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Introduction






The problem with data assimilation is the sparseness of observations of
the atmosphere over certain areas of the Earth, mainly the oceans, does
not provide initial conditions at the required operational resolution. This
problem is overcome by using information about the atmospheric movements
prior to the data assimilation and this requires the evaluation of the balanced
and unbalanced parts of the flow. The decomposition is often referred to as
a control variable transform.

Currently at the Met Office this decomposition is achieved by transform-
ing the wind field, u, into its rotational part, (relative vorticity), £, and diver-

gent part, 6. From these there are tw



represents the semi-geostrophic part of the equations. Associated with this
phase space is a set of canonical coordinates which turned out to be those
derived by Hoskins in [21]. These coordinates have special features and have
been used operationally, [15], but the semi-geostrophic equations are also
seen as an important part of research in numerical weather modelling, [13],
[45], [47] and [52].

MclIntyre and Roulstone in [30] and [31] are able to extend the ideas de-
rived by Salmon and are able to derive a relationship between the sub-space,
(they refer to it as a constrained submanifold) and the canonical coordi-
nates. The potential vorticity associated with the manifolds can be written
as a Monge-Ampere equation between the canonical coordinates and the La-
grangian fluid particle coordinates.

If we consider the vertical component of the relative vorticity of the bal-
anced wind field then this is related to the depth of the fluid by a Monge-
Ampere equation for a balanced height. From this height we calculate the
balanced wind field. This field is not divergence free, but is balanced as it
defines the sub-space of the shallow water equations that does not excite the
fast waves.

In this thesis we investigate this new wind field as a possible alternative for
the current decomposition to rotational and divergent fields in the control
variable transform. We start in Chapter 2 where we briefly introduce the
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tions to the elliptic equations, and compare these results with those from the
constant coefficient equations to see if there is any extra information coming
from the extra terms. We also perform a scale analysis at 72 hrs on the terms
in the differential equation for the same reason.

The reason for these experiments is that the new equation requires a nine-
point stencil to approximate it rather than the five-point for the Laplacian
and as such if the Laplacian is the dominant term then it may not be eco-
nomical to calculate the extra terms involving the variable coefficients. We
also perform a scale analysis of the terms in the ellipticity conditions at 72
hrs to see if there are any terms that could be removed from the equations.

The second set of experiments involve the numerical solutions of the new
elliptic equations where we consider, as a first choice, a zonal averaged base
state and we examine the effects that this has when considered with the three
test cases. We also test to see if the result about using the PV with a low
Burger number flow regime, [57], carries over to the higher form of the PV

that we derive in Chapter 4. W






cedure to derive an initialisation that prevents the fast motions forming in
the numerical solution. The result is a choice between two sets of conditions.
The first is a set of initial conditions and the second is a Monge- Ampere equa-
tion that is referred to as a mon-linear balance equation whose solution

does not include the fast waves.

.1 Atmospheric Motions

We begin with a quote from a letter that appears in [14] from Jule Charney to
Phillip Thompson. Charney has the following description for the atmosphere:

7 We might say that the atmosphere is a musical instrument on which
one can play many tunes. High notes are the sound waves, low notes are
long inertial waves, and nature is a musician more of the Beethoven than
of the Chopin type. He much prefers the low notes and only occasionally
plays arpeggios in the treble and then only with a light hand. The oceans
and the continents are the elephants in Saint-Saens’ animal suite, marching
in a slow cumbrous rhythm, one step every day or so. £f course, there are
overtones; sound waves, billow clouds (gravity waves), inertial oscillations,
etc., but these are unimportant.”

In his 1955 paper, [7], Charney discusses the characteristics of atmo-

spheric motion by making the following assumption: he assumes that the



atmosphere is statically stable, by this he is assuming that the horizontal
scale, Ly, is larger than the vertical, Lz. He takes Lz to be of the order of
one atmospheric height, 10km, and the horizontal scale to be 100km. The
effect of this is that the atmospheric motions are in quasi-hydrostatic balance
and are of planetary scale, [34].

A consequence of the hydrostatic assumption is that there are no sound
waves and the equations that govern such an atmosphere are the primitive
equations, which we introduce in Section 2.3.

In [14], Daley defines two types of time scales that are observed in this

type of atmosphere. These are given by

= 2.1
T2 VH7 ( )

1
T = ?,
where f is the Coriolis parameter and Vj is a characteristic horizontal ve-
locity. These two time scales are referred to as the 'inertial” and ’advective’

time scales respectively. The Rossby number associated with these scales is

given by the ratio

o Vi
T2 LHf'

(2.2)
In the atmosphere Ry is usually small. This implies that the advective time
scale is much larger that the inertial time scale. The time scale 7 is usually
a few hours whereas 7 is considered to be longer than a day.

There are two kinds of atmospheric motions that can be identified as
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is to employ a filtering system in the receiver. Translating, the first method
implies that the unwanted harmonics shall be eliminated from the raw data by
some type of harmonic analysis; the second that you transform the equations
of motion and make the approximations in such a way that the bad harmonics
are automatically eliminated.”

Charney is saying that there are two methods in which to perform the



unbalanced initial conditions for the model and a large projection onto the
inertia-gravity mode of the equations.

An important thing to note is the atmosphere cannot be initialised but
can be in balance. Initialisation is a process and can result in a balanced set
of initial conditions.

In the next section we look at a way of initialising the shallow water equa-
tions to prevent the formation of inertia-gravity waves that are supported in

this model.

. Shallow ater Theory

In this section we give a briet description of the shallow water model and
the equations associated with this model. We also introduce the PV for this
model and show that is materially invariant. Finally we give a review of
an initialisation performed by Hinkelmann and Phillips to the shallow water

equations.

