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Chapter 1

Introduction

There are only a few atmospheric variables that can be used to effectively compare the

large scale circulation of the true observed atmosphere and the simulated atmosphere in

climate models. Angular Momentum, a fundamental quantity of central importance to

the atmosphere, and indeed any rotating system (as mentioned in Egger et al. (2007)),

is one of these. The Angular Momentum budget represents a beautiful example of how

the atmosphere, oceans and solid earth interact and are inextricably linked through a

conservation law (Oort (1989)), and it is of interest to researchers studying any one of

these different elements.

Lucarini (2008) points to the need for further confirmation of the basic physical and

dynamical processes in climate models, and Peixoto and Oort (2007) note that applying

the theory of angular momentum to the climate system can lead to general conclusions

about the climate system, which we can use to test both the observed values of the real

atmosphere and that of climate models, individually, and in comparisons.

The total angular momentum of the atmosphere, oceans and earth does not change

except for a slow secular decrease due to the gravitational force exerted by planets. How-

ever, there is transfer between the three components of the earth mentioned above, and

if angular momentum increases in the atmosphere it must have been transferred from one

of the other elements into the atmosphere, analogously if the atmosphere loses angular

momentum it needs to transferred to one of these elements.

In this dissertation we are concerned with the theory of angular momentum in the

earth’s atmosphere and the torques (the ‘turning’ or rotational forces) that affect the

angular momentum of the atmosphere, and whether the what we discern from the theory

can be seen in what is called a ‘reanalysis observation dataset’ and three state of the

art climate models. Reanalysis observation datasets are a literally a re-analyses intended

to replace the original analyses observation datasets (literally the recorded quantities of

atmospheric variables) because of the need to alleviate many problems that arose from
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momentum it does not mean that it is realistic and giving accurate values of the atmo-

spheric variables. A reanalysis dataset or climate model may be physically internally

consistent and conserve angular momentum but not actually be realistic: for example, it

may consistently under or over estimates the sizes of events, or for how long they last and

when they occur. This noted, physical consistency is still something we want to hope for

for good models.



we can also look in passing for evidence of model ‘drift’ (dri



Chapter 2

Angular Momentum and Torque

Theory

2.1 Angular Momentum

Before we consider Angular Momentum of the Earth’s Atmosphere we shall consider linear

momentum. The Linear Momentum, p





m = ρr × (urel + Ω × r) (2.8)

where ρ is the density of the air parcel. Therefore the total Angular Momentum of the

Earth’s Atmosphere, again a vector, is

M =

∫

v
ρLdV =

∫

v

∫

v
ρr × (urel + Ω × r)dV (2.9)

where v is the volume of the atmosphere.

One can also split the Earth’s Angular Momentum M, aswell as the velocity, into two

conceptually useful parts: the ‘mass’ part of angular momentum, MΩ, and the ‘relative’

part Mr. The mass part of the Earth’s Angular Momentum is the amount of angular

momentum the atmosphere would have if all the atmosphere were at rest vertically and



Egger et al. (2007).

Therefore velocity can be written as:

v = ueλ + veθ + wer (2.11)

Figure 2.1: Rotating Coordinate System

In this project we will look at the total axial component of atmospheric angular mo-

mentum M3, given by

M3 =

∫

V
m3dV =

∫

V
ρ(u+ Ωrcosθ)rcosθdV (2.12)

which can be seen from equation (2.9), recall the definitions from section 2.3, and note

that ‘u’ is the east-west component of the wind velocity (where a wind moving towards the

east is taken as positive, and a wind moving towards the west is taken as negative). We





where un is the normal outward component of v across the surface S of the volume

v. Note, at φ1 this outward normal across the surface points towards the south pole, and

at φ2 this outward normal points towards the north pole. The first term on the right

hand side corresponds to the flux of angular momentum across these vertical boundaries,

whilst the next two terms correspond to the flux of angular momentum across the earth’s

surface, these fluxes are illustrated in figure 2.2. The physi



Figure 2.3: Fluid Surface with unit normal n

Thus as stated, we use F = −αdivτ , where F = (Fλ, Fθ, Fz), and employ Gauss’

divergence theorem then

∂

∂t

∫

v
ρmdV = −

∫

S
ρmunds−R3

∫

v

∂p

∂λ
dV +

∫ ∫

sfc
τF cos

2θdλdθ (2.19)

where τF is the east-west surface stress.

