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Chapter 1

Introduction

Data assimilation techniques are used to exploit information contained in observational

data, previous forecasts and atmospheric dynamics for the p



by the Global Observing System (GOS) [4] and include in-situ and remotely sensed

measurements, each with an associated error structure. We treat observation errors as

independent with type, i.e, radar observation errors are independent of aircraft obser-

vation errors, but dependency often exists between observations measured by the same

instrument. Satellite observations typically have horizontally and vertically correlated

errors. Origins of these errors include observation spatial proximity, contrasting model

and observation resolutions, and observation pre-processing. Surface-based observations

are also affected by correlated errors but their typically lower density means the effects

of the correlated error are less significant. The size of the problem in NWP restricts

the storage of the extra information provided by the error correlations. In operational

weather prediction centres around the world, the data assimilation is most often per-

formed under the assumption of uncorrelated satellite observation errors.

The assumption of zero correlations is often used in conjunction with data thinning

methods such as superobbing [5]. This reduces the density of data by averaging the

properties of observations in a region, and assigning this average as a single observation

value. Under such assumptions, increasing the observation density beyond some thresh-

old value has been shown to yield little or no improvement in analysis accuracy [60],



Approximating observation error correlation is a relatively new direction of research

but progress has been made. In [43] circulant matrices were used to approximate a

Toeplitz observation error covariance matrix. Results showed that incorrectly assuming

uncorrelated observation errors gave misleading estimates of information content. In



to generate a good approximation, we must first have an accurate estimate of the

true error correlation structure.

• What approximations are available to model error correlation struc-



ational data assimilation (3D-Var) and four-dimensional variational data assimilation

(4D-Var). Observing System Experiments (OSEs) at the European Centre for Medium

Range Weather Forecasting (ECMWF) and elsewhere have shown that the inclusion of

satellite data in a 4D-Var algorithm results in the greatest positive forecast impact over

all observation types [4], [89]. Here we review the physics and operational treatment of

satellite data, and highlight its importance in current NWP. Details on the nature and

origin of observation error covariances are then given. The chapter is concluded with a



1D-Var assimilation and the main 4D-Var assimilation. Comparisons are made with the

current operational error variances.

More novel results are presented in Chapter 5, where we consider modelling correlation

structure in a 3D-Var framework. Being a simpler system than the 4D-Var framework,

the results can be analysed more easily. Using information content measures, we quan-

tify the success of each matrix approximation described in Chapter 3 in modelling an

empirically derived observation error correlation structure. The impact of each approx-

imation can then be evaluated relative to the truth. Conclusions based on numerical

evidence are drawn for different background error structures and constructions of the

analysis error covariance matrix. The original results in this chapter address the second

thesis question posed in Section 1.2.

Motivated by the results in Chapter 5, Chapter 6 describes the mathematical frame-

work needed to extend this investigation to a 4D-Var setting. We introduce a set of

one-dimensional shallow water equations (SWEs) [54], used to represent simplified at-

mospheric dynamics, and describe the continuous analytical and discretised numerical

models. We then develop a new incremental 4D-Var data assimilation system for the 1D

SWEs which models observation error correlation structure using diagonal, Markov and

eigendecompostion matrix approximations. Finally we describe the coding tests used to

test the validity of the model assumptions.

Chapter 7 contains further new results which address the final thesis question posed

in Section 1.2. Using the model and data assimilation system described in Chapter 6,

this chapter extends the findings in Chapter 5 and examines the impact of correlated

error covariance matrix approximations in a 4D-Var framework. We first describe the

experiment methodology and the error diagnostics used. We then determine the different

6



realisations of the approximate observation error covariance matrices to be used in the

experiments. Assimilation accuracy is then evaluated for each approximation under

different simulations of the true error distribution. The novel results motivate further

study in this field.

Finally in Chapter 8 we summarise the work done and draw conclusions from these ex-

perimental results regarding the effectiveness of modelling observation error correlations

in data assimilation algorithms. We also make suggestions for possible further work in

this area.
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Chapter 2

Data assimilation and remote

sensing

2.1 Introduction

In NWP an accurate high-resolution representation of the current state of the atmo-

sphere is needed as an initial condition for the propagation of a weather forecast. Despite

the availability of millions of observations, these alone are insufficient to fully represent

the state of the atmosphere. Additional knowledge about atmospheric dynamics and

physics is needed to compensate for the inadequacies of the observations; these include

under-determinancy, measurement error, and observations that are non-linearly related

to atmospheric variables. Data assimilation provides techniques for combining obser-

vations of atmospheric variables with a priori knowledge of the atmosphere to obtain

a consistent representation known as the analysis. The weighted importance of each





ical cost, robustness, and the optimality of the solution generated are all important



guess or background field xb ∈ R
n and the actual observations y ∈ R

m, where m is

the total number of measurements. The background state and observations will be

approximations to the true state of the atmosphere,

xb = xt + ǫb, (2.1)

y = h(xt) + ǫo, (2.2)

where ǫb and ǫo are the background and observation errors, respectively, and h is the

possibly nonlinear observation operator mapping from state space to measurement space;

for example, a fast radiative transfer model which simulates radiances from an input





h is linear the cost function minimisation is solved exactly, and the associated analysis

error covariance matrix is given by

Sa = (HT R−1H + B−1)−1.





terms). 4D-Var therefore provides an initial condition such that the forecast best fits

the observations within the whole assimilation interval.



by a linear approximation M to the nonlinear model m (2.14). Each cost function

minimisation is performed iteratively and the resultant solution is used to update the

nonlinear model trajectory. The iterative minimisation procedure is known as the inner

loop; the update step is known as the outer loop. Full details of the procedure are

described in the following iterative algorithm [52] where k is the iteration number:

1. At the first timestep (k = 0) define the current guess x
(0)
0 = xb.

2. Run the nonlinear model to calculate x
(k)
i at each time step i.

3. Calculate the innovation vector for each observation

d
(k)
i = yi − h(x

(k)
i ).

4. Define an increment δx
(k)
0 = x

(k+1)
0 − x

(k)
0 .

5. Start the inner loop minimisation. Find the value of δx
(k)
0 that minimises the

incremental cost function

J (k)(δx
(k)
0 ) =

1

2
(δx

(k)
0 − (xb − x

(k)
0 ))T B−1(δx

(k)
0 − (xb − x

(k)
0 ))

+
1

2

n
∑

i=0

(Hiδx
(k)
i − d

(k)
i )T R−1

i (Hiδx
(k)
i − d

(k)
i ) (2.15)

subject to

δx
(k)
i+1 = M(ti, ti+1, x(k))δx

(k)
i ,

where Hi is the linearisation of the observation operator hi around the state x
(k)
i .

6. Update the guess field using

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 .

7. Repeat outer loop (steps 2 - 6) until the desired convergence is reached.

16



An advantage of this method is that the inner loop cost functions can be simplified;

for example, by performing the inner loop minimisation at a l





Adjoint model

The adjoint model MT provides us with a system of model equations, solvable back-

wards in time to obtain the gradient of the cost function [90]. In practice the discrete



[78], satellite observations have been used to complement the ‘conventional’ observation

network. Conventional observations are typically in-situ measurements of temperature,

wind, pressure and humidity, observed directly by an instrument on a radiosonde or an

aircraft, for example. The static or human dependent nature of these observations results

in significant data voids on the globe, e.g, very few surface observations are available

over sub-Saharan Africa, and no aircraft observations are av



L(ν) = (I0)ντν(z0) +

∫ ∞

z0

Bν{T (z)}dτν(z)

dz
dz, (2.21)

where

(I0)ν is the emission from the earth’s surface at height z0,

τν(z) is the vertical transmittance from height z to space,

T (z) is the vertical temperature profile,

and Bν{T (z)} is the corresponding Planck function profile.

Equation (2.21) is constructed under the assumption of an entirely one-dimensional

transmittance along the instrument viewing path with no molecular scattering in and

out of the beam. We assume no cloud or rain contributions, but these can be handled

in the infra-red and microwave spectrum provided they are either entirely emission

or absorption, and there is no significant scattering. The problem of cloudy radiance

assimilation is discussed in detail in [30], [57], [70]; we will return to the problem in

Section 2.4.4.

The radiative transfer equation is further explained by considering a solitary air parcel

at some level in the atmosphere. The radiation emitted to space from this air parcel is

determined by its temperature and the atmospheric density of the emitting gas within

the parcel. A body at different temperatures emits different amounts of radiation. At-



earth’s surface may be entirely absorbed before it reaches the top of the atmosphere. Ra-

diance measurements at different frequencies (or channels) will have different absorption

characteristics, and therefore by sensing at different frequencies we obtain information

on the vertical profile of the thermodynamic state and composition of the atmosphere.

A detailed overview of the satellite instrument technologies used to observe the atmo-

sphere is given in [29]; we will briefly summarise the main aspects. In general, we

categorise the frequencies (or channels) used in NWP into three different types: at-

mospheric sounding channels (passive instruments), surface sensing channels (passive

instruments), and surface sensing channels (active instruments). Passive instruments

sense natural radiation emitted by the earth’s surface or the atmosphere, while active

instruments emit radiation and sense the amount reflected or scattered back by the

earth’s surface or atmosphere. Details on the features of these channels are given in

Table 2.1.

Channel Instrument Channel location Use in NWP
type type

Atmospheric Passive Infrared and microwave Atmospheric
Sounding spectrum where main temperature and

contribution to measured humidity
radiance is from the
atmosphere

Surface Passive Window regions of Surface temperature
Sensing infrared and microwave emissivity

spectrum where the main Ocean surface wind
contribution is from Soil moisture
surface emission

Surface Active Window regions of Ocean winds
Sensing spectrum that actively Cloud monitoring

illuminate the surface (CloudSat,CALIPSO)

Table 2.1: Typical NWP channel properties

Now consider a channel (i.e, a certain frequency) where we know the primary absorber of

radiation is a well-mixed gas with known concentration (i.e, oxygen or carbon dioxide).

