑWj(x)dW. (3.69)

As in the 1-D case, we can use (3.68) to obtain�q by summing over all rows. The stiffness

term will sum to zero and theci values will sum to unity, leaving the boundary terms as-

sumed known and�q as the only unknown. We can then use (3.68) in full form to determine

the vectorF, imposing a value ofF j at one point.

Recovering �X

To �nd �x, we work from the de�nition off (3.16)

�x = Ñf (3.70)
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for which a weak form is Z
W(t)

wi �xdW =
Z

W(t)
wiÑfdW. (3.71)

Using again the linear weight functionswi = Wi(x, t), and (using basis functionsWj ) the

piecewise linear approximations�X = å j
�X j(t)Wj(x, t) andÑF = å j F j(t)ÑWj(x, t) j Ft
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Algorithm 4

The �nite element solution of the non mass conserving equation (3.1) on the moving mesh

therefore consists of the following steps. Given the initialU andX, and having calculated

C and the initialq from the de�nition (3.20), then for each timet:

1. Find �q(t) by summing over all rows of the matrix equation (3.68);

2. Find the velocity potential by solving equation (3.68) for theF j(t) values;

3. Find the node velocity by solving equation (3.73) for the�X j(t) values;

4. Generate the moving nodesX j(t + dt) at the next time-step by solving (3.18) using

the forward Euler approximation. Updateq(t +dt) from �q(t) in the same way;

5. Find the solutionU(t + dt) by solving the relative conservation equation in the form

(3.75).

Constructing the 2-D weighted stiffness matrix

The entries of the weighted stiffness matrix (3.69) are

K(U)i j =
Z

W(t)
U(x, t)ÑWi(x, t) ·ÑWj(x, t)dW.

In order to determine the entries for each element matrix we examine a weight or basis

function WA on trianglewe represented by the co-ordinatesxek labelled(A,B,C) (�gure

3.3). The triangle has anglesa,b ,g as shown in �gure 3.3. Such a triangle actually contains

three local linear functionsWA,WB,WC, one associated with each node. The gradient of each

weight or basis function can be calculated from the properties of the triangle. If heightA is

the height of trianglewe in the direction of the normal to sideBC,

|ÑWA| =
1

heightA
=

1
bsing

. (3.76)

Likewise,

|ÑWB| =
1

heightB
=

1
csina

(3.77)

and

|ÑWC| =
1

heightC
=

1
asinb

. (3.78)
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Fig. 3.3 Weight or basis functionWA centred at the node A

The area of the triangle can be calculated from any of these heights as

areae =
1
2

a(heightA) =
1
2

b(heightB) =
1
2

c(heightC)

=
1
2

bcsina =
1
2

casinb =
1
2

absing. (3.79)

The piecewise linear construction of functionU means thatU is linear in each triangle. We

can therefore use the mean to giveU in any triangle. Taking each combination of two nodes

at a time, the entries for the element stiffness matrix can be determined. For example,

KBC =
Z

we

UÑWB ·ÑWCdx

=

�
UA +UB +UC

3

�
areae

(heightB)(heightC)
(−cosa)

=

�
UA +UB +UC

3

� 1
2bcsina

bcsin2
a

(−cosa)

=

�
UA +UB +UC

3

�
1

2sina
(−cosa)

=
(UA +UB +UC)

3
(−cot)

2
a (3.80)
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and sinceÑ(WA +WB +
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after integration by parts, and imposing the boundary conditionu = 0. In [5] F was com-

puted using a �nite element approximation in both one and two dimensions. The model was

found to be second-order accurate form = 1, although of lower accuracy form = 3. An
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3.2.3 A Stefan problem

A non mass conserving example is given in the original 2005 Baines paper [5]. The single

phase Stefan problem describes heat diffusion in two dimensions given by the PDE

¶u
¶ t

= kÑ
2u (3.89)

with different values fork and an interface boundary condition

¶u
¶n

����
G1

= CL �x ·n uG1 = uB (3.90)

whereCL is the heat of phase change per unit volume, and the temperatureuG1 at the inter-

face is the constantuB. HereG1 represents a moving boundary. This is the basis for the later

two-phase method in [8].

3.2.4 Finite difference implementations

As has been mentioned, the underlying conservation method behind the MMFEM can also

be implemented numerically from a �nite difference perspective. The conservation method

with a �nite difference approach has been applied to a wide variety of problems in one
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A different combined system of equations was studied by S.Cole in [21]. Models of

chemotaxis using the Keller-Segel equations were solved in one and two (radial) dimen-

sions using a �nite difference conservation method. The system involves a substrate and a

reactant, and the PDEs are

ut = Ñ.(k1(u,v)Ñu−k2(u,v)uÑv)+k3(u,v) (3.93)

and

vt = DvÑ
2v+k4(u,v)−k5(u,v)v (3.94)

whereu is cell density,v is concentration of substrate,k1 is diffusivity, k2 is chemotactic

sensitivity,k3 is cell growth and death,k4 is production of substrate andk5 is degradation of

substrate.

Free boundary problems

In their 2015 paper [36], Lee, Baines and Langdon use the �nite difference implementation

of the method to examine free boundary problems in one dimension. These included the

Porous Medium equation, Richards equation and the Crank Gupta problem. A moving

boundary is introduced with a �ux boundary condition. For a boundary atx = b(t), the

boundary conditions are

u(b(t), t) = 0, u(b(t), t)
db
dt

= 0 (3.95)

This is found to provide solutions accurate to second order.

In this thesis we will take a selection of these �nite difference implementations and

derive, implement and study the corresponding MMFEM.

3.3 Extensions to the MMFEM

Since the Baines, Hubbard and Jimack papers [5] and [7], a variety of interesting applica-

tions and extensions to the method have been investigated. Excellent overviews are given

in the review papers [6] and [36]. It has been demonstrated that forms of the method can



3.3 Extensions to the MMFEM 35

High order nonlinear diffusion

In his PhD thesis [10], N.Bird considers nonlinear diffusion of second, fourth and sixth

order. The MMFEM is applied, and interestingly an alternative type of higher order ba-

sis function is also tried. In one dimension Lagrange polynomials of linear, quadratic and

fourth-order forms are used to provide a basis for the �nite element approximation. The

MMFEM is compared with a �nite difference method. Some practical dif�culties in ap-

plying the �nite difference method are considered. These arise when the boundaries are

permitted to move, resulting in certain functions becoming unbounded and singularities be-

ing introduced. It is found that the MMFEM alleviates this problem partially, although

undesirable oscillations are still observed.

Two phase Stefan problem

In 2009, Baines, Hubbard and Jimack together with Mahmood [8] present a version of the

algorithm from [5] in the form of an Arbitrary Lagrangian-Eulerian equation (ALE) that is

suf�ciently general to be able to model a two phase problem with a moving interface. Each

phase is a diffusion system with driving PDEs

KS
¶u
¶ t .
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solved as a single system to provide the mesh velocities. The masses are recovered for each

phase separately since they are decoupled by the interface; these are again obtained from the

conservation properties. This work is extended and developed for a new system in Chapter

5 of this thesis.

Ice sheets

In the 2013 PhD thesis [40] by Partridge and the subsequent paper in collaboration with

Bonanet al. [11], a 1-D MMFEM is applied to dynamic ice �ow equations to model the

evolution of a glacier. The method is able to accurately capture and track the glacial front

using a moving boundary framework, and the model is extended to two dimensions. In

addition real world data is assimilated using the 3d-var scheme. This is found to work well in

one dimension and to improve the accuracy of the pro�le of the ice front. In two dimensions

the moving mesh alone works well, but the data assimilation aspect of the problem remains

open-ended.

Explicit and implicit time-stepping schemes

In the methods described above, the time-stepping schemes are usually simple choices such

as the explicit Euler method. These can place considerable constraints on the size of the

time-step that can be made, because mesh tangling can occur. This is caused by nodes

overtaking one another, and imposes a limitation on the speed of computation such that

it becomes impractical to run models for long time horizons. A particular semi implicit

or implicit method is proposed by Baines and Lee in the 2014 paper [9] that can make it

impossible for nodes to tangle in one dimension. This allows us to choose a larger time-step.

The method involves manipulating the structure of the velocity equation so that it makes use

of its similarity to a variable co-ef�cient heat equation. A maximum/minimum principle can

then be employed which makes it impossible for nodes to overtake. An alternative explicit

method is given by Baines in his 2015 paper [4]. This method focuses on the node spacings

or edge lengths (in 2D) and employs an ampli�cation factor to calculate the distances. This

factor is always positive and prevents overtaking. This is implemented in a �nite difference

framework in one dimension and the extension to two dimensions is outlined. It is noted

that smoothness problems in ancillary variables may occur in certain circumstances.
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Phase �eld models

Another approach to the study of phase transitions and interfaces is to attempt the modelling

of a small but �nite transition layer between two uniform bulk phases. These are known as

phase �eld models, and a moving mesh �nite element approach is discussed by Zhang and

Du [53]. In these models the �eld varies smoothly but with a steep gradient in the transition

layer. The example used is the Allen-Cahn equation, and the challenge of suitably resolving

the thin interface layer is discussed with reference to appropriate time-stepping schemes and

numerical stability. The paper also examines cases where such layers move over time such

that dynamically evolving fronts can be tracked with an appropriately adapting mesh.



Chapter 4

New applications for MMFEMs

We shall begin this chapter by illustrating methods that form a part of a development path-

way for MMFEMs. This will allow us to become familiar with useful techniques as well as

to assess the incremental bene�ts offered by each evolutionary step in the development of

the MMFEM.

4.1 An Illustration of the Equidistribution Method: a ver-

tical velocity pro�le

The Ekman spiral [25] is a structure of currents near the ocean surface in which the �ow

direction rotates as one moves away from the surface. It was �rst noted by Swedish oceanog-

rapher Fridtjof Nansen, who observed an ice �oe drifting at a tangent to the wind direction,

and whose observations allowed Ekman to develop his model. The rotation is driven by the

Coriolis effect. A feature of this structure of currents is the development of a shallow layer

(Ekman layer) with behaviour that differs from the water below. The development of this

layer in an initially stationary water column subject to wind stress is an interesting candi-

date for a moving mesh model, because we might wish to adapt the mesh to better resolve

the emerging layer. Here we illustrate the equidistribution method and assess its utility for

resolving the Ekman layer. A column of water is modelled under wind stress and with a

Coriolis effect taken into account. A 1-D �nite element method is used, and both the �xed

mesh and an adaptive scheme for the mesh are considered. In this example, the adaptive

scheme will be the equidistribution method, using arc length as a monitor function. We

also consider alternative monitor functions. Time integration is performed using an Adams

Bashforth method of third order.
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The PDE of interest is

¶u
¶ t

+Fez×u =
¶

¶z

�
ku

¶u
¶z

�
(4.1)

whereu(z, t) is the velocity, a function of the depthz. The velocity has two horizontal

components,ux anduy. The physical constants areF = 10−4s−1 (the Coriolis force) and

Ku = 10−2m−2s−1 (eddy viscosity, a function of density, here assumed to be constant). The

boundary condition at the deepest extent of the water columnz= −h is the Dirichlet condi-

tion u(z= −h, t) = 0. On the surface,z= 0, we have a wind shear providing a �ux boundary

condition ¶u
¶z

���
0

= bbb with componentsbx = 10−2s−1 andby = 0. The initial conditions are

u(z, t = 0) = 0.

We separate (4.1) intox andy components. This generates two interdependent equations in

1-D. The PDEs for each component are

¶ux

¶ t
=

¶

¶z

�
ku

¶ux

¶z

�
+Fuy (4.2)

¶uy

¶ t
=

¶

¶z

�
ku

¶uy

¶z

�
−Fux. (4.3)

4.1.1 Weak forms

To enable substitution of piecewise linear forms suitable for the �nite element method, we

must obtain the weak forms of the PDEs. The �rst step is to multiply the PDEs by a weight

functionwi ,

wi
¶ux

¶ t
= wi

¶

¶z

�
ku

¶ux

¶z

�
+wiFuy (4.4)

wi
¶uy

¶ t
= wi

¶

¶z

�
ku

¶uy

¶z

�
−wiFux (4.5)

and integrate from−h to 0. Then integration by parts gives the weak forms. These are, for

each component respectively,

Z 0

−h
wi

¶ux

¶ t
dz=

Z 0

−h
wi

¶
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and

N+1

å
j=0

¶Uy j

¶ t

Z 0

−h
WiWj dz=

�
kuWi

¶uy

¶z

�0

−h
−

N+1

å
j=0

Uy j

Z 0

−h
ku

¶Wi

¶z
¶Wj

¶z
dz−

N+1

å
j=0

Ux j

Z 0

−h
FWiWjdz.

(4.15)

The Dirichlet boundary conditionu(z= −h, t) = 0, is strongly imposed; therefore we will

not need to calculate (4.14) and (4.15) for the zeroth node atz = −h. However, atz = 0

we will need to incorporate the boundary condition¶u
¶z = b . For the weight functionswi , a

convenient choice is the collection of piecewise linearWi functions from Chapter 3. These

functions are also used as the basis functions for the piecewise linear approximations (4.8)

and (4.9), so that in this case basis functions and weight functions are the same. The weak

forms are now

N+1

å
j=1

¶Ux j

¶ t

Z 0

−h
WiWj dz= kuWibx|0 −

N+1

å
j=1

Ux j

Z 0

−h
ku

¶Wi

¶z
¶Wj

¶z
dz+

N+1

å
j=1

Uy j

Z 0

−h
FWiWjdz

(4.16)

and

N+1

å
j=1

¶Uy j

¶ t

Z 0

−h
WiWj dz= −

N+1

å
j=1

Uy j

Z 0

−h
ku

¶Wi

¶z
¶Wj

¶z
dz−

N+1

å
j=1

Ux j

Z 0

−h
WiFWjdz. (4.17)

This pair of equations can be written for any choice ofi, so thatN + 1 pairs of equations

must be considered (recall that the zeroth node due to the Dirichlet condition need not be

considered). The equations hold for all internal nodes, with the boundary termkuWibx|0
being relevant to thej = N + 1 case only. This set of equations lends itself therefore to be

written in matrix form. We de�ne matricesM = {Mi j }, K = {Ki j } andF = {Fi j } with the

following entries

Mi j =
Z zi+1

zi−1

Wi(z)Wj(z)dz (4.18)

Ki j =
Z zi+1

zi−1

¶Wi

¶z
¶Wj

¶z
dz (4.19)

Fi j =
Z zi+1

zi−1

FWi(z)Wj(z)dz. (4.20)
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We may now write (4.16) and (4.17) in matrix form. Fori = [1...N], this will be:

M �Ux +KUx = FUy (4.21)

M �Uy +KUy = −FUx (4.22)

with �Ux denoting a vector of entries{ �Uxi } and so on. The boundary term is evaluated

separately and added on to theN ++
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where

s(z) =
Z  

1+ g

�
¶u
¶z

�2
!1/2

dz. (4.25)

Hereg is a scaling factor appropriate to the scaling of the system being studied. For this

example,g = 1000 is used since the lateral velocity variations are three or four orders of

magnitude smaller than the vertical scale. For our system this function can be expressed as

s(z) =
Z z

−h

 
1+ g

�
¶ux

¶z

�2

+ g

�
¶uy

¶z

�2
! 1

2

dz (4.26)

whereux anduy are the horizontal components of the velocityu. New grid pointszi are

selected such that

h(z) =

R z
−hM(z)dzR 0
−hM(z)dz

(4.27)

for a set of regularly spaced grid points 0≤ hi ≤ 1. By differentiating (4.27) with respect to

h twice, we arrive at the differential equation

¶

¶h

�
M(z)

¶z
¶h

�
= 0. (4.28)

This is a nonlinear PDE, so we will solve it iteratively and therefore write

¶

¶h

�
M(zp)

¶zp+1

¶h

�
= 0 (p = 0,1, . . .) (4.29)

with an initial guess for a vector of discrete pointsz0. As we have only discrete values ofz

and thereforeM(z) to work with, we aim for approximate equidistribution and approximate

(4.29) as

M(zp
j+1/2)(zp+1

j+1 −zp+1
j )−M(zp

j−1/2)(zp+1
j −zp+1

j−1) = 0 (4.30)

with our discretised monitor functionM as

M(zj+1/2) =

 
1+ g

�
Ux j+1 −Ux j

zj+1 −zj

�2

+ g

�
Uy j+1 −Uy j

zj+1 −zj

�2
!1/2

. (4.31)

We assemble (4.30) into a matrix system,

T(zp)zp+1 = b (4.32)
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3. Steps 1 and 2 are repeated for 10 iterations;

4. Using equation (4.32), calculatezp+1 from zp and repeat until satisfactory conver-

gence (|zp+1 −zp| < 10−5) is achieved between the two. This is thenz(t +dt);

5. Interpolate the solutionsUx(t +dt) andUy(t +dt) onto the new gridz(t).

Figure 4.2 shows a comparison of the �xed grid and an adapted grid at t=100s. It is

easy to see the clear improvements to the model that come with increased resolution. The

�xed grid with 160 elements is the highest resolution that the current MATLAB implemen-

tation can reasonably compute. If we take this as our reference solution, we see that the

moving mesh equidistribution models are more accurate than the �xed mesh models with

the same number of elements, without a corresponding leap in the computational cost. The

improvement is primarily in the gradient of the top portion of the line. Figure 4.3 shows

where the grid adaptation has taken place. We see most adaptation around node 8, where

the accelerations of the �uid integrated over time have been the greatest. Node 8 is at a

depth of around 7m. However, there is a physically important transition from a shearing of

the �uid to a stationary �uid (Ekman layer) at around 10-20m depth at timet = 100 and this

is poorly resolved. We investigate an alternative monitor function in search of a method that

can better resolve this transition.

Equidistribution by curvature

As the region we wish to better resolve is a region of high curvature, we shall attempt
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Fig. 4.2 A comparison of the solution given by �xed and equidistributed grids for 40, 100
and 160 elements at t=100. See �gure 4.1 for a detailed explanation of how this chart
represents a velocity pro�le. The reference solution (red) is computed on a �xed grid with
160 elements. Assuming this higher resolution computation to be the most accurate, we
compare the green and purple solutions, computed on 100 elements. We see that we can
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Fig. 4.3 Overall mesh movement for 40 nodes. Total movement for nodei is given by
zi(t) = zi(0).

on the size of the interval inz for accuracy. A sensible solution to this would be to

integrateC(z) along the curve;

• Using the integral of curvature as a monitor function we �nd, at the iterative stage

(4.29), many cases that do not converge;

• We achieve suf�cient stability to run the model in limited cases (t<30,g = 1000).

However, the node movement cannot take place in advance of the feature of interest

forming, so the transition zone is not better resolved. Instead, the increased resolution

is observed where the transition zone had previously been located.

