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Chapter �

Introduction





The problem with data assimilation is the sparseness of observations of

the atmosphere over certain areas of the Earth� mainly the oceans� does

not provide initial conditions at the required operational resolution� This

problem is overcome by using information about the atmospheric movements

prior to the data assimilation and this requires the evaluation of the balanced

and unbalanced parts of the �ow� The decomposition is often referred to as

a control variable transform�

Currently at the Met O�ce this decomposition is achieved by transform	

ing the wind �eld� u� into its rotational part� �relative vorticity�� �� and diver	

gent part� �� From these there are tw



represents the semi	geostrophic part of the equations� Associated with this

phase space is a set of canonical coordinates which turned out to be those

derived by Hoskins in �
��� These coordinates have special features and have

been used operationally� ����� but the semi	geostrophic equations are also

seen as an important part of research in numerical weather modelling� �����

����� ���� and ��
��

McIntyre and Roulstone in ���� and ���� are able to extend the ideas de	

rived by Salmon and are able to derive a relationship between the sub	space�

�they refer to it as a constrained submanifold� and the canonical coordi	

nates� The potential vorticity associated with the manifolds can be written

as a Monge	Amp�ere equation between the canonical coordinates and the La	

grangian �uid particle coordinates�

If we consider the vertical component of the relative vorticity of the bal	

anced wind �eld then this is related to the depth of the �uid by a Monge	

Amp�ere equation for a balanced height� From this height we calculate the

balanced wind �eld� This �eld is not divergence free� but is balanced as it

de�nes the sub	space of the shallow water equations that does not excite the

fast waves�

In this thesis we investigate this new wind �eld as a possible alternative for

the current decomposition to rotational and divergent �elds in the control

variable transform� We start in Chapter 
 where we brie�y introduce the

�







tions to the elliptic equations� and compare these results with those from the

constant coe�cient equations to see if there is any extra information coming

from the extra terms� We also perform a scale analysis at �
 hrs on the terms

in the di�erential equation for the same reason�

The reason for these experiments is that the new equation requires a nine	

point stencil to approximate it rather than the �ve	point for the Laplacian

and as such if the Laplacian is the dominant term then it may not be eco	

nomical to calculate the extra terms involving the variable coe�cients� We

also perform a scale analysis of the terms in the ellipticity conditions at �


hrs to see if there are any terms that could be removed from the equations�

The second set of experiments involve the numerical solutions of the new

elliptic equations where we consider� as a �rst choice� a zonal averaged base

state and we examine the e�ects that this has when considered with the three

test cases� We also test to see if the result about using the PV with a low

Burger number �ow regime� ����� carries over to the higher form of the PV

that we derive in Chapter �� W





cedure to derive an initialisation that prevents the fast motions forming in

the numerical solution� The result is a choice between two sets of conditions�

The �rst is a set of initial conditions and the second is a Monge	Amp�ere equa	

tion that is referred to as a non�linear balance equation whose solution

does not include the fast waves�

��� Atmospheric Motions

We begin with a quote from a letter that appears in ���� from Jule Charney to

Phillip Thompson� Charney has the following description for the atmosphere�

� We might say that the atmosphere is a musical instrument on which

one can play many tunes� High notes are the sound waves� low notes are

long inertial waves� and nature is a musician more of the Beethoven than

of the Chopin type� He much prefers the low notes and only occasionally

plays arpeggios in the treble and then only with a light hand� The oceans

and the continents are the elephants in Saint�Saens� animal suite� marching

in a slow cumbrous rhythm� one step every day or so� Of course� there are

overtones� sound waves� billow clouds �gravity waves�� inertial oscillations�

etc�� but these are unimportant��

In his ���� paper� ���� Charney discusses the characteristics of atmo	

spheric motion by making the following assumption� he assumes that the

�



atmosphere is statically stable� by this he is assuming that the horizontal

scale� LH � is larger than the vertical� LZ � He takes LZ to be of the order of

one atmospheric height� ��km� and the horizontal scale to be ���km� The

e�ect of this is that the atmospheric motions are in quasi�hydrostatic balance

and are of planetary scale� �����

A consequence of the hydrostatic assumption is that there are no sound

waves and the equations that govern such an atmosphere are the primitive

equations� which we introduce in Section 
���

In ����� Daley de�nes two types of time scales that are observed in this

type of atmosphere� These are given by

�� �
�

f
� �� �

LH

VH
� �
���

where f is the Coriolis parameter and VH is a characteristic horizontal ve	

locity� These two time scales are referred to as the �inertial� and �advective�

time scales respectively� The Rossby number associated with these scales is

given by the ratio

R� �
��
��

�
VH
LHf

	 �
�
�

In the atmosphere R� is usually small� This implies that the advective time

scale is much larger that the inertial time scale� The time scale �� is usually

a few hours whereas �� is considered to be longer than a day�

There are two kinds of atmospheric motions that can be identi�ed as

��





is to employ a �ltering system in the receiver� Translating� the �rst method

implies that the unwanted harmonics shall be eliminated from the raw data by

some type of harmonic analysis� the second that you transform the equations

of motion and make the approximations in such a way that the bad harmonics

are automatically eliminated��

Charney is saying that there are two methods in which to perform the

n



unbalanced initial conditions for the model and a large projection onto the

inertia	gravity mode of the equations�

An important thing to note is the atmosphere cannot be initialised but

can be in balance� Initialisation is a process and can result in a balanced set

of initial conditions�

In the next section we look at a way of initialising the shallow water equa	

tions to prevent the formation of inertia	gravity waves that are supported in

this model�

��� Shallow Water Theory

In this section we give a brief description of the shallow water model and

the equations associated with this model� We also introduce the PV for this

model and show that is materially invariant� Finally we give a review of

an initialisation performed by Hinkelmann and Phillips to the shallow water

equations�

����� Shallow Water Model

The underlying assumptions� as described in ����� for the shallow water model

are that the �ow is a sheet of �uid with constant and uniform density with

a free surface height� h� where the �uid is assumed to be inviscid and in

��



rotation� The �ow is also assumed to be incompressible� A diagram of the

model is in Figure 
���

y� v

x� u

h �x� y� t�
D

hB �x� y�

�

L

z� w

Figure 
��� Diagram of the Shallow Water Model�

In Figure 
�� the variable h is the height above a reference level z � �

and is a function of the horizontal coordinates� x and y and time t� � is

the rotation rate� u and v are the horizontal winds that are parallel to the

horizontal coordinates� z is the vertical coordinate� w is the vertical wind