2.2.1 Shallow Water Model

The underlying assumptions, as described in [34], for the shallow water model
are that the flow is a sheet of fluid with constant and uniform density with

a free surface height, h, where the fluid is assumed to be inviscid and in

13



rotation. The flow is also assumed to be incompressible. A diagram of the

model is in Figure 2.1.

f Z,w

]

y; hz,y.t) )

BT,

Figure 2.1: Diagram of the Shallow Water Model.

In Figure 2.1 the variable & is the height above a reference level z = 0
and is a function of the horizontal coordinates, x and y and time ¢, € is
the rotation rate, u and v are the horizontal winds that are parallel to the
horizontal coordinates, z is the vertical coordinate, w is the vertical wind
which is parallel to the vertical axis, and hpg is the rigid bed of the fluid.
Hence D is the depth, given by h — hp, which does vary with time. For the
scale analysis that allows us to consider these equations as a substitute for

the atmosphere, we choose a sensilhmTJ " "o



characterises shallow water theory is

D (2.3)
7 <L .

Therefore we require the horizontal length scale to be considerably larger

than the vertical scale.

2.2.2 Shallow Water Equations

The set of equations that govern this model is comprised of two momentum
equations, one for each of the horizontal directions, and a continuity equation.

These are given by

Ju Ju Ju oh
ov ov ov oh

a—l-ua—x—l-va—y—l-fu—l-g—



in their Eulerian form. The Lagrangian counterpart is given by

D
D—ltl—l—kau — _gVh, (2.7)
Dh
" — _hV.- 2.
o v, (2.9
where
D 0

k is the z direction unit vector and V - u is the horizon



where ¢ represents the horizontal divergence. Rearranging (2.8) we obtain

1L Dh
6= ———. 2.11
h Dt (2.11)
Substituting (2.11) into (2.10) gives
D &+ f)Dh
o === 5 =0 (2.12)

This can be written in the form

% (%) —0. (2.13)

This last equation gives the information that the potential vorticity,

f_l_av_au
szzfz 70?]‘; 9y (2.14)

is conserved following the motion of the vertical fluid columns. We will
use the shallow water equations’ potential vorticity in many of the following

chapters but we now review an initialisation to the shallow water equations



a base state geopotential, ® = gh, which is only a function of y, where U is
related to ® geostrophically through

1 00
U=———.
fo 8y

It is also assumed that the perturbations with respect to the velocity and the
geopotential are only functions of z. When these assumptions are applied to
equations (2.4) - (2.6) then the result is a much simpler set of equations.
Next stage in this process is to introduce the Helmholtz theorem that
allows the wind field, u, to be written in terms of derivatives of a stream

function, ¢, and velocity potential, y. This is given by
u=k xViy+ Vy,

which in component form is

0 0 0 0
op O _ v Ox

Sy Oz YT e + dy’ (2.15)

U =

This can be used to write equations (2.4) - (2.6) in terms of ¢, y and ®.

Next a wave solution is assumed for each of the three variables of the form

(. 1) Yo (1)
X (2,t) | =] Ro(2) [&XP [mf - ZU;M] , (2.16)
® (x,t) o, (1)

where m is the x wave number, a is the radius of the Earth and the subscript

denotes the variable at the initial time. These are then substituted into the
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reduced equations and a Laplace transform is then applied to each of the

three variables. The transfer function for



to zero. This removes the term % from (2.17) and in that case for there
91
to be no inertia-gravity waves we must have the coefficients of the sine and

cosine terms initially zero. This then gives the conditions
Yo=0 and fotbg — Bg = 0. (2.19)

This condition is seen as a zeroth order initialisation state as it is saying
that the initial state should be in geostrophic balance and that there should
be a zero initial velocity potential.

If we now allow all the terms to stay in the reduced equations then this
gives

o 2%/30

Ko+ — =0 and fotbg — do = 0. (2.20)

1

This is seen as a first order set of conditions, as w



move these from the more sophisticated models in 3-D, namely the primitive

equations, (PE) and we do this in the next section.

.3  Primitive Equation Model

In the last section we summarised a technique to derive an initialisation to the
2-D non-linear shallow water equations to remove the inertia-gravity waves
from the numerical model.

In this section we introduce the 3-D primitive equations and summarise
a technique that initialises the PE such that the gravity waves are removed

but also briefly look at the limitations of the method.

2.3.1 Primitive Equations

The primitive equations comprise of the equations of motion, (2.21), hydro-
static equation, (2.22), conservation of mass, (2.23), and the thermodynamic

equation, (2.24). These are

‘2_‘;+u.vll+w§_;+kau+vq> - F (2.21)
g_j;Jrg . (2.22)

v-u+§—; = 0, (2.23)

(%—I—u-V)?—i—l—wr = _(ZCIQD’ (2.24)
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where P is the pressure and is used as the vertical coordinate system, w =
dP/dt is the vertical velocity, R is the gas constant, Cp is the specific heat
at constant pressure, T' is the temperature and ® is the geopotential, F, is
the frictional force per unit mass, ) here is the time rate of heating per
unit mass, [' is the static stability, V is the gradient operator as defined in
Appendix A and u = (u, v)T is the horizontal wind field.

Firstly we nondimensionalise (2.21)-(2.24) using the following scales

Ly is the horizontal scale (m)

Lz is the vertical scale (m)

e Il is the vertical pressure scale (mb)

Vi is the horizontal winds speed (ms™!)

Ny is the Brunt-Vaisala frequency (s71)

‘%ﬂ is the advective time scale (s)
H

g is the gravitational constant (ms™?)