From these examples we can see that the equidistribution method has improved the res-

olution of the Ekman layer for the arc length monitor function, but does not compare well
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based method, interesting features in the �ow should be tracked as they develop, and there-

fore be tracked before they are observed in the features of the solution. The grid will not

need remeshing periodically so we will not need to interpolate the solution at any point, in-

stead the solution is tied to the grid at all times by the moving basis functions. Furthermore,

the need for an iterative step is eliminated. We will now illustrate the conservation method

using Fisher's equation.
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4.2 An Illustration of the Conservation Method: Fisher's

Equation

Fisher's equation is a reaction diffusion system that describes a balance between linear dif-

fusion and nonlinear reaction. It arises in ecology where it is known as a population growth

model, but it can also be used to describe biological invasion, or a simple combustion model

for �ame propagation, amongst others. In contrast to the alternative population models de-

scribed later, it involves only a reactant,i.e. any substrate is not relevant. The Fisher's

equation is known for exhibiting blow-up, which makes it a particularly interesting target

for an adaptive mesh method. We consider here an illustration of Fisher's equation using

the conservation method. The aim will be to derive a moving mesh that increases resolution

around the blow-up.

4.2.1 Fisher's Equation in 1D

Fisher's equation has a variety of common forms but following the Buddet al. paper [14],

we look at the particular form describing the temperatureu of a reacting or combusting

medium. The Masters theses by Edgington, 2011 [24], and Cole, 2009 [21], both examine

this same version of Fisher's equation on moving meshes from a �nite difference perspec-

tive, but here we look at a �nite element perspective. As discussed in Chapter 3, for ease

of comparison between studies, we will refer tou as mass rather than temperature. Fisher's

equation is
¶u
¶ t

=
¶ 2u
¶x2 +up
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conditions areu(a(t), t) = u(b(t), t) = 0 where the pointsa(t) andb(t) may have a non zero

velocity. We call this case 2. This allows all nodes including boundary nodes to respond to

the mass dynamics. This is a useful alternative system to model because it will allow us to

develop the approach that can later be used for a two phase system with a moving interface.

Conservation of relative mass

The approach to moving the nodes is now driven entirely by a conservation of mass in each

patch of elements; we have no specialised monitor function with this approach. As the

domain moves, the elements must shrink or grow to keep the proportions of mass constant

in each. However, for this particular problem we do not have the advantage of a conservative

total mass. Instead, as in the generic example in Chapter 3, we will introduce the concept

of a relative total mass. This will be de�ned as theproportion of mass in each patch of

elements. These proportions will remain constant with respect to time. This principle is set

out as follows for the Fisher's equation. De�neq(t) to be the area (mass) under the entire

solution curve at time t,

q(t) =
Z b(t)

a(t)
u(x, t) dx. (4.41)

We may use (4.41) to calculateq
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Using Leibnitz' integral rule we have

−
�q
q

Z b(t)

a(t)
wiudx+

Z b(t)

a(t)

¶

¶ t
(wiu)dx+ (wiu)|b

db
dt

− (wiu)|a
da
dt

= 0 (4.45)

or

−
�q
q

Z b(t)

a(t)
wiudx+

Z b(t)

a(t)

¶

¶ t
(wiu)dx+

Z b(t)

a(t)

¶

¶x
( �xwiu)dx= 0 (4.46)

where �x is any velocity consistent withdb/dt andda/dt, and then

−
�q
q

Z b(t)

a(t)
wiudx+

Z b(t)

a(t)

�
wi

¶u
¶ t

+u
¶wi

¶ t
+wi

¶

¶x
(u�x)+u�x

¶wi

¶x

�
dx= 0. (4.47)

After substitution of (4.43)

−ci �q +
Z b(t)

a(t)

�
wi

¶u
¶ t

+u
¶wi

¶ t
+wi

¶

¶x
(u�x)+u�x

¶wi

¶x

�
dx= 0. (4.48)

We �x our weight functionswi to the domain that moves with velocity �x. Therefore we can

argue, by analogy to a convecting system, that

¶wi

¶ t
+ �x

¶wi

¶x
= 0. (4.49)

We can multiply (4.49) byu and take out this term from equation (4.48). Rearrangement

yields Z b(t)

a(t)
wi

¶

¶x
( �xu)dx= −

Z b(t)

a(t)
wi

¶u
¶ t

dx+ci �q . (4.50)

Substituting from the weak form of Fisher's equation (4.40),

Z b(t)

a(t)
wi

¶

¶x
( �xu)dx= −

Z b(t)

a(t)
wi

�
¶ 2u
¶x2 +u2

�
dx+ci �q . (4.51)

Integrating the �rst term on the left hand side by parts (assumingwi is suf�ciently smooth),

[wi �xu]
b(t)
a(t) −

Z b(t)

a(t)

¶wi

¶x
�xudx= −

Z b(t)

a(t)
wi

�
¶ 2u
¶x2 +u2

�
dx+ci �q . (4.52)

For both case 1 and case 2, we note that the boundary term on the left hand side of (4.52)

is zero due to the Dirichlet conditionsu(a(t), t) = u(b(t), t) = 0. We noF87 11.9552 Tf 4.639 0 Td [(a)]TJ/F101 11.9552 Tf 5.977 0 Td [(()]TJ/F87 11.9552 Tf 4.34 0 T7 11.9552 Tf 4.34 0 T7 11.9552 Tf 4.34 0 Lq
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right hand side

Z b(t)

a(t)

¶wi

¶x
�xudx=

�
wi

¶u
¶x

�b(t)

a(t)
−

Z b(t)

a(t)

¶wi

¶x
¶u
¶x

dx+
Z b(t)

a(t)
wiu2dx−ci �q . (4.53)

We refer to thewi as weight functions. Equation (4.53) is now in a suitable form for �nite

element functions to be substituted.

Finite elements

We choose the set of functionsWi for our weight functions. Consider the boundary termh
wi

¶u
¶x

ib(t)

a(t)
in (4.53). In a �nite element framework with Dirichlet conditions, the usual

approach is to solve (4.53) for internal nodes only, and in those cases the boundary term

would be equal to zero. Therefore the boundary term disappears. The given solution on the

boundary can then be strongly imposed. However, in a conservation based system, ignoring

boundary terms would destroy conservation in general. In this circumstance, following [33]

we switch to a modi�ed set of weight functions, which we will callW̃i . These weight func-

tions include a combined weight function for the boundary node and its nearest neighbour.

This will allow us to strongly impose the Dirichlet conditions without destroying mass con-

servation. Our approach from here varies depending on the presence or otherwise of a free

boundary.

Case 1: Fixed boundaries: Boundary conditions areu = 0, �x = 0

For the static boundary, case 1, we work in modi�ed weight functions throughout. The mod-

i�ed weight functionsW̃i are constructed from the original weight functionsWi as follows,

W̃1(t,x) = W0(t,x)+W1(t,x) (4.54)

and

W̃N(t,x) = WN(t,x)+WN+1(t,x) (4.55)

with the remainingWi unaltered. These modi�ed weight functions are illustrated in �gure

4.4. Note the dimension of the subspace in which these functions reside is reduced from

N +2 toN. Theci values of equation (4.43) must be adjusted accordingly,

c̃1 = c0 +c1 =
Z b

a

1
q

(W0 +W1)u dx (4.56)
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Fig. 4.4 Modi�ed weight functions in 1-D for boundary nodex0 and internal nodexi . These
Wi form a partition of unity and are compatible with strongly imposed Dirichlet conditions.

and

c̃N = cN +cN+1 =
Z b

a

1
q

(WN +WN+1)u dx. (4.57)

We then have noc0 or cN+1 values. The remainingci are unaltered. The use of̃Wi andc̃i

ensure that global conservation is not violated in (4.43
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where �X
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B̄(U) could be singular ifU were constant and it had an odd number of rows and columns.

However, the second caveat is that when we consider the system in two dimensions, the

velocity is not unique because we could add an arbitrary curl vector tou�x (see equation

(3.5)). By introducing a velocity potentialF, we can avoid this problem since the velocity

potentialis unique. We then specify a curl of zero when we recover�X from F. In order to

keep the method consistent between one and two dimensions then, we will also work with

a velocity potential in one dimension. We proceed therefore by introducing the velocity

potentialF, de�ned by

�X =
¶F

¶x
(4.67)

where

F(x, t) =
N+1

å
j=0

Wj(x, t)F j(t) (4.68)

so that
¶F

¶x
=

N+1

å
j=0

¶Wj

¶x
F j . (4.69)

Substituting this into equation (4.61), equation (4.62) becomes

K̃(U)F = g̃ (4.70)

whereF is the vector containing{F j}(¶m298.762 410.028 .ieA87 401 18Td [( 4.yion)npning)]TJ/
[]0 d 0 J 0.399664 Tf 10.706 -1 0 Tn69)

Substituting this into equation (4.61
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Getting �X

We then obtain�X from a �nite element approximation of (4.67) at each node. From the

de�nition (4.67) we write the weak form,

Z b

a
wi �X dx=

Z b

a
wi

¶F
¶x

dx: (4.74)

For case 1, the �xed boundaries are equivalent to imposing the boundary conditions �xja =

0 and �xjb = 0. To impose these without violating relative mass conservation in (4.43),

modi�ed weight functions are again required. We select the modi�ed weight functions

wi = W̃i of (4.54), (4.55) and use the piecewise linear approximations (4.58) and (4.68). We

obtain
N+ 1

å
j= 0

� Z b

a
W̃iWj dx

�
�Xj =

N+ 1

å
j= 0

� Z b

a
W̃i

¶Wj

¶x
dx

�
F j : (4.75)

In matrix form this is

M̃ �X = B̃f
j
: (4.76)

The matrixM̃ is a positive de�nite and well-conditioned mass matrix with entries

M̃i j =
Z b

a
W̃iWjdx (4.77)

andB̃ is an asymmetric matrix similar to (4.65), with entries

B̃i j =
Z b

a
W̃i

¶Wj

¶x
dx: (4.78)

Note that we will only need to invert̃M in order to recover�X.

Finding X

A time integration approximation such as forward Euler is used to generate the grid at the

next time step from the values of�X.
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RecoveringU

To generate the new solution forU at the new time step we return to our relative conservation

principle (4.43), with our modi�ed basis functionswi = W̃i ,

1
q(t)

Z b

a
W̃iudx= c̃i .

In discretised form this becomes, withU(x, t) = å j Wj(x, t)U j(t),

N+1

å
j=0

�Z b

a
W̃iWjdx

�
U j = c̃iq(t) (4.79)

where the ˜ci are given by the modi�ed values

c̃i =
1

q(t0)

Z b

a
W̃iU0dx=

1
q(t0)

Z b

a
W̃iu0 dx (4.80)

for initial datau0, if the U0 is theL2 best �t to u0. Then (4.79) is equivalent to the mass

matrix system

M̃U = q(t)c̃ (4.81)

with c̃ as the vector containing entries ˜ci , andM̃ the mass matrix calculated for the new

nodal positions. We may then solve forU with the boundary condition
�
W̃i �xU

�b
a = 0 strongly

imposed onU, without violating relative mass conservation.

Algorithm 7

For case 1 with �xed boundaries.

Having initialu0 andx0, and having calculated the piecewise linear functionU0 at the nodes

X0, as well asq from (4.41), the �nite element solution of Fisher's equation (4.39) on the

moving mesh in 1-D consists of the following steps at each timet:

1. Find �xUfrom (
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4. Generate the co-ordinate systemX(t + dt) at the next time-step by evaluating (3.18)

using the forward Euler approximation. Similarly, update�q from �q(t);

5. Find the solutionU(t +dt) by solving the relative conservation equation (4.81) using

the strong form of the boundary conditions.

Case 2: Moving boundaries: Boundary conditions areu = 0, u�x = 0

For the free boundary, case 2, whilst we have Dirichlet conditions foru we do not have them

for �x. In fact there are no boundary conditions to impose on �x. We will not need modi�ed

weight functions to obtain �x and indeed, using them would prevent us from obtaining a

solution for �x at the boundariesx = a andx = b. For this reas.82 Tf2(we)-291(t)-3a45 0 Td [(0)]TJ/F84 11.9552 Tf Td 717.tially11.95524.810
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andB is the asymmetric matrix of (4.78):

Bi j =
Z b(t)
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using the modi�ed conservation principle.

Recovering U

U can now be recovered in exactly the same way as in case 1, as described in section 4.2.1.

Algorithm 8

For case 2 with free boundaries.

Having initialu0 andx0, and having calculated the piecewise linear functionU0 at the nodes

X0, as well asq from (4.41), the �nite element solution of Fisher's equation (4.39) on the

moving mesh in 1-D consists of the following steps at each timet:

1. Find �q(t) by evaluating (4.66);

2. Find the velocity potential by solving equation (4.88) for theF j (t) values, withF

speci�ed at the central node;

3. Find the node velocity by calculating (4.91) for the�X values at all nodes including

boundary nodes;

4. Generate the co-ordinatesX(t + dt) at the next time-step from (3.18) using the forward

Euler approximation. Similarly, update�q from �q(t);

5. Find the solutionU(t + dt) by solving the relative conservation equation (4.81) using

the strong form of the boundary conditions.
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Fig. 4.6 Blow-up of solutionu(x, t) of Fisher's equation (4.39), with case 1 boundary con-
ditions (�xed boundaries). The model is run to t=0.0825, beyond which solutions begin to
suffer from node crossing and other instabilities. The precise time that this occurs for each
choice ofDt andDx is given in table 4.1. The grid resolution is 6 nodes (top), 11 nodes (cen-
tre) and 21 nodes (bottom) in the half domain shown. Initial spacingDx is regular. Various
Dt choices are tested for each initial grid resolution. The �gures on the right show the detail
at x close to 0. AsDx is reduced a small improvement in the de�nition of the peak is noted.
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tion, that

Dt < Dx2 =

�
0.5
N

�2

(4.95)

which limits Dt to a maximum of 1.25x10−3. In both [21], and [24], Cole and Edgington

attempt a moving mesh solution of the same problem. They use an implicit �nite difference

method to compute a conservation-based approach to moving the mesh. The results from

our �nite element method are consistent with the approximate blow up timeT ≈ 0.082372

given in [13], as table 4.1 shows. We de�ne the blow-up time of the model as the point

of failure of the model to further resolve a solution,i.e. nodes are crossing or some other

catastrophic instability. Looking in more detail, we are able to resolve a higher peak foru

at blow-up with values of the order ofu = 105 (�gure 4.6) rather than theu = 104 in [21].

We also observe a narrower, more de�ned peak inu at all values ofDx andDt than in the

Cole dissertation. Furthermore, we note from the results in [24] that the 11 node model

performs better than the 6 node or 21 node models (de�ned as the number of nodes in the

half-domain 0≤ x ≤ 0.5). Presumably the 6 node model is limited by lack of resolution and

the 21 node model is limited by node tangling. We do not see the same node tangling limit
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Dx, when the variable time steps are used.

Results for the moving boundary problem: Case 2

Edgington extends the work in [21] by examining the effect of allowing the boundary nodes

to move. He �nds that in the �nite difference model, the maximumu achieved is reduced

when the boundaries are allowed to move, except in the coarsest 11 node model.

Fig. 4.7 A solution of the 1D Fisher's equation using a moving mesh with the free boundary
of case 2. Here we use 20 elements and a time step of 0.00005.

We �nd that our results are somewhat mixed. The maximumu achieved is equalled or

improved when the boundaries are allowed to move, when compared to the �xed boundary

case. However it must be recognised that the problem is de�ned differently for each case.

For the 21 node model, the maximum resolvableumax is broadly unchanged at (near) blowup

when the moving (case 2) and �xed boundary (case 1) versions are compared. For the 11

node model, allowing the moving boundary increases the resolvableumax at blow-up by

about a factor of 5. For the 6 node model, allowing the moving boundary increases the

resolvableumax at blow-up by about a factor of 10. However, the time taken to blow up is

much less accurate with a moving boundary than with a static boundary. The model stops
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running due to nodes crossing at aroundT = 0.065 in the moving boundary case, whereas

we would aim for the model to run toT = 0.0823. It is probable that this is due to the greater

nodal velocities observed when a free boundary is present.
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Table 4.1 Blow-up times from MMFEM implementation of Fisher's equation, case 1 with
�xed time step

N Dt steps Tblow−up

6 1x10−5 8411 0.08411

6 5x10−6 16815 0.08408

6 2.5x10−6 33622 0.08406

6 1.25x10−66
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Table 4.3 Blow-up times from MMFEM implementation of Fisher's equation, case 1 with
smoothing, and �xed time steps. Blow-up happens later with smoothing.

N Dt steps Tblow−up

6 1x10−5 9821 0.0982

6 5x10−6 19653 0.0983

6 2.5x10−6 39317 0.0983

6 1.25x10−6 78645 0.0983

11 1x10−5 9892 0.0989

11 5x10−6 19865 0.0993

11 2.5x10−6 39817 0.0995

11 1.25x10−6 79727 0.0997

21 1x10−5 9691 0.0969

21 5x10−6 19664 0.0983

21 2.5x10−6 39663 0.0992

21 1.25x10−6 79669 0.0996

Smoothing

We also note some saw-tooth instability in both the constant time step case and, to a lesser

extent, the variable time step case �nite element models. This is a common problem with

�nite element methods because of the central differences involved combined with explicit

time stepping. We will attempt to smooth this out by introducing a viscosity term (Laplacian

smoothing),

xnew
i = xi +

1
4

d
2xi , d

2 = xi+1 −2xi +xi−1. (4.97)
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Fig. 4.8 Blow-up of the solutionu(x, t) of Fisher's equation (4.39) with �xed boundaries
(case 1) and variable time steps. The models are run until t=0.0825. Grid resolutions are
from top to bottom, 6 nodes, 11 nodes and 21 nodes. Variable time steps for comparison
with [21] are used. The �gures on the right show the results with a normalisedu.
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Order of convergence

Since we have a value for the blow up time from [13], we may examine the orders of

convergencep or q with respect to time or space respectively. WhenDt is varied withDx

held constant, we expect a �xed non-zero component of the spatial error, so we may estimate

p andq by looking at the rate at which the differences between successive errors decrease.