In equation (2.21) Planck’s function Bν{T (z)} relates the measured radiance intensity at

22



a given frequency with the temperature of the absorbing substance; this is then weighted

by the derivative of the transmittance profile dτν(z)
dz . Therefore a radiance measurement





ance information. The forecast background still provides the prior information needed

to supplement the radiances, but it is not used twice and hence more complicated er-

ror characteristics are avoided. This approach also avoids the random and systematic

errors introduced by unnecessary pre-processing such as angle adjustment and surface

corrections, and allows faster access to data from new platforms (Advanced Microwave

Sounding Unit (AMSU) data from NOAA-16 was assimilated operationally 6 weeks after









promising method is principal component analysis (PCA) [92]. The nature of PCA

techniques is to approximate data vectors with many elements (i.e, IASI observations

of 8461 channels) by a new correlated set of data vectors containing fewer elements.

The procedure retains most of the variability and information of the initial data. Gold-

berg et al [40] demonstrated that PCA produces an efficient retrieval of atmospheric

temperature, moisture and ozone, and an accurate reconstruction of over 2000 AIRS

channels from 60 principal component scores. Also, a PCA-based noise filter for high

spectral resolution infrared data was shown by Antonelli et al [2] to significantly reduce

the random component of the instrument noise of the observations.

The reconstruction in PCA results in data vectors which are linear combinations of



Attempts were previously made to assimilate ‘cloud-cleared’ radiances for AIRS data

[57] but the assumptions of homogeneous cloud used in the technique were violated

under most atmospheric conditions. Recent work in [70] addressed the feasibility of

assimilating cloudy radiances directly. The proposed technique used simple retrieved

cloud parameters from a 1D analysis to constrain the radiative transfer calculation in

the assimilation process. The results using synthetic AIRS measurements demonstrated

improvements in root-mean-square temperature and humidity errors for shallow layer

cloud. However, results were less promising when the cases of thick or multi-layer cloud

were considered.

A common conclusion from ‘cloudy’ radiance studies is that the physical parametrisa-

tion of clouds in radiative transfer modelling is vital to the successful assimilation of

‘cloudy’ radiances. Currently both the Met Office and the ECMWF assimilate some

cloudy radiances using schemes similar to those described in [70] with limited cloud

parameterisation [68]. It is hoped that a more aggressive use of high resolution infrared

radiances to provide information on temperature structure near the cloud top will result

in more accurate characterisation of the clouds. This will however lead to additional

dependencies and complexities in the charcterisation of the observation errors.



sity beyond some threshold can result in little or no improvement in analysis accuracy

[60], or even a degradation [21], when the correlated observation errors are treated as

independent. With the new generation of multi-channel advanced sounders, treating



2.5 Error covariances

We have seen that the specification of the error covariances for both the background

and observations will determine their weighted importance in the final analysis. We

now study more closely the origin and structure of the observation error covariances,

and discuss their role in producing an accurate forecast.

The uncertainty associated with taking an observation sample is represented through

an error vector ǫo ∈ R
m. The error vector is assumed to have Gaussian distribution

with mean zero and error covariance matrix R = E[ǫo(ǫo)T ] ∈ R
m×m. The Gaussian

assumption does not hold in practice but the resultant pdfs make equation manipulation



and y2, respectively, and σ12 is the error covariance of the two measurement components.

The observation errors can be classified as systematic or random, depending on whether



of the radiative transfer equation and errors in the mis-representation of gaseous

contributors.

• Representativity error - This is present when the observations can resolve spa-

tial scales or features that the model cannot. For example, a sharp temperature

inversion in the vertical can be well-observed using radiosondes but cannot be

represented precisely with the current vertical resolution of atmospheric models.

• Pre-processing - Any pre-processing the observations are subject to will generate

errors. For example, if we eliminate all satellite observations affected by clouds and

some residual cloud passed through the quality control, then one of the assimilation

assumptions is violated and the cloudy observations will contaminate all satellite

channels which are influenced by the cloud.

2.5.2 Observation error correlations

In order to represent accurately the observations in a data assimilation system we must

be able to correctly determine both the diagonal error variances and the off-diagonal

cross-covariances. In order to study so



D1/2CD1/2,

C =

























1 ρ12 . . . ρ1m

ρ12 1 . . . ρ2m

...
. . .

. . .
...

ρ1m ρ2m . . . 1

























,

D =

























σ1
2 0 . . . 0

0 σ2
2 . . . 0

...
. . .

. . .
...

0 0 . . . σm
2

























, (2.27)

where σ2
i is the variance of the ith error component, and ρij is the correlation level

between error components i and j [49].

2.5.3 Current issues in the treatment of observation error correlations

In the current operational assimilation systems at the Met Office and the ECMWF,

almost all observation error correlations are assumed to be zero, i.e, the error correlation

matrix C is the identity. This is a reasonable assumption for pairs of observations

measured by distinct instruments, or for instrument noise from a regularly calibrated

instrument. However under certain conditions this assumption is entirely inaccurate.

Observation error correlations can be vertically or horizontally distributed. If observa-

tions are used at a higher spatial frequency than the horizontal model resolution, then

they will be affected by horizontal correlated errors of representativity because the model

will be unable to represent the finer scale spatial structure given by the observations.

Vertical errors of representativity will be present if the vertical model resolution is too

low to represent a small scale physical feature as represented in the observation. For
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deviations of the true error covariance matrix. This is equivalent to multiplying the vari-

ance matrix D (2.27) by a constant. The variance enlargement was however constrained



thesis extends on the existing body of work on modelling observation error correlation

structure.

2.6 Diagnosing observation error correlations

In order to successfully model observation error correlations, we must have some un-

derstanding of the true error structure. This is not a straightforward problem because

error covariances cannot be observed directly, only estimated in a statistical sense. Both

the background, y − h(xb), and the analysis, y − h(xa), innovations are useful sources of

information on the statistical properties of the errors, and can be used in several ways

to provide a sound statistical basis for a refinement of the analysis system.

2.6.1 Hollingsworth-Lönnberg approach

The most commonly used estimation technique is the observational method, otherwise

known as the Hollingsworth-Lönnberg method after the authors who popularised its

use in meteorology [47]. This method uses background innovations statistics from a

dense observing network, under the assumption that the background errors carry spatial

correlations while the observation errors do not.

The premise is to calculate a histogram of background innovation covariances stratified

against vertical or horizontal separation. The background innovation is given by

c = E
[

(y − h(xb))(y − h(xb))
T
]

(2.28)

where y is the observation vector, xb is the background vector, and h is the observa-

tion operator. Under the assumption of mutually independent errors, equation (2.28)
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becomes

c = R + HBHT (2.29)

where H is the linearised observation operator. The i, j-th element of c represents the

departure covariance between two points i and j in space.

At zero separation, i.e, when i = j, we have c(i, i) = σ2
o(i) + σ2

b (i) where σ2
o(i) is the

observation error variance at point i and





the method below.

Equations (2.1) and (2.2) show how the background state xb and the observation vector

y are approximations to the true state of the atmosphere xt. Assuming that the obser-



By taking the expectation of the cross product of (2.31) and (2.32), and using the

assumption of mutually uncorrelated observation and background errors (2.3), we find

a statistical approximation of the observation error covariances,

E
[

do
a(do

b)T
]

= E
[

R(HBHT + R)−1do
b(do

b)T
]

≈ R(HBHT + R)−1
E

[

(ǫo + Hǫb)(ǫo + Hǫb)T
]

≈ R(HBHT + R)−1
(

E
[

ǫo(ǫo)T
]

+ HE

[

ǫb(ǫb)T
]

HT
)

≈ R(HBHT + R)−1(HBHT + R)

≈ R. (2.33)

The relation (2.33) should be satisfied provided the covariance matrices used in R(HBHT +

R)−1 are consistent with the true observation and background error covariances E
[

ǫo(ǫo)T
]

and E
[

ǫb(ǫb)T
]

. This diagnostic can be used as a consistency check to ensure the obser-

vation error covariances are correctly specified in the analysis. Similar diagnostics can

be generated to check the background error covariances in observation space, HBHT ,

the analysis errors covariances HSaHT , and the sum of the observation and background

error covariances, R + HBHT [25].

In [25] the diagnostics were applied to analyses from the French operational ARPEGE

4D-Var data assimilation system. The results showed that background and observation

errors were being overestimated in the analysis. Also by applying the diagnostic (2.33)

in a toy problem, Desroziers et al showed that most of the information on observation

error covariances can be recovered when they are initially mis-specified. Such results are

encouraging because the diagnostic by its construction is nearly cost-free, and it allows

the distinction between observation and background correlation structure. However, the

relation (2.33) only holds exactly when the errors assumed in the assimilation are equal
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to those found in reality, i.e, E
[

ǫo(ǫo)T
]

= R, and the observation operator is linear.

Care must therefore be taken when interpreting the results using these diagnostics.



In the penultimate section of the chapter we focused on observation error covariances.

These are often ignored in operational data assimilation algorithms, but evidence and

intuition suggests that their inclusion will improve the use of satellite data. This will

be further investigated in Chapters 5 and 7. Here we described the origin and structure

of observation error covariances, and discussed the impact of treating observation errors

as independent. We reviewed the current proposed methods of incorporating error

correlation structure in data assimilation algorithms; these methods will be further

discussed in Chapter 3.