The variables are nondimensionalised as follows

u* = V;i'u, V* = LyV, t"=VyLyt,

(% y) = Ly (x,y), P* = I'P, w' =Lgll"'Vi'w. (2.25)

22



The Coriolis parameter is approximated through a beta-plane as defined in

Pedlosky, [34], given by
Ly
F= = (s M), (2.26)

where f5 = sinfy and 3* = cos by



the mid-latitudes. The result is that the leading terms, in magnitude, are

the Coriolis term and the geopotential gradients,

od 0P
— fo~ o fur ——. (2.32)

The two conditions in (2.32) are seen as first order approximations to the flow
and is only valid for small Rossby numbers as explained in [17]. Therefore a
flow is said to be quasi-geostrophic if the motion is nearly geostrophic.

To apply this approximation to (2.27) - (2.29) we require the parameters

Ry, Lr and LTH < 1. If we consider

Ly =10°m, Lz =10"m, Vy=10ms™', g¢=10ms 2,

Q=10""*"" a=10"m, Ny=10"%s"" Lp=10°m,

to be typical values for the mid-latitudes, [14], then we see that the three
parameters Ry, L and LTH are around 0.1. We now introduce a small param-
eter, ¢, that is the same magnitude as the Rossby number. This makes the
three dimensionless numbers O (¢). We will use this information to initialise

the model.

2.3.2 Quasi-Geostrophic Initialisation

Two possible methods to derive the quasi-geostrophic equations are; firstly

expand the dependent variables u, v and ® in an asymptotic series in terms

24






To derive a higher order set of conditions, we require the second time
derivatives of u,v and ® to be order one functions in ¢. After many ma-
nipulations, for more details see [14], the final outcome is a version of the

non-linear balance equation, given by

VA0 — f& = —¢ (Buy + V- (uy - Vuy)), (2.38)

where uy, 1s the w component of uy.

The important feature of this equation is that it relates the stream func-
tion to the geopotential, through a Monge-Ampere type equation, to prevent
motions of the same size as the inertia-gravity waves forming in the model.
Therefore the initial data that satisfy (2.38) is balanced and integrating a
primitive equations model with this data will not excite gravity waves.

We now consider briefly the limitations of the quasi-geostrophic initiali-

sations to both the shallow w



This meant

Vi Ly RoLY

T 20Ly o L%

Ro

were order ¢. The main problem occurs when we start to enter the lower
latitudes and the Rossby number is growing and as such the rotational flow
associated with geostrophic flows is not correctly modelling the flow here.

This restrains this type of initialisation to the mid-latitudes for best results.

4  Summary

In this chapter was we have introduced the motivation and techniques for
the removal of inertia-gravity waves from either a shallow water or primitive
equations model.

There were two different techniques used to derive the initialisation. The

first uses a Laplace transform and the other a bounded derivative method.



In the next chapter we consider a different approach to this problem by
considering Hamiltonian dynamics and derive a different non-linear partial

differential equation that also prevents these fast motions.
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hapter 3

Balance Via Hamiltonian

Dynamics

In the previous chapter we reviewed two initialisation techniques: one for
the shallow water equations and the other for the primitive equations. For
the primitive equations the process resulted in a non-linear balance equation,
(2.38), where the stream function was related to the geopotential through a
Monge- Ampere equation.

In this chapter we review other mathematical techniques to derive a bal-
ance equation. We start by introducing the basics of Hamiltonian dynamics,
which will be used to derive a different balance equation. We then show how
the shallow water equations can be derived in Hamiltonian dynamics through

a variational principle. This is important as from this different balance equa-
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There are two different ways of describing the continuum motion. The first
is the Eulerian where the independent variables are the space coordinates,
x = (x,y), and the time, t. The dependent variables are the height field,
h(x,y,t), and the velocities, u (x,y,1).

In the Lagrangian description, the independent variables are a set of



where F'is a function of (z,y,t) or (a,b, 7). This leads to

or_or O O _OF L vr
ar ot Vor "oy T o TV

(3.3)
which is the form used in Section 2.2.1. A detailed derivation is given in [42].
With the basic description of fluid motions described here in terms of

Lagrangian and Eulerian framework we now show how these are used in

derivation of motions using Hamilton’s principle.

3.1.1 Hamilton’s Principle
Hamilton’s principle states that the action

t2
A= L

t1



Hamilton’s principle states that the first variation of the action, 6 A, satisfies

2 (1 X dx; dx;
sA=6 (=S m . _ylar=o, .
3 (2 Z;m dt dt V) 0 (3.7)

for arbitrary, independent variations {éx; (t),6y; (1)} that vanish at #; and
ty. Therefore we must have 6x; (1) = 0x; (t2) = 0. From applying variational

techniques we obtain

t2 d?*x; dV
0 /t ( BTE dxi) * (3:8)

As a result of the arbitrariness of the variations the quantity inside the brack-
ets must be zero. The result is Newton’s second law.

For the second example we consider a barotropic fluid. The difference
between the system of point masses and the fluid continuum is that the
masses are distributed continuously in space in the continuum. Therefore,

instead of a summation to represent the masses we have

[ [am=[[[ dadsac. (3.9)

as derived in [42]. The kinetic energy is given by

T = %/// dadbdcg—’: : g—}:. (3.10)

For the potential energy we assume that this arises from external and inter-
particle forces that depend on the particle location x (a, b, ¢, 7). The potential
energy is

V:///dadbdc( (a) + (%)), (3.11)
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where « is the specific volume and is given by

dr OJx Oz

da b Jec
o=t wwE) oy oy oy |29
p  0(a,b,c) da Jb  Jc J(a)

dz Jz 0z

da 0Jb Jc

pis the density and  («) is the specific internal energy and is a function of «,
and ¢ (x (a,1)) is the external potential and is dependent on the fluid-particle
locations.

This then gives the action for this system as

Jartr 1= far [ fan (3222 (5] oiwiarn)

(3.12)

which must be stationary with respect to the arbitrary variations 6x (a, b, ¢, 7),
in the location of the fluid particles. A full derivation of the resulting equa-
tions can be found in [42].