Consider the second term on the right hand side of (2.19), defined Φ,

Φ = −R2

∫ ψ2

ψ1

∫

∞

sfc

∫ 2π

0

∂p

∂λ
dλdzcosθdθ



and therefore, as p



called the mountain torque, which we now define as TM . This is the torque that occurs

due to the pressure exerted on any raised surface (and importantly pressure exerted on

mountains), and that Γ is what is called the friction torque, TF , which is the torque from

the friction applied by the atmosphere to the surface of the earth. Thus (2.27) becomes

dM

dt
= TM + TF (2.28)

It is important to note, that throughout this project we take, in line with convention,

that a torque that increases the angular momentum of the atmosphere to be a positive

torque, and one that decreases the angular momentum of the earth to be a negative one.

Although equation (2.28) holds true analytically, when we work on numerical models

we need to add another torque. This torque, called the gravity wave torque, is the part

of the mountain and friction torque too small to be resolved on a numerical grid, we shall

discuss this in more detail in 2.8. Thus for numerical models a form equivalent to (2.28)

may be given where, on the right hand side, the gravity wave torque is included, so that

we have

dM

dt
= TM + TF + TG (2.29)

Of course this means

M(t) −M(0) =

∫ t

0

TF + TM + TG dt (2.30)

and it is interesting to note that equation (2.26) implies that over long periods of time

the total torque time average over a long period of time is zero i.e. there is no change in

the angular momentum of the atmosphere over long periods of time.

We shall now summarise the main torques.

2.6 Friction Torque

The friction torque is the torque that is exerted on the earth’s surface due to the frictional

force that occurs because of the wind directly above the Earth’s surface moving relative

to the solid earth. If there is an net global westerly surface wind (i.e. a surface wind from

the west) the atmosphere will speed the earth’s rotation up, transfer angular momentum

to the earth, and thus the atmosphere loses angular momentum. Analogously, if there

is a net easterly surface wind (i.e. a surface wind from the east), the atmosphere slows

down the rotation of the earth and angular momentum is transferred from the earth to

the atmosphere. The Friction Torque is given by

13



TF = R3

∫ 2π

λ=0

∫ π/2

θ=−π/2
τfcos

2θdθdλ (2.31)

where τF is the average east-west surface friction stress per unit area, and R is the

average radius of the earth from its centre.

2.7 Mountain Torque

Mountain Torque is a function of pressure and orography and is the ‘turning force’ exerted



this scale, it is quite hard to separate what is the friction torque and what is mountain

torque in a model, and this is why we said the gravity wave torque was the part of the

mountain and friction torque too small to be resolved.

The gravity wave torque is given by

TG = R3

∫ 2π

λ=0

∫ π/2

θ=−π/2
τgcos

2θdθdλ (2.34)

where τG is the average east-west surface gravity wave stress per unit area.

2.9 Other Torques

There are numerous Torques that act to change the Angular Momentum of the Atmo-

sphere, however they are a lot smaller than mountain, friction and gravity wave torques,

and did not appear in the above derivation because we ruled the corresponding terms at

the start of our derivation. A comprehensive discussion of things that can produce torques

is given in Weickmann and Sardeshmukh (1994), we very briefly mention a few of these

‘other’ torques.

There are torques from outside the earth-atmosphere-ocean (EAO) system, such as

solar winds, electromagnetic forces, and a tidal torque exerted by the moon and other

planets on the Earth that causes a slow secular decrease in the angular momentum, this

corresponds to a loss rotation of about 2 ms/century, Peixoto and Oort (2007).

There are also a number of other Torques coming from within the EAO system such

as the Moisture or Precipitation Torque and the Ocean or Continent Torque. However the

contributions from all these torques are negligible in comparison to the mountain, friction

and gravity wave torque, as mentioned in Peixoto and Oort (2007) and Egger et al.(2007).

For the angular momentum budget of the atmosphere the friction and mountain torques

are both essential, and this has long been realised, e.g. White (1949).
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1

2π

∫ 2π

0

A(λ, θ)dλ (3.1)

is plotted(∀θ). Note the whole term in (3.1) is commonly defined as [A(θ)]. In agree-

ment with our general wind pattern discussed above we see that, on average the Friction

Torque is positive in areas where the average wind direction is West to East, and negative

where the average wind direction is West to East. In weather and climate studies Torques

are generally given in the unit Hadleys or ‘Had’, where 1 Had = 1018kg m2s−2. The values

in the graph, a discretized form of (3.1), are given not ∀θ but for latitude strips, which is

why we see the units are Hadleys per degree.