which is parallel to the vertical axis� and hB is the rigid bed of the �uid�

Hence D is the depth� given by h � hB� which does vary with time� For the

scale analysis that allows us to consider these equations as a substitute for

the atmosphere� we choose a sensi�hm3TJ
487 0 5o



characterises shallow water theory is

D

L
� �	 �
���

Therefore we require the horizontal length scale to be considerably larger

than the vertical scale�

����� Shallow Water Equations

The set of equations that govern this model is comprised of two momentum

equations� one for each of the horizontal directions� and a continuity equation�

These are given by


u


t
� u


u


x
� v


u


y
� fv � g


h


x
� �� �
���


v


t
� u


v


x
� v


v


y
� fu � g


h



in their Eulerian form� The Lagrangian counterpart is given by

Du

Dt
� fk� u � �grh� �
���

Dh

Dt
� �hr � u� �
���

where

D

Dt
�





t
� u � r�

k is the z direction unit vector and r � u is the horizon



where � represents the horizontal divergence� Rearranging �
��� we obtain

� � ��

h

Dh

Dt
	 �
����

Substituting �
���� into �
���� gives

D

Dt
�� � f�� �� � f�

h

Dh

Dt
� �	 �
��
�

This can be written in the form

D

Dt

�
� � f

h

�
� �	 �
����

This last equation gives the information that the potential vorticity�

Q � f � �

h
�
f � 
v


x
� 
u

y

h
� �
����

is conserved following the motion of the vertical �uid columns� We will

use the shallow water equations� potential vorticity in many of the following

chapters but we now review an initialisation to the shallow water equations



a base state geopotential� 
� � g
h� which is only a function of y� where U is

related to 
� geostrophically through

U � � �

f�


 
�


y
	

It is also assumed that the perturbations with respect to the velocity and the

geopotential are only functions of x� When these assumptions are applied to

equations �
��� 	 �
��� then the result is a much simpler set of equations�

Next stage in this process is to introduce the Helmholtz theorem that

allows the wind �eld� u� to be written in terms of derivatives of a stream

function� �� and velocity potential� �� This is given by

u � k�r� �r��

which in component form is

u � �
�

y

�

�


x
� v �


�


x
�

�


y
	 �
����

This can be used to write equations �
��� 	 �
��� in terms of �� � and ��

Next a wave solution is assumed for each of the three variables of the form��������������

� �x� t�

� �x� t�

� �x� t�

��������������
�

��������������

 �� �t�

 �o �t�

 �� �t�

��������������
exp

�
imx

a
� iUmt

a

�
� �
����

where m is the x wave number� a is the radius of the Earth and the subscript

denotes the variable at the initial time� These are then substituted into the

��



reduced equations and a Laplace transform is then applied to each of the

three variables� The transfer function for



to zero� This removes the term i��  ��
���

from �
���� and in that case for there

to be no inertia	gravity waves we must have the coe�cients of the sine and

cosine terms initially zero� This then gives the conditions

 �� � � and f�  �� �  �� � �	 �
����

This condition is seen as a zeroth order initialisation state as it is saying

that the initial state should be in geostrophic balance and that there should

be a zero initial velocity potential�

If we now allow all the terms to stay in the reduced equations then this

gives

 �� �
i��  ��
���

� � and f�  �� �  �� � �	 �
�
��

This is seen as a �rst order set of conditions� as w



move these from the more sophisticated models in �	D� namely the primitive

equations� �PE� and we do this in the next section�

��� Primitive Equation Model

In the last section we summarised a technique to derive an initialisation to the


	D non	linear shallow water equations to remove the inertia	gravity waves

from the numerical model�

In this section we introduce the �	D primitive equations and summarise

a technique that initialises the PE such that the gravity waves are removed

but also brie�y look at the limitations of the method�

����� Primitive Equations

The primitive equations comprise of the equations of motion� �
�
��� hydro	

static equation� �
�

�� conservation of mass� �
�
��� and the thermodynamic

equation� �
�
��� These are


u


t
� u � ru� 



u


P
� fk� u�r� � F� �
�
��


�


P
�
RT

P
� �� �
�

�

r � u�





P
� �� �
�
���





t
� u � r

�

�


P
� 
" � � RQ

CpP
� �
�
��


�



where P is the pressure and is used as the vertical coordinate system� 
 �

dP�dt is the vertical velocity� R is the gas constant� CP is the speci�c heat

at constant pressure� T is the temperature and � is the geopotential� F� is

the frictional force per unit mass� Q here is the time rate of heating per

unit mass� " is the static stability� r is the gradient operator as de�ned in

Appendix A and u � �u� v�T is the horizontal wind �eld�

Firstly we nondimensionalise �
�
��	�
�
�� using the following scales

� LH is the horizontal scale �m�

� LZ is the vertical scale �m�

� # is the vertical pressure scale �mb�

� VH is the horizontal winds speed �ms���

� N� is the Brunt	V$ais$al$a frequency �s���

� LH
VH

is the advective time scale �s�

� g is the gravitational constant �ms���

The variables are nondimensionalised as follows

u� � V ��
H u� r� � LHr� t� � VHL

��
H t�

�x�� y�� � L��
H �x� y� � P � � #��P� 
� � LH#

��V ��
H 
	 �
�
��







The Coriolis parameter is approximated through a beta	plane as de�ned in

Pedlosky� ����� given by

f� �
f


�
�
�
f�� �

LH

a
��y�

�
� �
�
��

where f�� � sin �� and �� � cos ��



the mid	latitudes� The result is that the leading terms� in magnitude� are

the Coriolis term and the geopotential gradients�

� fv � �
�

x

� fu � �
�

y

	 �
��
�

The two conditions in �
��
� are seen as �rst order approximations to the �ow

and is only valid for small Rossby numbers as explained in ����� Therefore a

�ow is said to be quasi�geostrophic if the motion is nearly geostrophic�

To apply this approximation to �
�
�� 	 �
�
�� we require the parameters

R�� LR and LH
a � �� If we consider

LH � ���m� LZ � ���m� VH � ��ms��� g � ��ms���

� � ����s��� a � ���m� N� � ����s��� LR � ���m�

to be typical values for the mid	latitudes� ����� then we see that the three

parametersR�� LR and LH
a are around ���� We now introduce a small param	

eter� �� that is the same magnitude as the Rossby number� This makes the

three dimensionless numbers O ���� We will use this information to initialise

the model�

����� Quasi�Geostrophic Initialisation

Two possible methods to derive the quasi	geostrophic equations are� �rstly

expand the dependent variables u� v and � in an asymptotic series in terms


�





To derive a higher order set of conditions� we require the second time

derivatives of u� v and � to be order one functions in �� After many ma	

nipulations� for more details see ����� the �nal outcome is a version of the

non�linear balance equation� given by

r�� � f� � �� ��u� �r � �u� � ru��� � �
����

where u� is the u component of u��

The important feature of this equation is that it relates the stream func	

tion to the geopotential� through a Monge	Amp�ere type equation� to prevent

motions of the same size as the inertia	gravity waves forming in the model�

Therefore the initial data that satisfy �
���� is balanced and integrating a

primitive equations model with this data will not excite gravity waves�

We now consider brie�y the limitations of the quasi	geostrophic initiali	

sations to both the shallow w



This meant

R� �
VH


�LH

�
LH

a
�

R�L
�
H

L�
R

�

were order �� The main problem occurs when we start to enter the lower

latitudes and the Rossby number is growing and as such the rotational �ow

associated with geostrophic �ows is not correctly modelling the �ow here�

This restrains this type of initialisation to the mid	latitudes for best results�

��� Summary

In this chapter was we have introduced the motivation and techniques for

the removal of inertia	gravity waves from either a shallow water or primitive

equations model�

There were two di�erent techniques used to derive the initialisation� The

�rst uses a Laplace transform and the other a bounded derivative method�



In the next chapter we consider a di�erent approach to this problem by

considering Hamiltonian dynamics and derive a di�erent non	linear partial

di�erential equation that also prevents these fast motions�


�



Chapter �

Balance Via Hamiltonian

Dynamics

In the previous chapter we reviewed two initialisation techniques� one for

the shallow water equations and the other for the primitive equations� For

the primitive equations the process resulted in a non	linear balance equation�

�
����� where the stream function was related to the geopotential through a

Monge	Amp�ere equation�

In this chapter we review other mathematical techniques to derive a bal	

ance equation� We start by introducing the basics of Hamiltonian dynamics�

which will be used to derive a di�erent balance equation� We then show how

the shallow water equations can be derived in Hamiltonian dynamics through

a variational principle� This is important as from this di�erent balance equa	


�





There are two di�erent ways of describing the continuum motion� The �rst

is the Eulerian where the independent variables are the space coordinates�

x � �x� y�� and the time� t� The dependent variables are the height �eld�

h �x� y� t�� and the velocities� u �x� y� t��

In the Lagrangian description� the independent variables are a set of



where F is a function of �x� y� t� or �a� b� � �� This leads to


F


�
�

F


t
� u


F


x
� v


F


y
�

F


t
� u � rF	 �����

which is the form used in Section 
�
��� A detailed derivation is given in ��
��

With the basic description of �uid motions described here in terms of

Lagrangian and Eulerian framework we now show how these are used in

derivation of motions using Hamilton�s principle�

����� Hamilton�s Principle

Hamilton�s principle states that the action

A �
Z t�

t�

L L



Hamilton�s principle states that the �rst variation of the action� �A� satis�es

�A � �
Z t�

t�

�
�




NX
i��

mi

dxi
dt

� dxi
dt

� V

�
dt � �� �����

for arbitrary� independent variations f�xi �t� � �yi �t�g that vanish at t� and

t�� Therefore we must have �xi �t�� � �xi �t�� � �� From applying variational

techniques we obtain

� �
Z t�

t�

�
�mi

d�xi
dt�

� dV

dxi

�
� �xidt	 �����

As a result of the arbitrariness of the variations the quantity inside the brack	

ets must be zero� The result is Newton�s second law�

For the second example we consider a barotropic �uid� The di�erence

between the system of point masses and the �uid continuum is that the

masses are distributed continuously in space in the continuum� Therefore�

instead of a summation to represent the masses we have

Z Z Z
dm �

Z Z Z
dadbdc� �����

as derived in ��
�� The kinetic energy is given by

T �
�




Z Z Z
dadbdc


x


�
� 
x

�

	 ������

For the potential energy we assume that this arises from external and inter	

particle forces that depend on the particle location x �a� b� c� � �� The potential

energy is

V �
Z Z Z

dadbdc �E ��� � � �x�� � ������

��



where � is the speci�c volume and is given by

� � �

�
�

 �x� y� z�


 �a� b� c�
�

��������������


x

a


x

b


x

c


y

a


y

b


y

c


z

a


z

b


z

c

��������������
�

 �x�


 �a�
�

� is the density and E ��� is the speci�c internal energy and is a function of ��

and � �x �a� t�� is the external potential and is dependent on the �uid	particle

locations�

This then gives the action for this system as

Z
d� �T � V � �

Z
d�

Z Z Z
da

�
�





x


�
� 
x

�

� E

�

 �x�


 �a�

�
� � �x �a� � ��

�
�

����
�

which must be stationary with respect to the arbitrary variations �x �a� b� c� � ��

in the location of the �uid particles� A full derivation of the resulting equa	

tions can be found in ��
��

We now extend these ideas to the shallow water equations� where in the

next section we will de�ne the Lagrangian for the shallow water equations as

shown in ���� and derive the shallow water equations from this�

��



��� Hamiltonian Form for the Shallow Water

Equations

In Salmon�s ���� and ���� papers� ���� and ����� he shows that Hamilton�s

principle for a mechanical system with N degrees of freedom can be written

in the form

�
Z

d�

�X
i

pi

qi





We shall return to the shallow water Lagrangian in Section ��� but we �rst

describe an approximation made to ������ and ���
��� This approximation

results in the semi�geostrophic equations� We look at this approximation

in the next section and review certain properties that arise from this and

extended these in Section ����

��� Semi�Geostrophic Theory

In this section we will look at how the semi	geostrophic equations are derived

from ������ and ���
��� We also look at the PV that is associated with these

equations� We then give a review of the geostrophic coordinates that were

devised b



winds� �
��
�� This then leads to the equations

%ug � g

h


x
� %yf � �� %vg � g


h


y
� %xf � �	 ���
��

These are referred to as the semi	geostrophic equations when they are com	

bined with the continuity equation� �
����

This system has the Hamiltonian

H � V �
Z
D

�



jugj�dm� ���
��

where D is the domain of interest and dm is the mass element� and

V �
Z
D

�



ghdm� ���
��

is the potential energy of the mass con�guration� There is a conserved quan	

tity like potential vorticit



where � is de�ned by

� �x� y� t� �
g

f�
h �x� y� t� 	 ���
��

This choice of � enables us to write the de�nition of geostrophic winds� �
��
��

as

ug � �f 
�

y

� vg � f

�


x
	 ������

This transformation� x 	� X



This then enables us to write the material derivative of the geostrophic co	

ordinates in terms of � as

%X � �f 
�

Y

� %Y � f

�


X
	



geostrophic winds are substituted in� gives

Qsg �
�

h

	

f �

�

��


x�
�

��


y�

�
� �


f

	