We now extend these ideas to the shallow water equations, where in the
next section we will define the Lagrangian for the shallow water equations as

shown in [39] and derive the shallow water equations from this.
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3. Hamiltonian Form for the Shallow ater

Equations

In Salmon’s 1983 and 1985 papers, [38] and [39], he shows that Hamilton’s
principle for a mechanical system with N degrees of freedom can be written

in the form

aQi

5/(17' (Zi:pi






We shall return to the shallow water Lagrangian in Section 3.4 but we first
describe an approximation made to (3.19) and (3.20). This approximation
results in the semi-geostrophic equations. We look at this approximation
in the next section and review certain properties that arise from this and

extended these in Section 3.5.

3.3 Semi-Geostrophic Theory

In this section we will look at how the semi-geostrophic equations are derived
from (3.19) and (3.20). We also look at the PV that is associated with these

equations. We then give a review of the geostrophic coordinates that were

devised b



winds, (2.32). This then leads to the equations
. oh . : oh .
g tg5 - —uf =0, vg+ga—y+xf:0. (3.24)

These are referred to as the semi-geostrophic equations when they are com-
bined with the continuity equation, (2.6).

This system has the Hamiltonian
Lo
H=V+ /D Sl [*dm, (3.25)
where D is the domain of interest and dm is the mass element, and
V= / Lohd (3.26)
= Jp 29 '

is the potential energy of the mass configuration. There is a conserved quan-

tity like potential vorticit



where ¢ is defined by
g
¢(x7y7t) = Fh (l’,y,t). (329)
This choice of ¢ enables us to write the definition of geostrophic winds, (2.32),

as

_ 99 _ 09
ay’ 0 o

ug:

(3.30)

This transformation, & — X



This then enables us to write the material derivative of the geostrophic co-

ordinates in terms of ® as

0P ¢

) ) )



geostrophic winds are substituted in, gives

1 D¢ 0% 1 [9% 8% 96 \*
Q*?_'%'(f+'(555%_5@5>__§?'(0x29y2__(9$9y> ))' 33%)

This partial differential equation is referred to as a Monge-Ampére Equa-

tton. There is a condition on the equation to ensure solvablility but first
we give the general form of the Monge-Ampere equation as expressed in [31]
and then give this condition.

The general form of the Monge-Ampere equation is
A+ Br+20s+ D+ (rt—s") =0, (3.39)

where for (x,y) space we can define p, ¢, r, s and ¢ to be

00 P o

= = = = = 3.40
gz 1 oy’ T o dxdy’ dy?’ ( )

p

where A, B, C, D and  are given functions of (x,y,¢,p,q). It must be
noted that p and ¢ are the general notation used in [31]. The solvability

condition for non-linear second order partial differential equations is

BD—-C?*—A >0, (3.41)



tions if
BD—-C*—A >0,
and the coefficients in (3.39) are all continuous in the domain.

Returning to (3.38) then, after we have multiplied throughout by %, we
have the following coefficients B=D=1,C =0, =1land A=1-— %.
Then evaluating (3.41) gives us the condition @5, > 0 which was assumed in
Section 3.3.2. In [31] they derive the condition for the transformed variable
and arrive at the same condition for the PV.

In Section 3.5 we derive another Monge- Ampere equation whose solutions
gives a balanced height field. Before this we return to the Hamiltonian dy-
namics to explain a series of approximations to the shallow water Lagrangian
that were performed by Salmon, [38], [39], which results in an initialisation

through Hamiltonian dynamics.

3.4 Salmon’s Ly and L; Dynamics

In Section 3.2 we introduced the Lagrangian for the shallow water equa-
tions, (3.16), as derived in [38]. We now summarise two approximations that
Salmon makes to this functional which result in sets of initial conditions for

the shallow water equations, and yet have a Hamiltonian structure associated
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geophysical fluid dynamics. He suggests not dropping the wind field but to

replace them with the geostrophic winds. He labels this approximation L;.

3.4.2 L, Dynamics

We return to the full Lagrangian for the shallow water equations, where
Salmon now uses the geostrophic winds, (u,,v,), which are dependent on
the height field, as an approximation to the full wind fields. The resulting

Lagrangian is labelled L; and is given by

0 0 1 d(a,b
L1://dadb((ug—]%)a—i—l—(vg—l—lj)a—gj_—5(u§+vg2_|_g (a )))

d(z,y)/))
(3.46)

L4 is still dependent only on the particle locations as the geostrophic winds
are determined by the mass distribution.

To apply Hamilton’s principle to L;, Salmon introduces variations to x,
Y, Uy, vy, by R and P. Substituting these quantities into (3.46) and ignoring

terms of O (&%) gives

5 5 1
//dadb(ug ~R) %ﬂvg +P) %—MR—I—MP—I—(X—uG)-éug—§g5h.

(3.47)

Salmon now introduces the ageostrophic velocity, which he defines to be

0x

u,, =

44



The next step is to integrate (3.47) and then substitute (3.48). This then

results in

// (—ity + [5) 62 + (=0 — f4) 6y + Uy - bu, — %géh. (3.49)

The final stage of the derivation to the equations is shown in Appendices
A and B in [39]. The resulting equations in an Eulerian framework are the

momentum equations

0
" (a“g Tty Vg F g - VU F Vug) + I h () + 0V (50

— gV (/ﬁk LV % (ufg)) A (%/ﬁ) (uag “V (%)) -k, (3.50)

and a continuity equation

Oh
En + V- ((uy +uyy) h) = 0. (3.51)

To simplify equations (3.50) and (3.51) Salmon uses the information that
every Hamiltonian system is precisely defined by the two geometrical objects:
the Poisson-bracket operator and the Hamiltonian itself, [39], [41]. We will
not go into how Salmon manages to derive the results but there is a full
explanation in [39].