Figure 3.1: Prevailing Surface Winds

3.1.2 Mountain Torque

The Himalayas and the Rocky Mountains have been shown to be big contrubutors to

mountain torque activity as mentioned in Weickmann et al. (2007). At the Himalayas

and the Rocky Mountains generally Angular Momentum is lost a



Figure 3.2: Friction Torque Latitudinal Profile. A zonal average of TF over June 1987-May
1988, from Madden and Speth (1995).

3.1.3 Gravity Wave Torque

We could not find a latitudinal profile for the gravity wave torque, however there is little

doubt that the magnitude of the gravity wave torque, simply because it is the unresolved

part of the mountain and friction torque, will be large around the the major mountain

ranges i.e. the rocky mountains and the himalayas.

3.1.4 Angular Momentum Transport

We are now able to draw a rough picture: Angular Momentum enters the Atmosphere

through Friction Torque around the Equator and then the Friction Torque at the midlat-

itudes and the Mountain Torque and mainly the Himalayas and Rocky Mountain Ranges

sap the atmosphere’s angular momentum.

Because Angular Momentum is sent into the the Earth at midlatitudes (a sink for

the atmosphere) and a source for the atmosphere is the ‘excess’ angular momentum that

comes out of the Earth at the equator there must be a flow of angular momentum from

the equator to the midlatitudes through the atmosphere and a flow from the midlatitudes

to the equator in the oceans or the solid Earth.

Poleward movement of angular momentum occurs through either the movement of mass

in the atmosphere or midlatitude waves or Eddies. The significance of the midlatitude

waves or eddies to the poleward contribution of angular momentum was shown by Victor

19



Figure 3.3: Mountain Torque Latitudinal Profile. A zonal average of TM over June 1987-
May 1988, from Madden and Speth (1995).

Starr, as mentioned in Oort (1989).

The right hand side of figure 3.4 shows the streamlines of angular momentum through

the atmosphere, where ψM



Figure 3.4: Cross sections of the mean zonal flow in ms−1 on the left hand side of the earth



3.2 Changes in the Length of Day and Atmospheric Angular

Momentum

The angular momentum of the atmosphere increases and decreases in an annual cycle due

to the seasons. The angular momentum of the atmosphere is at its largest in the northern

hemisphere winter, and is at its minimum in the northern hemisphere summer due to,





Ω∆T

T
= −

∆MRel
Ie

(3.7)

Defining ∆T = ∆LOD, and using Ie ≈ 7.04 × 1037kg m2 the change in the length of

day then can be given (see Rosen et al. 1987) by the following formula:

∆LOD = 0.168∆MRel (3.8)

where ∆LOD is in units of milliseconds (ms) and ∆MRel is in units of 1025kg m2s−1.

This yields approximately a 0.8 ms increase in the LOD at July than the LOD in January

and this corresponds to a 2ms−1 change in zonal wind.

There have been debates about the value for the momentum of inertia of the solid

earth in this calculation. The solid earth is composed of many different layers, but may be





Figure 4.1: (a) All Torques and Angular Momentum - note the different scales (b) Angular
Momentum tendency and summation of the torques. Figure adapted from Egger et al.
(2007)

shown in figure 4.2. The power spectrum is the energy per unit time of a signal for a (user

specified) range of frequencies. It allows us to see processes occuring on a given timescale.







mountain and friction torque to the total torque depends on the timescale. Weickmann

et al. (1997), further point to Swinbank (1985) who showed on synoptic scales that the

mountain torque is much larger than the friction torque, and Madden and Speth (1995)

who showed that this dominance continues out to at least 20-day fluctuations. However,

within the timescale of interest to Weickmann et al. (1997), the two contribute about

equally to the global torque, while in the zonal budget the friction torque is larger.

