New Methods For Approximating Acoustic Wave Transmission Through Ducts

Tamsin Lee

August 21, 2007

Abstract

Con en

1	Introduction	1
2	Wave Scattering Over Uneven Depth	4

	-}	C c n 4 loc y o n , 4 h o c	2
5	Nur	nerical Results	29
	Ŕ	¢c , n , o }	2
		Nod App o 🛓 on	2
		\mathbb{R}^2 M Mod App o \mathbb{A}_1 on \mathbb{A}_1	-1
	P	ppd pd	
		p fin Mod App o ₁ on ♪ n ↓	
		192 n not an Mon at n n h	
6	Fur	ther Work	62
		$M \mid Mod App \circ \mathbf{a}_1 on \mid \circ \bullet \bullet pp d \bullet \circ \bullet \mathbf{a}_1$	2
	2	N A_1 nn Bo nd y Cond on Alon c	2
	-1	$d = \mathbf{a}$	-1,
7	Sun	nmary and Conclusions	64

L of cre

Ŕ	Cono, plo of o, d c
þ	🏚 kfpko of o k d c 🛹
Þĵ	$ \mathbf{R} $ n k n d c \mathbf{A} [\mathbf{A}] \mathbf{A}
Ŕ	Cono, plo of o, d c 2
ř ř	🏚 , fp lo of o , d c 🤉
Ŕ	nd 🖣 n, yplo of u o, d c 🜮
Ŕ	Cono, plo of o, dc 🤉
Ŕ	🏚 , fp lo of o , d c 🤉
Ŕ	nd 🖣 n,yplo of u o, d c 🜮
Ŕ	$\mathbf{k} \mathbf{R} $ n for $\mathbf{d} \in \mathcal{D}$ and $\mathbf{k} \in [\mathbf{k}, \mathbf{k}]$
Ŕ	Con $o \in p \mid o \text{ of } \mathbf{k} \mid \mathbf{R} \mid f_{0} \in \mathbf{\mu}_{-}$
P 2	Con o , plo of $k R $ for μ

P	$p \circ of \mathbf{u} \circ \mathbf{h} d \circ \mathbf{p} f \circ \mathbf{\mu}_{\mathbf{a}}$
þ (þ	second ond y cond on $\mathcal{A}_{\mathbf{k}}$ pod n k n
	$d c \sim f_{0} \mu_{-2}$
P	Aclo pof [h oc h y n h
þ	Cono, po of o, d c 2/ fo, μ_{-2}
P	\mathbf{d} , \mathbf{f} p \mathbf{b} of \mathbf{o} , \mathbf{d} c 2 , \mathbf{f} o, $\mathbf{\mu}$, 2
P	$p_0 \text{ of } \mathbf{u}_0 + d_c_2 \text{ for } \mathbf{\mu}$
	• condond, y condon 🖍 podn k n
	d c 2- for ryn n
Þ]	Aco pof [
22	Aclo pof - cond ond y cond on pof - plo d n
-	$\mathbf{k} \circ \mathbf{c} \mapsto \mathbf{y} \bullet \mathbf{a} \circ \mathbf{a} $ ny n for \mathbf{n}
	Conopo of order for a [ran ppd _n] [ran
	\$\$, fp o of o , d c 2/ fo, 1 [++ , pp d , n]
e îr	plo of uo, dc 🕺 fo, 🏨 [r==, pp d 🖓

E12 p er

In rod c on

h bo n $c_{0}o$ c on of d c h o_{0} on of con n no n c b by h h dh on n h. n, od c on

kr k n k − m n p*

E12 p er

פ פ ern∝Oer ne en Dep•1

In rod c on

ль, л. п. п. к. ф. по к. рьор по к. куп

de en en pa-

nd kn , 1 po , 1 oo of

$$- |-k_n - n k_n h,$$

o. i ny

 \int

No \mathbf{a}_{-} \mathbf{a}_{-} \mathbf{a}_{-} p on \mathbf{b}_{-} $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \cos n & \mathbf{a}_{-} \mathbf{p} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \cos n & \mathbf{a}_{-} \mathbf{p} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \cos n & \mathbf{a}_{-} \mathbf{p} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \cos n & \mathbf{a}_{-} \mathbf{p} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \cos n & \mathbf{a}_{-} & \mathbf{a}_{-} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \cos n & \mathbf{a}_{-} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{a}_{-} & \mathbf{a}_{-} & \mathbf{a}_{-} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} & \cos n \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{a}_{-} & \mathbf{a}_{-} & \mathbf{a}_{-} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{a}_{-} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{a}_{-} & \mathbf{h} & \mathbf{h} \\ \mathbf{a}_{1} \mathbf{p} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \\ \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf{h} & \mathbf{h} \end{bmatrix}$ $\begin{bmatrix} -\mathbf{d} & \mathbf$

$$\nabla_{\mathbf{h}}.\mathbf{u} \nabla_{\mathbf{h}} \mathbf{u} \mathbf{k}^2$$

kr∼ ĝic , n , _ → n p.u-

op on

M Mode Appro 2 on

dic , n , n p.