Salmon notices that it is possible to define a set of canonical coordinates
that enables the Poisson-bracket operator to take its simplest form. He then
applies these coordinates to the shallow water Lagrangian and then applies
the variations with respect to these coordinates. The result is the coordinates

45



derived by Hoskins, [21], and the resulting dynamical equations are the semi-
geostrophic equations in 2-D for a constant f, which show that the potential
vorticity for these equations, (3.27), is conserved.

One final remark from [39] is the description that Salmon has for the re-
duced dynamics. Salmon says that the approximations L ~ Ly and L ~ [
can be viewed as projections of the fluid state vector in the infinite di-
mensional phase space spanned by{z,y,u,v} onto the subspace spanned by
{z,y}. For Ly the projected coordinates {u,v} are set to zero whereas for
Ly these are replaced by the geostrophic values, (u,,v,).

In [41] Salmon gives a mathematical interpretation for the approxima-
tions that he has applied. In the paper he shows that the semi-geostrophic
approximation is a specific projection onto the phase space manifold corre-
sponding to geostrophic balance. Associated with these is a set of canonical
coordinates. He goes on to derive the expression for the balanced part of the
phase space in terms of the approximation to the wind field, u, and he shows
that for the semi-geostrophic approximation the subspace in the phase space
is given by

1

uCEug—ﬁ(g-V)(kxug). (3.52)

In [41], Salmon comments that it would be possible to make further ap-

proximations of higher order to the wind field that would also have a subspace
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associated with them. McIntyre and Roulstone extend this theory from the






which is of the same form as in Section 2.2.2.
The constrained wind field u is the expression given for the subspace for
the semi-geostrophic balance, (3.52). Equation (3.55) is the same as (3.27).
We next describe the work undertaken by Mclntyre and Roulstone where

they extend the ideas by Salmon.

3.5.2 Higher Order Balance

In [31], McIntyre and Roulstone note that the constrained wind field, u¢,
that Salmon derived for the slow manifold, (3.52), is both a field and a mass-

configuration functional. They denote this by

u’=u’(x;h()). (3.56)

They make useful comments on how to view the constraint as a splitting of

the parent velocity field, u?



Mclntyre and Roulstone then derive an extension to the canonical coordi-
nates that Salmon uses to derive the semi-geostrophic equations form. They
are able to derive a set of set of canonical coordinates so that the PV can be

written in the form

fOX)Y)
f= 3.58
MTr 1359

where the canonical coordinates are given by
X =x+4+ V¢ —i7k x Vb, (3.59)

where ¢+ = v/—1 and v = /(2a 4+ 1). They show that the a in (3.59) is

related to the sub-spaces by

(a4

fug -Vi(k xuy). (3.60)

1
ucz§fk><x—|—ug—|—

To obtain the form for the semi-geostrophic model, (3.52), we substitute

o

|

|
DO —






the condition derived in Section 3.3.3. For the third situation we have a = 1
and v = /3 and as such the equation is elliptic if % < % which is satisfied
provided that the sub-space actually approximates the slow moving manifold
and this is so only when we have the Rossby number small.

The balanced wind field defined by (3.61) has the property that for con-
stant f this is not divergence free. Therefore if we could use this to find
a balanced height then the associated u® with this would be a divergent
rotational balanced wind.

This is possible by calculating the relative vorticity from u® and we do

that here

1
& = k-quC:k-qug—l—?k-Vx(ug-V)(kxug)

_ §vzh+;k.w(_(ua_f+vg%)i+(uﬁ_f+vg%)j)

_ gy L (O, P, D) O Oy O
N th—l_f(ax(ugax—l_vg@y“@y ugax—l_vg@y““

h  Ph\ 242 [0°hO*h [ P*h
= (22,20 2 - : (3.64)
F\ox*  0Oy*) P \0xz?0y? dx0y )
. . . L i 3¢
which has the following coefficients for the ellipticity condition: A = R
2 . . iy P
B=D= T ¢'=0and =1. This then gives a condition of & > {*.

It is from this last Monge-Ampere equation and the equation arising from

forming ¢ when « = 0 that the rest of the thesis is concerned with.
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associated with these.
In [41], Salmon gives a mathematical structure to the approximations he

mak



hapter 4

Balance Equations on the



(2.20), required again some form of geostrophic balance but now with a
non-zero velocity potential. These are seen as differing in that the second
conditions allow for an initial divergence.

In Section 2.3 we reviewed a method that nondimensionalised the prim-
itive equations so that the time scale was that of the advective scale. To
these equations a bounded derivative method was applied. Through bound-
ing the first time derivatives to be O (1) we arrived at (2.37), which is the
geostrophic balance condition. By bounding the second derivatives we arrive
at an equation that links the geopotential to the stream function, (2.38).
This is referred to as a non-linear balance equation, [14], [54].

In Section 3.3 we in



using information about the structure of Hamiltonian dynamics, Salmon is
able to define a subspace in the phase space of the shallow water equations
where the semi-geostrophic motions lie, (3.52).

In Section 3.5 we reviewed [30] and [31] where McIntyre and Roulstone
extend the subspace to a more generalised form as Salmon suggests in [41], to
link a set of sub-spaces that represent the slow motions in the shallow water
equations to a set of canonical coordinates, (3.59) with (3.60), and enables
the PV to be written in the Jacobian form, (3.58).

One of these sub-spaces is given by

uczug+%<ug-v><kxug>,

(3.61, which is the same as the Rossby number expansion for the wind fields
correct to second order, [31], [47]. This is also defining a balanced wind.

In this chapter we develop the mathematics necessary to calculate a bal-
anced height through the same approach that we described at the end of
Section 3.5.2, but on the sphere. We also derive the spherical component
form for the balanced wind and the spherical version of the Monge-Ampere
equation given in Cartesian coordinates by (3.64).