29



Chapter 5

Datasets

In this project we look at a reanalysis dataset and 3 climate models. We take data climate

model data from the World Climate Research Programme’s (WCRP’s) Coupled Model

Intercomparison Project phase 3 (CMIP3) multi-model dataset, described an “unprece-

dented collection of recent model output”. The WCRP CMIP3 Multi-Model Database

serves the serve IPCC’s Working Group 1 (who focuses on the physical climate system

- the atmosphere, land surface, ocean and sea ice). Information on the comprehensive

specifications of the models is given at:

http : //www−pcmdi.llnl.gov/ipcc/model documentation/ipcc model documentation.php

5.1 Model Specifications

The NOAA Twentieth Century Reanalysis Version 2 Observatio



gular momentum on the climate models so need not concern ourselves with their vertical

layers, and the gravity wave stress is not given in any of the models in the WCRP CMIP3



Chapter 6

Computation

6.1 How we compute

Many of the discrepancies in the angular momentum budget are very large and our choice

of calculation does not require heavily compex schemes because we are not studying minute

variations, however, in particular the mountain torque due to its derivative term requires

special attention. We list here, only how we have chosen to calculate - a discussion of the

considerations needed to be taken into account and the different ways to calculate these

terms is given in Appendix 1.

6.2 Angular Momentum

Angular momentum can be written as

M = MΩ+Mr =
R4Ω

g

∫ 1000

10

∫ 2π

λ=0

∫ π/2

θ=−π/2
psfccos

3θdθdλ+
R3

g

∫ 1000

10

∫ 2π

λ=0

∫ π/2

θ=−π/2
ucos2θdθdλdp

(6.1)

as seen in Madden and Speth (1995). The limit 10hPa of the pressure integral is due to

the fact that this is the roof limit for our, and many other, models. Ideally we would like

to integrate over the whole of the atmosphere, however this is a reasonable approximation.

We take the approximation

M ≈
R4Ω

g

∑

i

∑

j

pi,jsfccos
3θj∆ +



itself.

It is important to be aware of potential potholes when working with velocities given

on pressure levels. Consider a hill on which the surface pressure at three grid points lying

on a line of constant latitiude is 990hPa, 987hPa, and 981hPa.

Velocity in the datasets is given on pressure levels of 1000hPa, 950 hPa, 900hPa, and

so on (though not necessarily always decreasing by 50 hPa). If we were to try to integrate

over the full volume of the atmosphere (1000hPa to 10 hPa) because the pressure at the

surface at the three points is 990hPa, 987hPa, and 981hPa, between 990hPa and 1000hPa,



the friction stress is simply the value of friction stress directly from the model itself, and

not from a forecast model that has processed the direct output.

6.4 Mountain Torque

For mountain torque we take

TM = R2

∫ π/2

−π/2
YMcosθdθ ≈ R2

M
∑

j

YM,jcosθj∆θj (6.4)

where

YM = −

∫ 2π

0

p
∂h

∂λ
dλ ≈

N
∑

i

pi

k=K
∑

k=−K

bkhi+k =
N

∑

i

k=K
∑

k=−K

pibkhi+k (6.5)

and where we take the sixth ordered centered difference scheme as given by Weickmann

and Huang (2008), shown in the table below

Table 6.1: 6th Order Centered Scheme bk coefficients

k -3 -2 -1 0 1 2 3

bk -1/60 3/20 -3/4 0 3/4 -3/20 1/60

On the NOAA Reanalysis datset the mountain torque was calculated by the pressure

given by the dataset.

6.5 Gravity Wave Torque

We take the approximation

TG = R3

∫ 2π

λ=0

∫ π/2

θ=−π/2
τGcos

2θdθdλ ≈ R3

N
∑

i

M
∑

j

τGcos
2∆θj∆θi (6.6)

for gravity wave torque. With the gravity wave stress τG taken from the forecast model.

6.6 Conservation Equations

We approximate the angular momentum tendency by

(

dM

dt

)

n
≈
Mn+1 −Mn−1

2∆tn
(6.7)
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Chapter 7

Results

The results from the NOAA Reanalysis Observation Dataset and the Climate Models

show many commonalities with previous investigations whilst also having some interesting

differences. However, the differences, which naturally occur between datasets, should not

hold us back from saying that the agreement between our results calculated here and other

papers over specific details gives us confidence that our results are correct. Such examples

of this (which we shall discuss) are the range of values seen from our calculations and the

range of values seen in previous investigations, the yearly average time series of angular

momentum and the latitudinal friction profiles.