We assume

En = C
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Fig. 4.9 The smoothed, �xed time step results at t=0.0825 for blow-up of the solutionu(x, t)
of Fisher's equation (4.39) with �xed boundaries (case 1). Grid resolutions are from top to
bottom, 6 nodes, 11 nodes and 21 nodes in the half domain. The �gures on the right show
the same results as the �gures on the left but with a change of scale on the x axis. AsDx is
reduced the peak actually gets wider as the smoothing becomes more effective.
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Table 4.4 Errors in blow-up time from MMFEM implementation of Fisher's equation, case
1 with �xed time step, and their variation by time step and node spacing

N Dx Dt En En −En−1
En−En−1
En+1−En

21 0.025 1x10−5 0.000248

21 0.025 5x10−6 0.000213 -0.000035 1.6

21 0.025 2.5x10−6 0.000191 -0.000022 2.0

21 0.025 1.25x10−6 0.000180 -0.00011 2.2

21 0.025 6.25x10−7 0.000175 -0.00005

6 0.1 1.25x10−6 0.001674

11 0.05 1.25x10−6 0.000508 -0.001166 3.6

21 0.025 1.25x10−6 0.000180 -0.000328 4.0

41 0.0125 1.25x10−6 0.000099 -0.000081 4.8

81 0.00625 1.25x10−6 0.000082 -0.000082

We see in table 4.4 that successive differences between errors as you halveDt go down

by a factor of about 2, suggestingp ≈ 1 or �rst order in time. When you halveDx these

differences go down by a factor of about 4, suggestingq ≈ 2 or second-order accuracy in

space. This is as expected from forward Euler in time and linear �nite elements in space.
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4.2.2 Fisher's Equation in 2D

The two dimensional solution of the Fisher's equation has not previously been attempted
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We de�ne a reference test domainW(0) at t = 0 and a moving test domainW(t). Applying

the Reynolds Transport Theorem we obtain

d
dt

Z
W(t)

wiu dW =
Z

W(t)

¶

¶ t
(wiu) dW+

Z
W(t)

wiu�x · n̂ dS

=
Z

W(t)

�
wi

¶u
¶ t

+u
¶wi

¶ t
+Ñ · (wiu�x)

�
dW (4.111)

for the generalised weak form, where�x · n̂ is any normal velocity consistent with the normal

boundary velocity. Using the advection equation (3.7) we can cancel out terms giving us the

weak form of the Reynolds Transport Theorem in the moving frame,

d
dt

Z
W(t)

wiu dW−
Z

W(t)
wiÑ · (u�x) dW =

Z
W(t)

wi
¶u
¶ t

dW. (4.112)

We now consider the speci�c system described by Fisher's equation. We substitute the weak

form of Fisher's equation (4.106), and obtain

d
dt

Z
W(t)

wiu dW−
Z

W(t)
wiÑ · (u�x) dW =

Z
W(t)

(wiÑ
2u+w3 d 0 J 0.478 w 0 0 m 13.366 0 l S
Q
BT
/F98 11.9552 Tf 401.925 520.747 Td [(¶)8.89 cm
[]0 d 0 J 0.478u+

Z
now 2F101 8.9664 Tf 6.886 0 Td [(gono)25(w)-212(4982 -4.937)7596 Tf 11.946 14.938 Td [(Z)]TJ/F100 8.9664 Tf 5.966 -24.347 Td [(W)]TJ/F101 8.9664 Tf 6.886 0 Td [(()]TJ/F87 8.9664 Tf 3iy346 14Td [(w3 d]TJ/F100 8.966 TfJ 0.478 lrr6478 lrr6478 lrr6478part[(d)-27o]TJ/F100 8.9664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 rifi664 ri664 Tf 6.886 0 3
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wheren̂ is the outward pointing unit normal. The boundary �uxu�x · n̂ is zero due to the

Dirichlet condition onu. We now have an equation for�x in terms ofu and �q ,

ci �q +
Z

W(t)
u�x ·Ñwi dW =

Z
S(t)

wiÑu· n̂ dS−
Z

W(t)
Ñwi ·Ñu dW+

Z
W(t)

wiu2 dW. (4.117)

Providing that we select weight functionswi that form a partition of unity,åwi = 1, we can

calculate�q by summing this expression over all weight functions in the model and using the

boundary conditions. From (4.109), we de�neci as the proportion of mass associated with

a particular weight functionwi . The sum is

å
i

ci �q(t)−(t)

W(t)
u�x ·Ñ





4.2 An Illustration of the Conservation Method: Fisher's Equation 80

giving

ÑF(x, t) =
N

å
j=1

ÑWj(x, t)F j(t). (4.126)

We can now write (4.122) in the form

N

å
j=1

�Z
W(t)

UÑWi ·ÑWj dW

�
F j =

Z
S(t)

WiÑU · n̂ dS

−
N

å
j=1

�Z
W(t)

ÑWi ·ÑWj dW

�
U j +

Z
W(t)

WiU2 dW−ci �q(t) (4.127)

or in matrix form

K(U)F = f (4.128)

with the vectorF containing the valuesFi , and the vectorf containing the valuesfi given

by

fi =
Z

S(t)
WiÑU · n̂ dS−

N

å
j=1

�Z
W(t)

ÑWi ·ÑWj dW

�
U j +

Z
W(t)

WiU2 dW−ci �q(t). (4.129)

The nonlinear term,
R

W(t)WiU2 dW, is evaluated using Gaussian quadrature (see Appendix

B). Whilst not exact, the order of accuracy is high enough not to affect the order of accuracy

of the complete algorithm.

K(U) is the weighted stiffness matrix with elements

K(U)i j =
Z

W(t)
UÑWi ·ÑWj dW. (4.130)

We obtain �X from the �nite element approximation of (4.120), for which the process is

described in detail in Chapter 3, section 3.1.3. This gives the matrix form

M �X = BF (4.131)

where �X = { �xi}, M is the standard mass matrix andB is an asymmetric matrix with elements

Bi j =
Z

W(t)
WiÑWj dW. (4.132)
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Modi�ed weight functions in 2-D

Having obtained�X we now rewrite the system in terms of modi�ed weight functions, so that

the Dirichlet condition onU can be imposed. Modi�ed weight functions in this context are

any suitable set of piecewise linear weight functions where the weighting normally associ-

ated with a boundary node has been transferred to an internal node, and where a partition of

unity is preserved. We turn our attention �rstly to describing our system in terms of modi-

�ed weight functions, and afterwards will take a closer look at the form of these functions

and how they may be used in calculating matrices. We use the tilde to denote the use of the

modi�ed weight functions,i.e. wi = W̃i(x,y).

For the approximations to variables, we continue to make piecewise linear approxima-

tions in terms of standard (unmodi�ed) basis functions,

U(x, t) =
N

å
j=1

Wj(x, t)U j(t) (4.133)

�X(x, t) =
N

å
j=1

Wj(x, t) �X j(t). (4.134)

The ALE equation (4.117) can now be written, with a little rearrangement, in terms of

modi�ed weight functionsW̃i and unmodi�ed basis functionsWj as

c̃i =
1

�q(t)

 
−

N

å
j=1

�Z
W(t)

UW̃i ·ÑWj dW

�
�X j +

Z
S(t)

W̃iÑU · n̂ dS+
Z

S(t)
W̃iU �X · n̂ dS

−
N

å
j=1

�Z
W(t)

ÑW̃i ·ÑWj dW

�
U j +

Z
W(t)

W̃iU2 dW

!
. (4.135)

We impose our�X obtained from the unmodi�ed system into this modi�ed system, and thus

obtain the correct values of ˜ci for the modi�ed system. The nonlinear term is calculated

using Gaussian quadrature (see Appendix B). After time integration, we recoverU using

the �nite element version of (4.109) with modi�ed weight functions

N

å
j=1, j ̸∈S

�Z
W(t)

W̃iWj dW

�
U j = c̃iq(t) (4.136)

which references internal nodes only. In matrix form this is

M̃U = c̃q (4.137)
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for mass matrixM̃, and vectorsU containing theU j values and ˜c containing the ˜ci values.

We now turn our attention to selecting a form for the modi�ed weight functions and

consider the implications for matrix construction. Following Hubbard, Baines and Jimack,

2009 [33] we are presented with the choice between two approaches for modifying the

weight functions. These are termed the 'averaged modi�ed approach' and the 'compact

modi�ed approach'. The two approaches are both derived and discussed only in the context

of the mass matrix. The modi�ed mass matrix alone is suf�cient to solve the conservation

equation (4.137), but here we require a more extensive implementation of the modi�ed

weight functions. In order to solve (4.135) we will require an evaluation of both a stiffness

matrix and an asymmetric matrix. We must therefore extend one of the approaches from

[33] in order to provide a way to construct any matrix from the modi�ed weight functions.

The averaged modi�ed approach of [33] lends itself best to this, since it is de�ned in terms

of the weight functions themselves. In [33] the modi�ed weight functions are constructed in

a similar way to the 1-D case, but with the added complication of increased connectivity. It

is stated that the weight functions associated with boundary nodes are redistributed equally

between their adjacent internal nodes. Therefore all basis functions de�ned on fully internal

elements remain unaffected. With regard to the construction of the mass matrix, [33] sets

out the following process. For triangles with two nodes on the boundary, all the weight

associated with that triangle has only one internal node to go to, and the calculation is

simple. For a given internal nodej on a triangle with vertices[ j,J,K] whereJ andK are

boundary nodes, the modi�ed weight functioñWj
��
[ j,J,K]

for triangle[ j,J,K] is given by

W̃j
��
[ j,J,K]

= Wj +WJ +WK. (4.138)

An example of such a triangle is number 3 of �gure 4.10.

For triangles with one node on the boundary, the weight associated with that node is

split equally between the two internal nodes. For a given internal nodej on a triangle with

vertices[i, j,J] where onlyJ is on the boundary, the modi�ed weight functioñWj
��
[i, j,J]

for

triangle[i, j,J] is given by

W̃j
��
[i, j,J]

= Wj +
1
2
WJ. (4.139)

An example of such a triangle is number 2 of �gure 4.10.

These sums are presented visually in �gure 4.11. Recalling the standard 2-D basis func-

tionsWi of �gure 3.2, we obtain from equations (4.138) and (4.139) the coloured prisms

W̃i of �gure (4.11). The red volume represents̃Wj
��
[ j,J,K]

, the contribution from triangle 3

to the modi�ed basis function at internal node j. All the mass from triangle 3 has been as-
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Fig. 4.10 Connectivity between boundary nodes (I,J and K) and internal nodes (i,j, and k).
The arrows show where the weight function from each triangle will be transferred to under
the modi�ed system

signed to node j, so the red modi�ed basis function is a triangular prism with height 1 at all

three corners. The purple volume representsW̃j
��
[i, j,J]

, the contribution from triangle 2 to the

modi�ed basis function at internal node j. Half of the mass normally assigned to boundary

node J is transferred to internal node j, with the remaining half being transferred to internal

node i. The purple modi�ed basis function is therefore a modi�ed prism with height 1 at j,

height 0 at i and height 0.5 at J.

The practical implementation of this modi�cation process takes place at the level of ma-

trix assembly. The 2-D matrices are assembled as part of the algorithm by summing the

element contributions from each triangle. When we require a matrix calculated from mod-

i�ed weight functions such as thẽM of (4.137), the contributions from boundary triangles

are adjusted before assembly according to (4.138) and (4.139). Contributions from triangles

with no boundary nodes are unaffected.

The matrix assembly using these modi�ed functions must consider the interactions be-

tween modi�ed weight functions and unmodi�ed basis functions. A generalised matrixA

de�ned in terms of functionsF andG with standard weight functionsWi and basis functions

Wj has entries

Ai j =
Z

W

F(Wi)G(Wj) dW (4.140)
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Fig. 4.11 Modi�ed basis functions for internal nodes. The red modi�ed weight function
represents the mass contribution from triangle 3 to internal node j, and is a triangular prism
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Wj
��
[i, j,J]

(4.144)

and

WJ|[i, j,J] . (4.145)

The modi�ed weight functionsW̃i for triangle 2 are, in terms of those unmodi�ed basis

functions,

W̃i
��
[i, j,J]

= Wi |[i, j,J] +
1
2

WJ|[i, j,J] (4.146)

W̃j
��
[i, j,J]

= Wj
��
[i, j,J]

+
1
2

WJ|[i, j,J] (4.147)

and

W̃J
��
[i, j,J]

= 0. (4.148)

The entries for the modi�ed element matrix as de�ned by (4.142) can be calculated for

triangle 2 from the localWj andW̃i functions , (4.143) to (4.148). By reference to (4.140)

and (4.141), the entries can be given in terms of the unmodi�ed elements of (4.141) as

Ãe =


eii + 1

2eiJ ei j + 1
2ejJ eniJ + 1

2ennJJ

eji + 1
2enniJ enn j j + 1

2en jJ enn jJ+ 1
2ennJJ

0 0 0


. (4.149)

The matrix is partitioned into an upper left 2× 2 matrix, a bottom row of all zeros, and a

right hand column which refers to a known value obtained from the Dirichlet condition. For

example to calculateAU, we can see that we have
enii + 1

2enniJ ei j + 1
2ejJ eiJ + 1

2enJJ

eji + 1
2eniJ ej j + 1

2ejJ ejJ + 1
2eJJ

0 0 0


=


Ui

U j

UJ


. (4.150)

whereUi andU j are free andUJ is �xed. The known terms generated by the right hand

column of the matrix can be added directly into the rows of the calculation, allowing us to
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use only the square matrix of the upper left in the matrix operation. This has the advantage

of being invertible.

We can use this approach to generate the speci�c matrices we will use. The unmodi�ed

mass matrix given by

M =
Z

W

WiWj dW (4.151)

has the element mass matrix

Me = area△



1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6


(4.152)

and the modi�ed mass matrix given by

M̃ =
Z

W

W̃iWj dW (4.153)

has the element mass matrix (for a triangle such aswe2 with two internal nodes and one

boundary node) given by

Me2 = area△



5
24

3
24

1
6

3
24

5
24

1
6

0 0 0


. (4.154)

We can calculate modi�ed stiffness matrices in the same way. The standard element stiffness

matrix is

Ke =
1
2


cotg +cotb −cotg −cotb

−cotg cota +cotg −cota

−cotb −cota cotb +cota


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by

u(0) = 75sin(p(0.5− r). (4.160)

In this case, the reaction does build, and we observe blow-up in a similar manner to the 1-D

case. We observe node movement towards the centre asu becomes large there. The solution

tends towards a Dirac delta function before the model collapses due to node tangling. These

results are presented in �gures 4.12 to 4.16. We use 5 nodes on 20 concentric circles. The

initial grid is presented in �gure 4.17. Note that the outermost circle is different in having

10 nodes. This is to avoid the situation where if only 5 nodes were used, nodes from the

next circle inward from the boundary would form part of the boundary, as a consequence

of the alternating positioning of the nodes on adjacent circles. This would complicate the

implementation of the boundary conditions, so additional nodes are added on the outer

circle only. We use a time step ofdt = 10−5. Figure 4.13 shows the solution att = 0.01, and

�gure 4.14 4.14 t = 0.
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Fig. 4.13 Solution of the 2D Fisher's equation att = 0.01. Note change of scale on the
vertical axis.

Fig. 4.14 Solution of the 2D Fisher's equation att = 0.02. Note change of scale on the
vertical axis.
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Fig. 4.15 Solution of the 2D Fisher's equation att = 0.0219. Approaching blow-up. Note
change of scale on the vertical axis.

Fig. 4.16 Final solution of the 2D Fisher's equation. Heret = 0.0225. The solution approx-
imates a Dirac delta function, and shortly after this time step the nodes become co-located
and the model becomes unstable.
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Fig. 4.17 Initial node positions for 2-D Fisher's equation att = 0. We have 5 nodes on 20
equally spaced concentric circles.

Fig. 4.18 Node positions for 2-D Fisher's equation att = 0.0219 as we approach blow up.
When compared to the initial grid, the movement towards the centre is clearly apparent.
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4.3 Keller-Segel model in 2D

The Keller-Segel model [34] is a reaction-diffusion system related to the Fisher's equa-

tion. It differs from the Fisher's equation in that it involves both a substrate and a reactant,

whereas the Fisher's equation is concerned with only the reactant. Both Cole [21] and Budd

[13] consider the Keller-Segel system in two-dimensional, but radially symmetric, terms,

on a moving mesh. Budd's paper [13] contains an equidistribution approach to moving the

mesh, whereas Cole [21] demonstrates a conservation based method with a �nite differences

implementation. Here we move to a fully two dimensional approach, with a conservation

based �nite element method of solution (MMFEM).

This model, for chemotaxis of cells, takes the form of a pair of interdependent PDEs,

¶u
¶ t

= Ñ.(k1(u,v)Ñu−k2(u,v)uÑv)+k3(u,v) (4.161)

¶v
¶ t

= DvÑ
2v+k4(u,v)−k5(u,v)v (4.162)

where

u=cell density

v=concentration of substrate

k1=diffusivity

k2=chemotactic sensitivity

k3=cell growth and death

k4=production of substrate

k5=degradation of substrate.

We model a system on a �xed domainW with boundaryS. We take the Neumann bound-

ary conditions used in [13], given by

Ñu· n̂|S = 0 (4.163)

and

Ñv· n̂|S = 0. (4.164)

We also take the initial values foru andv from [13], given by

u(r,0) = 1000e(−500r2) (4.165)
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v(r,0) = 10e(−500r2) (4.166)

wherer ∈ W = {r : ∥r∥ ≤ R}, andR = 1. A free boundary is unimportant here, since the

initial conditions give a wide margin where
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and
d
dt

Z
W

u dW = 0 = �q , (4.174)

i.e., mass is conserved. We de�ne a distributed conservation principle using the weight

functionswi . Z
W

wiu dW = ci (4.175)

or
d
dt

Z
W

wiu dW = 0. (4.176)

We differentiate using Leibnitz' rule and obtain

Z
W

¶

¶ t
(wiu) dW−

Z
S
wiu�x.n̂ dS= 0 (4.177)

or Z
W

�
wi

¶u
¶ t

+u
¶wi

¶ t
+wiÑ.(u�x)+u�x.Ñwi

�
dW = 0. (4.178)

If wi
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We arrive at Z
W

Ñwi . �xu dW = −
Z

W

Ñwi .Ñu dW+
Z

W

cÑwi .uÑv dW. (4.184)

This is our weak form for�x in terms ofu andv. We will move the nodes using a time

integration scheme, and recoveru using a conservation approach. We do however, require a

weak form for �v. We calculate �v from the de�nition of ¶v
¶ t , (4.168), the known nodal velocity

�x and the material derivative
dv
dt

=
¶v
¶ t

+Ñv· �x. (4.185)

The �x
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We use the basis functionswi = {Wi(x,y)} and the piecewise linear approximations

F(x, t) =
N

å
j=1

Wj(x, t)F j(t) (4.191)

U(x, t) =
N

å
j=1

Wj(x, t)U j(t) (4.192)

V(x, t) =
N

å
j=1

Wj(x, t)Vj(t). (4.193)

We can now write equation (4.184) in a �nite element form.

N

å
j=1

�Z
W

UÑWi .ÑWj dW

�
F j = −

N

å
j=1

�Z
W

ÑWi .ÑWj dW

�
U j + c

N

å
j=1

�Z
W

(UÑWi .ÑWj)dW

�
Vj .