��

x�


��


y�
�
�

��


x
y

��
�
A
�
A 	 ������

This partial di�erential equation is referred to as a Monge�Amp�ere Equa�

tion � There is a condition on the equation to ensure solvablility but �rst

we give the general form of the Monge	Amp�ere equation as expressed in ����

and then give this condition�

The general form of the Monge	Amp�ere equation is

A�Br � 
Cs�Dt� E
�
rt� s�

�
� �� ������

where for �x� y� space we can de�ne p� q� r� s and t to be

p �

�


x
� q �


�


y
� r �


��


x�
� s �


��


x
y
� t �


��


y�
� ������

where A� B� C� D and E are given functions of �x� y� �� p� q�� It must be

noted that p and q are the general notation used in ����� The solvability

condition for non	linear second order partial di�erential equations is

BD � C� �AE � �� ������



tions if

BD � C� �AE � ��

and the coe�cients in �	�	
� are all continuous in the domain�

Returning to ������ then� after we have multiplied throughout by h
f � we

have the following coe�cients B � D � �� C � �� E � � and A � � � Qsgh
f

�

Then evaluating ������ gives us the condition Qsg � � which was assumed in

Section ����
� In ���� they derive the condition for the transformed variable

and arrive at the same condition for the PV�

In Section ��� we derive another Monge	Amp�ere equation whose solutions

gives a balanced height �eld� Before this we return to the Hamiltonian dy	

namics to explain a series of approximations to the shallow water Lagrangian

that were performed by Salmon� ����� ����� which results in an initialisation

through Hamiltonian dynamics�

��� Salmon�s L� and L� Dynamics

In Section ��
 we introduced the Lagrangian for the shallow water equa	

tions� ������� as derived in ����� We now summarise two approximations that

Salmon makes to this functional which result in sets of initial conditions for

the shallow water equations� and yet have a Hamiltonian structure associated

�






geophysical �uid dynamics� He suggests not dropping the wind �eld but to

replace them with the geostrophic winds� He labels this approximation L��

����� L� Dynamics

We return to the full Lagrangian for the shallow water equations� where

Salmon now uses the geostrophic winds� �ug� vg�� which are dependent on

the height �eld� as an approximation to the full wind �elds� The resulting

Lagrangian is labelled L� and is given by

L� �
Z Z

dadb

�
�ug �R�


x


�
� �vg � P �


y


�
� �




�
u�g � v�g � g


 �a� b�


 �x� y�

��
	

������

L� is still dependent only on the particle locations as the geostrophic winds

are determined by the mass distribution�

To apply Hamilton�s principle to L�� Salmon introduces variations to x�

y� ug� vg� h� R and P � Substituting these quantities into ������ and ignoring

terms of O ���� gives

Z Z
dadb �ug �R�


�x


�
��vg � P �


�y


�
� %x�R� %y�P �� %x� uG� � �ug� �



g�h	

������

Salmon now introduces the ageostrophic velocity� which he de�nes to be

uag � 
x


�
� ug	 ������

��



The next step is to integrate ������ and then substitute ������� This then

results in

Z Z
�� %ug � f %y� �x� �� %vg � f %x� �y � uag � �ug � �



g�h	 ������

The �nal stage of the derivation to the equations is shown in Appendices

A and B in ����� The resulting equations in an Eulerian framework are the

momentum equations

h

�




t
ug � ug � rug � uag � rug � uag � rug

�
� fk� h �ug � uag� � gr

�
�



h�
�

� �gr
�
h�k � r�

�
uag
f

��
� gr

�
�



h�
��

uag �r
�
�

f

��
� k� ������

and a continuity equation


h


t
�r � ��ug � uag�h� � �	 ������

To simplify equations ������ and ������ Salmon uses the information that

every Hamiltonian system is precisely de�ned by the two geometrical objects�

the Poisson	bracket operator and the Hamiltonian itself� ����� ����� We will

not go into how Salmon manages to derive the results but there is a full

explanation in �����

Salmon notices that it is possible to de�ne a set of canonical coordinates

that enables the Poisson	bracket operator to take its simplest form� He then

applies these coordinates to the shallow water Lagrangian and then applies

the variations with respect to these coordinates� The result is the coordinates

��



derived by Hoskins� �
��� and the resulting dynamical equations are the semi	

geostrophic equations in 
	D for a constant f � which show that the potential

vorticity for these equations� ���
��� is conserved�

One �nal remark from ���� is the description that Salmon has for the re	

duced dynamics� Salmon says that the approximations L � L� and L � L�

can be viewed as projections of the �uid state vector in the in�nite di	

mensional phase space spanned byfx� y� u� vg onto the subspace spanned by

fx� yg� For L� the projected coordinates fu� vg are set to zero whereas for

L� these are replaced by the geostrophic values� �ug� vg��

In ���� Salmon gives a mathematical interpretation for the approxima	

tions that he has applied� In the paper he shows that the semi	geostrophic

approximation is a speci�c projection onto the phase space manifold corre	

sponding to geostrophic balance� Associated with these is a set of canonical

coordinates� He goes on to derive the expression for the balanced part of the

phase space in terms of the approximation to the wind �eld� u� and he shows

that for the semi	geostrophic approximation the subspace in the phase space

is given by

ucs � ug � �


f
�ug � r� �k� ug� 	 ����
�

In ����� Salmon comments that it would be possible to make further ap	

proximations of higher order to the wind �eld that would also have a subspace

��



associated with them� McIntyre and Roulstone extend this theory from the





which is of the same form as in Section 
�
�
�

The constrained wind �eld ucs is the expression given for the subspace for

the semi	geostrophic balance� ����
�� Equation ������ is the same as ���
���

We next describe the work undertaken by McIntyre and Roulstone where

they extend the ideas by Salmon�

����� Higher Order Balance

In ����� McIntyre and Roulstone note that the constrained wind �eld� ucs�

that Salmon derived for the slow manifold� ����
�� is both a �eld and a mass	

con�guration functional� They denote this by

uc � uc �x�h ���� 	 ������

They make useful comments on how to view the constraint as a splitting of

the parent velocity �eld� up



McIntyre and Roulstone then derive an extension to the canonical coordi	

nates that Salmon uses to derive the semi	geostrophic equations form� They

are able to derive a set of set of canonical coordinates so that the PV can be

written in the form

Qc �
f

h


 �X�Y �


 �x� y�
� ������

where the canonical coordinates are given by

X � x�r�� i�k�r�� ������

where i �
p�� and � �

q
�
�� ��� They show that the � in ������ is

related to the sub	spaces by

uc �
�



fk� x� ug �

�

f
ug � r �k� ug� 	 ������

To obtain the form for the semi	geostrophic model� ����
�� we substitute

� � ��







the condition derived in Section ������ For the third situation we have � � �

and � �
p
� and as such the equation is elliptic if �

c

f � �

 which is satis�ed

provided that the sub	space actually approximates the slow moving manifold

and this is so only when we have the Rossby number small�

The balanced wind �eld de�ned by ������ has the property that for con	

stant f this is not divergence free� Therefore if we could use this to �nd

a balanced height then the associated uc with this would be a divergent

rotational balanced wind�

This is possible by calculating the relative vorticity from uc and we do

that here

�c � k � r � uc � k � r � ug �
�

f
k � r� �ug � r� �k� ug�

�
g

f
r�h�

�

f
k � r �

�
�
�
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vg
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� vg
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�
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�
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x

� vg
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�
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�
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f
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�
A � ������

which has the following coe�cients for the ellipticity condition� A � f��c


g�
�

B � D � � f�


g�
� C � � and E � �� This then gives a condition of f
 � �c�

It is from this last Monge	Amp�ere equation and the equation arising from

forming �c when � � � that the rest of the thesis is concerned with�

�






associated with these�

In ����� Salmon gives a mathematical structure to the approximations he

mak



Chapter �

Balance Equations on the



�
�
��� required again some form of geostrophic balance but now with a

non	zero velocity potential� These are seen as di�ering in that the second

conditions allow for an initial divergence�

In Section 
�� we reviewed a method that nondimensionalised the prim	

itive equations so that the time scale was that of the advective scale� To

these equations a bounded derivative method was applied� Through bound	

ing the �rst time derivatives to be O ��� we arrived at �
����� which is the

geostrophic balance condition� By bounding the second derivatives we arrive

at an equation that links the geopotential to the stream function� �
�����

This is referred to as a non	linear balance equation� ����� �����

In Section ��� we in



using information about the structure of Hamiltonian dynamics� Salmon is

able to de�ne a subspace in the phase space of the shallow water equations

where the semi	geostrophic motions lie� ����
��

In Section ��� we reviewed ���� and ���� where McIntyre and Roulstone

extend the subspace to a more generalised form as Salmon suggests in ����� to

link a set of sub	spaces that represent the slow motions in the shallow water

equations to a set of canonical coordinates� ������ with ������� and enables

the PV to be written in the Jacobian form� �������

One of these sub	spaces is given by

uc � ug �
�

f
�ug � r� �k� ug� �

������ which is the same as the Rossby number expansion for the wind �elds

correct to second order� ����� ����� This is also de�ning a balanced wind�

In this chapter we develop the mathematics necessary to calculate a bal	

anced height through the same approach that we described at the end of

Section ����
� but on the sphere� We also derive the spherical component

form for the balanced wind and the spherical version of the Monge	Amp�ere

equation given in Cartesian coordinates by �������

We then modify this technique to be able to use this with an incremen	

tal data assimilation scheme� We achieve this by linearising the spherical

de�nition of the balanced wind �eld and following the same procedure for

��



calculating �c as in Section ����
�

We also derive a linearised version of Qc associated with ������ for the

sphere� The result is a variable coe�cient Poisson equation for the relative

vorticity and a variable coe�cient Helmholtz equation for the PV� The so	

lution of these equations is a balanced height increment from which we can

reconstruct the balanced wind �eld� If � � � in the spherical version of ������

then the resulting wind �eld is divergent for constant f �

As we are concerned with the possibility of using this variable in a varia	

tional data assimilation scheme� we brie�y describe the current control vari	

able transforms employed in the Met� O�ce�s incremental �	D variational

data assimilation scheme� ��D VAR�� and then explain how the balanced

height could be used as an alternative to the stream function and introduce

two new unbalanced variables in the last section�

We begin with a brief derivation of the shallow water equations as this



��� Spherical SWE and Balance

The aim of this section is to introduce the spherical shallow water equations

and then to derive the spherical version of the non	linear balance equation�

This is the equivalent to the Cartesian version that can be found following

the derivation in ����� To arrive at the spherical version we follow the proof

set out in �

��

����� Spherical Shallow Water Equations

We recall the vectorial version of the Cartesian form of the shallow water

equations in Section 
�
�
� �
��� and �
���� We start with �
����

Du

Dt
� fk� u � �grh	

W



continuity equation� �
���� as


h


t
�

u

a cos �


h


�
�
v

a


h


�
�

h

a cos �

�

u


�
�

 �cos �v�


�

�
� �	 �����

Therefore� equations ������ ���
� and ����� are the spherical version of the

shallow water equations�

����� Spherical Non�Linear Balance Equation

In Section 
�� we summarised an initialisation technique that resulted in a

non	dimensional non	linear balance equation� �
����� To derive the dimen	

sional spherical version of �
���� we consider the spherical version of the equa	

tions of motion for the �	D primitive equations model� �
�
��� We make the

assumption of homogeneity and ignore the vertical wind� ����� The remain	

ing terms are similar to the spherical version of the shallow water equations�

����� and ���
�� but with geopotential gradients rather than height gradients�

We start by taking the divergence of the equations and ignoring the time

derivative of the divergence� The reason for this is that the removal of this

term ��lters� the inertia	gravity waves� ����� The remaining terms are

r � ��u � r�u� �r�� �r � �fk� u� � �	 �����

Expanding the term r � �u � r�u using the spherical de�nitions in Ap	

��



pendix A gives

�

a� cos� �
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�
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��
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 tan �

a�
u

u


�

�
A � r � �u � r�u	 �����

In the next step we use the trigonometric identity sec� � � tan� ���� We

now use the Helmholtz theorem for the wind �eld�

u � k�r� �r��

which in spherical coordinates� where we are only considering the balanced

component�

u � ��

a


�


�
� v �

�

a cos �


�


�
	 �����

Substituting ����� into ����� gives

r � �u � r�u �
�

a� cos� �
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� � tan �
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	 �����

In ����� the third order terms have cancelled� We now consider the divergence



Substituting ����� for the wind �eld and di�erentiating the Coriolis parameter

gives

r � �fk� u�� �



��� New Non�Linear Balance Equation

In this section we derive an alternative balance equation to ������ to �nd

a balanced height� We derive the equation from the general form of the

balanced wind �eld� ������ with the �rst term ignored� and then �nd the

form of the equation for � � � and ��

We begin by recalling the general form of the balanced wind �eld� �������

uc � ug �
�

f
ug � r �k� ug� � ������

where we have removed the �rst term to calculate the relative vorticity� To

�nd its spherical form we use the spherical expression given in Appendix A�

Therefore� in component form this is

uc � ug � �

f

�
ug

a cos �


vg

a



We now introduce the height version of the geostrophic winds in spherical

coordinates� These are

ug � � g

f


h


�
� vg � g

fa cos �


h


�
	 ������

To derive the Monge	Amp�ere equation we substitute ������ into ������� The

result is

�c �
g
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� tan �
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g��
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In the expression above all the third order terms have cancelled out� To

obtain this expression we have assumed a constant f � This is often referred

to the f plane approximation� ����� which is often used as a �rst stage of

testing of new model variables�

If we consider the geostrophic sub	space� � � �� then ������ simpli�es to

�c �
g

fa�

�
�

cos� �


�h


��
�

�h


��
� tan �


h


�

�
� ������

which is a spherical Poisson equation� If we take � � � then the result is
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We now consider an extension to �c to form the constrained potential

vorticity� Qc� We start from the de�nition

Qc � f � �c

h
� �c

h
� ������

where we would substitute the righ



However� we do not use ������ to de�ne the PV but a linearised form that

we derive in Section ������

����� Linearised Balanced Wind Field

The non	linear aspect of the balanced wind �eld� ������� arises from the term

ug � r �k� ug�� To linearise this we introduce a base state for the height

and consider increments to this� We start by expressing the height �eld� h�

as h � 
h � h�� where 
h is a base state height and h� is an increment� The

geostrophic wind then becomes

ug � 
ug � u�g� ���
��

where

uh
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vc� � v�g �
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where� for convenience� we use "� to represent the �rst derivative of f�� and

"�� the second derivative with respect to �� Therefore these are
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The next term in ���
�� is k�r�
�
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�
k� u�g
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� Evaluating 
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�
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Taking the di�erential operators through gives
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Substituting ������ and ����
� into the right hand side of ������ gives
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For the remainder of the derivation of k �
�
r�

�

ug � r

�
k� u�g

���
we sub	

stitute ���

� for the incremental height and use the variables� h� ug� vg� to

represent h�� 
ug� 
vg respectively�

The �rst term� T�� in ������ is
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The fourth term� T�� involves the derivative of sec � which is tan � sec �� Using

this information and "� from ���
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The �fth term� T	� is broken down into three parts� The �rst� T	a� is
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The second part� T	b� is
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The third part� T	c� is the largest and most complicated� The �rst part of
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We now derive k �
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where we use the same T notation to represent the terms in ������� We again

represent h�� 
ug and 
vg by h� ug and vg respectively� The �rst term� T�� is

T� �
�

a cos �





�

�
� g

af


h


�


ug

�

�
� � g

a�f cos �

�

�h


�
�


ug

�

�

h


�


�ug

��

�
	

������

The second term� T�� becomes
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The third term� T�� is
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The fourth term� T�� becomes
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The �fth term� T	� at the moment� is
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We now consider the second line of ���
��� where we have rf��� As f is

only a function of � we have the vector rf�� � ���"�� ��
T � Therefore

k � r
�
�

f

�
�
�





for h when � � � and ������ with � replaced with �� This gives two elliptic

equations whose solutions are balanced increments to the height �eld�

We now consider a di�erent method of using the balanced wind �eld to

derive an equation for the balanced height increment where instead of using

the relative vorticity we now consider the potential vorticity�

����� Potential Vorticity Approach 	PV


In this section we derive a generalised version of the balance equation from the

potential vorticity of shallow water equations model� The resulting elliptic

partial di�erential equation is a variable coe�cient Helmholtz equation� We

then �nd the speci�c form of the equation for � � � and � � ��

We start b



then gives us a base state for �c� This is denoted by 
�c� We apply the same

linearisation to the height �eld� h � 
h� h�� and we still have uc� de�ned by

���
��� but 
uc is de�ned by


uc � 
ug �

�

f

ug � r �k� 
ug� 	 ������

This is written in component form as
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ug � 
�
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a cos �
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In the next step we follow standard procedures for linearisation