There are three points to take into account for reading the graphs

1. Sometimes we write ‘AM’ instead of Angular Momentum on the axes of the graphs

when writing Angular Momentum would be too large to fit on the graph or would

clutter the axes.

2. We also take the average yearly time series (as done in Egger et al. (2007), shown

here as figure 4.1). The x-axis ranges from 1-12, where 1 is January and 12 December.

3. Lastly, in the latitudinal profiles that we plot a negative value of latitude corresponds

to the degrees south of the equator, whilst a positive latitude corresponds to degrees

north of the equator.

We first consider the time averages of the angular momentum and all the torques on

the reanalysis dataset, then the latitudinal profiles of all the torques in the reanalysis, and

then we consider the latitudinal profiles of all the torques in the climate models.
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7.1 The NOAA Reanalysis Dataset

7.1.1 Time Averages from the NOAA Reanalysis Dataset

We can see in the annual average plot of angular momentum that the annual maximums

and minimums of angular momentum occur in the winter and summer, repectively, as they

should do. We can clearly see that the angular momentum shows very close agreement in

shape, and the basic underlying physics, with Egger et al. (2007). The angular momentum

is larger than seen in other papers however, e.g. Madden and Speth (1995), and assuming

superrotation (which is the idea that a planet’s atmosphere rotates separately from, and

faster than, the solid planet itself, and is taken here as a very crude approximation so

that we can derive an approximate average speed of the whole atmosphere relative to the

surface), the atmosphere has an a fairly small average velocity u0, of u0 ∼ 5ms−1 over

1961-1990, compared to Egger et al. (2007) that have u0 ∼ 7ms−1, because of a smaller

relative angular momentum in the NOAA reanalysis observation dataset (and thus the

mass part of the angular momentum is quite large).
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Figure 7.1: Year Average of the Reanalysis Dataset’s Angular Momentum over 1961-1990

The 30 year average mountain torque shows many features that we would expect, and

shows general agreement with Egger et al. (2007). We note that the minimum in the
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Figure 7.2: Year Average of the Reanalysis Dataset’s Mountain Torque using three differ-
ent centered schemes over 1961-1990

reanalysis observation dataset is about twice the size as that of Egger et al. (2007), and

the reanalysis has a larger february peak than Egger et al. (2007). This means that at the

time of minimum mountain torque we can expect more high pressure systems on the west

side of the most important mountain ranges (contributing a steep negative gradient to the

angular momentum tendency). The average value of the mountain torque over 1961-1990

is 2.8 Had - compare Huang et al. (1997) with 2.5 Had, and Egger et al. (2007) with -5 to

-3 Had, indeed as noticed by Egger et al. (2007) the time mean value of mountain torque is

highly uncertain. We calculated the mountain torque with three finite difference schemes,

discussed in great detail in appendix 2, and we can see that, in line with previous research

on the effect of the schemes conducted by Weickmann and Huang (2008), the lower the

order scheme used, the more negative the value of mountain torque. Indeed, we see here

a lower order causes a negative shift over all values of the mountain torque by a constant.

The fact that the fourth order mountain torque is considerably closer to the sixth order

scheme shows the rapid convergence to the true solution as the order used is increased

that Weickmann and Huang (2008) speak of (indeed the difference between the sixth

order scheme and higher order schemes would be negligible). Indeed, for the total torque

investigations we took the most accurate value of mountain torque (sixth order).
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Figure 7.3: Year Average of the Reanalysis Dataset’s Friction Torque over 1961-1990

Again the 30 year Friction Torque average shows us the same ge
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Figure 7.4: Year Average of the Reanalysis Dataset’s Gravity Wave Torque

et al. (2007) who had -7.6 Had). The gravity wave torque graph, however, is significantly

different to that of Egger et al. (2007). It has a very large winter rise, whilst in Egger et

al. (2007) the gravity wave torque actually decreases during the winter months.

There is a rise in the gravity wave torque when the mountain torque is at its most

active in removing angular momentum from the atmosphere, and the gravity wave torque

appears like a mirror image of the mountain torque but delayed by one month so that

when mountain torque increases/decreases the gravity wave torque decreases/increases.