We then modity this technique to be able to use this with an incremen-
tal data assimilation scheme. We achieve this by linearising the spherical

definition of the balanced wind field and following the same procedure for
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calculating £ as in Section 3.5.2.

We also derive a linearised version of ()¢ associated with (3.61) for the
sphere. The result is a variable coefficient Poisson equation for the relative
vorticity and a variable coefficient Helmholtz equation for the PV. The so-
lution of these equations is a balanced height increment from which we can
reconstruct the balanced wind field. If @ = 1 in the spherical version of (3.61)
then the resulting wind field is divergent for constant f.

As we are concerned with the possibility of using this variable in a varia-
tional data assimilation scheme, we briefly describe the current control vari-
able transforms employed in the Met. Office’s incremental 3-D variational
data assimilation scheme, (3D VAR), and then explain how the balanced
height could be used as an alternative to the stream function and introduce
two new unbalanced variables in the last section.

We begin with a brief derivation of the shallow water equations as this



4.1 Spherical S E and Balance

The aim of this section is to introduce the spherical shallow water equations
and then to derive the spherical version of the non-linear balance equation.
This is the equivalent to the Cartesian version that can be found following
the derivation in [34]. To arrive at the spherical version we follow the proof

set out in [22].

4.1.1 Spherical Shallow Water Equations

We recall the vectorial version of the Cartesian form of the shallow water

equations in Section 2.2.2, (2.7) and (2.8). We start with (2.7),

D
D—ltl—l—kau:—th.



continuity equation, (2.6), as

Oh , _w Oh wOh h (Ou O(cosbv)) . 4
at—l_acos@a)\—l_aa@—l_acos@ 6)\+ 00 “_' (4.3)

Therefore, equations (4.1), (4.2) and (4.3) are the spherical version of the

shallow water equations.

4.1.2 Spherical Non-Linear Balance Equation

In Section 2.3 we summarised an initialisation technique that resulted in a
non-dimensional non-linear balance equation, (2.38). To derive the dimen-
sional spherical version of (2.38) we consider the spherical version of the equa-
tions of motion for the 3-D primitive equations model, (2.21). We make the
assumption of homogeneity and ignore the vertical wind, [54]. The remain-
ing terms are similar to the spherical version of the shallow water equations,
(4.1) and (4.2), but with geopotential gradients rather than height gradients.

We start by taking the divergence of the equations and ignoring the time
derivative of the divergence. The reason for this is that the removal of this

term ’filters’ the inertia-gravity waves, [54]. The remaining terms are
Ve((u-V)u)+V*®+V-(fk xu)=0. (4.4)

Expanding the term V - (u- V) u using the spherical definitions in Ap-
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pendix A gives

1 A L (00 0u 0 9*u
T | T cose \“anaoe T "aean T araoe )

a?cos? 0 ox)
_ tang¢ 8u+2 @ _ tand @—I- 1 _tan20 5
a?cos 8)\ ua)\ a? v 00 a?cos a* ) “
1 ov 0*v  2tané Ou
‘|‘; ((%) vw + 02 8(9) V- (u V) . (4.5)

In the next step we use the trigonometric identity sec? § = tan? 0 +1. We

now use the Helmholtz theorem for the wind field,
u=k xViy+ Vy,

which in spherical coordinates, where we are only considering the balanced

component,

L9y L% (4.6)

=" a 00’ v_acosﬁa)\'

Substituting (4.6) into (4.5) gives

1 (2(62¢)_262¢62¢+4t G0 0%

200x) ~ “oxzaer T 9X Do

+(2tan?0 + 1) (%’) ) +i(9_¢) +2t§fe%27f- wn

V-(u-Vju=

atcos? f

00

In (4.7) the third order terms have cancelled. We now consider the divergence



Substituting (4.6) for the wind field and differentiating the Coriolis parameter

gives

V- (fk xu) —




4. New Non-Linear Balance Equation

In this section we derive an alternative balance equation to (4.10) to find
a balanced height. We derive the equation from the general form of the
balanced wind field, (3.60) with the first term ignored, and then find the
form of the equation for a = 0 and 1.

We begin by recalling the general form of the balanced wind field, (3.60),

uczug—l—%ug-V(kxug), (4.11)

where we have removed the first term to calculate the relative vorticity. To
find its spherical form we use the spherical expression given in Appendix A.

Therefore, in component form this is




We now introduce the height version of the geostrophic winds in spherical

coordinates. These are

__90h __9 0k
YETF000 T Facosan

(4.16)

To derive the Monge-Ampere equation we substitute (4.16) into (4.15). The

result is
. g 1 8%h 9% oh 2¢% v 9*h \*
$= g (coswav T T 50 ) T Fatcosto \ \oon )
92h 92h dh 9%h A dh %h
—WW—I—Ztan@ﬁaea)\—l—ZtaH 0(5) —I-SIH(QCOS@%W

+% ((%)2 + cos? 0 (%)2)) : (4.17)

In the expression above all the third order terms have cancelled out. To
obtain this expression we have assumed a constant f. This is often referred
to the f plane approximation, [54], which is often used as a first stage of
testing of new model variables.

If we consider the geostrophic sub-space, @ = 0, then (4.17) simplifies to

£ =

2 2
g ( 1 9%h %k 6h>7 (18

fa? \ cos? § ON? + 002 taHQ%

which is a spherical Poisson equation. If we take a = 1 then the result is

2 2 2 2 2
&= ( ! “+a’§—tane@)+ 2 ((ah)

fa? \cos200X? 00 a0 f2a*cos? 000\
9*h 9*h oh 9*h A Oh d*h
—WW—I—Ztan@ﬁaea)\—l—ZtaH 0(5) —I-SIH(QCOS@%W

3 ((3) o (5)))

64



We now consider an extension to £° to form the constrained potential

vorticity, Q)°. We start from the definition

S+

Q° ;

=

, (4.19)

where we would substitute the righ



However, we do not use (4.19) to define the PV but a linearised form that

we derive in Section 4.3.3.