Finally we discussed the different techniques available to quantify error covariance struc-

ture. We described the Hollingsworth-Lönnberg method which assumes independent

observation errors, and a new method proposed by Desroziers et al [25] in which ob-

servation error correlations can be independently derived. The Desroziers’ method of

statistical approximation will be used later in Chapter 4 to quantify observation error

correlation structure for satellite instrument data.
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Chapter 3

Matrix representation and

retrieval properties

In Chapter 2 we described the structure and properties of the observation error covari-



m then the observation error covariance matrix contains m2 elements, but by symmetry

this is reduced to (m2 + m)/2 independent elements. When observations have indepen-

dent errors, i.e, the errors are uncorrelated, (m2 − m)/2 of these elements are zero, and

we only need represent m elements. However, when the observation errors are correlated,

we may have to represent, and subsequently use, the maximum number of elements in

the observation error covariance matrix.

From equation (2.8) and (2.12), we know that the inverse of the observation error covari-

ance matrix is the form needed for the calculation of the cost function and its gradient.

When the observation error covariance matrix is diagonal, its inverse will also be diag-

onal. However a non-diagonal matrix, even if sparse, may have a dense inverse. This

inverse is required for 2N matrix-vector calculations in the cost function and gradient

evaluations, where N is the number of assimilation timesteps. A dense inverse may

therefore result in excessive additional cost in running a data assimilation algorithm. In

operational NWP, this problem is avoided by treating the observation errors as uncor-

related and using diagonal approximations to the true error covariance matrix.

The simplest diagonal approximation of an error covariance matrix is a diagonal of the

true variances, or D



of the observations in the analysis. The diagonal approximation is now in the form

D̂ =

























d1σ2
1 0 . . . 0

0 d2σ2
2 . . . 0

0 0
. . . 0

0 . . . 0 dmσ2
m

























, (3.1)

where di is the inflation factor for variance σ2
i .

The diagonal inflation factors are empirically derived from test data sets; we have no

mathematical reasoning to assume that they are truly optimal. However, work in finan-

cial mathematics on approximations to a correlation matrix may provide us with the

techniques to quantify the optimality of our approximations [44], [87]. Further discussion

of this is given in Chapter 8.

In [14], Collard examined the impact of different diagonal observation error covariance

approximations on the assimilation of AIRS data. Using three different estimates of the

true standard deviation, results showed that diagonal inflation is constrained, between

2-4 times, by the need for a physically accurate error estimate. Collard also concluded

that the full potential of the observations, especially with regards to resolving fine scale

vertical structure, could not be realised under the assumption of uncorrelated error. Such

results suggest an alternative approach to dealing with observation error correlations is

needed.

3.2 Circulant approximations

One possible approach to representing the observation error covariance matrix in a

more realistic and operationally useable form is described in [43]. In [43], the authors
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propose that a near symmetric Toeplitz observation error covariance matrix can be well

approximated by a circulant matrix. The spectral properties of the circulant matrix

allow for ease of use in operational 1D-Var algorithms. Below we describe the form and

properties of Toeplitz and circulant matrices, and demonstrate how the approximation

is formed.

3.2.1 Toeplitz matrices

Toeplitz matrices are a class of persymmetric matrices, i.e, they are symmetric about

their northeast-southwest diagonal, and can be written in the form

Tm =

































t0 t−1 t−2 . . . t−(m−1)

t1 t0 t−1 . . . t−(m−2)

t2 t1 t0 . . . . . .

...
. . .



plicitly, but a detailed discussion of the iterative techniques available is given in [69].

3.2.2 Circulant matrices

A circulant matrix is a Toeplitz matrix where each column is a circular shift of its

preceding column. A circulant matrix C can be written in the form

C =

































c0 c1 c2 . . . cm−1

cm−1 c0 c1 . . . cm−2

...
. . .

. . .
. . .

...

c2 c3 . . . c0 c1

c1 c2 . . . cm−1 c0

































, (3.3)

where each row is a cyclic shift of the row immediately above it [41]. The inherent

properties of circulant matrices make them particularly useful in matrix representation.

These can be summarised as:

(i) All circulant matrices have the same eigenvectors, given by

y(k) =
1√
m

(

1, e− 2πik
m , . . . , e−

2πik(m−1)
m

)

, k = 0, . . . , m − 1.

These are equivalent to the columns of a discrete Fourier transform (DFT) matrix

of the form
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F =
1√
m

































1 1 1 . . . 1

1 e− 2πi
m e− 2πi

m
×2 . . . e− 2πi

m
×(m−1)

1 e− 2πi
m

×2 e− 2πi
m

×4 . . . e− 2πi
m

×2(



3.2.3 Toeplitz-circulant approximations

A circulant approximation C to a symmetric Toeplitz matrix T can be described by only

its first row and contains fewer individual elements than the original Toeplitz form. The

first row of C is found by reflecting the first row of T with the reflection axis between

the columns
[

m
2

]

+
and

[

m
2 + 1

]

+
where

[

m
2

]

+
is the smallest integer value greater than

m
2 [43]. For example if m = 5 and we have a Toeplitz matrix of the form,

T =

































x y z s t

y x y z s

z y x y z

s z y x y

t s z y x

































,

then the first row of C is the reflection of the first row of T between the elements z

and s, i.e. (x y z z y). The remaining rs0.2J
6.54297 TL
T*[(C)-0.32677294(.)-0.248413(e)-0.2.48413(n)0.328988(i)-0.246120.342408(h)00953(w)-397.261(o)0.04922.237224(m(r)-320.308838(h8(x)- 48(h8(x)- 499r)00953(w)-397.261(o)061(o)0.0492 .0805665(e)b)-27.674(a)28.0931(v)Td
[(m)0.19g8(h8(x)- 499r)00953(w)-397.261(o)061(o)0.0492 .0805665(e)b)-27.674(a)28.0931(v)Td
[(m)0.19g8(h8(x)- 499r)00953(w)-397.261(o)061(o)0.0492 .0805665(77 456(p)022.23722 -27.0992 Td)-0.248413(te)-0.232748(5 -27.0988 Td
[(fi)68(i)-0.239275(91 Tf
21.8789[(z)-0.2506561(o)061(o)0093129.246)-27.699r59091(n)03
/R04-0.232748(m)0.19g8(h9 10.0.2459226742]TJ
6.55195  Tf
102.995 0 Td
[(C)0.20.0841s)-397.526(t)TJ
/R21 10.919.969 -22.7h2898]T96)-27..3137784 Td
[(T)0.2752692211495  Tf
102.995 0 Td
[(C)0.20.0841s a t



the circulant matrix approximation may contain spurious long-range correlations, since

small values in the corners of Toeplitz matrix are replaced with moderately large ones.

In [41], the approximation of a Toeplitz matrix by its circulant equivalent is formalised.

It is shown that as the size of the matrix m → ∞, the difference between T and C

converges in the Frobenius norm, and C−1 becomes a good approximation to T −1, i.e,

C−1T ∼= I.

In some meteorological cases, such as for apodised 1D-Var IASI radiance measurements,

the observation error correlation matrix may be close to a symmetric Toeplitz form

[43]. In image processing problems, approximating a Toeplitz matrix by its circulant

equivalent is widely used [16], and the theory in [43] extends this idea to 1D-Var retrievals

of high resolution satellite measurements. It is demonstrated that correlation matrices

with a symmetric Toeplitz structure can be approximated with circulant matrices, and

the manipulation of such matrices is not overly complicated. In Chapter 5 we will

perform further assimilation experiments using circulant matrix structures



atmosphere, can be written in the form,

Tk+1 − µ = ρ(Tk − µ) + ǫk+1 (3.5)

where k is the atmospheric level, µ is the mean of the spatial series, ρ is the autoregressive

parameter, and ǫk+1 is the residual error associated with the regression [92]. Using ideas

from time series analysis applied to spatial data, we can describe equation (3.5) as a

first-order autoregressive process or an AR(1) model. This is the continuous analog of a

first-order Markov chain, i.e, the data can take on infinitely many values on a real line.

The Markov property of the process states that the probability of a future state is only

dependent on the probability of the present state and is independent of the probability

of any previous states. This does not mean series values separated by more than one step

are independent, rather that the information on the future state is contained entirely in

the present state.

By treating the values of ǫ as mutually independent, uncorrelated with the value of T ,

and Gaussian distributed with mean zero and variance σ2
ǫ , the covariance matrix of the

AR(1) process (3.5) can be derived to be

R(i, j) = σ2
t ρ|i−j|, (3.6)

where σ2
t is the variance of the time series [78].

In [78] an AR(1) process is used to model a vertical column of temperature departures

from the mean. Here, the AR(1) covariance matrix, or Markov m



we write the correlation matrix associated with (3.7) as

C =

































1 ρ ρ2 . . . ρm−1

ρ 1 ρ . . . ρm−2

...
. . .

. . .
. . .

...

ρm−2 . . . ρ 1 ρ

ρm−1 . . . ρ2 ρ 1

































(3.8)

where ρ = exp
{

− δz
h

}

. This matrix has a tri-diagonal inverse,

C−1 =
1

1 − ρ2

































1 −ρ 0 . . . 0

−ρ 1 + ρ2 −ρ . . . 0

...
. . .

. . .
. . .

...

0 . . . −ρ 1 + ρ2 −ρ

0 . . . 0 −ρ 1

































. (3.9)

In current data assimilation algorithms, the inverse of the observation error correlation

matrix is required for the calculation of the cost function and its gradient. In order

for this to be operationally feasible, the storage requirements and number of matrix

product operations of the inverse matrix must be sufficiently small. The storage needed

for reconstructing matrix (3.9) is limited to the value of ρ, and the number of operations

involved in a matrix-vector product using a tri-diagonal matrix is the same order as



3.3 Eigendecomposition approximation

Following [34] we assume that the observation error covariance matrix has a block-

diagonal structure with blocks corresponding to different instruments, or groups of

channels. It is unlikely there will be significant correlation between blocks, and cer-

tain blocks may even be diagonal because the observation errors are uncorrelated. For

those instruments or channels whose observation errors are likely to be correlated, we

can use a correlated approximation such as those described in Sections 3.1 and 3.2.

However, these approximations do not attempt to incorporate any prior knowledge of

the error correlations. A correlated matrix approximation which attempts to utilise a

potentially known error correlation structure was proposed in [34].