d c $\| \mathbf{a}_1 - \mathbf{a}_2 - \mathbf{b}_2 \|$ by $\| \mathbf{a}_1 - \mathbf{b}_2 \|$

nd **b**j **a** , **j** | , oo n (j) **a** cond on d **b** n d y **a** , **e** ond **b** y

cond on n A by Y, bj _ [A nc

$$\widetilde{\textbf{A}} \quad n \left[\sqrt{ } \right.$$

 $\{ oc y po n \}$ $(\) \ | oc | | y o$ $(\ o \) \) \ | o \)$

nd 🤰 n 🖷 e 🖷 on

 $\begin{array}{c} \mathbf{f} & \mathbf{h} & \mathbf$

♣-, , d no ♣-d , n on ♣-, p c o X

No 1 - | 1 - n a - | a - | a - | a - | a

for the prod c

$$\mathbf{u} = \mathbf{R}, \qquad \mathbf{R}, \qquad \mathbf{R}$$

$$\Rightarrow \mathbf{u} \checkmark \mathbf{i}^{()} \mathbf{u} \checkmark \mathbf{u}^{()} \mathbf{v} - \mathbf{R} \quad \mathbf{i}^{()} \checkmark \mathbf{R}$$
$$\Rightarrow \mathbf{u}^{()} \mathbf{u}$$

4. A. A. nd ond y cond on fond n Anthon on A A A On X o

$$| \mathbf{u}_{1} - \mathbf{i}^{()} \mathbf{u}_{2} |$$

G c_{2} n^{c} $\neg e$ e oc y Po en 2 ϕ O er $\neg e$ $\neg o e$ Dc

ock na-nd n on a [root on a nd hond hy cond on hond M $n p_{0} \circ A_{1} A_{1}$ by $p_{0} \circ A_{1}$ for A_{1} к по pp op for a c c c no for pro la h k a y h k p en n. n. o) on n. n. n. bvp4c

De er nne - e Bondery Cond on

A $\mathbf{a}_{-}\mathbf{$

 $\begin{array}{ccccc} \mathbf{u}_{\mathbf{v}} & \mathbf{v}_{\mathbf{v}}^{\pm} & \mathbf{d}_{\mathbf{n}} & \mathbf{u}_{\mathbf{v}} &$

 $\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

$$\mathbf{u} \checkmark^{-} = |\mathbf{A},$$

$$\mathbf{u} \checkmark^{-} = |\mathbf{A} \sqrt{(\mathbf{a}) - \mathbf{k}^{2}},$$

$$\Rightarrow \mathbf{u} \checkmark^{-} - \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} \mathbf{u} \checkmark^{-} + \mathbf{A} \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} - \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} \mathbf{A}$$

$$\Rightarrow \mathbf{u} \checkmark^{-} - \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} \mathbf{u} \checkmark^{-} + \mathbf{A} \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} - \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} \mathbf{A}$$

$$\Rightarrow \mathbf{u} \checkmark^{-} - \sqrt{(\mathbf{a}) - \mathbf{k}^{2}} \mathbf{u} \checkmark^{-} + \mathbf{A}$$

o ne me E een e Pro e

by the day nond the n n property new property is a

▶00 of the fnc on fny ▶ the n

A⊩, no

$$Y_{n}, x, y = \prod_{n \in \mathbb{N}} \left(\frac{n \cdot y - a}{b - a} \right) \qquad n = \lfloor 2 \rfloor, \dots N.$$

$$\int_{a}^{b} \nabla$$

"nc) d n Mo, Mod

No 4-, 4-

nd

$$\sum_{n=1}^{N} i \left(\begin{array}{c} (\cdot) \\ n \end{array} \right) \mathbf{A}_{n} - \mathbf{R}_{n} \mathbf{Y}_{n, \mathbf{y}} = \frac{1}{n} \left(\begin{array}{c} \sum_{n=1}^{N} u_{n, \mathbf{y}} \mathbf{Y}_{n, \mathbf{y}} \mathbf{Y}_{n, \mathbf{y}} \mathbf{y} \mathbf{y}_{n, \mathbf{y}} \right) \\ \Rightarrow i \left(\begin{array}{c} (\cdot) \\ n \end{array} \right) \mathbf{A}_{n} - \mathbf{R}_{n} = \frac{1}{n} \left(\begin{array}{c} u_{n, \mathbf{y}} \mathbf{y}_{n, \mathbf{y}} \right) \\ \end{array}$$