(4.194)

In matrix form this is

K(U)F = f (4.195)

with K(U) the weighted sto fnormformhteofto fnochapterormhte3,orm73(se]TJ/Fg 0 G
 [())-rmhte3.1.3g 0 G
 [())-2.)-366(T(weightev)-25e]T)1(or00 11.9552 Tf 3.312 0 cm
913(F)]TJ
ET
q
1 0 0 1 302.95847 0 574 cm
611 d 0 J 0.478 w 0 0 m 9.122 0 l S
Q
BT
/F101 11.552 Tf 487.777 4 Td(� Td [())]TcontaiF100 12 T9d [817 Td [(K)]TJ/F9(we0 11.9552 Tf 3.312 0Td 598(F)]TJ/F87 8.9664 Tf 10.466 -1.794 Td [(j)]TJ/F101 11.552 Tf 487.7776.2 [(d [(j)]TJ/FvF86 alueis)]TJ/0(the)-250(piece)2v)-25e]Tor00 11.552 Tf 13.739 005.563(f)]TJ
ET
q
1 0 0 1 326.6822402840734 T1 [(d 0 J 0.478 w 0 0 m 6.862 0 l S
Q
BT
/F86 11.9552 Tf 487.7772Td 77341.95K)]TJ/F(is)]TJ/0(piece)2v)-25e]Tor0n)-250ontaiFingsi 33 {
N
å
j=1

�Z
W

ÑWi .ÑWj 3W

�
V j +

N

å
j=1

�Z
W

Ñ
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together with the piecewise linear approximations forU (4.192) andV (4.193), we obtain

from (4.188
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Table 4.5 Blow up time for 2D Keller-Segel model withm = 10 showing variation byDt,
andn

m n Dt Tblow−up

10 5 4x10−7 2.00x10−5

10 5 2x10−7 1.90x10−5

10 5 1x10−7 1.90x10−5

10 5 5x10−8 2.00x10−5

10 10 4x10−7 1.48x10−5

10 10 2x10−7 1.24x10−5

10 10 1x10−7 1.10x10−5

10 10 5x10−8 1.00x10−5
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Table 4.7 Blow up time for 2D Keller-Segel model withm = 40 showing variation byDt,
andn

m n Dt Tblow−up

40 5 4x10−7 5.52x10−5

40 5 2x10−7 5.54x10−5

40 5 1x10−7 5.56x10−5

40 5 5x10−8 5.56x10−5

40 10 4x10−7 1.52x10−5

40 10 2x10−7 1.52x10−5

40 10 1x10−7 1.52x10−5

40 10 5x10−8 1.52x10−5

40 20 4x10−7 8.80x10−6

40 20 2x10−7 8.80x10−6

40 20 1x10−7 8.80x10−6

40 20 5x10−8 8.85x10−6

Examples of the graphical results obtained are given in �gures 4.19, 4.20 and 4.21. We

observe the increasing height of the peak inu and the much lesser reduction in the height

of v. Figureofofofofofofofofofofofof
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method and it should be noted that for domains which involve large regions with zero mass

or constant mass, node movement cannot occur in those regions.

Fig. 4.19 Initial conditions for the Keller Segel model.
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Fig. 4.20 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
at t = 5x10os/F86 11 gl6642 Tf 11.56 (4.54 Td [�x)]TJ/F86 gl6642 Tf6gl663 0 Td [6x
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Fig. 4.21 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
as we approach blow-up.
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Fig. 4.22 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line).
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Fig. 4.23 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line), a closer view.



Chapter 5

Moving interface models

5.1 The two phase Stefan problem in 1D

We now consider models with a moving interface between two phases. These models are a

natural development from the free boundary variants of Chapter 4, for example the Fisher's

model of section 4.2 with case (2) boundary conditions. We begin with a model of the

two phase Stefan problem, constructed in a similar manner to that described in the Baines,

Hubbard, Jimack and Mahmood (2009) paper [8]. The model describes the melting of ice

into water. This model differs from those seen in this thesis so far in that the nodes at the

phase boundary are themselves moving, as well as node movement within each phase. The

model explicitly calculates the velocity of the interface between phases as the ice melts.

This velocity comes from an interface condition, and this information is then incorporated

into the model as a Dirichlet condition at the moving boundary. The model is constructed

as a moving mesh �nite element model. We present a modi�cation to the paper [8]. In this

problem we have Dirichlet boundary conditions on the boundary velocities as well as on the

temperature of the ice or water. This makes it possible to construct the entire �nite element

model from start to �nish in terms of the modi�ed basis functions described in Chapter 4,

section 4.2.1. We therefore do not need to switch basis systems via the ALE equation, as

we did for the free boundary Fisher's problem (4.2) and as is derived in the paper [8]. We

derive this alternative process and demonstrate that results equivalent to [8] can be obtained

by it. The system is driven by the diffusion of heat. We consider the 1-D diffusion PDEs

KS
¶u
¶ t

=
¶

¶x

�
kS

¶u
¶x

�
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KL
¶u
¶ t

=
¶

¶x

�
kL

¶u
¶x

�
. (5.1)

The parameters used areKS andKL, the volumetric heat capacities of the solid and liquid

phases;kS andkL, the thermal conductivities; andu, the temperature.

At the interface,u = um, the temperature at which melting takes place. There is an

energy balance across the phase-change boundaryGm(t). This is described by the Stefan

equation

kS
¶uS

¶x
−kL

¶uL

¶x
= l �xm (5.2)

with l , the heat of phase change per unit volume; and �xm, the velocity of the interface. We

assume that all parameters are constant within their respective phases. In this system the

derivative ¶u
¶x is not continuous across the moving interface so we will need to be explicit

about in which phase we are evaluating that gradient.

The particular case we will consider uses �xed outer boundariesx ∈ [0,1] with zero

Dirichlet conditions on the velocity for external boundary nodes, and initial conditions taken

from a system with an exact solution,

uS = u∗
�

1− er f � There is Th 11.926 Td [(�)]TJ/F86 11.9556BT
/F98 11.9553(for)-205.[(,)-d [(S)]96 0 TTd [(�)]s Tf 5.9786 11.95526mi4(condi0[(])]TJ/F86 11.9552 T180(e)]T01.9552 Tf 6.706 9.8x)]TJ/F Td [(1)]TJ/F110 11.9524478210 03 m 18.876 0 l S
Q
BT
/F98 11..706 9.80955422 -35.854 Td [(k)]TJ/F87 855264 Tf 5.208 -1.913 Td [00t ¶
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The following values for the parameters are used:

u� = � 20

u0 = 10

kS = 2:22

kL = 0:556

KS = 1:762

KL = 4:226

l = 338

y = 0:2054

tinitial = 0:0012 (in order to avoid a singularity in (5.3))

k = k=K:

We consider a domainR(t
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it may be helpful to think of this as 'mass' and we will use that shorthand here.

q(t) =
Z

R(t)
u dx. (5.11)
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In terms of �q and the constantsci this is

ci �q −
Z

R(t)
wi

¶

¶x
(u�x) dx=

Z
R(t)

wi
¶u
¶ t

dx. (5.19)

For consistency of method with the 2-D version, we introduce the velocity potentialf de-

�ned by

�x =
¶f

¶x
(5.20)

so that

ci �q −
Z

R(t)
wi

¶

¶x

�
u

¶f

¶x

�
dx=

Z
R(t)

wi
¶u
¶ t

dx (5.21)

or, after integration by parts

ci �q +
Z

R(t)
u

¶wi

¶x
¶f

¶x
dx−
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with distributed (weak) forms

cSi qS(t) =
Z

RS(t)
wiu dx (5.27)

cLi qL(t) =
Z

RL(t)
wiu dx. (5.28)

We rewrite (5.24) for each phase separately. Since �x = 0 at the external boundaries and

u = um
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At the moving interface, the Stefan condition can replace the terms in equations involv-

ing f . We may run into dif�culties with this ifum = 0 or changes sign at any point, so as in

[8] we will add a constant to the whole domain when constructing the algorithm. Equations

(5.30) and (5.32) become

cSi
�qS+

Z
RS(t)

u
¶wi

¶x
¶f

¶x
dx=−

Z
RS(t)

kS
¶wi

¶x
¶u
¶x

dx+ wikS
¶u
¶x

����
Rm(t)

− wikS
¶u
¶x

����
Rf

+
um

l

 
kSwi

¶uS

¶x

����
Rm(t)

− kLwi
¶uL

¶x

����
Rm(t)

!
(5.34)

cLi
�qL +

Z
Rm(t)

u
¶wi

¶x
¶f

¶x
dx=−

Z
RL(t)

kL
¶wi

¶x
¶u
¶x

dx+ wikL
¶u
¶x

����
Rf

− wikL
¶u
¶x

����
Rm(t)

− um

l

 
kSwi

¶uS

¶x

����
Rm(t)

− kLwi
¶uL

¶x

����
Rm(t)

!
. (5.35)

We can then sum equations (5.34) and (5.35) overRS(t) andRL(t) respectively, to give

us the rate of change of total 'mass',qS andqL, in each phase. Providing that we have

chosen a set of basis functionswi that form a partition of unity, the full integral terms will

sum to zero and the values ofci will sum to 1. We obtain

�qS = kS
¶u
¶x

����
Rm(t)

− kS
¶u
¶x

����
Rf

+
um

l

 
kS

¶uS

¶x

����
Rm(t)

− kL
¶uL

¶x

����
Rm(t)

!
(5.36)

�qL = kL
¶u

l

 

kS
¶

¶ S
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directly, i.e., for the interface, the velocity �xm is given by

l wi �xm|Rm(t) = kSwi
¶uS

¶x

����
Rm(t)

− kLwi
¶uL

¶x

����
Rm(t)

. (5.39)

The boundary conditions (5.7) and (5.8) that give �x =
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5.1.1 Construction of the �nite element form

We solve the derived system using a �nite element method. Since we have Dirichlet bound-

ary conditions on equation (5.38) for the velocity, and also on (5.43) and (5.44) for the

temperature, we use the modi�ed piecewise linear weight functionswi = W̃i of 4.2.1. We

de�ne an approximation to each of our variables in terms of a weighted linear combination

of theWj . These are given in Appendix A.

We also de�ne the weightingsci of (5.14) in terms of the samẽWi . These are

å
j∈ZS

�Z
R(t)

W̃iWj dx
�

USj = c̃iSqS(t) (5.45)

å
j∈ZL

�Z
R(t)

W̃iWj dx
�

UL j = c̃iLqL(t). (5.46)

HereZS andZL are the sets of nodes in the solid and liquid phases respectively. We can now

express the system in �nite element form. We make substitutions as necessary from equa-

tions (A.5) to (A.14) into equations (5.34) and (5.35) so that all our variables are expressed

in terms of their piecewise linear approximations. We obtain

c̃iS
�qS+ å

j∈ZS

�Z
RS(t)

US
¶W̃i

¶x
¶Wj

¶x
dx

�
F j = − å

j∈ZS

�Z
RS(t)

kS
¶W̃i

¶x
¶Wj

¶x
dx

�
USj + W̃ikS

¶US

¶x

����
Rm(t)

− W̃ikS
¶US

¶x

����
Rf

+
Um

l

 
kSW̃i

¶US

¶x

����
Rm(t)

− kLW̃i
¶UL

¶x

����
Rm(t)

!
(5.47)

c̃iL
�qL + å

j∈ZL

�Z
Rm(t)

UL
¶W̃i

¶x
¶Wj

¶x
dx

�
F j = − å

j∈ZL

�Z
RL(t)

kL
¶W̃i

¶x
¶Wj

¶x
dx

�
UL j + W̃ikL

¶UL

¶x

����
Rf

− W̃ikL
¶UL

¶x

����
Rm(t)

− Um

l

 
kSW̃i

¶US

¶x

����
Rm(t)

− kLW̃i
¶UL

¶x

����
Rm(t)

!
. (5.48)

In matrix form (5.47) is

K̃(US) FS = f̃
S

(5.49)

whereK̃(US) is the weighted stiffness matrix of 3.1.2 constructed with modi�ed basis func-

tions, andFS is the vector containing the values ofFSj , and f̃
S

is a vector with entries̃fSi
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given by

f̃Si =− c̃iS
�qS− å

j∈ZS

�Z
RS(t)

kS
¶W̃i

¶x
¶Wj

¶x
dx

�
USj + W̃ikS

¶US

¶x

����
Rm(t)

− W̃ikS
¶US

¶x

����
Rf

+
Um

l

 
kSW̃i

¶US

¶x

����
Rm(t)

− kLW̃i
¶UL

¶x

����
Rm(t)

!
. (5.50)

Similarly, (5.48) can be expressed as

K̃(U)L FL = f̃
L

(5.51)

with the vectorf̃
L

containing entries̃fLi given by

f̃Li =− c̃iL
�qL − å

j∈ZL

�Z
RL(t)

kL
¶W̃i

¶x
¶Wj

¶x
dx

�
UL j + W̃ikL

¶UL

¶x

����
Rf

− W̃ikL
¶UL

¶x

����
Rm(t)

− Um

l

 
kSW̃i

¶US

¶x

����
Rm(t)

− kLW̃i
¶UL

¶x

����
Rm(t)

!
. (5.52)

The matrix systems can be solved to obtainFL andFR. Since the weighted stiffness ma-

tricesK̃(U)S andK̃(U)L are singular, we have an in�nity of solutions available and we set

F = 0 at the interface node to reduce the system in order to give a unique solution. Note that

the expressions for�qS (5.36) and�qL (5.37) can be obtained and solved in a straightforward

manner by simply summing over the rows of (5.49) and (5.51).

To recover �x, we use the approximation

�X = å
j

�XjWj . (5.53)

We substitute this into equation (5.38) to obtain the �nite element form

å
j∈ZS∪ZL

�Z
R(t)

W̃iWj dx
�

�Xj = å
j∈ZS∪ZL

�Z
R(t)

W̃i
¶Wj

¶x
dx

�
F j(5.54)

or in matrix form,

M �X = BF. (5.55)

We impose the velocity on the interface obtained from (5.39), and we impose�X = 0 on the
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As in [33], we now move the nodes using Heun's scheme [30]. Using the same scheme, we

update the values ofqS andqL from the values of�qS (5.36) and�qL (5.37). The �nal step is

the recovery ofU. We can obtainU on the updated grid from the relative conservation of

mass equations (5.45) and (5.46). These can be expressed in matrix form as

M̃US = c̃Si
qS(t) (5.56)

and

M̃UL = c̃Li
qL(t). (5.57)

In the initial set up, we sett = 0 and use (5.56) and (5.57) to �nd the constant vectors ˜cSi

andc̃Li
. Then for each subsequent time step we proceed as follows. We takeqS andqL at

the new time step. We calculate the mass matrixM̃ for the updated grid. We can then obtain

the updatedUS andUL from inversions of (5.56) and (5.57) respectively.

Algorithm 11

The �nite element solution of the Stefan problem given by equations (5.1) and with an

interface condition given by (5.2) on the moving mesh in 1-D therefore consists of the

following steps. We �rst add a constant to the domain so that we avoid any zero or negative

values forU. Having obtained the values of ˜cSi andc̃Li from (5.56) and (5.57):

1. Find the velocity potential by solving equation (5.49) and (5.51) for theF j(t) values;

2. Find the node velocity by solving equation (5.55) for the�Xj(t) values;

3. Generate the co-ordinate system at the next time-step by solving (3.18) using Heun's

approximation;
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Fig. 5.1 Comparison ofL2 errors in the solution and the magnitudes of the errors in the
interface node position for the two-phase Stefan problem in one space dimension, atT = 0.5.
We observe an order of convergence ofp ≈ 2.

the convergence of theL2 errors atT = 0.5 as the mesh resolution is increased. Both the

normalised solution error and the interface position error have an order of convergence of

approximatelyp = 2. This is consistent with the order of convergence given in [8] and

demonstrates that this method is an acceptable alternative.
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5.2 The two phase model of competition-diffusion

We now turn our attention to competition-diffusion models, in particular the Lotka-Volterra

systems of theoretical ecology. As described in Chapter 2, there are many variations. After
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whered1, d2 are constant diffusion coef�cients, and with, in general

f (u1,u2) = r1

�
1− u1 +K1u2

k1

�
(5.60)

g(u1,u2) = r2

�
1− u2 +K2u1

k2

�
. (5.61)

Hereu1 andu2 are the population densities of two competing species, thek are the respective

carrying capacities of the species, theK are the species speci�c competition rates, andr is

a reproductive rate parameter. The Hilhorst paper [31] demonstrates that this system can be

reduced, if we have two species completely segregated, to

f (u1,u2) = r1(1−u1/k1) (5.62)

g(u1,u2) = r2(1−u2/k2). (5.63)

The resulting system represents the limit where theK values are very large; the competition

rate is high enough that the two species cannot coexist in space. In the area populated by

species 1,u2 = 0, and in the area populated by species 2,u1 = 0. At the interface, we have

a condition that gives the relationship between the �uxes of the two species. In essence,

the species both �ow into the interface and annihilate each other in a ratio according to the

competition coef�cient,m. This condition is given by [31] as

md1
¶u1

¶x
= −d2

¶u2

¶x
(5.64)

wherem = K2/K1. We will call m the interspecies competition rate. We work with Neumann

boundary conditions on the external boundaries, which will be �xed,

¶u1

¶x

� r 2



31], but we select suitable initial conditions and
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principle in terms ofq , as
1

q(t)

Z
R(t)

u dx= 1. (5.71)

We write this in a weighted form, introducing the weight functionwi ,

1
q(t)

Z
R(t)

wiu dx= ci (5.72)

or Z
R(t)

wiu dx= ciq(t) = ci

Z
R(t)

u dx (5.73)

whereci is independent of time. The constantci is determined by the choice of weighting

wi . All of the weightings together should be chosen to provide a partition of unity. We

differentiate (5.73) with respect to time using the Leibnitz integral rule on our moving frame

R(t),
d
dt

�Z
R(t)

wiu dx
�

=
Z

R(t)

�
¶ (wiu)

¶ t
+

¶

¶x
(wiu�x)

�
dx. (5.7487 11.9552 Tf 14.379 -16.863 Td.703 4 Td [616.863 Td [(�)]TJ/4e6s023i,
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or, after integration by parts,

ci �q +
Z

R(t)
u

¶wi

¶x
¶f

¶x
dx−

�
uwi

¶f

¶x

�
¶R(t)

=
Z

R(t)
wi

¶u
¶ t

dx. (5.81)

We substitute in a weak form of the driving PDE, either (5.68) or (5.69), depending on the

phase under consideration. For either phasep ∈ [1,2]

cp �qp +
Z

Rp(t)
up

¶wi

¶x
¶f

¶x
dx−

�
upwi

¶f

¶x

�
¶Rp(t)

=
Z

Rp(t)
widp

¶ 2up

¶x2 dx

+
Z

Rp(t)
wiuprp

�
1−

up

kp

�
dx. (5.82)

Again integrating by parts, this time on the right hand side

cp 429552 T6345 Td [(p)]TJ/F101 ;54.981 -1.793 .9664 6 Td [(R)]TJ/F87 6.9738 Tf 6.002 -1.345 Td [(p)]TJF87 8.9664 Tf 5.966 -24.347 Td [(R)]TJ/F87 6.9738 Tf 6.001 81.345 Td [(p)]TJ/F101 8.9664 Tf 3.985 1.345 Td [(()]TJ/F87 8.9659(on)-48102 1 Td [(t)]TJ/F101 8.9664 Tf 3.102 0 Td [())]TJ/F87 11.9552 Tf624 Tp
¶ tu

¶ x
¶f
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Equation (5.83) can be written now for each phase separately. For species 1 it becomes

c1i
�q1 +

Z
R1(t)

u1
¶wi

¶x
¶f

¶x
dx−

�
u1wi

¶f

¶x

�
¶R1(t)

=−
Z

R1(t)
d1

¶wi

¶x
¶u1

¶x
dx+

�
wid1

¶u1

¶x

�
¶R1(t)

+
Z

R1(t)
wiu1r1

�
1− u1

k1

�
dx. (5.88)

At the external boundaries¶u
¶x = 0 (5.65), and also¶f

¶x = 0 because the boundaries are �xed.