Recall the matrix decomposition R = D1/2CD1/2 from Section 2.5.2. In [34] the obser-

vation error covariance matrix is approximated using a truncated eigendecomposition Ĉ

of the error correlation matrix C,

R = D1/2(αI +
K
∑

k=1

(

λk − α)



In [34] the leading eigenpairs of C are found using the Lanczos algorithm. However, if

the correlation matrix is available explicitly, then the eigenspectrum can be calculated

directly using a suitable algorithm. The method was demonstrated successfully in [34]

for observation errors with Gaussian correlation structure and unit variance. However,

spurious long-range correlations were present when too few eigenpairs were used in the

approximation. In Chapters 5 and 7 we will apply this method to different realisations

of observation error correlation structure.

3.4 Summary of matrix representations

The approximations described in Sections 3.1 to 3.3 have all been proposed for mod-

elling observation error correlation structure in data assimilation algorithms. We have

reviewed both diagonal and correlated approximations. We described the properties of

three different correlated matrix approximations and discussed their potential benefit to

reducing the expense of the cost function calculations needed in 3D-Var and 4D-Var. In

Chapters 5 and 7 we will use these matrix representations to model different realisations

of error correlation structure.

The success of a data assimilation algorithm can be described by several measures. By

using the same observations and model framework, and varying the modelled observation

error correlation structure, any effect on the value of the measure can be attributed to

the observation error correlation approximation used. In the second half of this chapter

we will describe several popular metrics used in data assimilation studies.
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3.5 Analysis error covariance matrices

An obvious measure of how useful an observation set is to a data assimilation algorithm

is the error reduction in the state variable, i.e, the analysis error covariance matrix. The

smaller the trace of the matrix Sa, the better the reduction in error variance. Recall from

Section 2.2, under the assumptions of mutually independent background and observation

errors, and the linearity of H, the analysis error covariance matrix is derived as in [49]

to be

Sa = (HT R−1H + B−1)−1; (3.12)

substituting in the Kalman gain matrix K we obtain

Sa = (I − KH)B. (3.13)

In 3D-Var data assimilation, Sa



error covariance matrix, as in [78], giving

S∗
a = Sa + KR′KT (3.14)

K = BHT (HBHT + Rf )−1 (3.15)

R′ = Rt − Rf (3.16)

where S∗
a is the correct analysis error covariance matrix, Rt and Rf are the true and false

observation error covariance matrices, respectively, and Sa



Approaches A1 and A2



The Shannon Information Content (SIC), or entropy reduction, due to the use of the

observations is then given by

SIC = S[Pb(x)] − S[Po(x|y)]. (3.22)

Under the assumption of Gaussian pdfs, it is algebraically convenient to use natural

logs as opposed to log2



the eigenvalues in each matrix represents the size of the uncertainty in the direction of

the associated eigenvector; by comparing the eigenvalues of the two, we can determine

the reduction in uncertainty.

To this end, we take a non-singular square matrix L, as in [33], such that LBLT = I and

LSaLT = Ŝa, where B and Sa are both symmetric positive definite. This transformation

is not unique as we can replace L by XT L where X is an orthogonal matrix. Now if we

take X to be the matrix of eigenvectors of Ŝa, then we simultaneously reduce B to the

identity matrix and Ŝa to a diagonal matrix of its eigenvalues, Λ;

XT LBLT X = XT X = I,

XT LSaLT X = XT ŜaX = Λ.

After this transformation, the diagonal elements (eigenvalues) of the transformed ma-

trix LBLT are unity and each corresponds to an individual degree of freedom. The

eigenvalues of Ŝa



analysis error covariance matrix as described by equations (3.17) - (3.19). This issue is

addressed in the information content experiments performed in Chapter 5.

Information content studies have been performed for some of the structures described

in Sections 3.1 and 3.2. In [14] the number of dofS was calculated for different diagonal

approximations to a non-diagonal error covariance matrix. In [78] the SIC and number

of dofS were calculated in a simulated study using a Markov matrix as the true obser-

vation error covariance matrix. In this work both information measures were found to

be significantly larger when the full error covariance matrix was used in preference to

a diagonal approximation of the same variances. In [85] approaches A1, A2 and A3,

described in Section 3.5, were used to evaluate information content under different di-

agonal and eigendecompostion approximations to a SOAR distributed error correlation

matrix [3]. An eigendecomposition approximation with a sufficient number of eigenpairs

was shown to retain the most information relative to the truth. Further information

content studies are performed in Chapter 5.

3.7 Norms

The final quality retrieval measures we consider in this chapter are particular vector

and matrix norms. These can be used to evaluate assimilation accuracy and compare

covariance matrix approximations, respectively.

3.7.1 Vector norms

A vector norm is a measure of distance in vector space [36]. The norm f : R
n → R

satisfies the following properties for vectors x, y ∈ R
n and real number α:
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• f(x) ≥ 0 with equality if and only if x = 0;

• f(x + y) ≤ f(x) + f(y);

• f(αx) = |α|f(x).

A commonly used norm for measuring vectors is the 2-norm:

‖x‖2 = (|x1|2 + |x2|2 + . . . + |xn|2)1/2 = (xT x)1/2. (3.28)

However, the 2-norm is not used explicitly as a retrieval measure; it is directly related

to the root mean square error which is commonly used as a diagnostic [5], [70], [54].

Assuming the data is unbiased, the root mean square error (rms) is given by

rms =

(

1

n

(

|x1|2 + |x2|2 + . . . + |xn|2
)

)1/2

, (3.29)

=

(

1

n
xT x

)1/2

,

=
1√
n

‖x‖2 .

3.7.2 Matrix norms

Although not used explicitly in assessing data assimilation algorithms, matrix norms

are a useful measure of how accurately an error covariance matrix is approximated.

Matrix norms act as a distance measure on a space of matrices [36]. A matrix norm

f : R
m×n → R holds the following properties for matrices A, B ∈ R

m×n and real number

α:

• f(A) ≥ 0 with equality if and only if A = 0;

• f(A + B) ≤ f(A) + f(B);
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• f(αA) = |α|f(A).

The matrix norm we will use is the Frobenius norm (sometimes called the Euclidean

matrix norm), which is defined as

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2, (3.30)

where aij are the elements of the matrix A. If A is a symmetric positive-definite matrix,

such as an error covariance matrix, then the Frobenius norm can be described in terms

of the eigenvalues of A,

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2, (3.31)

=
(

tr(AT A)
)1/2

, (3.32)

=

(

n
∑

k=1

λ2
k

)1/2

, (3.33)

where λk is an eigenvalue of A.

For the purpose of this work, we are interested in the difference between an observation

error covariance matrix Rt and its approximation Rf . The Frobenius norm of the

difference is given by

‖Rt − Rf ‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|rij − r̂ij |2

=
(

tr
(

(Rt − Rf )T (Rt − Rf )
))1/2

(3.34)

=

(

n
∑

k=1

µ2
k

)1/2

(3.35)

where rij and r̂ij are elements of matrices Rt and Rf , respectively, and µk is an eigenvalue

of Rt − Rf . It is also possible to calculate the Frobenius norm of the difference between

the respective analysis error covariance matrices using Rt and Rf from the formulae

(3.14)-(3.16):

‖S∗
a − Sa‖F =

∥

∥K(Rt − Rf )KT
∥

∥

F
. (3.36)
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where S∗
a and Sa are the analysis error covariance matrices of Rf and Rt, respectively.

3.8 Summary



content. If we have an accurate specification of the true error correlation structure, then

this problem is mitigated because we are more certain of the true specification of C (and

hence R). In the next chapter we will demonstrate how an accurate specification of C

can be determined.
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Chapter 4

Quantifying observation error

correlations

In Chapter 2 we described the variational formulation of operational data assimilation

algorithms, where the information provided by the observations and a first-guess model





instrument was launched on the MetOp-A satellite in 2006 as part of the EUMETSAT

European Polar System (EPS). Its spectral interval of 645-2760cm−1 is divided into

three bands and sampled by 8461 channels at a resolution of 0.5cm−1. Band one,

from 645-1210cm−1, is used primarily for temperature and ozone sounding, band two

(1210-2000cm−1) for water vapour sounding and the retrieval of N2O and CH4 column



4.1.1 Observation error correlations

The IASI observation errors are treated as horizontally and vertically uncorrelated. The

assumption of horizontally independent observation errors is supported by intelligent

thinning of the data ensuring that no observations are assimilated at a higher density

than model resolution. This is clearly a very inefficient use of the data, but it reduces

the complexity of the subsequent assimilation of the radiances.

Ensuring vertically independent observation errors is more difficult. Because of the na-

ture of the IASI instrument, radiance measurements are sensitive to the temperature

profile over several atmospheric levels. This distribution is represented by the broad

channel weighting functions of the instrument (Figure 4.1). Therefore the errors in

adjacent channels (i.e, those close to each other in wavelength) can potentially be corre-

lated; for example, if the sensitivity of the signal to a trace gas present in several adjcent

channels is mis-represented. The current IASI channel selection procedure deals with

this issue by avoiding the assimilation of adjacent channels. However, this cannot be

rigorously enforced because adjacent channels in certain wavelength bands are needed

to provide fine scale information on atmospheric profiles; for example, channels in the

longwave CO2 band provide information on temperature and humidity. Therefore some

level of error correlation structure will exist between selected channels.

Additionally, correlated errors of representativity are present between channels that

observe spatial scales or features that the model cannot. Although the IASI observation

spacing of 25km is similar to the Met Office NWP model grid spacing of 40km, IASI is

sensitive to small-scale variations within its 12km field-of-view which the NWP model

does not attempt to represent. For example, the NWP model may be unable to represent
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accurately a complex humidity structure at its current resolution, leading to correlations

between channels sensitive to water vapour.