We noticed another possible physical link with the gravity wave torque and the moun-

tain torque. Whilst attempting to understand why the NOAA reanalysis gravity wave



part of the mountain torque it would be peculiar for the gravity wave torque to precede

the mountain torque in such a fashion.





to angular momentum tendency by roughly an addition by a constant. However, despite

this problem, the average total torque is -3.8 Had (−8.8 + 2.8 + 2.2) (the closer to zero

the better due to the requirement of total torque being zero over long periods of time as

discussed in section 2.5), and indeed the fact that sometimes the total torque exceeds the



seasonal cycle, and that during the northern hemisphere summer months there is much



the torques. Therefore we see conflict between what is happening, and what should be

happening. Even if the dataset were to have decreasing torqu
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Figure 7.9: Yearly Average Angular Momentum Tendency and Total Torque for 1976-1990

7.1.2 Latitudinal Profiles of the Reanalysis Observation Dataset

The latitudinal profiles calculated allow us to see the (average monthly) contribution to

the torque at each latitude over two decades: 1890-1899 and 1990-1999, giving us extra

insight into the processes involved. They allow us to see that whether the torques we

have seen in the timeseries not only have the right value when summed up over the globe,

but whether the datasets’ processes are physically correct and generate torques where

they should. Taking profiles for two decades also tells us about their dependence on the

resolution network required to produce accurate torques.

The mountain torque profile shows good agreement with the profile of Madden and

Speth (1995), shown in figure 3.3, in size and shape, with the exception of a sharp peak

which is the largest value appearing in the graph, yet is non-existent in Madden and

Speth’s investigation - we do not know of the cause of this, and whether the NOAA

reanalysis is more accurate, or the dataset Madden and Speth analysed is more accurate.

We see the presence of the Andes in the southern hemisphere removing angular momentum

from the atmosphere, and likewise the himalayas and rocky mountains doing the same in

the northern hemisphere. The mountain torque profiles over the two different decades

are very similar, suggesting little dependence of the mountain torque on the resolution
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Figure 7.12: Monthly Average Reanalysis Dataset Latitudinal Gravity Wave Torque Pro-
files for 1890-1899 and 1990-1999

tudinal profile and the summer/autumn latitudinal profile in the following graph.

We see that the values of friction torque in the northern hemisphere equatorial regions

are larger during the northern hemisphere winter/spring period than the yearly average

or summer/autumn values in the same region. However, this should happen, as the winds

throughout the northern hemisphere will be stronger during the northern hemisphere

winter as shown in Peixoto and Oort (2007) (also recall our discussion of the increased

northern hemisphere jet streams during the northern hemisphere winter in section 3.2,
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The difference in the HadCM3 mountain torque profile over the two decades is very little

suggesting little change in the pressure systems.
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network can give the same latitudinal torque profiles as the observation network of today.

The climate models do show some promising features in their latitudinal profiles of

the torques. Little change over time in the torques, and hence pressure systems, wind

strengths and patterns, and so on, suggest consistency in the models with little serious

model drift. However we see a clear difference in the HadCM3 model’s mountain torque

profile, and that of all others in this, and other, research. Further where this model

repeats this pattern over both decades suggests that it is not just a passing anomaly, but

a good reflection of the internal model physics. The mountain torque and friction torque

of the NOAA GFDL CM2.0 climate model, were invariant over time, suggesting no visible

drift. The mountain and friction torque profiles were almost symmetric about the equator

suggesting that the atmosphere, as simulated in the model, is in a circulation pattern that

is symmetric about the equator.

Whilst no datasets had identical latitudinal friction profiles, perhaps the most inter-

esting difference in the friction profiles was between the Hadley Centre HadCM3 and

HadGEM1 models - with the values in one model being twice the size of the other. We

found this particularly interesting because the models are made by the same institute and

are likely to have been constructed in a similar manner. We noted that the differences

in sizes is most likely to be attributable to the wind speeds simulated in the models, and

that HadGEM1 seems to have weaker surface winds than any climate model or observa-

tion dataset in this investigation. Also assuming reasonable angular momentum budget

conservation in the models the difference in flux of angular momentum into the equatorial

regions would have large scale applications for the atmospheric circulation the models.