Together with the condition thatu = 0 (5.67
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(5.64) for the competition system is

md1
¶u1

¶x
= −d2

¶u2

¶x
(5.93)

which is equivalent to the Stefan condition withl = 0 and does not contain the velocity

�x. Note also that the Stefan condition is relevant to a situation where the gradients ofu

either side of the interface are of the same sign in general. In contrast, equation (5.64) is

relevant to an interface where the gradients either side are of opposite polarity. Sinceu = 0

on the interface and we can't have a negative mass, we are in effect considering 'v' shaped

interfaces. We note that whilst the interface velocity is not given by (5.64), the expression

does implicitly contain information about the location of the interface. In particular, if we

know the position of the mesh points adjacent to the interface and also the values ofu at

those points, we may use the fact thatu = 0 at the interface to infer an interface position that

satis�es (5.64). We select an interface position such that the values of¶u
¶x either side of the

interface are in the ratio−m. We proceed as follows. At a given time steptN we write the

interface condition (5.64) in a �nite difference form

md1
uN

1m
−
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the interface condition. We must allow the solution around the interface to evolve �rst, and

then adapt the interface position in response to that. We cannot generate the position of

the interface that satis�es (5.64) at the same time as we �nd the node velocities elsewhere,

because we must solve the system foru on the updated grid before we can see where the

interface ought to be positioned. After we have solved foru, we can obtain the interface

position resulting from thoseu values, but we cannot impose it on the system straightaway.

We would violate conservation of mass by doing so. Instead, we determine the new position

at the next time step. A concern this raises is whether the interface position is effectively

imposed one time step behind where it should be. The condition (5.64) is always slightly

violated, since it is this violation that drives the interface movement. Philosophically, we

can reconcile this dif�culty by considering that there ought to be a force driving a movement

of the interfacebeforethe interface starts to respond. In the real world, would our species

retreat in anticipation of competition, or else compete and then accept the resulting boundary

change? The subtleties of this interaction, and its timing or lag, are not considered in the

Lotka-Volterra equations. We can therefore be con�dent that the explicit nature of our

system does not violate any conditions of the system, and indeed it may better re�ect reality

than a predictive approach. Should we determine that a problem does exist in this regard, a

suitable solution would be to use an implicit time integration method, which would accord

the ability to reassign the interface movement to the prior time step if so desired.
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To recover the nodal velocities we �rst solve (5.97) and (5.98) for�q in each phase. We

then solve (5.89) and (5.91) to givef in each phase, but not on the interface node due to

the modi�ed basis functions we will use. We then return to our de�nition off (5.79), now

written in distributed form,

Z
R(t)

wi �x dx=
Z

R(t)
wi

¶f

¶x
dx (5.99)

which can be solved for �x. Having obtained �x, we move the domain using the explicit

Euler integration scheme. We also updateq1 andq2 from �q1 (5.97) and�q2 (5.98) using the

same time integration procedure. For the interface itself, we calculate the new position by

correcting the interface condition at the prior time step. We obtain the resultant interface

velocity by solving equation (5.96) withu = 0 in the interface node.

We may now recoveru. We determine the constant partial massesc1i andc2i from (5.86)

and (5.87) and the initial conditions. We obtain, fort = 0

c1i =
1

q1(0)

Z
R1(0)

wi(x,0)u(x,0) dx (5.100)

c2i =
1

q2(0)

Z
R2(0)

wi(x,0)u(x,0) dx. (5.101)

We then use (5.86) and (5.87) again, to recoveru1 andu2. We requireq1 andq2 at the

new time step. We move the weight functions with the domain. For species 1,u1 can be

recovered from

Z
R1(t)

wi(x, t)u1(x, t) dx= c1i (x)q1(t) (5.102)

and for species 2,u2 can be recovered fromZ
R2(t)

wi(x, t)u2(x, t) dx= c2i (x)q2(t). (5.103)

In each case the Dirichlet condition thatu = 0 at the interface is strongly imposed, and the

Neumann condition at the external boundaries is also strongly imposed.

We solve the derived system using a �nite element method. We have Dirichlet boundary

conditions on equation (5.99) for the velocity, at both the interface and external boundaries.

For the values ofu1 andu2, given by equations (5.102) and (5.103), we have a Dirichlet

condition at the interface only. At the external boundaries we have Neumann boundary

conditions instead. However, all these conditions are compatible with using the modi�ed
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piecewise linear weight functionswi = W̃i of 4.2.1, with a modi�ed weight function at each

external boundary, and also at each side of the interface. We may then strongly impose the

values of the velocity andu1 andu2 at the interfaces and external boundaries. The values

of u1 andu2 at the external boundaries can be transferred from their adjacent nodes because

we have the Neumann conditions.

5.2.1 Construction of the �nite element form

We begin the �nite element method implementation by de�ning an approximation to each

of our variables in terms of a weighted linear combination of theWj . These are given in

Appendix A. The weightingscpi of (5.102) and (5.103) are likewise de�ned in terms ofW̃i .

We obtain

å
j∈Z1

�Z
R(t)

W̃iWj dx
�

U1 j = c̃1i q1(t) (5.104)

å
j∈Z2

�Z
R(t)

W̃iWj dx
�

U2 j = c̃2i q2(t) (5.105)

whereZi is the set of nodes in phasei. We may rewrite the system in �nite element form. We

take the approximations (A.1) to (A.9) as necessary, and also (5.104) to (5.105), and make

substitutions as necessary into equations (5.89) and (5.91). We obtain the following, with all

variables now expressed in terms of their piecewise linear approximations. Equation (5.89)

becomes

c̃1i
�q1 + å

j∈Z1

�Z
R1(t)

U1
¶W̃i

¶x
¶Wj

¶x
dx

�
F j = − å

j∈Z1

�Z
R1(t)

d1
¶W̃i

¶x
¶Wj

¶x
dx

�
U1 j

+ W̃id1
¶U1

¶x

����
Rm(t)

+ å
j∈Z1

�Z
R1(t)

W̃iWj r1 dx
�

U1 j −
Z

R1(t)

r1

k1
W̃iU2

1 dx (5.106)

and equation (5.91) becomes

c̃2i
�q2 + å

j∈Z2

�Z
R2(t)

U2
¶W̃i

¶x
¶Wj

¶x
dx

�
F j = − å

j∈Z2

�Z
R2(t)

d2
¶W̃i

¶x
¶Wj

¶x
dx

�
U2 j

− W̃id2
¶U2

¶x

����
Rm(t)

+ å
j∈Z2

�Z
R2(t)

W̃iWj r2 dx
�

U2 j −
Z

R2(t)

r2

k2
W̃iU2

2 dx. (5.107)
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In matrix form (5.106) is expressed as

K̃(U1) F1 = f̃
1

(5.108)

whereK̃(U1) is the weighted stiffness matrix of Chapter 3, section 3.1.2, constructed with

the modi�ed basis functions̃Wi , andF1 is the vector containing the values ofF1 j , and f̃
1

is

a vector with entries̃f1i given by

f̃1i =− c̃1i
�q1 − å

j∈Z1

�Z
R1(t)

d1
¶W̃i

¶x
¶Wj

¶x
dx

�
U1 j

+ W̃id1
¶U1

¶x

����
Rm(t)

+ å
j∈Z1

�Z
R1(t)

W̃iWj r1 dx
�

U1 j −
Z

R1(t)

r1

k1
W̃iU2

1 dx. (5.109)

Similarly, (5.107) can be expressed as

K̃(U2)F2 = f̃
2

(5.110)

with the vectorf̃
2

containing entries̃ff1
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for which the nonlinear terms may be computed exactly using Simpson's rule (4.64). To

recover �X, we use the approximation

�X = å
j2Z1[ Z2

�XjWj : (5.114)

We substitute this into equation (5.99) to obtain the �nite element form

å
j2Z1[ Z2

� Z

R(t)
W̃iWj dx

�
�Xj = å

j2Z1[ Z2

� Z

R(t)
W̃i

¶Wj

¶x
dx

�
F j (5.115)

or in matrix form

M̃ �X = B̃(u)F : (5.116)

We imposev = 0 on the external boundaries. We impose the interface velocity obtained

from (5.96). Since we are using modi�ed weight functions we will not interfere with the

compatibility condition (5.40) by doing so. We solve (5.116) for the remaining velocities.

We move the nodes using Euler's scheme. Using the same scheme, we update the values

of q1 andq2 from the values of�q1 (5.112) and�q2 (5.113). We may now recover the values

of U1 andU2. We can obtainU �4 to obtain Tf 1G
 [(5.99)]TJ
0 g 0 G
 [(�5.)-365(W)80(e)-268(may)-citIorm
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ues;

2. Find the internal node velocity by solving equation (5.116) for the�Xj(t) values;

3. Find the interface node velocity by solving equation (5.96) for the�Xm(t) value;

4. Generate the co-ordinate system at the next time-stept + dt by solving (3.18) using

Euler's approximation;

5. Update the values ofq1 andq2 from the values of�q1 (5.112) and�q2 (5.113);

6. Find the solutionsU1(t + dt) andU2(t + dt) by solving the conservation equations

(5.117) and (5.118).

5.2.2 Results

We �nd that the model is stable and robust. Even using the simplest Euler integration

scheme, we observe minimal oscillations affecting the smoothness of results. Figure 5.3

shows convergence in the solution of second or third order asDx → 0. This estimate is

obtained by comparison of the result generated by each grid spacing with a high-resolution

(641 node) result, since no absolute result is available. This order of convergence is at least

as high as that reported for the very similar method in [8].

In the body of work concerning Lotka-Volterra equations, there are a vast range of pa-

rameter values in use, because there are so many varied but suitable examples of the type

of competition that is described. We therefore select a conservatively representative set of

parameters, chosen to demonstrate some of the interesting behaviours that this model is able
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gains due to this alone (�gure 5.9). However, as time goes on, the growth and competition

characteristics become increasingly important. We see species 1 becoming more dominant

over time, so that the interface velocity actually reverses direction. This is fascinating in-

terface behaviour! Figure 5.10 shows the evolution of the system att = 12.3, and �gure

5.11 shows the movement of the interface with the direction reversal. These results give

con�dence that this model is likely to be able to satisfy the requirements of modelling a

wide variety of competition systems. It is stable to a large choice of set-up parameters and
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Fig. 5.4 Result of competition model att = 1.7. Here we used1 = d2 = 0.01,k1 = k2 = 100,
r1 = r2 = 1 andl = 3. We run the model with a time step ofdt = 0.0001 for 17000
iterations and plot the results everydt = 0.1. We see the internal dynamics of the species
driving population density and interface �uxes, and the position of the interface responding
to those �uxes. The initial conditions are shown in red, with species 1 in blue and species 2
in green.
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Fig. 5.5 Result of competition model att = 6.0. Here we used1 = d2 = 0.01,k1 = k2 = 100,
r1 = r2 = 1 andl = 3. We run the model with a time step ofdt = 0.0001 for 60000 iterations
and plot the results everyDt = 0.1. The interface continues to evolve and the masses of the
species are now limited by the respective carrying capacities. The initial conditions are
shown in red, with species 1 in blue and species 2 in green
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Fig. 5.6 Result of competition model att = 8.8. Here we used1 = d2 = 0.01,k1 = k2 = 100,
r1 = r2 = 1 andl = 3. We run the model with a time step ofdt = 0.0001 for 122000
iterations and plot the results everydt = 0.1. Final step before node crossing occurs. We
observe that whilst species 2 initially grew in mass, it will now be wiped out by competition
with species 1.
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Fig. 5.7 Movement of interface positionxm for competition model with parametersd1 =
d2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 andl = 3. We run the model with a time step of
dt = 0.0001. We see the interface increase in velocity after a slower initial phase where both
species are experiencing population growth. We see the interface velocity accelerate as we
approach an annihilation event.
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Fig. 5.8 Result of competition model att = 8, considering the effect of altered carrying
capacities. Here we used1 = d2 = 0.01, k1 = 50,k2 = 150, r1 = r2 = 1 andl = 3. We
run the model with a time step ofdt = 0.0001 for 80000 iterations and plot the results
everydt = 0.1. We see that with differently chosen carrying capacities we �nd the interface
position is approximately steady and these two species are in balance.
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Fig. 5.9 Result of competition model att = 3.5, considering the effect of an increased dif-
fusion rate for species 2. Here we used1 = 0.01,d2 = 0.05,k1 = k2 = 100,r1 = r2 = 1 and
l = 3. We run the model with a time step ofdt = 0.0001 for 35000 iterations, and plot the
results everydt = 0.1. We observe that species 2 is able to make initial territory gains due
to its high diffusion rate, even though the competition rate is unaltered.
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Fig. 5.10 Result of competition model att = 12.3, considering the effect of an increased
diffusion rate for species 2. Here we used1 = 0.01,d2 = 0.05, k1 = k2 = 100,r1 = r2 = 1
andl = 3. We run the model with a time step ofdt = 0.0001 for 123000 iterations, and
plot the results everydt = 0.1. We see that the initial diffusion-driven gains by species 2
are reversed, and that the overall growth characteristics are dominating so that species 1 is
gaining territory.
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Fig. 5.11 Position of interface,xm, showing interface movement for the competition model
at up tot = 12.3, considering the effect of an increased diffusion rate for species 2 (cf. �gure
5.7). Here we used1 = 0.01,d2 = 0.05,k1 = k2 = 100,r1 = r2 = 1 andl = 3. We run the
model with a time step ofdt = 0.0001 for 123000 iterations, and plot the results every
dt = 0.1. Due to the growth characteristics we can see interesting temporal effects. Here
the interface velocity has actually reversed directions as the system changes from diffusion
dominated to growth dominated.



Chapter 6

Aggregation models

In [28] and [29], Grindrod presents a new consideration for population modelling. He points

out that the derivation of the Lotka-Volterra competition models and similar single-species

dispersion models rests on the assumption that the dispersal of individuals is due to ran-

dom diffusive motion. This assumption is dif�cult to justify, since it is readily apparent

that in the real world, individuals group together to improve their chances of survival, do

not voluntarily overcrowd themselves to death, and deliberately avoid predators. Grindrod

therefore introduces an element of deterministic behaviour to his model. In the Grindrod

models, we assume that the random motion of individuals is biased by an optimal velocity

n . This velocity is selected so as to increase an individual's expected rate of reproduction.

On average, the population is dispersing in the ideal direction. Grindrod produces results

obtained from this model as derived for a single species, and demonstrates that from an ini-

tially random seeding of individuals, clusters are formed. This work is of interest to us for

three reasons. Firstly, the aggregation model has not previously been constructed in �nite

element form, on either a static or moving grid. Secondly, the model has not previously been

implemented for a two species competitive environment. Thirdly, the assumptions made by

Hilhorst in [31] require a zero population condition on the interface that is entirely driven

by high competition rates. Whilst we would need a high competition interface in any multi-

phase scenario, having intelligent aggregation as a component of the model would seem to

add somewhat more justi�cation to the imposition of a zero population interface condition.
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We may now derive the PDE giving population density time dependence. We have

¶u
¶ t

= −Ñ.(uv)

= −Ñ.(−dÑu+un)

= dÑ
2u−Ñ · (un)

= dÑ
2u−Ñ · (uÑq) (6.4)

with boundary conditions

n̂.Ñu = 0 x ∈ ¶W, t ≥ 0, (6.5)

n̂.n = 0 x ∈ ¶W, t ≥ 0, n = Ñq. (6.6)

6.1.1 1D population clustering model for a single species

We examine the 1D analogues of the equations described in section 6.1.

¶u
¶ t

= d
¶ 2u
¶x2 − ¶

¶x

�
u

¶q
¶x

�
(6.7)

E(u) = −e
¶ 2q
¶x2 +q (6.8)

E(u) = (u−a)(1−u). (6.9)

We have the boundary conditions

¶u
¶x

= 0 x = A,B, t ≥ 0, (6.10)

¶q
¶x

= 0 x = A,B, t ≥ 0 (6.11)

whereA andB are �xed. We derive the moving-mesh, �nite element model for this system.

We consider the system with no births or deaths, so we have a true conservation of mass.

Over the domainx ∈ [A,B], Z B

A
udx= constant. (6.12)
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We de�ne the distributed conservation principle, for a weight functionwi ,Z B

A
wiudx= constant (6.13)

hence
d
dt

Z B

A
wiu dx= 0. (6.14)

By the Reynolds Transport Theorem, we can say that

Z B

A

¶

¶ t
(wiu)dx+

Z B

A

¶

¶x
( �xwiu)dx= 0 (6.15)

Z B

A

�
wi

¶u
¶ t

+u
¶wi

¶ t
+wi

¶

¶x
(u�x)+u�x

¶wi

¶x

�
dx= 0. (6.16)

Assuming the weight functionswi move with the domain

¶wi
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We make the velocity potential substitution �x = ¶f

¶x . We obtain

−
Z B

A
u

¶wi

¶x
¶f

¶x
dx= −

�
dwi

¶u
¶x

�B

A
+

Z B

A
d

¶wi

¶x
¶u
¶x

dx+

�
wiu

¶q
¶x

�B

A
−

Z B

A
u

¶q
¶x

¶wi

¶x
dx.

(6.22)

We note the presence of the zero �ux boundary conditions (6.10), hence the two non-integral

terms on the right hand side will be equal to zero. The equation to be solved forf is then

−
Z B

A
u

¶wi

¶x
¶f

¶x
dx=

Z B

A
d

¶wi

¶x
¶u
¶x

dx−
Z B

A
u

¶q
¶x

¶wi

¶x
dx. (6.23)

This expression requires knownq. We return to the de�nition (6.8). We write this in weak

form, Z B

A
wiE(u) dx= −e

Z B

A
wi

¶ 2q
¶x2 dx+

Z B

A
wiq dx. (6.24)

Integrating by parts on the right hand side, we obtain

Z B

A
wiE(u) dx= −e

�
wi

¶q
¶x

�B

A
+ e

Z B

A

¶wi

¶x
¶q
¶x

dx+
Z B

A
wiq dx. (6.25)

Noting again the zero �ux boundary condition onq, we may simplify this to

Z B

A
wiE(u) dx= e

Z B

A

¶wi

¶x
¶q
¶x

dx+
Z B

A
wiq dx (6.26)

which may be solved forq.

6.1.2 Construction of the �nite element form

We use the unmodi�ed piecewise linear basis functionswi = Wi , since we have only Neu-

mann conditions to consider. We de�ne our �nite element variablesU, Q andE in terms

of the piecewise linear approximationsU = å j WjU j , Q = å j WjQ j , E = å j WjE j . Note

that althoughE is itself a nonlinear function ofU, we simply calculat(we)-31 Tf isd [(E)]TJ/F101 11.9552 T1andjU
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In terms of the standard mass and stiffness matrices this is

eKQ+ MQ = ME (6.28)

for vectorsQ containing the values ofQ j , andE containing the values ofE j . To solve this

we �rst obtain the values ofE(u) from equation (6.9). We can now obtainQ from the steady

state system

Q = ( eK + M)� 1ME: (6.29)

We now requiref , which can be obtain from equation (6.23). We make the same piecewise

linear approximations and, after substitution, obtain

�
N+ 1

å
j= 0

� Z B

A
U

¶Wi

¶x
¶Wj

¶x
dx

�
F j =

N+ 1

å
j= 0

� Z B

A
d

¶Wi

¶x
¶Wj

¶x
dx

�
U j �

N+ 1

å
j= 0

� Z B

A
U

¶Wi

¶x
¶Wj

¶x
dx

�
Q j :

(6.30)

We solve for the vectorF = f F jg using the matrix form

K(U)F = dKU � K(U)Q (6.31)

with K(U) analogous to the stiffness matrix, and given by

K(U) i j =
Z xi+ 1

xi� 1

U
¶Wi

¶x
¶Wj

¶x
dx: (6.32)

OnceF is recovered, we obtain�X andU in the manner now standard in this thesis. Brie�y,

we use the weak form of the de�nition for the velocity potential �x =
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where �X andF j are the vectors containing the unknown velocities�Xj and the knownF j , and

M andB are the symmetric mass matrix and an asymmetric matrix respectively, as de�ned

in section 3.1.2.