Qc� �
f � k � r � �


 k

f �k



The right hand side of ������ is a variable coe�cient Helmholtz equation

for the balanced height increment� h��

To complete the balance equation we require a linearisation to the left

hand side of ������ as we use this to approximate the balanced PV� We

achieve this by introducing a linearisation to the full wind� u � 
u�u�� This

then enables us to linearise the relative vorticity as

� � k



� 
 cos �


vg

�



ug

�

� � sin �
vg


ug

�

�
�



��� Alternative Control Variables

In this section we brie�y describe the transforms that are currently used to

move between the state variables and the control variables before we describe

an alternative set of control variables and transforms using h� as the balanced

variable�

����� Current T and U Transforms

The current set of control variables used at the Met O�ce are comprised of

a streamfunction� �� velocity potential� �� and an unbalanced pressure� AP �

In this section we explain the current transforms from the model variable

to the control variables� �T transform�� and the transform from the control

variables back to the model variables� �U transform��

We start with a brief description of the main aim of an incremental �D

VAR scheme� This is to minimise the following cost functional

J ��x� � ��x� �xb�T B�� ��x� �xb�

� �y �H��x��T R�� �y �H��x�� � ������

where �x is the increment to the model state vector� �xb are the increments to

a background states� y is the vector of observations� H is an interpolation op	

erator� B is the background error covariance matrix and R is the observation

error covariance matrix�

��



Currently� the model at the Met O�ce uses around ��� model variables

across the whole grid and around ��� observations� Therefore the two inverse

matrices in ������ are large and full� although they are never stored�

One advantage of the T transform is it allows a simpli�cation to be made

to B� It transforms the matrix into block diagonal as the three control vari	

ables are assumed to be uncorrelated� ����� This then makes the minimisation

problem

J ��z� � ��z� �zb�T  B�� ��z� �zb�

� �y �H�T�z��T R�� �y �H�T�z�� � ������

where we have applied a transform matrix� T � such that z � Tx and this

gives �z � T�x� �zb � T�xb and  B � TBT T �

The current T transform is de�ned as follows to calculate the stream	

function and velocity potential increments� where we shall now use the prime

notation that we have used for increment in the thesis so far�

�� � r� u� � r���� ������

�� � r � u� � r���	 ����
�

The transform to calculate the unbalanced pressure involves the solution

of a linear balance equation� ����� and statistical regression which we shall

not go into here�

��



The in





model� We also summarised the signi�cant results from the work by Salmon

and McIntyre and Roulstone and the de�nition of the balanced wind �eld�

������� the work in this thesis is based on�

After the summary we brie�y derived the SWE for the sphere� ������ ���
�

and ����� in Section ������ where we also reviewed a derivation of a spherical

non	linear balance equation� �

�� which is �������

In Section ��
 we derived the spherical version of the balanced wind �eld�

����
� and ������ based on ������� It is from these that we derived a spherical



We then extended this idea to a PV approach in Section ������ We started

from the PV equation� ������� and through the substitution of a linearisation

to �c as �c � 
�c � �c� which arises from a linearisation to the height �eld�

h � 
h � h�� The �nal equation is �������

In the last section� Section ���� we gave a brief description of the current

control variable transform� ������ and ����
� and brie�y explained the �D

VAR scheme�s cost functional�

In Section ����
 we described an alternative to the T transform using

������ or ������ to calculate the balanced variable� where the two unbal	

anced variables could be calculated from ������ and ������� The alternative

U transforms were ���
��� ���
�� and ������ �evaluated with �s� and �s���

In the next c



Chapter �

Ellipticity Theory

In Chapter � we derived two new generalised balance equations whose solu	

tions are a balanced height increment� The �rst equation� ������

�� �
g

f
r�h� � 
�g

a�f� cos� �
�
ug�h�� � cos �vg�h�� � ug�h��

�
 tan �ug�h� � cos �vgh� � 
 tan � sin �vgh� � 
 sin �vgh�� � cos� �ugh�

�sin � cos � �ug�h� � ugh���� 	 �����

is for the relative vorticity method and ������

��


h
� f � 
�


h�
h�f �

�c�


h
�
�
f � 
�c

�

h�

h�� ���
�

is for the potential vorticity method� If we consider ����� then we hav

����� then w e ha



���
� then � is implicit in the �c� and 
�c� terms� For either value of �� � or ��

the resulting equation is a variable coe�cient Helmholtz equation� All four

of these equations are boundary value problems and as such there is a large

amount of theory associated with these types of equation� ���� ����� ����� �����

�
��� ��
�� �����

In Section ��� we brie�y begin by explaining the spherical grid and the

choices for the boundary conditions� we then go on to introduce the theory

for the continuous problem by �rst de�ning what is meant by an elliptic

di�erential operator and then state the theorem that allows for a solution to

exist� This theorem is dependent on the ellipticity condition which we

introduce in Section ����
� We have seen this for the non	linear case �Section

������ but we now introduce the linear version in Section ����
�

We then derive the ellipticity condition for the four new balance equations

in Section ������ This condition has a signi�cant e�ect on the equations

and many meteorologists have looked for a link between certain �ows in the

atmosphere and this condition� �
��� �
�� and �����

We start Section ��
 with a brief description of the Met O�ce�s shallow

water model from which we generate the base state data� In Section ��
�


we describe the numerical approximation that we use to solve ����� and ���
�

and we also introduce the theory for discrete elliptic equations�

In the �nal section� ���� we start with a description of the experiments

��



for which we show results in Chapters � and �� The �rst is to investigate

the structure of the ellipticity condition and the coe�cients of the discrete

equations� The second is to see the di�erence between the solutions to the

balanced equations� We also describe experiments associated with the as	

sumption that under constant f then the geostrophic wind is non	divergent

and the higher order balance� uc� is not divergence free�

To start the shallow water equation model that is described in Section

��
��� we use a Rossby	Haurwitz wave and we introduce this in Section ����
�

In Section ����� we introduce three test cases that describe three di�erent

Burger regimes� We begin with a summary of the four new balance equations

with whic



with the equations� The theorem for the existence of the elliptic equation

which introduces the ellipticity condition for linear pdes is given in Section

����
� and we examine this condition for the four balance equations in Section

������

����� Balance Equations and Boundary Conditions

As we mention in Chapter �� the four balance relations are all boundary

value problems but so far we have not mentioned the boundary conditions

associated with the equations� If we consider the following two diagrams of

the domains� �Figures ��� and ��
�� we see that the boundary condition for

the � axis is periodicity� but the � directional boundary condition poses a

problem�

The same condition that we use for the � direction is a possible choice for

the two � boundaries� However� as we cross the poles we change direction� If

we consider the direction that the j unit vector is pointing in as we enter the

northern pole then the values of � are increasing� but as we cross the pole

the values of � are now decreasing�

Another boundary condition is the information that there cannot be a �

derivative at either of the poles due to the singularity there� i�e� all the lines

of latitude coincide there� but there is no change in the longitudinal direction

��



� � �

� � ��
�

� � �� ��

� � �
�

Figure ���� Diagram of the Spherical Domain�

�

�

Figure ��
� Diagram Sho



�see Figure ��
��

A straightforward condition� for the two poles� is a Dirichlet condition�

If we were considering a simple Poisson equation then there is a proof in ����



De
nition � A pde of the form

AS�� �BS�� � CS�� �DS� � ES� � FS � G� �����

where the coe�cients� A� 	 	 	 � G are functions of � and �� is hyperbolic if

B� � �AC � �� parabolic if B� � �AC � � and elliptic if B� � �AC � ��

This then enables the following de�nition for the operator to be elliptic�

De
nition � The di�erential operator

L �S� � AS�� �BS�� � CS��� �����

is elliptic if and only if B� � �AC � ��

We now give a speci�c version of a theorem from ����� that de�nes the exis	

tence and uniqueness of the solution to a homogenous elliptic problem�

Theorem � Given the elliptic operator� L �S�� then the di�erential equation

L �S� �DS� � ES� � FS � � �����

has one solution which has continuous derivatives up to second order in the

interior of the domain and is continuous throughout the interior and the

boundaries and assumes the prescribed boundary conditions values on the

boundary�

The more speci�c theorem is giv



De
nition � The pde� �
�	� is said to be semi�linear if A� B and C are

only functions of the independent variables and quasi�linear if the same

coe�cients are functions of the independent variables and S� S� or S��

Therefore the three balance relations� ����� with � � � and both values for

� in ���
�� are semi	linear where the Poisson equation is linear�

The inequality� B� � �AC � � in de�nition � is the ellipticity condi�

tions as they are the conditions that ensures that the di�erential equation

has complex characteristics� ����� ����� This condition is an important prop	

ert





For the PV equation� ���
�� then the coe�cients for the ellipticity condi	

tion are given by
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This then gives the ellipticity condition coe�cients as
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For ���
� to be elliptic we require ������ � ������� As with the RV ellipticity