Finally, errors in the forward model may be correlated between channels. These include

errors in the spectroscopy, an inaccurate discretisation of the radiative transfer equation,

and mis-representation of the gaseous contributors in certain channels.

4.1.2 Processing

Any preprocessing performed on the original IASI radiances prior to their assimilation is

likely to create errors. At the Met Office before IASI observations are assimilated directly

into the NWP model, they are subject to pre-screening and quality control procedures.

This is performed in the Observation Processing System (OPS). A schematic of the IASI

observations processing path is shown in Figure 4.2.

IASI has the potential to provide observations in 8461 channels, but at present only

observations from a subset of 314 are used. IASI measured brightness temperatures

from this subset are fed into the OPS and processed using a code specifically written

for satellite measurements. This code, known as the SatRad code, implements a 1D-

Var assimilation on the bias-corrected brightness temperature measurements, y, and an

accurate first-guess model-profile from a short range forecast, xb. The solution is the

state vector x that minimises the cost function,

J(x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2
(y − h(x))T R−1(y − h(x)), (4.1)

where h is the observation operator mapping from state space to measurement space, B is
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be fitted incorrectly to the observations. The full state vector is used in the 1D-Var

assimilation, and the analysis values of those variables not present in the control vector

are passed to 4D-Var.

When the 1D-Var assimilation is performed in the OPS, the forward model is separately

fitted to each individual column of observations, so the position of the observations, and

hence any resolution conflicts, is already determined. Therefore, it can be argued that

the representativity errors will appear in the background matrix B, and so correlations

in representativity error within the observation error covariance matrix R will be low.

Hence, from the OPS diagnostics (2.33) we expect any error correlations to be mainly

attributed to forward model error and pre-processing error.

The OPS produces a quality controlled subset of brightness temperature measurements

suitable for assimilation in the Met Office incremental 4D-Var assimilation system [76].

As with the 1D-Var procedure, 4D-Var assimilation aims to minimise a cost function

penalising distance from the solution state to the observat



4.2 Application of the Desroziers’ diagnostic

We now describe the methodology for generating the Desroziers’ diagnostic (2.33):

E
[

do
a(do

b)T
]

≈ R (4.2)

where do
b = y−h(xb) is the background innovation vector and do

a = y−h(xa) is the analy-



OPS run analyses those atmospheric quantities not present in the 4D-Var state vector,

and passes them to 4D-Var with a quality controlled set of brightness temperatures; these

are used to produce an optimal analysis increment. Along with the forecast value at the

start of the time window, the increment is run through the Unified Model (UM) [19] over

a 6 hour time window to generate an analysis trajectory. Using the same observation

set, the analysis fields can be passed back through OPS (the second OPS run), only

this time as the background input. We can therefore use the background innovations

generated by OPS as the do
a innovation statistics for the 4D-Var assimilation. This

process is shown in Figure 4.3.

Inputs yo, xb

OPS Outputs
do

b
, do

a
(1D-Var)

Var

UM

OPS Output
do

a
(4D-Var)

ŷo ⊂ y, x̂b

δxa

xa

Figure 4.3: Met Office assimilation process: yo is the initial observation set, ŷo is the quality control
observation subset, xb is the background, x̂b is the quality control background, δxa is the analysis
increment, and xa is the analysis. The yellow boxes represent assimilation steps and the pink boxes
represent assimilation inputs and outputs.

Clearly we only want to generate our statistics from those observations that are deemed















The error correlation matrix can be determined easily from the error covariance matrix

using the identity R = D1/2CD1/2 from Chapter 2.5.2; the diagnosed error correlation

matrix is shown in Figure 4.9. The correlation structure shown in Figure 4.9 is not

uniformly symmetric, suggesting that the iterative procedure for updating the error











We conclude this section by comparing the diagnosed error variances with those cur-

rently used operationally. In the previous section, we found that the error variances were





to water vapour. These findings suggest that correlated observation errors in IASI data

can largely be attributed to errors of representativity.

The application of the post-analysis diagnostic to both the 1D- and 4D-Var assimila-

tion procedures recorded observation error variances considerably smaller than those

currently being used operationally. We can attribute this over-inflation to the assump-

tion of uncorrelated errors. In the 4D-Var assimilation, the diagnosed error covariances

between certain channels are very large, and ignoring these will lead to a mis-weighted

representation of the observations in the analysis. Therefore inflating the variances is

necessary if all observation errors are assumed independent. If we are to change this

assumption, a suitable representation of the error correlation structure is needed.

The diagnosed values of observation error covariances and correlations generated here

provide a realistic starting point for future work on including observation error corre-

lation structure in variational data assimilation. The block diagonal structure in the

error correlation matrix highlights the potential use of Markov representations for each

of the blocks, for example. Although the diagnosed matrices are not entirely symmet-

ric, the data provides us with an approximation of the ‘true’ correlation structure, and

an approximating symmetric matrix (4.4) can be generated. Against this matrix it is

possible to compare analytic error correlation structures by examining features such as

information content and analysis accuracy.

In the next chapter we run some initial statistical experiments comparing the matrix



Chapter 5

Information content studies in a

3D-Var framework



tions. The assimilation technique we use is three-dimensional variational assimilation

(3D-Var) which was introduced in Section 2.2. Although we are only considering two

spatial dimensions, we shall use the terminology 3D-Var for the sake of convention.

We use the 3D-Var method because the equations for calculating information content

are available explicitly without the added complications of four-dimensional variational

assimilation.

We begin the chapter by recalling two measures of information content: Shannon Infor-

mation Content (or entropy reduction) and the degrees of freedom for signal as described

in Section 3.5.2. We describe the formula for each of these measures under the different

possible constructions of the analysis error covariance matrix. The empirically derived

observation error covariance matrix against which we test o



approximate error covariance matrix, Rf , is used in the assimilation process. We will

use the measures of Shannon Information Content (



The second approach is when we knowingly use the incorrect error covariance matrix

Rf and include an extra term in the analysis error covariance matrix to model this [33].

The analysis error covariance matrix becomes

S(2)
a = (HT R−1

f H + B−1)−1 + K(Rt − Rf )KT , (5.9)

where K is the Kalman Gain matrix (2.10) evaluated at Rf . The information measures

under these conditions are given by

SIC(2) =
1

2
ln

|B|
|(HT R−1

t H + B−1)−1 + K(Rt − Rf )KT |
, (5.10)

dof
(2)
S = n − trace(HT R−1

f HB + I)−1 − trace(B−1K(Rt − Rf )KT ). (5.11)

Finally the third approach is when we know that we are using an incorrect error covari-

ance matrix but do not know what the true structure is. We therefore use Rf as the

true error covariance matrix. The analysis error covariance matrix is then defined to be

S(3)
a = (HT R−1

f H + B−1)−1, (5.12)

and hence the information measures can be written as

SIC(3) =
1

2
ln |BHT R−1

f H + I|, (5.13)

dof
(3)
S = n − trace(HT R−1

f HB + I)−1



5.2 Data structure

We now describe the empirically derived correlation matrix against which we will test

our approximations. In [7] Bormann et al considered an obser



derived in [20],

R(r) = R0

(

1 +
r

L

)

exp{−r/L} (5.16)

where r is the distance between observation stations, L is the length scale and R0ec





(see Section 3.1). We inflate the error variances by a constant scale factor d

of between 2 and 8 to compensate for the elimination of the off-diagonal error

covariances. This is in line with previous information content studies perfomed in

[14].

(4) Describe Rf by a circulant approximation;

By construction the true error covariance matrix has a symmetric Toeplitz struc-

ture and can therefore be approximated by its equivalent circulant matrix using

the technique described in Section 3.2.3 [43]. This allows us to use a series of

discrete Fourier transforms to perform any computations involving the inverse of

Rf .

(5) Describe Rf by a truncated eigendecomposition (ED) approximation;
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Figure 5.2: SIC for different grid sizes using Rt (blue line), diagonal approximation (2) (red crossed
line), and diagonal approximation (3) with d = 2 (green plus line), d = 4 (pink dot-dashed line) and
d = 8 (black double-dashed line).
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Figure 5.3: dofS for different grid sizes using Rt



mental to the information content. As the number of observation points increases, the

greater the difference in information content between Rt and the diagonal approxima-

tions. The depletion in information increases with the scale of variance enlargement

used in approximation (3). Variance enlargement is shown to have a detrimental effect

on the information; more so than a simple diagonal approximation (2).
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using a circulant observation error correlation matrix is a very poor approximation to

the truth for very small grid sizes. Using this correlation structure is detrimental to

analysis accuracy. It is however unlikely that observation sets will be this small and we

will therefore focus on larger grid domains (and therefore larger observation sets in our

problem).

The second feature of the plots is the parallel linear increase in information with the

number of observations (and hence domain size) relative to the truth. For a 4 × 4 grid

upwards, the circulant approximation retains most of the information content relative

to the truth (9.4340 dofS compared to 9.9139 for a 10 × 10 grid). By examining the

structure in Figure 5.6 we can explain this behaviour. The error covariance matrix Rt

has a thin band of significant correlation centred around the diagonal. By construction

the circulant approximation reflects the first row of Rt in roughly the central column.
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Figure 5.11: SIC for different grid sizes using Rt (blue line), diagonal approximation (2) (red x line)
and a circulant approximation (green + line).
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Figure 5.12: dofS for different grid sizes using Rt (blue line), diagonal approximation (2) (red x line)
and a circulant approximation (green + line).

performs very well in terms of information content.
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5.4.3 Alternative analysis error covariance matrix

Finally we consider the impact of the formulation of the analysis error covariance matrix

on the information content results. Previous results have used the approach where an

additional term including the difference R
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can lead to misleading and inflated information content values, and subsequently incor-



correlation structure.