In this way, (6.35) can be solved to obtain the�Xj values. We then perform the time

integration step using any chosen scheme. Once the grid position has been recalculated, the

basis functions are likewise moved and the matrices de�ned by them are recalculated.

We recoverU from the conservation principle (6.13)

Z B

A
wi
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6.1.3 2D population clustering model for a single species

For the 2D model, we remind ourselves of the driving PDE system. This is

¶u
¶ t

= dÑ
2u−Ñ.(uÑq) (6.40)

E(u) = −eÑ
2q+q (6.41)

E(u) = (u−a)(1−u) (6.42)

with boundary conditions on the �xed boundaryS

n̂.Ñu = 0 x ∈ S, t ≥ 0, (6.43)

n̂.n = 0 x ∈ S, t ≥ 0. (6.44)

In this single species system we consider the case where we have no births or deaths, so that

clustering effects are most apparent even if transient. We therefore have a true conservation

of mass. Over the domainx ∈ W the conservation principle isZ
W

udW = constant. (6.45)

We de�ne the distributed form, for a weight functionwi ,Z
W

wiu dW = ci (6.46)

where the constantci is determined by the choice ofwi . Hence

d
dt

Z
W

wiu dW = 0. (6.47)

Using the Reynolds Transport Theorem, we can write

Z
W

¶

¶ t
(wiu) dW+

Z
W

Ñx · ( �xwiu) dW = 0 (6.48)

leading to Z
W

�
wi

¶u
¶ t

+u
¶wi

¶ t
+wiÑ · (u�x)+u�x ·Ñwi

�
dW = 0. (6.49)
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We assume that the weight functionswi move with the domain, which gives

¶wi

¶ t
+ �x ·Ñwi = 0 (6.50)

hence (6.49) is Z
W

wiÑ · (u�x) dW = −
Z

W

wi
¶u
¶ t

dW. (6.51)

We make a substitution from the driving PDE (6.40) to obtainZ
W

wiÑ · (u�x) dW = −
Z

W

wi(dÑ
2u−Ñ · (uÑq)) dW (6.52)

and after integration by parts we obtainZ
S
wi �xu· n̂ dS−

Z
W

Ñwi · (u�x) dW =
Z

W

dÑwi ·Ñu dW−
Z

W

Ñwi ·uÑq dW

+
Z

S
wiuÑq· n̂ dS−

Z
S
dwiÑu· n̂ dS (6.53)

or, because we have �xed boundaries,

−
Z

W

Ñwi · (u�x) dW =
Z

W

dÑwi ·Ñu dW−
Z

w

Ñwi ·uÑq dW

+
Z

S
wiuÑq· n̂ dS−

Z
S
dwiÑu· n̂ dS. (6.54)

We make the velocity potential substitution�x = Ñf . We obtain

−
Z

W

uÑwi ·Ñf dW = −
Z

S
dwiÑu· n̂ dS+

Z
W

dÑwi ·Ñu dW

+
Z

S
wiuÑq· n̂ dS−

Z
W

uÑq·Ñwi dW (6.55)

subject to zero �ux conditions on the boundary (6.43), so the two boundary terms on the

right hand side will be equal to zero. We obtain the equation to be solved forf ,

−
Z

W

uÑwi ·Ñf dW =
Z

W

dÑwi ·Ñu dW−
Z

W

uÑq·Ñwi dW. (6.56)

Before this can be solved we need a value forq and this can be obtained, in a similar way to

the 1D casf 6.305 0.c6 Tf 10.949 1.984eady49 1.984athe equation (6.13),
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Writing this in weak form, we haveZ
W

wiE(u) dW = −e

Z
W

wiÑ
2q dW+

Z
W

wiq dW. (6.58)

We integrate the right hand side by parts to obtainZ
W

wiE(u) dW = −e

Z
S
wiÑq· n̂ dS+ e

Z
W

Ñwi ·Ñq dW+
Z

W

wiq dW (6.59)

sinceÑq· n̂ = 0 onS, the boundary term is equal to zero. We therefore haveZ
W

wiE(u) dW = e

Z
W

Ñwi ·Ñq dW+
Z

W

wiq dW. (6.60)

This allows us to obtainq onceE(u) is known. We may obtain the values ofE(u) from

equation (6.42).

6.1.4 Construction of the �nite element form

In order to solve equations (6.56) and (6.60), we use the �nite element method. We use

the unmodi�ed two dimensional triangular weight functionswi = Wi described in Chap-

ter 3 (3.1.3), since we have no Dirichlet conditions to impose. We de�ne our �nite ele-

ment variablesQ and E in terms of the same basis functions, using the approximations

Q(x, t) = å j Wj(x)Q j(t) andE(x, t) = å j Wj(x)E j(t). After making the substitutions for

these approximations, (6.60) becomes

N

å
j=1

�Z
W

WiWj dW

�
E j =

N

å
j=1

�
e

Z
W

ÑWi ·ÑWj dW

�
Q j +

N

å
j=1

�Z
Wi

WiWj dW

�
Q j . (6.61)

In terms of mass and stiffness matricesM andK this is written as

eKQ+MQ = ME (6.62)

for vectorsQ containingQi andE containingEi . Rearranging, we obtainQ from the steady

state system

Q = (eK +M)−1ME (6.63)

whereE is given by the de�nition (6.42). Similarly, we make substitutions into equation

(6.56), de�ning our variables in terms of piecewise linear approximations based on the

Wi . In addition to the approximationQ(x, t) = å j Wj(x)Q j(t) already given, we require
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U(x, t) = å j Wj(x)U j(t) as the approximation foru, andF(x, t) = å j Wj(x)F j(t) as the

approximation forf . Equation (6.56) becomes

−
N

å
j=1

�Z
W

ÑWi ·ÑWjU dW

�
F j =

N

å
j=1

�
d

Z
W

ÑWi .ÑWj dW

�
U j +

N

å
j=1

�Z
W

ÑWi · (UÑWj)dW

�
Q j

(6.64)

or in matrix form

K(U)F = dKU +K(U)Q (6.65)

whereK(U) is the weighted stiffness matrix given by (3.69). Equation (6.65) is now suf-

�cient to recoverF. We then calculate�X, perform the time integration and lastly recover

U from the conservation of mass equation. This process is described fully in Chapter 3 but

brie�y, the de�nition of f is

�x = Ñf (6.66)

for which a weak form is Z
W

wi �x dW =
Z

W

wiÑf dW. (6.67)

Using again the piecewise linear approximationswi =Wi(x), �X(x, t) = å
N
j=1

�X j(t)Wj(x) and

ÑF(x, t) = å
N
j=1F j(t)ÑWj(x) we obtain

N

å
j=1

�Z
W

WiWj dW

�
�X j =

N

å
j=1

�Z
W

WiÑWj dW

�
F j . (6.68)

Hence in matrix form, (6.68) can be solved for�X using

M �X = BF (6.69)

where �X = { �X i}, M is the symmetric mass matrix, andB is an asymmetric matrix with

elementsBi j =
R

W
WiÑWj dW. Having found�X, the nodes are repositioned using the forward

Euler scheme. We recoverU using our distributed mass conservation principle (6.13). Using

the piecewise linearWi that together form a partition of unity, equation (6.13) is, for each

nodei,

ci =
Z

W

WiU dW.



6.1 Population clustering models for a single species 154

Using the piecewise linear approximationU(x, t) = å j U j(t)Wj(x) we obtain

N

å
j=1

�Z
W

WiWj dW

�
U j = ci (6.70)

which is equivalent to the mass matrix system

MU = ci . (6.71)

This equation is used to calculate the initial (and constant) values ofci , using the initial

values ofU j andX j . After repositioning the nodes we may recoverU j(t) from the mass

matrix system (6.71).

Algorithm 13

The �nite element solution of the single species aggregation model de�ned by equations

(6.40), (6.41) and (6.42) on the moving mesh in 2-D therefore consists of the following

steps. We obtain the constant values ofci from (6.71) calculated att = 0, and then for each

time step:

1. Calculate the reproductive potential by solving equation (6.42) forE(u);

2. Find the values ofQ by solving equation (6.63);

3. Find the velocity potential by solving equation (6.65) for theF j(t) values;

4. Find the node velocity by solving equation (6.69) for the�X(t) values;

5. Generate the co-ordinate system at the next time-stept + dt by solving (3.18) using

Euler's approximation;

6. Find the solutionU(t +dt) by solving the conservation equation (6.71).

6.1.5 Results

In common with [29], we use a random seeding to provide the initial conditions for the

model. The random seeding is selected from a normal distribution with a mean of 0.3 and

a standard deviation of 0.01. The model is stable and robust. We are able to run the model

sometimes to a blow up and sometimes to a solution where population growth and decline

become approximately balanced. The outcome depends on the initial values ofu, and also



6.1 Population clustering models for a single species 155

on the parametersd ande. We are familiar from the diffusion models with the parameterd

and its effects. As the parameter controlling the rate of diffusion, it has a smoothing effect

when large. The parametere is less familiar. From the de�nition contained within (
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Fig. 6.1 A solution after 350 iterations att = 0.35 of the 2D population equations, with
e = 0.005 andd = 0.01. This solution has not yet reached a balance, but is approximating
the 4th eigenmode of the Laplacian.
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Fig. 6.2 A solution after 10 iterations att = 0.01 of the 2D population equations, with
e = 0.001 andd = 0.01. This solution has not yet reached a balance, but is approximating
the 20th eigenmode of the Laplacian.
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Fig. 6.3 An approximately balanced solution of the 2D population equations, withe = 0.001
andd = 0.01. plotting (from left to right)u, q andE(u). Whilst there is overcrowding in the
centres of the clusters, giving a dramatically negativeE(u), the rate of population decline
resulting from that is balanced by the attraction of the cluster to individuals nearby. These
two effects mean that the shape of the solution does not evolve further, with only minor
local effects observed.
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6.2 Population clustering models for two competitive species

We now consider reaction-aggregation-diffusion models with two species. We consider the

case where the species share a domain, so that we may examine clustering into species

speci�c groups and the resulting claiming of territory. This may be of use in informing

suitable starting conditions for a two phase model of competition.

A �nite element formulation for the �xed mesh case

We begin with the Lotka-Volterra competition equations of Chapter 2, section 2.2, for two

competing species with population densitiesu1 andu2. Following [29
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(6.78) and (6.76) we obtain

A−au1 −bu2 = e1Ñ
2q1 +q1: (6.86)

We write this in weak form, using a weight functionwi to giveZ
W

wiA dW
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and after integration by parts we have

Z
W

wi
¶u1

¶ t
dW = d1

Z
S
wiÑu1 · n̂dS−d1

Z
W

Ñwi ·Ñu1 dW

−
Z

W

wiu1Ñ
2q1 dW−

Z
W

wiÑq1 ·Ñu1 dW (6.93)

the �rst term on the right hand side of which is equal to zero at the domain boundaries due

to the zero �ux boundary conditions (6.82), leaving

Z
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW−
Z

W

wiu1Ñ
2q1 dW−

Z
W

wiÑq1 ·Ñu1 dW. (6.94)

Turning our attention to the second term on the right hand side, again we integrate by parts

and obtain Z
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW−
Z

S
wiu1Ñq1 · n̂ dS

+
Z

W

Ñ(wiu1) ·Ñq1 dW−
Z

W

wiÑq1 ·Ñu1 dW. (6.95)

Again the boundary integral is zero from the boundary condition (6.82). Therefore we can

reduce this toZ
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW+
Z

W

Ñ(wiu1) ·Ñq1 dW−
Z

W

wiÑq1 ·Ñu1 dW.

(6.96)

By the product rule, this becomes

Z
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW+
Z

W

u1Ñwi ·Ñq dW

+
Z

W

wiÑu1 ·Ñq1 dW−
Z

W

wiÑq1 ·Ñu1 dW (6.97)

which simpli�es to

Z
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW+
Z

W

u1Ñwi ·Ñq1 dW. (6.98)

Equation (6.98) determines¶u1
¶ t in terms ofq1 andu1, and is ready for �nite element substi-

tutions to be made. We follow the same process for¶u2/¶ t as we did for¶u1/¶ t. Equation
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(6.85), the driving PDE for¶u2/¶ t, is

¶u2

¶ t
= d2Ñ

2u2 − mÑ · (u2Ñq2) (6.99)

or
¶u2

¶ t
= d2Ñ

2u2 − mu2Ñ
2q2 − mÑq2 ·Ñu2. (6.100)

In weak form we rewrite this asZ
W

wi
¶u2

¶ t
dW = d2

Z
W

wiÑ
2u2 dW− m

Z
W

wiu2Ñ
2q2 dW− m

Z
W

wiÑq2 ·Ñu2 dW. (6.101)

The process that follows is identical to theu1
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We substitute these approximations into (6.89) and obtain

Z
W

WiA dW−a
N

å
j=1

�Z
W

WiWj dW

�
U1 j −b

N

å
j=1

�Z
W

WiWj dW

�
U2 j

= −e1

N

å
j=1

�Z
W

ÑWi ·ÑWj dW

�
Q1 j +

N

å
j=1

�Z
W

WiWj dW

�
Q1 j . (6.107)

We may write (6.107) in terms of our mass and stiffness matricesM andK to obtain

MA−aMU1 −bMU2 = −e1KQ1 +MQ1. (6.108)

HereA is a vector with all entries equal toA. We may rewrite this in terms ofQ1

Q1 = (−e1K +M)−1M(A−aU1 −bU2). (6.109)

In exactly the same manner, we substitute the approximations (6.103) to (6.106) into (6.90)

and obtain

Z
W

WiB dW−a∗
N

å
j=1

�Z
W

WiWj dW

�
U1 j −b∗

N

å
j=1

�Z
W

WiWj dW

�
U2 j

= −e2

N

å
j=1

�Z
W

ÑWi ·ÑWj dW

�
Q2 j +

N

å
j=1

�Z
W

WiWj dW

�
Q2 j (6.110)

which is, in matrix form

Q2 = (−e2K +M)−1M(B−a∗U1 −b∗U2). (6.111)

HereB is a vector with all entries equal toB. Equations (6.109) and (6.111) can be solved

to obtainQ1 andQ2.

We now tackle the solution of¶U1
¶ t by constructing equation (6.98) in �nite element

form. We again choosewi = Wi and make substitutions for the approximations (6.103) and

(6.104), together with the derivatives

¶U1

¶ t
= �U1 =

N

å
j=1

Wj �U1 j (6.112)

¶U2

¶ t
= �U2 =

N

å
j=1

Wj �U2 j . (6.113)
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Thus (6.98) can be rewritten in the form

N

å
j=1

�Z
W

WiWj dW

�
�U1 j = −d1

N

å
j=1

�Z
W

ÑWi ·ÑWj dW

�
U1 j +

N

å
j=1

�Z
W

U1ÑWi ·ÑWj dW

�
Q1 j .

(6.114)

In matrix form this is

M �U1 = −d1KU1 +K(U1)Q1 (6.115)

where the entries of matrixK(U1)
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6.2.3 Results

The model has been encoded on the square domain de�ned by� 0:2 � x � 0:2, � 0:2 � y �

0:2. We set 21 by 21 regularly spaced nodes, creating a mesh containing 512 triangular

elements. The default variables used for the simulations are (from [29]):

A = 1

B = 1:5

a = 1

b = 2

a� = 3

b� = 1

e1 = 0:025

e2 = 0:025

d1 = 0:1

d2 = 0:1

m= 1:

The initial population is generated randomly. Boundary nodes are set atu1 = 0:4,

u2 = 0:3 for t = 0;x 2 ¶W. Internal nodes are assigned a random value foru1 from a set with

a mean of 0:4 and a standard deviation of 0:01. Foru2 the random values are assigned from

a set with a mean of 0:3 and a standard deviation of 0:01. These values are chosen so thatE1

andE2 are zero (neutral survivability) at the boundaries, and have small perturbations from

neutral elsewhere. These random perturbations seed the evolution of the population densi-

ties towards preferred locations. One such set of preferred locations is shown in �gure 6.4.

At t = 0:7, the two species have separated almost completely in space and four clusters are

formed, each species inhabiting two corners of the domain with one favoured corner each.

In �gure 6.5, the same simulation is run tot = 0:7 with a different random initial seeding

and this time only two larger clusters are formed. For the parameters used in this initial sim-

ulation, all the outputs fall broadly into one of these two categories. By experimenting with

parameters, we are able to affect the number and size of clusters that are formed. Figure 6.6

shows a simulation att = 0:7 with e1 = e2 = 0:01. The clusters produced are more compact

and the four corners of the domain are more evenly populated. Running further simulations
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with these parameters always produces this four-corner pattern. However, the question of

which species inhabit which diagonal pair of corners is determined by the random seeding.

The simulations run smoothly with an initial diffusion dominated phase lasting to ap-

proximatelyt = 0.05, whilst groupings are established and peak population densities are re-

duced, then a much longer group growth stage where populations tend towards their groups

containing maximum sustainable density,i.e. u1 = 1 andu2 = 1.5. Between groups popula-

tions are approximately zero, and the habitat appropriated by each species is clearly de�ned.

Steady state is reached at aroundt = 0.7. These simulations are robust to signi�cant exper-

imentation with parameters and so provide a useful tool for understanding the behaviour

described by the model.

6.2.4 The non-conservative population case

We now consider the evolution of a system that allows births and deaths to take place. This

is non mass conserving so the treatment is slightly different. The equations forq1, q2, E1

andE2, and the boundary conditions are unchanged from the conservative case. These are

given as

e1Ñ
2q1 +q1 = E1 (6.118)

e2Ñ
2q2 +q2 = E2 (6.119)

E1 = A−au1 −bu2 (6.120)

E2 = B−a∗u1 −b∗u2 (6.121)

with boundary conditions

Ñu· n̂ = 0 x ∈ ¶W, t ≥ 0 (6.122)

Ñq· n̂ = 0 x ∈ ¶W, t ≥ 0. (6.123)

However, for the time dependent PDEs we have a different system. We set the reproduction

parameterr = 1, so that (6.80) and (6.81) become

¶u1

¶ t
= d1Ñ

2u1 −Ñ · (u1Ñq1)+u1E1 (6.124)
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Fig. 6.4 A conservative, static mesh, two species simulation att = 0.7 with e1 = e2 = 0.025
andd1 = d2 = 0.1. Initial seeding is random, so no two results are identical.