condition� ������� w



numerical approximation to exist�

��� Numerical Approximations

In the last section we derived the ellipticity conditions for the four balance

equations� ����� and ���
� with either � � �� �� As we see from theorem 
�

these are the conditions for the di�erential equations to have solutions�

In this section we summarise the numerical approximations to ����� and

���
� along with the boundary conditions that we use to calculate the bal	

anced wind �eld with� We also introduce� in Section ��
�
� the condition for

solutions to the discrete problem to exist�

We start with an introduction to the Met O�ce�s shallow water model

that we use to calculate the base states�

����� Met O�ce�s Shallow Water Model

In this section we brie�y introduce the numerical model that we use to calcu	

late the base states� These base states are the three output variables� height�

h� zonal wind� u and meridional wind� v�

The grid which the model uses is the Arakawa C	grid� �Figure ����� This

grid staggers the points� where the height �eld discrete values are at the

points
�
�j � ��&����
 � �i� ��&�

�
� with i � �� 
� 	 	 	 � N � j � �� 
� 	 	 	 �M �

��



hi��



the two time levels� The solution to the Helmholtz problem is obtained

through using a multigrid procedure� There is a more detailed description in

�
���

����� Numerical Approximations to the New Balance

Equations

In this section we describe the numerical approximations that we use to solve

equations ����� and ���
�� we also give a description of the approximations

to calculate uc��

We shall also summarise the conditions for a solution to the discrete equa	

tion to exist� a more detailed description is given in ��
� and ����� We start

with a description of the numerical approximations used for the coe�cients

in the di�erential equation�

The linearisation factors are the geostrophic winds and their derivatives�

We calculate the geostrophic winds from the base height� 
h� given in spherical

coordinates by ���

� and ���
��� We approximate these with the central

di�erences

ug�i�j � � g

fia


hi
��j � 
hi���j

&�

� vg�i�j � g

afi cos �i


hi�j
� � 
hi�j��

&�

� ���
��

where fi � 
� sin �i and �i � ��
 � �i� ��&�� These approximations are

second order���
�� ���� and consistent with ���

� and ���
��� ��� and �
���

��



To enforce the periodicity condition in the � direction we use the conditions

that for the points j � M then j � � � � and for the points j � � then

j � � � M � At the two � boundaries� we use the periodicity condition to

approximate �i� �� j� at the north pole with
�
i� �� j � M




�
for j � M


 and

�
i� �� j � M




�
for M
 � j � M � For the south pole it is the �i� �� j� term

that is approximated� Then for �i� �� j� this is
�
i� �� j � M




�
for j � M




and �i� �� j� is
�
i� �� j � M




�
for M
 � j �M �

For the numerical experiments we perform in Chapters � and � we have

taken M � �� and N � ���

To calculate the �rst derivatives of the geostrophic winds we apply the

central di�erences



ug



are given by


�h�


��
� h�i�j
� � 
h�i�j � h�i�j��

a�&��
�


�h�


��
� h�i
��j � 
h�i�j � h�i���j

a�&��
	 ���
��

where for the � direction we use a periodicity condition and apply this the

same way as for the geostrophic wind calculations� These can be shown to

be a second order approximation� ����� ��
�� and also consistent� ���� �
���

i� �� j � �

i� j � �

i� �� j � �i� �� ji� �� j � �

i� j � � i� j

i � �� ji� �� j � �

Figure ���� Diagram of the Nine	Point Stencil�

The cross derivative approximation is derived as follows
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&�

�
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��j
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��j��
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� � h�i���j��


&�

�
�

� h�i
��j
� � h�i���j�� � h�i
��j�� � h�i���j
�
�&�&�

	 ���
��

��



It is this last approximation that makes the numerical approximate to the

di�erential equation into a nine	point stencil� as we use the four corner points

in Figure ����

To complete the discrete approximation to equations ����� and ���
� we

require approximations for 
�c and �c�� We use the full relative vorticity� ��

and calculate 
� � k � r � 
u� with �� � � � 
�� and 
u is the base state wind

�eld�

We require �� at the h points in the grid but this variable is dependent on

the derivatives of the wind �elds which are not evaluated at the h points� We

overcome this by using the following approximation which is second order in

the horizontal directions� �����

��i�j �
�
k � r � u�i�j

�
� ���
��

� �

a cos �

�

v�


�
� 



�
�cos �u��

�
i�j

�

� �

a cos �i

�
v�i�j
� � v�i�j�� � v�i���j
� � v�i���j��

�&�

�
cos �i
�

�
u�i
��j � u�i
��j��

�
� cos �i��

�
u�i���j � u�i���j��

�





�� A is diagonally dominant and strictly diagonally dominant for at

least one row�

	� A is irreducible�

This then leads to the following theorem� �����

Theorem � If the matrix A is a M�Matrix� then it is invertible�

Therefore if the matrix that arises from the discretisation of the elliptic pde

satis�es these conditions then there exist a solution�

The �nal set of numerical approximations we derive concern uc�� Once we

have solved the discrete elliptic equation we have a balanced height increment

but to calculate the other two control variables� �s� and �s�� �Section �����

we have to calculate the velocity split� ������� and so we have to calculate uc�

from the height� ���
�� i�e� we have to numerically approximate ���
�� and

���
��� To do this we have to calculate both the base state and incremental

geostrophic wind� 
ug� 
vg� u�g and v�g at the u� v points� along with their �rst

derivatives�

To do this we follow a similar method that is used to calculate ��� We

begin with ug at the u points� where ug is geostrophic wind� If we follow

the approximation for ���



To calculate the ug component at the u points we evaluate the following

expression

��

a


h


�

�����
i�j
 �

�

� �

a

�
hi���j � hi���j
� � �hi
��j
� � hi
��j�

�&�

�
	 ���
��

If we look at Figure ��� we see where the averages lie and how we can use

these to calculate ug at the u points� Here we have used a general height to

illustrate that we can apply the same approximation to either 
h or h��

hi���j hi���j��

hi�j

hi���j

ui�j

hi���j��

hi�j��

�hi��

�hi��

Figure ���� Diagram for the weighting of the u component of the

geostrophic wind at the u point� where  hi
� �
hi
��j
� � hi
��j


 and  hi�� �

hi���j
� � hi���j

 �

To calculate the vg component at the u point we use

�

a cos �


h


�

�����
i�j
 �

�

� �

a cos �i

�
hi�j
� � hi�j
� � �hi�j � hi�j���

�&�

�
	 ������

We have drawn a diagram to show where the averages lie for this approxi	

mation� Figure ���� For the two geostrophic winds to be evaluated at the v

���



vi�j�� vi�j vi�j��

hi�j��

vi���j��

hi�j hi�j��

vi���j�� vi���j��

�hj��
�hj��

Figure ���� Diagram for the weighting of the v component of the geostrophic

wind at the u point where  hj
� �
hi�j
� � hi�j
�


 and  hj�� �
hi�j�� � hi�j


 �

points we use the following expression �see also the diagrams of the approx	

imations in Figures ��� and ����

��
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This completes all the numerical approximations we use to calculate h��
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Figure ���� Diagram for the weighting of the u component of the geostrophic

wind at the v point where  hi
� �
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 and  hi �
hi�j � hi���j
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��� Initial Conditions