Both the qualitative and quantitative information content results were shown to be

sensitive to the specification of the background error correlations and the construction

of the analysis error covariance matrix. The structure of B influenced the impact of a

diagonal approximation with variance inflation. When B = I, a diagonal approximation

retained more information than all inflated diagonal approximations; where as when

B



important that the observations have the correct weighting in the analysis, created by

an appropriate correlation structure.

We began the chapter by describing the two measures of information content (SIC

and dofS) for different constructions of the analysis error covariance matrix. We then

introduced diagnosed error correlations for a set of AMV observations [7]. By fitting a

correlation function to empirical correlation data, the authors in [7] were able to quantify

the spatial error correlations between AMV observations. The experiments pre-date the

Desroziers’ method used in quantifying cross-channel IASI error correlations in Chapter

4, and instead used a modified Hollingsworth-Lönnberg technique.

Different diagonal and correlated approximations to the previously diagnosed error co-

variance matrix were proposed in Section 5.3. The success of each of these was then

evaluated in terms of the information content provided by a set of simulated observa-

tions. The results showed the importance of including some approximate correlation



We have addressed the second of the thesis aims and evaluated several approximations

available to model error correlation structure. We have quantified their impact on the

data assimilation diagnostic of information content. However our model is a relatively

simple test problem and we have used a simple 2D model framework and 3D-Var data

assimilation scheme. Using the results in this chapter as motivation, we extend our

research on correlated matrix approximation structures to a 4D-Var data assimilation

scheme. In the initial assimilation experiments in the following chapters we take the

proposed matrix approximations described in Chapter 3, and used in Chapter 5, and

apply them in an incremental 4D-Var data assimilation algorithm of the type used at

the Met Office. We can then address the final thesis aim, and determine the behaviour

of these approximations in a 1D shallow water model data assimilation experiment.

114



Chapter 6

Modelling correlation structure in

a 1D shallow water model

In NWP a set of governing equations is used to describe complex atmospheric and

oceanic motions. However, new research ideas can be difficult and time consuming to

implement directly into such a sophisticated framework. The Shallow Water Equations

(SWEs) are often used as a test bed for atmospheric research, providing an intermedi-

ate step between conception and operational implementation. They have been shown

capable of describing important aspects of the dynamic properties we wish to model,

such as geostrophic motion in three-dimensions [71].

In the final chapters of the thesis we will study the behaviour of a data assimilation

algorithm under different approximations to the observation error covariance matrix.

We will use the SWEs as the model in the assimilation. In this chapter we introduce

the SWEs and describe the data assimilation system applied t



matrix.

We start by describing the continuous and discrete form of the SWEs; details on the

discretisation technique are provided. Our attention is then focused on the data assim-

ilation system of interest: incremental 4D-Var. The SWEs are one-dimensional so the

incremental 4D-Var system becomes two-dimensional; we shall however use the termi-

nology 4D-Var for the sake of convention. We discuss the practical issues surrounding

the implementation of the algorithm, specifically generating the approximations to the

observation error covariance matrix. This matrix is used in the cost function calcula-

tions of the 4D-Var algorithm, where matrix-vector products involving its inverse are

required. We generate new equations used for calculating these matrix-vector prod-

ucts when the observation error covariance matrix is approximated with a Markov or

an eigendecomposition (ED) matrix. These equations demonstrate a feasible method

of incorporating error correlations in data assimilation algorithms. In the penultimate

section we discuss various methods of determining convergence and solution accuracy.

We conclude the chapter by describing the coding tests necessary to ensure the validity

of the assumptions used in constructing the shallow water model.

6.1 Model framework



to a two-dimensional problem. The one-dimensional model has previously been used to

represent atmospheric phenomena such as air flow over mountains [48], and practical

problems such as hydraulic flow in power plants [11]. A thorough description of inviscid

multi-dimensional shallow water theory is given in [71].

6.1.1 The continuous analytical model

The continuous equations describing 1D shallow water flow are given in [54] by

Du

Dt
+

∂φ

∂xD
= −g

∂ho

∂xD
, (6.1)

D(ln φ)

Dt
+

∂u

∂xD
= 0, (6.2)

where

D

Dt
=

∂

∂t
+ u

∂

∂xD
,

and ho = ho(xD



hence the ‘shallow’ nature of the problem. A schematic of one-dimensional shallow water



Therefore in this work we will employ the discrete method.

The nonlinear SWEs are discretised using a two-time-level semi-implicit, semi-Lagrangian

scheme (SISL). The SISL scheme is chosen to match closely the numerical integration

scheme used operationally at the Met Office [22]. In a Lagrangian scheme the advection

in a shallow water system is studied by tracking the position of a set of water parcels. A

set of originally regularly spaced parcels at one time step may evolve to be very close to

each other at the next time step, and therefore some areas may be poorly resolved [84].

A semi-Lagrangian scheme tracks a different set of parcels at each time step; chosen so

that their positions at the next time step (known as the arrival point) are at regularly

spaced grid points. The point from which the parcel originates is known as the departure

point. Figure 6.2 shows example departure and arrival points at two time levels.

time level tn+1 ×a1 ×a2 ×a3

time level tn •d1 × •d2 × × •d3

Figure 6.2: A semi-Lagrangian scheme with departure points (d1, d2, d3) and arrival points (a1, a2, a3).
The paths taken by water parcels from the determined departure points are shown by the full lines, and
the paths taken by water parcels from the regular grid points are shown by the dashed lines.

Applying the semi-Lagrangian method to the 1D SWEs, we denote au and du as the

arrival and departure points for the u variable, respectively, and aφ and dφ similarly for

the φ variable. The discretised form of the nonlinear model is given by

un+1
au

− un
du

∆t
+ (1 − α1)

(

∂φ

∂xD
+ g

∂ho

∂xD

)n

du

+ α1

(

∂φ

∂xD
+ g

∂ho

∂xD

)n+1

au



Equations (6.3) and (6.4) can be solved iteratively to derive the u and φ variables

at each time level [54]. The TLM is given by the linearised ver





6.2.2 Background error covariance matrix

The noise used to perturb the background trajectory is created using the same method

used to generate the observation errors described in Section 6.2.1. We treat the back-

ground errors as uncorrelated, and so the covariance matrix used to generate the back-

ground noise will be a diagonal matrix comprised of the error variances. The background

error variances are set as half those of the observation erro



vious specification of uncorrelated observation noise, but when correlated observation

errors are present, we need a more sophisticated approximation to the error correla-

tion structure. Below we describe the new implementation of two proposed correlated

approximations to an observation error correlation matrix: a circulant matrix and an

eigendecomposition (ED) matrix. Both approximations have previously been considered



where ∆x is the spatial separation and LR is the correlation length scale. A technical

note is that the second of these expressions is not used explicitly in the code, because

oncex



read in and stored for use in the main program.

Using equation (3.11) from Chapter 3 and (5.18) from Chapter 5, we can calculate

the value of α and use the leading K eigenpairs (λk, vk), k = 1, . . . , K to implicitly

represent the inverse error covariance matrix. Again assuming that all the observation

error variances are the same in each field at each point, we have an explicit form for

the matrix vector products R−1
E x and xT R−1

E x needed for the calculation of the cost

function and its gradient:

(R−1
E x)i =

(

α−1D−1x + D−1/2
K
∑

k=1

(λ−1
k − α−1)vkvT

k D−1/2x

)

i

=

(

1

ασ2
x +

1

σ2

K
∑

k=1

(λ−1
k − α−1)vksk

)

i

=
1

ασ2
xi +

1

σ2

K
∑

k=1

(λ−1
k − α−1)viksk (6.6)

xT R−1
E x =

1

ασ2
xT x +

1

σ2

K
∑

k=1

(λ−1 − α−1)s2
k

where R−1
E is the ED matrix inverse, x is the incremental innovation vector, D = σ2I

is the diagonal matrix of the error variances, sk = vT
k x is the dot product of vk and x,

and vik is the ith component of the kth eigenvector. As with the Markov matrix, the

expression for xT R−1
E x is unnecessary if R−1

E x has already been calculated.

We can choose K to be small in order to reduce our storage costs, but the length of the

eigenvector, N , is still likely to be large. In order to reduce the number of operations





in [53]. This requires that the inner loop minimisation is terminated when
∥

∥

∥∇J
(k)
m

∥

∥

∥

2
∥

∥

∥
∇J

(k)
0

∥

∥

∥

2

< ǫI , (6.7)

where the subscripts indicate the inner loop iteration index, k indicates the outer loop

iteration index, and ǫI is the user set tolerance. In other words, the solution is assumed

to have converged when the ratio of the 2-norm of the inner loop gradient after m

iterations and at the start of the outer loop is less than a certain tolerance.

The outer loop of the assimilation algorithm is responsible for updating the linear model

trajectory. In practical data assimilation, the outer loops are not usually run to complete

convergence and only a few are performed. However, if we are to examine the impact of

different approximations to the observation error covariance matrix, we need the same

level of convergence to be obtained under each approximation, so as to draw consistent

conclusions. Therefore we use enough outer loops so that some convergence criterion is

satisfied. The convergence criterion we use is the relative change in function

|J (k+1) − J (k)|
1 + |J (k)| < ǫo, (6.8)

where the superscripts indicate the outer loop iteration index and ǫo is the user set

tolerance. This is one of the proposed criterion in [53].

When the tolerance levels for the inner and outer loop convergence criteria are achieved

we can be sure that the solution to the minimisation problem has converged to some

level of accuracy. However we do not know how close the computed solution is to the

‘true’ solution of the problem. By testing the gradient ∇J (k) at the converged solution

of the kth



outer tolerance ǫo, the solution accuracy increases. Setting ǫo = 0.01, we computed the

normalised gradient and found it to be of order 10−



which rearranged gives

χ(α) ≡ J(x0 + αδx0) − J(x0)

αδxT
0 ∇J(x0)

= 1 + O(α) (6.9)

where α is a small scalar and δx0 = ∇J
‖∇J‖ is a unit vector in the gradient direction.