4.3.1 Linearised Balanced Wind Field

The non-linear aspect of the balanced wind field, (3.61), arises from the term
u, - V(k xu,). To linearise this we introduce a base state for the height
and consider increments to this. We start by expressing the height field, A,
as h = h + h', where h is a base state height and A’ is an increment. The

geostrophic wind then becomes
u, = u, +uy, (4.21)

where



cl

U;—I—?

(

ug Oug uy Ouy vy du, v, duy
acosf OA acosf OA a 00 a 00
_tan 0 (u;T)X

a



where, for convenience, we use I'; to represent the first derivative of f=! and

I'y, the second derivative with respect to . Therefore these are

0 (1 0* (1

The next termin (4.27) is k-V x (ﬁg -V (k X u;)). Evaluating u,-V (k X u;)
gives

o/ ., . 9 .
N (_wg "‘J“g) T %% (_wg +Ju9) ‘

Ug

ﬁg-V(kxu;):

acos

Taking the differential operators through gives

_ N u, v, u,0v, tanf .
ug-V(kxug) N _(aCOS(9 6)\+;80 + a gty |1
( Uy au; 17_g@u;

— 4+Tf""TD —eTj fi.
acosf O\ + a 00 + &4




Substituting (4.31) and (4.32) into the right hand side of (4.33) gives
Ty T,

, 1 d u, Ou d (v, Ou,
k'vx(ug'v(kxug))_acose ﬁ(acos@@A)ﬁ_ﬁ(;a@“

_g tanf / _|_g &av; _|_g COS&*% _|_g M* /
oA\ a )T a0\ a o) o0\ "a o0 ) a0\ a )

13 T E 16

(4.34)

For the remainder of the derivation of k - (V X (ﬁg -V (k X u;))) we sub-

stitute (4.22) for the incremental height and use the variables, h,u,, v,, to
represent h’, u,, v, respectively.

The first term, T4, in (4.34) is

oD (0 (g on)y g
YT 9N \acosf ox afdd)) a*fcos




The fourth term, T}, involves the derivative of sec # which is tan f sec §. Using

this information and I'; from (4.29) makes

T, = g gy 9’h - g aug 0*h %g g aQ—h B
17 08 a’fcos ON? ) T a2fcosh 90 ON2 ' a2 O Feos6 N2 ) =
g aug 0*h O0%h 3h T, 92h
a?f cost ( 00 0N + tan fu, OA2 g dX200 )  a®cos Gug o2 (4.38)

The fifth term, T5, is broken down into three parts. The first, T5,, is

T cos dv, 0 ( g ah) gtan@ dv, dh g Jdv, O*h ¢TIy Qv, Oh
5a — - Ay Ay

a 90 90 \af cosf N a?f 90 9N a2 f 90 OXDO > f 96 ON
(4.39)

The second part, Ty, is

T sin v, 0 g Oh\  gtan’0 0Oh gtand 0*h
PTG 90 \afcos00N) T a2f 0N a’f 000X
gtan 'y  Oh

A%

-f
The third part, Ts., is the largest and most complicated. The first part of ")






We now derive k - (V X (u; -V (k % ﬁg))) from (4.27). The result is

Ty T

, _ 1 0 u,  du, d (v, du,
ke (Vo (- ¥ kxwy))) = 20 ﬁ(acoseﬁ%ra?(EW“

_g _tan@ '5 _|_g u_;% _|_g cos ’% _|_g ﬂ ! =
oA\ a )T\ aox) o0\ e o0 ) a0\ a )|

T3 T4 T5 T6

(4.45)

where we use the same T' notation to represent the terms in (4.45). We again

represent h’,u, and v, by h,u, and v, respectively. The first term, 77, is

1 g( g Oh 8ug) B g ( 0*h Ou,  Oh ang)
oA B '

" dcosd af 00 X "~ a%fcosf \ NI DN +%6A2
(4.46)

The second term, T3, becomes

0 g 0hduy\ q h du,  Oh O’u,
= oA (azfcosﬁa)\ 60) "~ a?fcost (6)@ 90 + OX 000X ) (4.47)

The third term, T3, is

(4.48)

i d (gtan@@h ) gtand ( 0*h 8/18%)
3= = :

ox Tarr a0) = aar \aonts t aaon
The fourth term, T}, becomes

7= 0 (9 0hOv g (OhDvy  Oh OPvy ) gly Oh v
Y700 \a2f 90 0N ) af \ 002 9N T 90909X)  a* 90 9x

(4.49)
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The fifth term, T5, at the moment, is

oo 9 (9 0hdv) g
T 00 \a2fON 0 ) arf



We now consider the second line of (4.27), where we have Vf~!. As f is

only a function of § we have the vector V=1 = (0,T, O)T. Therefore

k-V(%) < (-



for h when a = 0 and (4.55) with « replaced with 1. This gives two elliptic
equations whose solutions are balanced increments to the height field.

We now consider a different method of using the balanced wind field to
derive an equation for the balanced height increment where instead of using

the relative vorticity we now consider the potential vorticity.

4.3.3 Potential Vorticity Approach (PV)

In this section we derive a generalised version of the balance equation from the
potential vorticity of shallow water equations model. The resulting elliptic
partial differential equation is a variable coefficient Helmholtz equation. We
then find the specific form of the equation for « =0 and o = 1.