8.2 Further Work

8.2.1 Torques and the Northern Hemisphere Winter in the NOAA Re-

analysis Observation Dataset

Due to the lack of conservation of angular momentum, one recommendation from this

dissertation is to investigate the causes of the erroneous torque values during the northern

hemisphere winter in the reanalysis observation dataset. The idea of identifying the cause

of such time dependent anomalies in the torques directly calls for the use of covariance

analysis of the angular momentum and torques. This would allow us to glean the time

dependent contributions and activity between the four variables (angular momentum,

mountain, friction and gravity wave torque) that are associated with the atmospheric

angular momentum budget.

Essentially the time covariances of the terms measure of how much two variables change

together over time.
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We take these ideas from Egger and Hoinka (2002) who sought to understand the time



3. That they satisfy both the conservation of angular momentum equation, equation

(2.29), and they satisfy equation (8.3), i.e. the size of the torques and angular

momentum, and the duration of torque and angular momentum events (and thus

weather events) are the same.





tant work is being done on these models such as contribution of results to the next IPCC

report. Specifically projects are being conducted to test the responses of climate models

to volcanic eruptions in the research project “Stratospheric Particle Injection for Climate

Engineering” (see the Stratospheric Particle Injection for Climate Engineering (SPICE)

Project Website: http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/I01473X/1).

In their paper, Shaw and Sheperd (2007), note that subject to radiative peturbation

in the middle atmosphere the climate model response can be trustworthy or not. With

angular momentum conservation and a range of gravity wave parameterizations the re-

sponse of the climate models tested to this radiative peturbation is robust to changes

such as the model lid height. However, when angular momentum is not conserved, due

to the formulation or implementation of the gravity wave torque parameterization, there

is a “non-negligible” spurious response from the imposed middle atmosphere radiative

peturbation when the climate model lid height is changed. Further work into testing

the conservation of angular momentum with the new raised lid models and investigations

into their gravity wave torque parameterizations could be investigated as to whether this

spurious response will occur in the model, contributing unreliable results to the project.

***

With knowledge of angular momentum theory and the code for calculating angular



Chapter 9

Appendix 1 - Coordinates

The relationship between the spherical unit vectors eλ, eθ and er and the unit vectors in

which we express angular momentum, taken from Egger et al. (2007), is shown below

eλ = −i1sinλ+ i2cosλ (9.1)

eθ = −i1cosλsinθ − i2sinλsinθ + i3cosθ (9.2)

er = i1cosλcosθ + i2sinλcosθ + i3sinθ (9.3)

66



Chapter 10

Appendix 2 - Techniques of

Computation

There is significantly more than just a choice of numerical approximation when choosing

how to compute the angular momentum and torques because the choice of what to use to

calculate the torques and angular momentum has a physical meaning.

Although it does not change our analysis, it should be noted that we do not strictly

test equation (2.29) for all time, but the time averaged version

∂M

∂t
= TF + TG + TM (10.1)

over a discrete set of values.

Recall the time average over a (time) interval [0, τ ] of a variable A as

A ≡
1

τ

∫ τ

0

Adt (10.2)





10.3 Mountain Torque

In analysing the global angular momentum balance in reanalyses observation datasets and

climate models it is essential we have a good numerical scheme for the computation of

mountain torque because of its derivative term, as has been discussed by Weickmann and

Huang (2008).

Mountain torque has been calculated by taking height and surface pressure in a fourier

series at each latitude as done by Madden and Speth (1995) on a spectral model. Spectral

models are a different type of model that represent the climatic variables over the globe

without using grid points, however we shall not go into more detail on these models here.

However, using this type of model the fourier series for the height was then differentiated

with respect to λ, and its coefficients were multiplied by il



Then for

Xi = −pi

(

∂h

∂λ

)

i
(10.8)

they study six finite difference schemes

(

∂h

∂λ

)

i
=

1

∆λ

k=K
∑

k=−K



vector of surface pressure and Q is the matrix of coefficients resulting from the bi chosen

in the finite difference scheme).

Thus they look at

YM,2 − YM,1 = pTQh + hTQp (10.11)

which can be written as

YM,2 − yM,1 = hT (Q + QT )p (10.12)

and, Weickmann and Huang (2008) note that this is zero if Q = −QT , i.e. Q is

antisymmetric. An encouraging find is that this is true for all centered difference schemes,

whilst they note that the non-centered schemes do not satisfy this property.

10.4 Gravity Wave Torque

We may take the values of the gravity wave stress from the model directly, or from the

forecast values, in much the same way we did for friction stress.
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