If the adjoint code is working correctly and the cost function and its gradient are well

calculated, results will show χ(α) approaching 1 as α decreases to 0. An exception will

be when α is very close to machine accuracy. In Chapter 7 we perform the gradient test

under different approximations to the observation error covariance matrix to ensure the

cost function gradient is calculated correctly.

6.6 Summary

In this chapter we have described the framework of a one-dimensional shallow water

model and the practicalities of its use in an incremental 4D-Var data assimilation algo-

rithm. We started by considering the continuous and discrete form of the SWEs, and

explained how the TLM and adjoint code might be derived. We then considered the

use of the SWM in an incremental 4D-Var data assimilation algorithm; because of the



cost. Equations specifying their use in the data assimilati



Chapter 7

Shallow water equations

statistical tests

In the previous section we described how an incremental 4D-Var assimilation using 1D-

SWEs could be extended to include correlated observation errors. A new approach

to modelling the observation error correlation structure was required. The two corre-

lated error covariance matrix representations given in Section 6.3 are now tested against

diagonal approximations in the modified assimilation system. The impact of each ap-

proximation on the analysis error in the assimilation is examined. The aim of the

experiments in this penultimate chapter is to address the final thesis question posed in

Chapter 1: how well do approximations to error correlation structure perform in a data

assimilation experiment? For the purpose of this chapter we decompose this into three



• Which matrix approximation is the most robust to changes in the true error cor-





The height of the obstacle in the fluid is given by

ho(xD) =















hC

(

1 − x2
D





in preference to a Gaussian structure because its distribut



covariance matrix Rt. We illustrate the comparative behaviour of the assimilation un-

der different approximations by comparing:

(a) Error 1 (E1): The norm of the analysis error in the true solution

∥

∥xRf
− x∗

∥

∥

2
(7.3)

where x∗ is the true solution of the original model run from which the observations

are sampled, and xRf
is the converged solution to the assimilation problem using

imperfect observations when the approximation Rf is used;

(b) Error 2 (E2): The percentage norm of the analysis error in the converged solution

relative to the norm of the true converged solution

∥

∥xRf
−



7.2 Experiment 1: Markov error correlation structure

In our first experiment we investigate the impact on analysis accuracy of using a diag-

onal matrix, a Markov matrix, and an eigendecomposition (ED) matrix to represent a

Markov error correlation structure. First we will give some motivation for the different

realisations of the matrix approximations used, and demonstrate their correct coding in

the algorithm. The retrieval properties described in Section 7.1.2 are then calculated

for each matrix approximation.

7.2.1 Matrix representations

Many different realisations of the proposed matrix approximations could be used to

model the simulated error correlation structure. The choices we use and the motivation

for them are given in this section. Firstly the diagonal matrix representations will

be a diagonal matrix of the true error variances, and scalar multiples of this matrix.

The scalar multiples are chosen to be between two and four, in line with our earlier

information content results in Chapter 5 and from the results given in [14]. These showed

that a 2-4 times variance inflation was preferable to a simple diagonal approximation

when observation and background error correlations were present; but under correlated

observation errors and uncorrelated background errors, a simple diagonal approximation
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number of eigenpairs.

7.2.2 Model tests

In Chapter 6 we described several tests used to ensure the validity of the model. In

the experiments performed in this chapter we modify the code used in the calculation

of the cost function and its gradient to allow for different approximations to the error

covariance matrix. Therefore in order to ensure the true gradient of the cost function is

being calculated by the modified adjoint code, we perform the gradient test described in

Section 6.2.5 under different specifications of the observation error covariance matrix. In

Figure 8.4 we plot χ(α) versus α and log(|χ(α)−1|) versus α, where χ is defined by (6.9),

for the case when a Markov approximation with length scale LR = 0.1m to the Markov
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Figure 7.7: Gradient test for a Markov approximation to a Markov error covariance matrix

Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.20 0 0
Diagonal 0.30 0.23 7.2
2 × Diagonal 0.31 0.23 7.2
4 × Diagonal 0.31 0.24 7.5
Markov (LR = 0.2) 0.21 0.06 1.9
Markov (LR = 0.1) 0.20 0 0
Markov (LR = 0.05) 0.21 0.05 1.6
Markov (LR = 0.01) 0.27 0.18 5.6
ED (k = 10) 0.28 0.19 5.9
ED (k = 20) 0.28 0.19 5.9
ED (k = 50) 0.25 0.15 4.7
ED (k = 100) 0.23 0.10 3.1

Table 7.1: Analysis errors in u field at t = 0 for different approximations to a Markov error covariance
matrix (‖xR‖2 = 3.20)

ing the true error covariance matrix, i.e, a Markov matrix with length scale LR = 0.1m,

produces the smallest analysis errors; the percentage error E2 is zero for this matrix

because Rt = Rf
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Figure 7.8: Gradient test for a diagonal approximation to a SOAR error covariance matrix

7.3.2 Numerical results

The analysis errors E1 and E2 at t = 0 for the different approximations to the SOAR

error covariance matrix are given in Tables 7.3 and 7.4. Comparing the results to Table

7.1 and 7.2, we observe that the qualitative nature of the errors is very similar. For

example, using the true error covariance matrix structure results in the smallest errors

and diagonal approximations result in the largest errors. The approximations resulting

in the smallest analysis errors are a Markov matrix with length scale LR = 0.2m and

an ED matrix using 100 eigenpairs. It is intuitive that a Markov matrix with a longer

length scale is preferable, because of the wider spread of correlations in a SOAR matrix

(Figure 7.1). The E2 error in the u field is also small for Markov approximations with

length scale between LR = 0.2m and LR = 0.05m, compared to a 9.4% error when a

4× diagonal approximation is used. Inflated diagonal approximations perform slightly

worse than a simple diagonal approximation; this is in line with the information content

results in Chapter 5, when the background errors were uncorrelated.
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Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.11 0 0
Diagonal 0.31 0.28 8.8
2 × Diagonal 0.32 0.29 9.1
4 × Diagonal 0.32 0.30 9.4
Markov (LR = 0.2) 0.13 0.07 2.2
Markov (LR = 0.1) 0.15 0.11 3.4
Markov (LR = 0.05) 0.18 0.15 4.7
Markov (LR = 0.01) 0.27 0.25 7.8
ED (k = 10) 0.26 0.24 7.5
ED (k = 20) 0.23 0.20 6.3
ED (k = 50) 0.15 0.11 3.4
ED (k = 100) 0.13 0.07 2.2

Table 7.3: Analysis errors in u field at t = 0 for different approximations to a SOAR error covariance
matrix (‖xR‖2 = 3.19)

Approximation E1:
∥

∥xRf
− x∗

∥

∥

2

∥

∥xRf
− xRt

∥

∥

2
E2 (%)

Truth 0.57 0 0
Diagonal 3.36 3.32 5.3
2 × Diagonal 3.59 3.55 5.7
4 × Diagonal 3.99 3.95 6.3
Markov (LR = 0.2) 0.81 0.63 1.0
Markov(LR = 0.1) 1.18 1.06 1.7
Markov (LR = 0.05) 1.69 1.60 2.6
Markov (LR = 0.01) 2.89 2.84 4.5
ED (k = 10) 3.90 3.87 6.2
ED (k = 20) 3.71 3.67 5.9
ED (k = 50) 1.56 1.45 2.3
ED (k = 100) 1.06 0.85 1.4

Table 7.4: Analysis errors in φ field at t = 0 for different diagonal approximations to a SOAR error
covariance matrix (‖xR‖2 = 62.54)

It is also expected that an ED matrix using 100 eigenpairs results in a very small analysis

error relative to the converged solution, because as we observed in Section 7.2.2, 100



a Markov error covariance structure in Section 7.2. This is because, for a SOAR error

covariance matrix, more uncertainty is represented using the same number of eigenpairs;

as demonstrated in the steeper gradient in Figure 7.6.

In conclusion, the results when assimilating different matrix approximations to a SOAR

error covariance matrix have

• demonstrated the robustness of a Markov matrix as a desirable approximation

to modelling observation error correlation structure, but a larger length scale is

needed;

• shown that an ED approximation with as few as 50 eigenpairs is an improvement

on ignoring observation error correlations entirely.

It is also interesting to look at individual analysis errors over the domain. At each grid

point the analysis error is given by the difference between the true analysis and the

analysis resulting from the assimilation. Figures 7.9 and 7.10 show the analysis errors in

the u and φ fields at t = 0 and t = 50, respectively. By looking at the spread of analysis

errors for the diagonal and Markov approximations we see that the difference between

the two is not uniform over the domain, i.e, in some regions, a diagonal approximation

is much worse than a Markov approximation compared to the average. Such differences

can be important operationally. For example, if a temperature error was reduced by

0.2K on average, and is reduced by 2K on one occasion. This 2K change can result in

a modification of the wind forecast from 20 knots to 40 knots.

Comparing Figure 7.9 to 7.10 we observe that as the forecast evolves the analysis errors

become smoother. At the centre of the time window, the errors in the u field for a

Markov and a diagonal approximation are very similar compared to at the start of the
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Figure 7.11: Plot of E2 against level of observation noise for u field. The solid line is for the diagonal
approximation, the dashed line for the ED approximation with k = 50 and the dotted line for the Markov
approximation with LR = 0.05m.
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Figure 7.12: As in Figure 7.11 but for φ field.



error in the u and φ field is shown in Figures 7.11 and 7.12, respectively. We see that for

all three approximations studied, the E2 error increases with the percentage observation

error. In the u field, E2 increases close to linearly with noise level for the Markov

and ED approximation; similarly for the φ field below 20% noise level. However, the

diagonal approximation increases more rapidly with noise level in both fields, although

the gradient becomes more linear as the observation errors increase. We can conclude







7.4.2 Diagnosing the true error correlation structure

The resultant diagnosed error correlation matrix is shown in Figure 7.13. The matrix is

more symmetric than the IASI error correlation matrices diagnosed in Chapter 4. This

is expected since the ignored SOAR correlation structure is weaker than that present

in the IASI observation errors; hence we are deviating less from the assumption of

correctly specified errors used in creating the diagnostic (7.5). Using this matrix we



Figure 7.13: Diagnosed observation error correlation matrix.
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Figure 7.16: Diagnosed observation error correlation matrix using 100 observation sets.