We start b



then gives us a base state for £°. This is denoted by £°. We apply the same
linearisation to the height field, h = h 4 A/, and we still have u defined by

(4.24), but u® is defined by

2
u, + TO‘ug V(k x1,). (4.59)

ﬁc

This is written in component form as

B B 200 u, OJv, ©v,0v, tanf ,

c = g, -2 P 4 Y9 %% 4.
" t f (acos@ oA + a 00 + a ug“, (4-60)
B B 200 u, Ou, v,0u, tanf

° = - Ty B9l N7 4.61
! Vs f (a cosf O\ a 00 a 9 (4-61)

In the next step we follow standard procedures for linearisation

f +k

gr - ST V(=



The right hand side of (4.64) is a variable coefficient Helmholtz equation
for the balanced height increment, h’.

To complete the balance equation we require a linearisation to the left
hand side of (4.57) as we use this to approximate the balanced PV. We
achieve this by introducing a linearisation to the full wind, u = u 4+ u’. This

then enables us to linearise the relative vorticity as

E=k



dv, du, ., Oug
+ ZCOSQﬁW—Mm@vg (

o



4.4 Alternative Control Variables

In this section we briefly describe the transforms that are currently used to
move between the state variables and the control variables before we describe
an alternative set of control variables and transforms using A’ as the balanced

variable.

4.4.1 Current 7 and U Transforms

The current set of control variables used at the Met Office are comprised of
a streamfunction, ¢, velocity potential, v, and an unbalanced pressure, 4 P.
In this section we explain the current transforms from the model variable
to the control variables, (T transform), and the transform from the control
variables back to the model variables, (U transform).

We start with a brief description of the main aim of an incremental 3D

VAR scheme. This is to minimise the following cost functional
J(6x) = (6x — 6x")T B! (6x — 6x")
+(y —H(x))" R (y—H(6x)), (4.69)
where §x is the increment to the model state vector, §x° are the increments to
a background states, y is the vector of observations, H is an interpolation op-
erator, B is the background error covariance matrix and R is the observation

error covariance matrix.
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Currently, the model at the Met Office uses around 107 model variables
across the whole grid and around 10° observations. Therefore the two inverse
matrices in (4.69) are large and full, although they are never stored.

One advantage of the T transform is it allows a simplification to be made
to B. It transforms the matrix into block diagonal as the three control vari-
ables are assumed to be uncorrelated, [54]. This then makes the minimisation

problem

J (6z) = (62— 62°)T B (62— 62)

+(y—H(Téz))" R (y—H(T6z)), (4.70)

where we have applied a transform matrix, 7', such that z = T'x and this
gives z = T6x, 6z° = Téx> and B = TBTT.

The current T transform is defined as follows to calculate the stream-
function and velocity potential increments, where we shall now use the prime

notation that we have used for increment in the thesis so far,

¢ =V xu =V (4.71)

§'=V-u =V (4.72)

The transform to calculate the unbalanced pressure involves the solution
of a linear balance equation, [54], and statistical regression which we shall

not go into here.

80



The in






model. We also summarised the significant results from the work by Salmon
and McIntyre and Roulstone and the definition of the balanced wind field,
(3.61), the work in this thesis is based on.

After the summary we briefly derived the SWE for the sphere, (4.1), (4.2)
and (4.3) in Section 4.1.1, where we also reviewed a derivation of a spherical
non-linear balance equation, [22], which is (4.10).

In Section 4.2 we derived the spherical version of the balanced wind field,

(4.12) and (4.13) based on (3.61). It is from these that we derived a spherical



We then extended this idea to a PV approach in Section 4.3.3. We started
from the PV equation, (4.57), and through the substitution of a linearisation
to £° as £ = £° 4 ¢ which arises from a linearisation to the height field,
h=h+h. The final equation is (4.67).

In the last section, Section 4.4, we gave a brief description of the current
control variable transform, (4.71) and (4.72) and briefly explained the 3D
VAR scheme’s cost functional.

In Section 4.4.2 we described an alternative to the T transform using
(4.55) or (4.67) to calculate the balanced variable, where the two unbal-
anced variables could be calculated from (4.75) and (4.76). The alternative
U transforms were (4.25), (4.26) and (4.73) (evaluated with ¢* and x*).

In the next ¢



hapter 5

Ellipticity Theory

In Chapter 4 we derived two new generalised balance equations whose solu-

tions are a balanced height increment. The first equation, (4.55)

5/ — gv2h/ _ 20[9

f a®f2 cos? (Zugshox + cos Ovyahgo — ugshan

+2tan Qugrhy — cos v hy — 2tan Osinfv,hy — 2sin v hgy + cos? Oughg

+sin 0 cos O (uzehg + ugheg)) . (5.1)

is for the relative vorticity method and (4.67)

v (F+E
h}:%_( : )

AR
7L2

Iy

(5.2)

=

is for the potential vorticity method. If we consider (5.1) then we hav



(5.2) then « is implicit in the £ and €% terms. For either value of a, 0 or 1,
the resulting equation is a variable coefficient Helmholtz equation. All four
of these equations are boundary value problems and as such there is a large
amount of theory associated with these types of equation, [8], [10], [11], [16],
(23], [32], [46].

In Section 5.1 we briefly begin by explaining the spherical grid and the
choices for the boundary conditions, we then go on to introduce the theory
for the continuous problem by first defining what is meant by an elliptic
differential operator and then state the theorem that allows for a solution to
exist. This theorem is dependent on the ellipticity condition which we
introduce in Section 5.1.2. We have seen this for the non-linear case (Section
3.3.3) but we now introduce the linear version in Section 5.1.2.

We then derive the ellipticity condition for the four new balance equations
in Section 5.1.3. This condition has a significant effect on the equations
and many meteorologists have looked for a link between certain flows in the
atmosphere and this condition, [25], [26] and [33].

We start Section 5.2 with a brief description of the Met Office’s shallow
water model from which we generate the base state data. In Section 5.2.2
we describe the numerical approximation that we use to solve (5.1) and (5.2)
and we also introduce the theory for discrete elliptic equations.

In the final section, 5.3, we start with a description of the experiments
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for which we show results in Chapters 6 and 7. Th