 $-pon \mid_{A_1} n \quad n \quad h \quad n \quad n \quad n \quad R_n \quad h \quad o \quad o \quad o \quad o \quad h \quad h \quad y \quad cond \quad on$

$$\mathbf{u}_{\mathbf{n}}$$
, $\mathbf{i} \stackrel{()}{\mathbf{n}} \mathbf{u}_{\mathbf{n}}$, $2 | \mathbf{i} \stackrel{()}{\mathbf{n}} \mathbf{I}_{\mathbf{n}}$, $\mathbf{n} = | 2, ..., \mathbf{N}.$

$$\approx \sum_{n}^{N} u_{n} \mathbf{x} Y_{n} \mathbf{x} \mathbf{y} .$$

A A A p o c fo con n y A o i on nd A d b A A i i A n b f c X i A

$$\sum_{n}^{N} T_{n} e^{i - \binom{(1)}{n}} Y_{n} y = \sum_{n}^{N} u_{n} y Y_{n} y$$

nd

$$\sum_{n}^{N} i \stackrel{()}{}_{n}^{()} T_{n} e^{i \stackrel{(1)}{n}} Y_{n} y \xrightarrow{}_{n} | \sum_{n}^{N} u_{n} y Y_{n} y \xrightarrow{}_{n} | \sum_{n}^{N} u_{n} y y \xrightarrow{}_{n} y \xrightarrow{}_{n}^{2}$$

$$\Rightarrow i \stackrel{()}{}_{n}^{()} T_{n} e^{i \stackrel{(1)}{n}} \xrightarrow{}_{n} | u_{n} y x_{n} y x_{n} y x_{n} y x_{n} y x_{n} y \xrightarrow{}_{n}^{2}$$

 $A_n n n T_n - n n n f_{\lambda} O_{A_1}$ on $P_n n d_{\lambda}$ is normalized on condourd by cond on

$$u_{n} - i \binom{n}{n} u_{n} - \frac{n}{n} + \frac{n}{n}$$
E12 p er

N er ø e

e er ne Pro e

ne e Mode Appro 2 on

odzinconofdcnagod))d = [r=n = e-)) n fnd odcy cndondy

$$\mathbf{a}_{\mathbf{x}} \mathbf{x} = \begin{cases} \mathbf{x} < \mathbf{x} \\ \mathbf{d} = n^2 \left(\frac{\mathbf{x}}{2}\right) & < \mathbf{x} < \mathbf{x} \\ \mathbf{d} & \mathbf{x} > \mathbf{x} \end{cases}$$

nd

$$b_{x} x = \begin{cases} x < \\ -a_{x} x < x < \\ -d x > . \end{cases}$$

No \rangle con d, d c \bullet , $\underline{a}_1 \circ$, $\underline{a}_1 \circ \bullet$, $y d c g_{\prime}$, \bullet d c \rangle , $d [\underline{a}_1 d$

$$\mathbf{a} \mathbf{x} = \left\{ \begin{array}{cc} \mathbf{x} < \\ \mathbf{d} & n^2 \left(\frac{\mathbf{\mu} \cdot \mathbf{x}}{2}\right) & < \mathbf{x} < \\ & \mathbf{x} > \\ & \mathbf{x} > \\ \end{array} \right.$$

nd

$$b_{x} = \begin{cases} x < \\ -a_{x} < x < \\ x > . \end{cases}$$

N A . C

N A . C

0.5 0 -1 y

p pped **p** e Pro e

ne e Mode Appro n = 1 on n = 1

A An nond not con for [and n An loc ypon] An [ref. [and] of k for an enal r, rpp d nc n d c 2

$$a_{x} = \left\{ \begin{array}{cc} x < \\ d & n^{2} \left(\frac{\mu \cdot x}{n}\right) & < x < \\ & x > \\ & x > \\ \end{array} \right.$$

nd

$$\mathbf{b}_{\mathbf{x}} = \begin{cases} \mathbf{x} < \mathbf{x}$$

N A . C

 $| \mathbf{p} | \mathbf{p} | \mathbf{p} | \mathbf{o} \mathbf{h} \mathbf{d} \mathbf{c} \mathbf{p} | \mathbf{f} \mathbf{o} \mathbf{h} \mathbf{\mu}_{-} |$

N A . C

poofuordc₂rfort [r+rpd - n-]

Ι κ 🏚 🛱 κf plo of ο κd c 💁 for 💁 [κτικ pp d 🖓 κ].

plo of uo, dc 🔉 fo, 🏎 cond, pp d 🖓 🛱

ι κρρ \$\$, fpo of o, dcg, fo, 4-4-, d, ppd , n []

$N \qquad \texttt{a}_{-} n \underline{a}_{1} \land c \land \land \qquad) \text{ of } \texttt{a}_{-} \underline{a}_{1} n \text{ on } d \underline{a}_{1} \text{ od } \rangle \land \texttt{a}_{-} \land \qquad) \\ \texttt{fo, } \texttt{a}_{-} \underline{a}_{1} \land \underline{a}_{1} \text{ od } pp \land o \underline{a}_{1} \text{ on } \land \qquad \underline{a}_{1} \circ \underline{a}_{-} a_{1} \qquad \underline{a}_{-} n \land \underline{a}_{1} \text{ od } pp \land o \underline{a}_{1} \circ \underline{a}_{-} a_{1} \qquad \underline{a}_{-} n \land \underline{a}_{1} \text{ od } pp \land o \underline{a}_{1} \circ \underline{a}_{-} n \land \underline{a}_{1} \circ \underline{a}_{-} \wedge \underline{a}_{1} \qquad \underline{a}_{-} \land \underline{a}_{1} \circ \underline{a}_{1} \circ$

 ~ 2 $\sim \sim n$ n on of $\sim \sim n$ d op 1 on J. Fluid Mechanics $367-382 \sim n$

-