6.2 Population clustering models for two competitive species 169

Fig. 6.5 An alternative result from the conservative, static mesh, two species simulation
t = 0.7, the only difference being in the initial random population seeding. The parameters
are identical to those for �gure 6.4,e1 = e2 = 0.025 andd1 = d2 = 0.1 .
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¶u2

¶ t
= d2Ñ

2u2 − mÑ · (u2Ñq2)+u2E2. (6.125)

This means that we have an extra term to consider in constructing the appropriate weak form

for �nite element substitutions. The weak form of (6.124) isZ
W

wi
¶u1

¶ t
dW = d1

Z
W

wiÑ
2u1 dW−

Z
W

wiu1Ñ
2q1 dW−

Z
W

wiÑq1 ·Ñu1 dW+
Z

W

wiu1E1 dW

(6.126)

wherewi is part of a set of weight functions that together form a partition of unity. We treat

the �rst three terms on the right hand side in the same manner as in the conservative case,

given by equations (6.92) to (6.98). We obtain the simpler weak form

Z
W

wi
¶u1

¶ t
dW = −d1

Z
W

Ñwi ·Ñu1 dW+
Z

W

u1Ñwi ·Ñq1 dW+
Z

W

wiu1E1 dW (6.127)

and similarly, from (6.125) we obtain the weak form

Z
W

wi
¶u2

¶ t
dW = −d2

Z
W

Ñwi ·Ñu2 dW+
Z

W

mu2Ñwi ·Ñq2 dW+
Z

W

wiu2E2 dW. (6.128)

6.2.5 Construction of the �nite element form

We choose the piecewise linear weight functionswi = Wi . We use the piecewise linear

approxim383(the)-384(piece)25(wise)-384(lw(2)2TJ/F 0 g 0 G
 [())-250(to)-250(()]TJ
0 galspiece)2/F86 
0 ga 0 Td [((6n)-250(hoiced [(6.2)-2Td [((6.126))]T4.481.9552 Tf -1.886 Td [(1)]TJ/F87 11.9552 Tf 4.981 1.886 6d [(W)]TJ/F98 50(552 Tf 4.98541 )25(wise)-384(line)10.2-384(weigh -1.886 Td [(2)]TJ/F87 11.9552 Tf 4.981 1.886 6d [(u)]TJ/F86 8.9664 Tf 5.97851)]TJ ded [(6e1 0 Td ace)25(wise)-384(line)- J 09.96.)-�9552 Tf -1.886 Td [(1)]TJ/F87 11.9552 Tf 4.981 1.886 Td [(q)]TJ/F86 8.9664 Tf 5.977 -.185 0 Td 4(�)]TJ/F101 11.9552 Tfx233 1.886 Td [(d)]TJTJ/F879552 Tf; 1.793 Td [(u)]TJ/F86 30 11.9552 t 1.886 Td [(q)]TJ/F86 813 11.9552 Tf he
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The matrix form is then

M �U1 = −d1KU1 +K(U1)Q1 +N1 (6.132)

whereN1 =
R
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�U1(t) and �U2(t) in forward Euler time integration.

6.2.6 Results

We use the same grid and default variables as in the conservative case, given in section 6.2.3.

The initialisation is also unchanged from the conservative case. Boundary nodes are set at

u1 = 0.4, u2 = 0.3 for t = 0,x ∈ ¶W. Internal nodes are assigned a random value foru1 at

t = 0 from a set with a mean of 0.4 and a standard deviation of 0.01. Foru2 at t = 0 the

random values are assigned from a set with a mean of 0.3 and a standard deviation of 0.01.

Again the simulations run smoothly with the short initial diffusion dominated phase then

the much longer group growth stage. Steady state, or at least a phase of very slow change, is

reached at approximatelyt = 0.7 with no signi�cant change thereafter to at leastt = 25. The

results shown here show a single simulation at different stages. We show progress of clusters

forming att = 0.5 (�gure 6.7), smaller clusters becoming extinct att = 1.0 (�gure 6.8) and

a straighter interface forming att = 1.5 (�gure 6.9). Compared to the conservative case, we

see that only the larger groupings survive, which is to be expected if threatened populations

are now allowed to suffer deaths. We also see the formation of a clear and increasingly

straight interface between the two populations. As regards our aim of generating a system

that truly tends towards a zero population species interface suitable for a spatially segregated

multi-phase model, this is a success.
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Fig. 6.7 An example result from the non-conservative static mesh att = 0.5. Random seed-
ing is used to produce the initial conditions. In this case two clusters of each species are
formed.
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Fig. 6.8 An example result from the non-conservative static mesh att = 1.0. Random seed-
ing is used to produce the initial conditions. As the reproductive terms make impact, the
number of clusters is reduced to one per species.
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6.2.7 A change in the resource space

An interesting consideration is how changing the resource space affects the dynamics of

the group. This is particularly relevant when we move on to restricting each species to

its own domain. We can see how the shape of the interface will come into play, as well

as our later look at the effect of the interface as it is moving. The variablesA andB are

the carrying capacities for species 1 and species 2 respectively, and can be considered to

represent the maximum resource a species can access. In this simulation, we look at the

effect of removing the resource from a part of the domain after a period of time during which

groupings have become established. We allow the simulation to run as normal tot = 1.0

(�gures 6.10 and 6.11), with the usual random population seeding, and then we reduceA

andB to zero in one quadrant of the domain (�gures 6.12 and 6.13). After the removal of
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Fig. 6.10 An example with changing resource space, showing random population seeding at
t = 0.0. At this stage, resource distribution is homogenous.
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Fig. 6.11 An example with changing resource space, showing random population seeding at
t = 1.0. At this stage, resource distribution is still homogenous.
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Fig. 6.12 An example with changing resource space, showing random population seeding at
t = 1.5. At this stage, resource distribution is non-homogenous and species 2 is subject to a
falling population.
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Fig. 6.13 An example with changing resource space, showing random population seeding at
t = 2.0. At this stage, resource distribution is non-homogenous, but species 2 has adapted
to a new domain and is forming a smaller cluster.



Chapter 7

A combined model with a moving

interface

7.1 The two phase model of competition-diffusion-aggregation

We propose a model for a two component reaction-diffusion-aggregation system based on

the Lotka-Volterra competition system, which will additionally incorporate the aggregation

characteristics proposed by Grindrod [29] and the interface condition proposed by Hilhorst

[31]. We construct the model in such a way that we will be able to utilise the two phase

MMFEM of Baines, Hubbardet al. [8], with an adapting mesh based on a relative con-

servation principle. The PDE system that de�nes the basis of the model is given by the

reaction-diffusion-aggregation PDEs from [29]. See Chapter 6, section 6.2 for a more de-

tailed background. In Chapter 6 we derived a model based upon the same PDEs for two

species sharing a domain, but here we are concerned with a truly two phase model. The

driving PDEs are

¶u1

¶ t
= d1Ñ

2u1 −Ñ(u1Ñq1)+ ru1E1 t > 0,x ∈ W1(t) (7.1)

and
¶u2

¶ t
= d2Ñ

2u2 −rÑ(u2Ñq2)+ ru2E2 t > 0,x ∈ W2(t). (7.2)

We use a �xed domainW bounded externally bySe, but W is divided into two subdomain

classesW1 andW2 which are separated by the moving interface(s)Sm(t). The 1-D analogies
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are given by

¶u1

¶ t
= d1

¶ 2u1

¶x2 − ¶

¶x

�
u1

¶q1

¶x

�
+ ru1E1 t > 0,x ∈ (a,m(t)) (7.3)

and

¶u2

¶ t
= d2

¶ 2u2

¶x2 −r
¶

¶x

�
u2

¶q2

¶x

�
+ ru2E2 t > 0,x ∈ (m(t),b ) (7.4)

for a domain with �xed boundariesa andb but with a moving interface between species

m(t). The parametersE1 andE2 are the net reproduction rates for each species, given by the

logistic equations

E1 = A−au1 −bu2 (7.5)

E2 = B−a∗u1 −b∗u2. (7.6)

We can see that this system also has parallels with the competition-diffusion model of Chap-

ter 5. This system differs from that in Chapter 5 in the additional consideration of an ag-

gregation component (the term containingr). We note that the parameters used in the

expressions (7.5) and (7.6) for the reproduction rateE are named differently to the com-

petition diffusion model, but we can see that no material difference exists. For simplicity

we adopt the naming conventions used by Hilhorst where we extend her work, and have

followed the naming conventions used by Grindrod where we extend his work. This model
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e2
¶ 2q2

¶x2 +q2 = E2. (7.10)

7.2 1-D competition-aggregation-diffusion in a two phase

model

We have boundary conditions given by

¶u
¶x

= 0 x = a,b

¶q
¶x

= 0

u = 0 x = m(t) (7.11)

and we work in the high competition limit de�ned by Hilhorst [31], so that the species

cannot exist in the opposite species' domain. Formally,

u1 = 0 x ∈ [m(t),b ]

u2 = 0 x ∈ [a,m(t)]. (7.12)

The interface condition is taken from [31], and is

md1
¶u1

¶x

����
m(t)

= −d2
¶u2

¶x

����
m(t)

(7.13)

where, once parameter naming conventions are compared between [31] and [29],m =

aa∗/bb∗. We will call m the interspecies competition rate. We work with Neumann bound-

ary conditions on the external boundaries, which will be �xed. We use parameter choices

from [29] which are given in Chapter 6, section 6.2.3. In order to set suitable initial con-

ditions, we consider the results of the shared-domain clustering models of Chapter 6. We

note the steady state solutions that arise from the Chapter 6 models, and construct initial

conditions that approximate those steady state results. These are given by �gure 7.1. We

begin by rede�ning the driving Lotka-Volterra based equations (7.3) and (7.4) in weak form,

incorporating the weight functionwi ,

Z
b

a

wi
¶u1

¶ t
dx=

Z
b

a

d1wi
¶ 2u1

¶x2 dx−
Z

b

a

wi
¶

¶x

�
u1

¶q1

¶x

�
dx+

Z
b

a

wir1u1E1 dx (7.14)
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Fig. 7.1 Initial conditions for the two-phase reaction-diffusion-aggregation model. The am-
plitudes are taken from the steady state results arising from the shared domain model of
Chapter 6. Species 1 in on the left and species 2 is on the right.
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Z
b

a

wi
¶u2

¶ t
dx=

Z
b

a

d1wi
¶ 2u2

¶x2 dx−
Z

b

a

wir
¶

¶x

�
u2

¶q2

¶x

�
dx+

Z
b

a

wir2u2E2 dx. (7.15)

We substitute the de�nitions forE1 (7.5) andE2 (7.6), noting that because we have the high

competition limit, the terms containingb anda∗ are equal to zero. We obtain

Z m(t)

a

wi
¶u1

¶ t
dx=

Z m(t)

a

d1wi
¶ 2u1

¶x2 dx−
Z m(t)

a

wi
¶

¶x

�
u1

¶q1

¶x

�
dx

+
Z m(t)

a

wir1u1(A−au1) dx (7.16)

andm(
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We impose the condition that the basis functionswi move with the domain. Hence the basis

functions also have velocity �x. By analogy with advection, we write,

¶wi

¶t
+ �x

¶wi

¶x
= 0 (7.22)

hence
d
dt

� Z

R(t)
wiudx

�
=

Z

R(t)
wi
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c2i q2(t) =
Z

b

m(t)
wiu dx. (7.32)

Then equation (7.28) becomes, for species 1,

c1i
�q1 +

Z m(t)

a

u1
¶wi

¶x
¶f

¶x
dx−

�
u1wi

¶f

¶x

�m(t)

a

=
Z m(t)

a

wi
¶u1

¶ t
dx. (7.33)

We now substitute (7.16). We obtain

c1i
�q1 +

Z m(t)

a

u1
¶wi

¶x
¶f

¶x
dx−

�
u1wi

¶f

¶x

�m(t)

a

=
Z m(t)

a

d1wi
¶ 2u1

¶x2 dx

−
Z m(t)

a

wi
¶

¶x

�
u1

¶q1

¶x

�
dx+

Z m(t)

a

wir1u1(A−au1) dx. (7.34)

Integration by parts on the right leads to

c1i
�q1 +

Z m(t)

a

u1
¶wi

¶x
¶f

¶x
dx−

�
u1wi

¶f

¶x

�m(t)

a

= −
Z m(t)

a

d1
¶wi

¶x
¶u1

¶x
dx+

�
wid1

¶u1

¶x

�m(t)

a

+
Z m(t)

a

u1
¶wi

¶x
¶q1

¶x
dx−

�
wiu1

¶q1

¶x

�m(t)

a

+
Z m(t)

a

wir1u1(A−au1) dx. (7.35)

We note the zero Neumann boundary conditions (7.11) onq1 andu1 at the external bound-

ary, and the Dirichlet boundary condition (7.12) onu1 at the interface. We also note the

�xed external boundaries which mean that¶f

¶x = 0 ona. These conditions mean that most

of the boundary terms in (7.35) are equal to zero. The remaining expression is

c1i
�q1 +

Z m(t)

a

u1
¶wi
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After substitution of (7.17), equation (7.37) becomes

c2i
�q2 +

Z
b

m(t)
u2

¶wi

¶x
¶f

¶x
dx−

�
u2wi

¶f

¶x

�b

m(t)
=

Z
b

m(t)
d1wi

¶ 2u2

¶x2 dx

−
Z

b

m(t)
wir

¶

¶x

�
u2

¶q2

¶x

�
dx+

Z
b

m(t)
wir2u2(B−b∗u1) dx. (7.38)

Integration by parts on the right leads to

c2i
�q2 +

Z
b

m(t)
u1

¶wi

¶x
¶f

¶x
dx−

�
u2wi

¶f

¶x

�b

m(t)
= −

Z
b

m(t)
d2

¶wi

¶x
¶u2

¶x
dx+

�
wid2

¶u2

¶x

�b

m(t)

+
Z

b

m(t)
ru2

¶wi

¶x
¶q2

¶x
dx−

�
wiru2

¶q2

¶x

�b

m(t)
+

Z
b

m(t)
wir2u2(B−b∗u2) dx. (7.39)

After considering the boundary conditions (7.11) and (7.12) the remaining expression is

c2i
�q2 +

Z
b

m(t)
u2

¶wi

¶x
¶f

¶x
dx= −

Z
b

m(t)
d1

¶wi

¶x
¶u2

¶x
dx− wid2

¶u2

¶x

����
m(t)

+
Z

b

m(t)
ru2

¶wi

¶x
¶q2

¶x
dx+

Z
b

m(t)
wir2u2(B−b∗u2) dx. (7.40)
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We have zero �ux external boundary conditions (7.11), so the �rst term on the right is equal

to zero, leaving

Z
a

b

wiA dx−
Z

a

b

wiau1 dx−
Z

a

b

wibu2 dx= −e1

Z
a

b

¶wi

¶x
¶q1

¶x
dx+

Z
a

b

wiq1 dx. (7.44)

Equation (7.44) will give usq1 in terms ofu1 andu2. In exactly the same way, from (7.10)

and (7.6) we obtainZ
a

b

wiB dx−
Z

a

b

wia∗u1 dx−
Z

a

b

wib∗u2 dx= −e2

Z
a

b

¶wi ia
⌈§ +

Z
Equation (
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the interface node,xm(t),

xN+1
m(t) =

(md1uN
1m−1

xN
m+1 +d2uN

2m+1
xN

m−1)

(md1uN
1m−1

+d2uN
2m+1

)
. (7.50)

We use the �nite differences approximation to calculate the interface velocity

�xN+1
m(t) =

�
(md1uN

1m−1
xN

m+1+d2uN
2m+1

xN
m−1)

(md1uN
1m−1

+d2uN
2m+1

)
−xN

m(t)

�
dt

. (7.51)

This velocity can then be imposed on the interface when the velocity is recovered fromf .

We return to our de�nition off (7.26), now written in distributed form,

Z
R(t)

wi �xdx=
Z

R(t)
wi

¶f

¶x
dx. (7.52)

This system of equations can be solved for �x. For the interface itself, we calculate the

new position by correcting the interface condition at the prior time step. We obtain the

resultant interface velocity by solving equation (7.51) withu = 0 imposed at the interface

node. Having obtained �x, we move the domain using Euler integration. We also updateq1

andq2 from �q1 (7.47) and�q2 (7.48) using the same time integration procedure. We may

now recoveru. We determine the constant partial massesc1i andc2i from (7.31) and (7.32)

and the initial conditions. We obtain, fort = 0

c1i =
1

q1(0)

Z m(t)

a

wi(266f
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andu2 can be recovered from

Z
b

m(t)
wi(x, t)u2(x, t) dx= c2i q2(t). (7.56)

In each case the Dirichlet condition thatu = 0 at the interface is strongly imposed, and the
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(A.1) to (A.4). We substitute those approximations into equation (7.44) and obtain

Z
b

a

WiA dx−a
N+1

å
j=0

�Z
b

a

WiWj dx
�

U1 j −b
N+1

å
j=0

�Z
b

a

WiWj dx
�

U2 j

= −e1

N+1

å
j=0

�Z
b

a

¶Wi

¶x
¶Wj

¶x
dx

�
Q1 j +

N+1

å
j=0

�Z
b

a

WiWjdx
�

Q1 j . (7.57)

In terms of our mass and stiffness matricesM andK, equation (7.57) can be rewritten as

MA−aMU1 −bMU2 = −e1KQ1 +MQ1. (7.58)

HereA is a vector with all entries equal to the resource parameterA

1+1

M
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the following form for equation (7.36),

c̃1i
�q1 + å

j∈Z1

�Z m(t)

a
U1

¶W̃i

�1-D
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with the vectorf̃
2

containing entries̃f2i given by

f̃2i =− c̃2i
�q2 − å

j∈Z2

�Z
b

m(t)
d2

¶W̃i

¶x
¶Wj

¶x
dx

�
U2 j − W̃id2

¶U2

¶x

����
m(t)

+ å
j∈Z2

�Z
b

m(t)
rU2

¶W̃i

¶x
¶Wj

¶x
dx

�
Q2 j + å

j∈Z2

�Z
b

m(t)
W̃iWj r2Bdx

�
U2 j (7.68)

−
Z

b

m(t)
r2b∗W̃iU2

2dx. (7.69)

The nonlinear terms
R m(t)

a
r1aW̃iU2

1 dxand
R b

m(t) r2b∗
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Obtaining the solution U1 and U
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Fig. 7.2 Comparison ofL2 errors in the solution of algorithm 15. We observe an order of
convergence ofp ≈ 2 in space, with time steps held constant atDt = 10−7.

7.2.2 Results

We �nd that the model is robust and the oscillations commonly found in �nite element

implementations, which are caused by the central differences approach, are minimal. Figure

7.2 shows convergence in the solution of approximately second order in space, asDx → 0

and with time steps held constant atDt = 10−7. This estimate is obtained by comparison of

the result generated by each grid spacing with a high-resolution (641 node) result, since no

absolute result is available. This order of convergence is as reported for the similar method

in [8].

We are able to observe all the varied effects of diffusion, logistic growth or decline and

aggregation, and we are also able to generate sensible interface movement. We use the pa-

rameters from [29] in order to be con�dent that the choices are sensible. We are able to

make comparisons between the aggregating and non aggregating two-phase models. Figure

7.3 shows a non-aggregating model (with theq values set to zero); this is exactly equiva-
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lent to the competition diffusion model in Chapter 5 (5.2). With this choice of parameters,

we observe no interface movement in the non aggregating model. The only development

observed is in the shape of the solution near the interface, which is driven by diffusion.