Figure 7.17: Diagnosed observation error correlation matrix using 500 observation sets.

7.4.3 Diagnosing an approximate error correlation structure

Now we address the second aim of this final results section: can the diagnosed error

correlation structure be used to derive an optimal Markov approximation. We use a

Markov approximation because it has been shown in the previous two experimental
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sections to be a robust and efficient way of modelling error correlation structure. Figure

7.18 shows the difference in the Frobenius norm between the diagnosed matrix error

correlation matrix C and a Markov matrix approximation CM . As in Figure 7.14 we

vary the length scale to find the best fit to the diagnosed data. The smallest value of

‖C − CM ‖F occurs when the length scale of the Markov matrix is LR = 0.2m. This

was the length scale found to generate the most successful Markov approximation in

the previous tests using a known SOAR error correlation matrix. However, these results

demonstrate that such an approximation can be diagnosed without prior knowledge of

the error correlation distribution. This is encouraging for situations when calculating

the true error correlation structure may be difficult.
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Figure 7.18: Frobenius norm of the difference between the diagnosed matrix C and a Markov approxi-
mation CM with length scale LR.

7.4.4 Summary

In this section we have shown new and original results on the d



uncorrelated errors was used in the assimilation. For a good approximation, a sufficient

number of observations were needed; using too few observations resulted in long-range

spurious error correlations.

We were also able to fit a Markov matrix approximation to the derived structure using

the Frobenius norm as a measure of the difference between matrices. The Markov

matrix diagnosed to be the best fit was also shown to be the best matrix approximation

in Section 7.3, where the experiment conditions were very similar. We can therefore

conclude that it is possible to diagnose a successful Markov approximation to a simple

correlation matrix without prior knowledge of the error distribution.

7.5 Conclusions

In this chapter we investigated the inclusion of observation error correlation structure in

an incremental 4D-Var algorithm using a 1D shallow water model. The work extended

on the findings in Chapter 5 using the techniques described in Chapter 6. We ran

the assimilation using three different approximate error correlation structures: diagonal

matrices, Markov matrices and ED matrices. In experiments 1



made in Chapter 5, and demonstrated that including some correlation structure, even

a basic approximation, is often better than incorrectly assuming error independence.

The findings also support the work in [43] where Healy and White showed that using

an approximate error correlation structure gave clear benefits over using no observation

error correlations.

In the final section of this chapter we examined the choice of an approximate error

correlation structure when the true error distribution was assumed unknown. We used

a Markov matrix as the approximating matrix based on its successful performance in

the previous two experiments. The observation error correlations were sampled from a

SOAR distribution but were treated as uncorrelated in the assimilation, i.e, a diagonal

observation error covariance matrix was used. Using the post-analysis diagnostic shown

in Chapter 4 to accurately quantify IASI error correlations and in [25] to accurately

estimate mis-specified observation error variances, we successfully diagnosed the true

observation error correlation structure. The derived matrix was however subject to spu-

rious long-range error correlations. We then used matrix differences in the Frobenius

norm to ascertain the optimal Markov matrix approximation to the derived error cor-

relation matrix. This was found to be the same matrix as that which generated the

smallest analysis error in Section 7.3. We therefore concluded that even when the true

error corelation structure is unknown, it is possible to derive cheaply an approximating

structure that performs well in the assimilation.

The results in this chapter addressed the final thesis question posed in Chapter 1: how

well do the proposed matrix approximations perform in a data assimilation algorithm?

We have shown that correlated approximations can reduce the analysis error when used

over simplistic diagonal approximations. The final section also demonstrated how to
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Chapter 8

Conclusions and future work

In numerical weather prediction (NWP), an accurate, high-resolution representation of

the current state of the atmosphere is needed as an initial condition for the propagation

of a weather forecast. Data assimilation techniques combine observations of atmospheric

variables with



model resolutions can create spatial and horizontal error correlations. Secondly, even

when good estimates of the errors can be made, the number of observations is of order

106 for a global assimilation run, and so the storage and subsequent computation using

observation error correlations is infeasible.

To avoid the issues involving observation error correlations, operational weather centres

treat most observation errors as independent. Often for satellite observations, the lack

of correlation is compensated for by inflating the error variances so that the observa-

tions have a more appropriate weighting in the analysis [46]. The assumption of zero

correlations is often also used in conjunction with data thinning methods such as super-

obbing [5], in which data in a region are reduced to a single representative observation.

Under such conditions, increasing observation density beyond some threshold value has

been shown to yield little or no improvement in analysis accuracy [60], [21]. With the

advent of high-resolution nowcasting, in which all available data is required to provide



it better to model observation error correlation structure incorrectly than not at

all?

We began in Chapter 2 by introducing the concepts of data assimilation and satellite

remote sensing. The role of observation error correlations was explained in this con-

text; we gave an overview of their possible origins and discussed current issues in their

treatment. Finally we described two statistical methods used to diagnose error correla-

tions; the Desroziers’ statistical approximation [25] was later applied in Chapter 4 and

in Chapter 7.

In Chapter 3 we addressed the second question posed in Chapter 1, and examined



We presented more new results in Chapter 5. Here we quantified the success of each of

the matrix approximations described in Chapter 3 in modelling an empirically derived

observation error correlation structure. The experiments were performed for indepen-

dent and correlated background errors using a three-dimensional variational assimilation

framework. Using the information content measures described in Chapter 3, we calcu-

lated the information provided by each approximation relative to the truth. The work

in this chapter addressed the second thesis question.

Finally we chose to investigate modelling observation error correlation structure in the



Question 1: What is the true structure of the observation error correlations?

In Chapter 4 we showed that the cross-channel observation error correlation structure

can be derived for IASI data using a post-analysis diagnostic [25]. Using statistics

generated from the Met Office operational systems we deduced the following conclusions

from the numerical experiments:

• There exist significant error correlations between neighbouring channels with sim-



each approximating structure. The empirical conclusions were:

• Information content is severely degraded under the incorrect assumption of inde-

pendent observation errors. This supports the results seen in [14] and [43];

• Retaining some error correlation structure shows clear benefits in terms of informa-

tion content. A circulant approximation was shown to retain the most information

content of all the approximations. An eigendecomposition approximation retained

more information than a diagonal approximation but sufficient eigenpairs must be



• By choosing a suitable matrix approximation it is feasible to cheaply include some



8.2 Future work

In Chapter 4 we used a post-analysis diagnostic derived from variational data assim-

ilation theory to quantify cross-channel error correlations for IASI observations. The

diagnostic proved successful in generating a feasible observation error covariance matrix;

however the matrix was not entirely symmetric. We can attribute the asymmetry to vio-



covariance matrix for the 1D-Var assimilation was shown to be very weakly correlated,

implying that we would see little impact from including correlation structure. However,



interaction between observation and background errors could be studied further.

Additional methods to assess the quality of the analysis and the performance of the data

assimilation algorithm could also be used. For operational interest it would be useful

to compare the convergence properties and computational efficiency of the assimilation

using each matrix approximation. Techniques to study the assimilation convergence

rates are already available in the SWM code. Also, the conditioning of the minimisation

could be studied by generating the Hessian matrix of the incremental cost function. The

Hessian matrix can be described as the inverse of the analysis error covariance matrix,

therefore from the Hessian we would also be able to calculate



centres is done using educated guess-work. By finding the diagonal approximation to

a true error correlation matrix which minimised the matrix difference in a weighted

Frobenius norm, we would have a more accurate representation of the observations

in the analysis. In a situation where it was unavoidable to use the assumption of

uncorrelated errors, we could at least be confident that the observations were being

weighted correctly.
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Appendix A: IASI channel

information



MetDB channel





MetDB channel OPS index Var index Central wave





Appendix B: Application of the

Desroziers’ diagnostic to 4D-Var

assimilation

Consider a state vector x0 at time 0, whose true value is xt and whose background

estimate is xb;

xt = xb + ǫb,

where ǫb is the background error. The state vector can be evolved forward to time i

under the tangent linear model M(ti, t0) = MiMi−1 . . . M2M1, i.e, xi = M(ti, t0, x0).

Consider m observations at different times, where the observations are related to the

state vector through a forward model h,

y1 = h(x1) + ǫo
1 = h(M1xt) + ǫo

1

y2 = h(x2) + ǫo
2 = h(M2M1xt) + ǫo

2

...

ym = h(xm) + ǫo
n = h(Mm . . . M2M1xt) + ǫo

m
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where y1 is an observation at time 1, y2 is an observation at time 2, etc, and ǫo
i is the

observation error for yi.

In 4D-Var assimilation, the observations are combined with the background estimate,

xb, to produce an optimal analysis xa, which minimises the cost function

J(x0



where

y = (yT
1 , yT

2 , . . . , yT
n )T ,

Ĥ = (MT
1 HT , MT

1 MT
2 HT , . . . , MT

1 MT
2 . . . MT

n HT )T ,

ǫo = ((ǫo
1)T , (ǫo

2)T , . . . , (ǫo
n)T )T ,

R = E
[

ǫo(ǫo)T
]

= E
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Appendix C: Additional gradient

tests

Additional gradient tests for Chapter 7.
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Figure 8.1: Gradient test for a diagonal approximation to a Markov error covariance matrix.
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Figure 8.2: Gradient test for an ED approximation with k = 50 to a Markov error covariance matrix.
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Figure 8.4: Gradient test for an ED approximation with k = 50 to a SOAR error covariance matrix.
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