In this section we describe brie�y in ����� the experiments that we perform

using the data generated from the shallow water model� Then in Section

����
 we introduce the Rossby	Haurwitz wave� This wave is the initial con	

dition that we use to generate di�erent types of �ow regimes in the SWE

model� In Section ����� we introduce three test cases that arise from vary	

ing certain parameters in the Rossby	Haurwitz wave� This then generates

di�erent Burger number regimes� which we also introduce in this section�

����� Experiments

There are four sets of experiments that we perform involving the four balance

equations� The �rst experiment involves evaluating the ellipticity condition

for ����� and ���
� with � � �� for three test cases both at the initial time and

at �
 hrs into the model run� At both time levels we compare the condition

to that of the equations when � � ��

The second set involves a scale analysis at � � ���N of the terms in the

ellipticity conditions and the coe�cients of the di�erential equation to see

if there are any terms that could be removed to make the solution of the

numerical equation more economical�

The other two experiments� the results of which are presented in Chapter

���



�� are concerned with the numerical solutions of the four balance relations

on the sphere for the same three test cases� We look at kbk� �

vuut NX
i��

b�i

where b is a general vector and bi is a general entry in b� For our experiment

we form a vector for each latitudinal ring of the di�erence between the full

height increment� h�f � and the balanced height increment� h�� in the mid	

latitudes to see how each method di�ers in the di�erent Burger regimes� The

last experiment involves testing the hypothesis that for constant f the new

balanced wind �eld is divergent�

����� Rossby Haurwitz Wave

The Rossby	Haurwitz wave was shown to be an analytical solution to the

non	linear barotropic vorticity equation on the sphere by Haurwitz ����� The

equation for the barotropic vorticity model is


�


t
� �u � r� � � �� ������

with

u � k �r�� � � k	r� u � r��	

A solution to this di�erential equation is of the following form

� � �a�
 sin � �K cosR � sin � cosR�� ������

���





where A ��� � B ��� and C ��� are given by

A ��� �





�
� � 




tions we de�ne the Burger number� ���� ���� Bu� given by

Bu �
p
gh

fL
�
LR

L
� ����
�

where LR is the Rossby radius of deformation� As we can see from ����
�� as

we approach the equator� � � �� then f � � and so Bu ��� The three test

cases that we consider generate di�erent values for Bu at di�erent latitudinal

levels�

As we mentioned in Section 
��� it is often assumed that the atmospheric

motions in the horizontal directions are larger than those in the vertical�

A result of this is that the atmosphere can be considered as a number of

layers of �uid� A �uid with this property is said to be stably stratis�ed� �����

The Burger number describes the relative importance bet



����s��� The second test case� �TC
�� is de�ned to be h� � ����m� 
 � K �

�	��� � ����s��� The third test case� �TC��� is de�ned to be h� � ����m�


 � K � �	��� � ����s��� For the initial heigh
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equations�

In Section ��
 we gave a brief description of the shallow water equations

model that we use to generate the base state data� Also in this section we

gave a description of the numerical approximations that w



Chapter �

Ellipticity Experiments

In this chapter we explain and present results from experiments on the ellip	

ticity conditions for the two equations ����� and ���
��

We describe the experiments that we perform on the ellipticity condition

in Section ���� The �rst set of experiments are concerned with the initial

heights for the three test cases� As we require the geostrophic winds� calcu	

lated from the height �elds� we have to calculate the derivatives of the height

�eld� In Section ��
 we describe how we calculate these derivatives for both

the initial height pro�le and the height at �
hrs� At the initial time we use

the continuous expression for the height and the derivatives are explained

in Section ��
��� For the experiments at �
hrs we only have the numerical

values for the height rather than the continuous expressions and as such we

describe the procedure to approximate the derivatives in Section ��
�
�

���





�
hrs into the run of the SWE model with the three test cases� To calculate

the coe�cients for this experiment we use the numerical approximations

explained in Section ��
�
�

In both experiments we compare the ellipticity plots with the equivalent

condition for the case where � � �� geostrophic balance� For the RV method

this is simply a set of increasingly valued parallel lines as we enter the equa	

torial regions� This is not the case for the PV method and we present the

condition for the PV method in separate plots for all three test cases�

We also introduce a fourth test case that fails the ellipticity condition�

which shows that the ellipticity condition will not be satis�ed by unphysical

data�

We then repeat the plots for the three test cases at �
 hours into the

�
� hour run of the shallow water model� Here we see how the condition is

a�ected by the slanting in the waves and the movement of the height �eld�

Another objective of this research is to see whether or not we need to

calculate all the terms in the equation� To do this we perform a scale analysis

using values from each of the three test cases for the mid	latitudes� We apply

this to both the coe�cients in the ellipticity condition and the coe�cients

in the di�erential equations� ����� and ���
�� The reason for this is both

equations contain many lower order di�erential terms that may be very small�

���



��� Calculations of the Ellipticity Condition�s

Coe	cients

As we described in Section ���� we perform experiments on the coe�cients

of the ellipticity condition and the discrete and continuous elliptic di�eren	

tial equations that we derived in Chapters � and �� In this section we brie�y

explain how we evaluate the coe�cients� We start with the continuous coe�	

cients in Section ��
�� and then brie�y recall the expression for the derivatives

from Section ��
�
 in Section ��
�
�


���� Continuous Coe�cients Calculations

If we recall the expression that we gave in Section ����
 for the initial height

pro�le for a Rossby	Haurwitz wave� ������

h �
�

g

n
gh� � a�A ��� � a�B ��� cosR� � a�C ��� cos 
R�

o
�

where A�B and C are given by ������� ������ and ������ respectively� then to

calculate the geostrophic winds we require the �rst derivatives of ������ with

respect to both � and �� This is therefore


h


�
�

�

g

�
�Ra�B ��� sinR� � 
Ra�C ��� sin 
R�

�
� �����


h


�
�

�

g

�
a�

A ���


�
� a� cosR�


B ���


�
� a� cos 
R�


C ���


�

�
� ���
�

���



where the expressions for the � derivatives of A� B� and C are in Appendix

C� We also require the second derivatives of h and these are given by



We have used the central di�erences that were described in Section ��
�


to approximate the derivatives in the coe�cients� ����� 	 ����� and ������ 	

������� We therefore evaluate the coe�cients of the ellipticity condition at

the grid points�

��� Results I
 Ellipticity Plots

In this section we present discussion for the initial ellipticity condition that

has been calculated using the analytical expressions derived in Section ��
���

We present the ellipticity conditions in a series of �gures� Figures ��
 to

��� and ���� to ����� Each �gure contains four plots� These show� from top

left to bottom right� B�� �AC� B� � �AC and h� We compare the ellipticity

plots with the equivalent condition for the Laplacian� For the PV method we

present the ellipticity condition for � � � in Figure ��� for t � � and Figure

���� for t � �
� and then compare the relevant plot for each test case�

We also give a fourth test case that fails the ellipticity condition� This

problem is unphysical� but where the height is unphysical is near where the

condition fails�

���




���� Initial Ellipticity Conditions

As we have mentioned in the introduction to this se