However, when we introduce aggregation, both species attempt to move away from the in-

terface, resulting in a differently shaped solution (�gure 7.6). We can see from �gure 7.4

that the survivability indexE1 for species 1 is raised near the interface due to low popula-

tion density, but then is very low in the domain occupied by species 2. We see in �gure

7.5 how theq value takes a longer range average, so that despite the low population den-

sity near the interface, species 1 has an ideal velocity away from the interface. In �gure

7.6 we observe that as both species vacate the area close to the interface, the changed in-

terface dynamics favour species 2 and the interface moves to the left. Interestingly, in this

particular scenario the increased 'intelligence' of the individuals does not help their longer

term survival, because these additional movements cause mild overcrowding which offsets

the reduced rate of competition at the interface. This suggests that the parameters given by

[29] are potentially not the most representative, when this full model with the interface is

constructed. With the large number of parameters at our disposal, the range of dynamics we

could produce is limitless and very varied. We argue therefore that this model could be of

real use to biologists in the �eld studying any spatially segregated competition system.
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Fig. 7.3 The two phase competition model without aggregation att = 0.24, using the pa-
rameters from Grindrod. Time steps are every 0.01s. We see stable population densities as
the external boundaries, and an evolving shape to the interface.
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Fig. 7.6 Population decline in the two phase model with aggregation att = 0.16. Time steps
are every 0.01s. We observe decreased movement towards the interface compared to the
non-aggregating model. We see initially higher population densities a short distance away
from the interface as the individuals resist moving towards it. The resulting overcrowding
reduces overall survival rates, for this scenario.

7.3 2-D competition-aggregation-diffusion in a two phase

model

We now consider the two dimensional version of the combination model in two phases,

which is of additional interest because of the aggregating behaviour possible in 2-D. Re-

minding ourselves of the driving PDEs, we have

¶u1

¶ t
= d1Ñ

2u1 −Ñ(u1Ñq1)+ ru1E1 t > 0,x ∈ W1(t) (7.75)

and
¶u2

¶ t
= d2Ñ

2u2 −rÑ(u2Ñq2)+ ru2E2 t > 0,x ∈ W2(t). (7.76)
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We consider a �xed domainW



7.3 2-D competition-aggregation-diffusion in a two phase model 204

in the distribution of species 1. This asymmetry gives us the opportunity to explore the two
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We obtain Z
W1(t)

wi
¶u1

¶ t
dW =

Z
W1(t)

d1wiÑ
2u1dW−

Z
W1(t)

wiÑ · (u1Ñq1) dW

+
Z

W1(t)
wir1u1(A−au1) dW (7.86)

and Z
W2(t)

wi
¶u2

¶ t
dW =

Z
W2(t)

d2wiÑ
2u2 dW−

Z
W2(t)

wirÑ · (u2Ñq2) dW

+
Z

W2(t)
wir2u2(B−b∗u2) dW. (7.87)

We de�ne the total population of a speciesk asqk, given by

qk(t) =
Z

Wk(t)
uk dW (7.88)

whereWk(t) is the moving domain inhabited by that species. Since mass is not conserved in

general, we will use the concept conserving relative mass. We write a relative conservation

principle in terms ofq , introducing the weight functionwi ,

1
qk(t)

Z
Wk(t)

wiuk dW = cki (7.89)

or Z
Wk(t)

wiuk dW = cki q(t) = cki

Z
Wk(t)

uk dW. (7.90)

Here the constantcki is determined by the choice ofwi , which should be chosen to provide

a partition of unity. A distributed conservation of mass principle is now given by equation

(7.90). Note that
d
dt

�Z
Wk(t)

wiuk dW

�
= cki

�qk. (7.91)

We differentiate (7.90) with respect to time using the Leibnitz integral rule on our moving

frameWk(t) to give

d
dt

�Z
Wk(t)

wiuk dW

�
=

Z
Wk(t)

�
¶ (wiuk)

¶ t
+Ñ · (wiuk �x)

�
dW. (7.92)

We require that the basis functionswi move with the domain. Hence the basis functions also
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have velocity�x and therefore
¶wi

¶ t
+ �x ·Ñwi = 0. (7.93)

We obtain
d
dt

�Z
Wk(t)

wiuk dW

�
=

Z
Wk(t)

wi

�
¶uk

¶ t
+Ñ · (uk �x)

�
dW (7.94)

or
d
dt

�Z
Wk(t)

wiuk dW

�
−

Z
Wk(t)

wiÑ · (uk �x) dW =
Z

Wk(t)
wi

¶uk

¶ t
dW. (7.95)

We write this in terms of�qk and the constantscki to give

cki
�qk −

Z
Wk(t)

wiÑ · (uk �x) dW =
Z

Wk(t)
wi

¶uk

¶ t
dW. (7.96)

We introduce the velocity potentialf , de�ned by

�x = Ñf (7.97)

so that

cki
�qk −

Z
Wk(t)

wiÑ · (ukÑf) dW =
Z

Wk(t)
wi

¶uk

¶ t
dW (7.98)

or, after integration by parts

cki
�qk +

Z
Wk(t)

ukÑwi(t
k)k(�



7.3 2-D competition-aggregation-diffusion in a two phase model 207

Integration by parts on the right leads to

c1i
�q1 +

Z
W1(t)

u1Ñwi ·Ñf dW−
Z

S1(t)
u1wiÑf · n̂1 dS=

−
Z

W1(t)
d1Ñwi ·Ñu1dW
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in equation (7.103),

å
i

c1i
�q1 +

Z

W1(t)
å
i

[u1Ñwi � Ñf ] dW=

�
Z

W1(t)
å
i

[d1Ñwi � Ñu1] dW+
Z

Sm(t)
å
i

wid1Ñu1 � n̂1 dS

+
Z

W1(t)
å
i

[Ñwi � Ñq1] dW+
Z

W1(t)
å
i

[wir1u1(A� au1)] dW (7.113)

or
�q1 =

Z

Sm(t)
d1Ñu1 � n̂1 dS+

Z

W1(t)
r1u1(A� au1) dW (7.114)

and for the sum over equation (7.107)

�q2 =
Z

Sm(t)
d2Ñu2 � n̂2 dS+

Z

W2(t)
r2u2(B� b
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at the external boundaries can be approximated from their near neighbours because we have

Neumann conditions in place.

Before we are able to solve foru1 andu2, we require a �nite element approximation

to obtain a solution forq1 andq2 as the �rst step. We de�ne an approximation to each of

our variables in terms of the standard basis functionsWi . We do not require modi�ed basis

functions at this stage for the same reasons given for the 1-D case. We do not repeat those

de�nitions here but instead refer to Appendix A, equations (A.1) to (A.4). We substitute

those approximations into equation (7.111) and obtain

Z
W

WiA dW−a
N

å
j=1

�Z
W

WiWj dW

�
U1 j −b

N

å
j=1

�Z
W

WiWj dW

�
U2 j

= −e1

N

å
j=1

�Z
W

ÑWi ·ÑWjdW

�
Q1 j +

N

å
j=1

�Z
W

WiWj dW

�
Q1 j . (7.125)

We may write (7.125) in terms of our mass and stiffness matricesM andK to obtain

MA−aMU1 j
−bMU2 j

= e1KQ1 j
+MQ1 j

. (7.126)

which we may rewrite in terms ofQ1 j

Q1 = (−e1K +M)−1M(A−aU1 −bU2). (7.127)

HereA is a vector with all entries equal toA. In exactly the same manner, we substitute the

approximations (A.1) to (A.4) de�ned in Appendix A into (7.112) and obtain

Z
W

WiB dW−a∗
N

å
j=1

�Z
W

WiWj dW

�
U1 j −b∗

N

å
j=1

�Z
W

WiWj dW

�
U2 j (7.128)

= −e2

N

å
j=1

�Z
W

ÑWi ·ÑWj dW

�
Q2 j +

N

å
j=1

�Z
W

WiWj dW

�
Q2 j (7.129)

which is, in matrix form

Q2 = (−e2K +M)−1M(B−a∗U1 −b∗U2), (7.130)

whereB is a vector with all entries equal toB. We can now recoverQ1 andQ2 by solving

equations (7.127) and (7.130). We now consider the ALE system which will allow us to

obtainU1 andU2. For this system we must use the modi�ed weight functionsW̃i of Chapter 4
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(�gure 4.11). This will allow us to obey the principle of relative conservation of mass and yet

impose a velocity on the interface and on the external boundaries. We take equations (7.103)

and (7.107) and substitute into them the approximations (A.1) to (A.14) as necessary. We

obtain the following, with all variables now expressed in terms of their piecewise linear
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Similarly, (7.132) can be expressed as

K̃(U2)F2 = f̃
2

(7.135)

with the vectorf̃
2

containing entries̃f2i given by

f̃2i = −c̃2i
�q2 − å

j∈Z2

�Z
W2(t)

d2ÑW̃iÑWj dW

�
U2 j

+
Z

Sm(t)
W̃id2ÑU2 · n̂2 dS+ å

j∈Z2

�Z
W2(t)

rU2ÑW̃i ·ÑWj dW

�
Q2 j

+ å
j∈Z2

�Z
W2(t)

W̃iWj r2B dW

�
U2 j −

Z
W2(t)

r2b∗W̃iU2
2 dW. (7.136)

The nonlinear terms in (7.134) and (7.136) can be calculated using Gaussian quadrature (see

Appendix B). We can now obtainF1 andF2 by solving these matrix systems. Since the

weighted stiffness matrices̃K(U1) andK̃(U2) are singular, we have an in�nity of solutions

available and we setÑF · n̂k = 0 at all external boundary nodes to obtain a single solution,

wheren̂k is the normal to the boundary for either speciesk ∈ [1,2]. Note that summing over

the rows of (7.133) and (7.135) will give the expressions for�q1 (7.114) and�q2 (7.115).

To recover�X, we use the approximation

�X(x, t) = å
j∈Z1∪Z2

�X j(t)Wj(x, t). (7.137)

To obtain the �nite element form, we substitute this into equation (7.120),

å
j∈Z1∪Z2

�Z
Wk(t)

W̃iWj dW

�
�X j = å

j∈Z1∪Z2

�Z
Wk(t)

W̃iÑWj dW

�
F j . (7.138)

In matrix form this is

M̃ �X = B̃F. (7.139)

We impose�x.n̂k = 0 on the external boundaries. We impose the interface velocity obtained

from (7.119). Since we are using modi�ed basis functions we will not interfere with the

conservation of relative mass by doing so. We solve (7.139) for the remaining velocities.
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Time integration

We move the nodes using Euler's scheme. Using the same scheme, we update the values of

q1 andq2 from the values of�q1 (7.114) and�q2 (7.115).

Obtaining the solution U1 and U2

We may now recover the values ofU1 andU2. The relative conservation of mass equations

(7.123) and (7.124) allow us to obtainU on the updated grid. We substitute the familiar

piecewise linear approximations (A.1) and (A.2) into (7.123) and (7.124), and obtain the

matrix forms

M̃1U1 = c̃1i
q1(t) (7.140)

and

M̃2U2 = c̃2i
q2(t). (7.141)

We begin



7.3 2-D competition-aggregation-diffusion in a two phase model 217

6. Update the values ofq1(t + dt) andq2(t + dt) from the values of�q1(t) (7.114) and
�q2(t) (7.115);

7. Find the solutionsU1(t + dt) andU2(t + dt) by solving the conservation equations

(7.140) and (7.141).

7.3.2 Results

The model is implemented in MATLAB on a square domain with 33 nodes along each side.

We are able to produce plausible behaviour. We are able to observe the moving interface ex-

hibiting different behaviour at different points along its length, according to the population

dynamics either side (see �gure 7.10). The interface moves according to condition derived

from the high competition limit, and the population densities adjacent to the interface are

subject to signi�cant increases or decreases because of this motion. Unfortunately, we run

into the problem of internal node tangling at the point when more interesting behaviour

begins to emerge. Figures 7.11 and 7.12 shown the state of the system shortly before this

occurs. This is likely to be a fundamental weakness of this complex implementation of

the MMFEM. The MMFEM keeps the node order and connectivity intact, no matter how

much movement is occurring, and so cannot easily cope with highly distorted grids. In this

particular MMFEM, we have an interface condition which is only indirectly related to the

dynamics of the majority of the system. The interface is free to make large and sudden

movnements because the calculation of its velocity takes place separately to that of the ve-

locities elsewhere. This freedom has the potential to have a negative impact on the stability

of the rest of the domain. It may be possible to �nd a set of parameters which are more

stable. It is certainly possible to run a steady state system but it is of little interest. How-

ever, to make useful progress from the point we have reached, the sensible approach would

be to further research the interface condition from both an ecological and a mathematical
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repellant forces between nodes. Alternatively, a smarter way of incorporating the interface

condition may help. From an ecological perspective, there may be a different, simpler

interface condition that we could use, which may ease this dif�culty.

Fig. 7.10 The solution of the 2-D competition-aggregation-diffusion model in two phases
with a moving interface att = 2× 10−5. The sum of both species is plotted, although
they are segregated completely with the population consisting of only species 1 to the left
of the interface and only species 2 to the right of the interface. We observe heterogenous
movement of the interface, which no longer aligns withy = 0. We observe a small building
of population density adjacent to it (neary = 0.05,x = −0.2) as a result. The parameters
used ared1 = d2 = 0.01,k1 = 1, k2 = 1/3, r1 = r2 = 1, A = 1.5, B = 2, a = 1, b = 2, a∗ = 3
b∗ = 1, ande1 = e2 = 0.001.
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Fig. 7.12 The solution of the 2-D competition-aggregation-diffusion model in two phases
with a moving interface att = 2.3×10−5. The heterogenous movement of the interface has
produced three distinct areas of high population density. Node tangling occurs soon after.
The parameters used ared1 = d2 = 0.01, k1 = 1, k2 = 1/3, r1 = r2 = 1, A = 1.5, B = 2,
a = 1, b = 2, a∗ = 3 b∗ = 1, ande1 = e2 = 0.001.



Chapter 8

Summary

We will now summarize the material covered in this thesis and discuss the next steps for this

research.

In Chapters 1 and 2, we introduced the concept of moving mesh methods and outlined

the various approaches. We discussed the history and development of a variety of velocity-

based methods which formed a pathway towards the moving mesh �nite element method.

We then introduced the Lotka-Volterra competition equations.

In Chapter 3, we outlined, in general terms, the process for applying the MMFEM in

either 1 or 2 dimensions. We examined the existing body of work performed using the

MMFEM, looking at both classic examples and others that require modi�cations to the

method.

In Chapter 4, we began to demonstrate new applications for moving mesh methods.

We illustrated the equidistribution method with a model of a column of water undergoing

wind sheer at the surface, and which is also subject to Coriolis forces. We then illustrated

the MMFEM, applying it to the Fisher's equation of blow-up or combustion. We built this

model in both 1 and 2 dimensions, and with both a free and �xed boundary. We compared

the �xed boundary model to a �nite difference implementation, and found that we were able

to resolve the blow up peak at a higher, narrower stage. For the free boundary case we used

modi�ed basis functions, and considered how best to construct a stiffness matrix in terms of

the modi�ed basis functions. For this model, we also made a switch between basis systems

using the ALE form. We found that we resolved a higher peak, but we lost accuracy in the

time at which the blow-up occurs. We also applied the MMFEM to the Keller-Segel model,

which has both a substrate and a reactant, building this model in 2-D. We found that the

accuracy of this model is dependent on the shapes of the triangles in the mesh, which is

determined by the initial node distribution. For the better node distributions, the MMFEM
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suffers from node tangling whenever more dynamic mesh movements are produced.

The potential exists for useful further work to extend the research in this thesis. In

particular, the population models and simulations in chapters 6 and 7 are novel, and are

also suitable for application to real-world situations. There are three useful dimensions for

further work.

• Validate existing models. It would be extremely interesting to compare the behaviour

of the models against an empirical data set. The models easily lend themselves to

adaptions in the sizes and shapes of the domains, alterations to the logistic terms
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UL(x, t) =
N+1

å
j=0

Wj(x, t)UL j (t) (in 1D) UL(x, t) =
N

å
j=1

Wj(x, t)UL j (t) (in 2D)

(A.6)

F(x, t) =
N+1

å
j=0

Wj(x, t)F j(t) (in 1D) F(x, t) =
N

å
j=f 4.34 0 Td [(t)]TJ/F101 052 Tf 4.136 0 Td [())-221(=)]TJ/F87 8.9664 Tf 23.738 12.774 Td [(N)]TJ/F100 17.2153 Tf -2.874 -15.327 Td [(å)]TJ/F87 8.9664 Tf -0.278 -9.
Tf 5.978 0 Td [(;)]TJ/F87 11.9552 Tf 4.341 0 Td [(t)]TJ/F101 11.9552 Tf 4.136 0 Td [())-221(=)]TJ/F87 8.9664 Tf 23.737 12.774 Td [(N)]TJ/F100 17.2153 Tf -2.873 -15.326 Td [(å)]TJ/F87 8.9664 Tf -0.278 -9.848 Td [(j)]TJ/F101 80 Td [(t)]TJ/F101 11.9552 Tf 4.136 0 Td [())]TJ/F86 11.9552 Tf 10.308 0 Td [((in)-250(1D))]TJ/F100 11.9552 Tf 100.057 0 Td [(F)]TJ/F101 11.9552 Tf 9.122 0 Td [(()]TJ/F84 11.9552 Tf 4.639 0 Td [(x)]TJ/F99 11.9552 Tf 5.977Tf 4.638 0 T10.45x
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Gaussian quadrature

For a nonlinear term such as

fi =
Z

we

WiU2 dW (B.1)

we may write the contribution tofi from a triangular elementwe corresponding to the weight

functionWi as Z
we

WiU2 dW =
Z

we

Wi

 
3

å
j=1

U jWj

!2

dW. (B.2)

The right hand side may be evaluated using three point Gaussian quadrature. This is exact

for quadratics and has a higher order of accuracy than the approximation of any of the PDEs

in this thesis, so will not affect the numerical accuracy obtainable. Suitable sets of weights

and integration points are widely published, for example in [42]. A neat choice uses the

same piecewise linear weight functionsWi as are used throughout this work, those of �gure

3.3. The locations of the integration pointsx1, x2 andx3 which correspond to these weights

are given in �gure B.1. The values ofU at these points can be calculated from the values of

U at the verticesxA, xB andxC as follows,

U1 = U(x1) =
2U(xA)

3
+

U(xB)

6
+

U(xC)

6
(B.3)

U2 = U(x2) =
U(xA)

6
+

2U(xB)

3
+

U(xC)

6
(B.4)

U3 = U(x3) =
U(xA)

6
+

U(xB)

6
+

2U(xC)

3
. (B.5)
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Fig. B.1 Location of integration pointsx1, x2 andx3 for three point Gaussian quadrature for
triangle with vertices atxA, xB andxC. Each integration point lies 1/3 of the way along the
line connecting a vertex to the midpoint of the opposite edge.
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Selecting piecewise linear weight functionWi =W1 centered at nodeA, we can now calculate

(B.2) as follows

Z
we

W1

 
3

å
j=1

U jWj

!2

dW =
Areae

3

�
2U2

1
3

+
U2

2
6

+
U2

3

6

�
. (B.6)

Likewise, ifWi = W2 centered at nodeB, (B.2) becomes

Z
we

W2

 
3

å
j=1

U jWj

!2

dW =
Areae

3

�
U2

1
6

+
2U2

2
3

+
U2

3

6

�
(B.7)

and ifWi = W3 centered at nodeC, (B.2) becomes

Z
we

W3

 
3

å
j=1

U jWj

!2

dW =
Areae

3

�
U2

1
6

+
U2

2
6

+
2U2

3

3

�
. (B.8)
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