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Abstract

In this dissertation we evaluate numerically the solution representations obtained from a recently

developed Fokas integral method for solving boundary value problems for linear evolution PDEs.

In particular, we consider the case of the linear KdV equation.The Fokas method is quite general

and it is therefore of wider interest to assess its competitiveness for numerical purposes. Until

now pseudospectral methods have been know to be the most accurate numerical scheme for smooth

functions. In the work following, the linear KdV equation will be computed numerically using both

a pseudospectral method and the dircet evaluation of the integral representation, and comparisons

will be made between these two methods for accuracy and speed of the numerical computation.
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Chapter 1

Introduction

In this project we consider the analytical and numerical solutions of initial boundary value problems

for evolution partial differential equations (PDEs) with constant coefficients, posed on a half line.

These equations are of the form

qt(x; t)+T q(x; t) = 0; t > 0; x 2 [0;¥) (1.1)

where T is an x-differential operator. We prescribe initial data

q(x;0) = q0(x); x 2 [0;¥);

where q0(x) is a given smooth function, such that q(x; t)! 0 as x! ¥ and an appropriate number

of boundary conditions are prescribed.

Equations of type (1.1) describe processes that are evolving in time from a given initial state. The

simplest example is the heat or diffusion equation, qt = qxx, which models how heat diffuses starting

from a given initial temperature.

The classical way of solving this type of problem is using a Fourier type transforms on the real line.

For example, the heat equations on the half line with q(0; t) given is solved by the sine transform,

while the same equation but with qx(0; t) given is solved by the cosine transform. Thus, the type

of transform needed for a given initial boundary value problem is specified by the PDE, by the

domain, and by the given boundary conditions. For simple boundary value problems there exists an

algorithmic procedure for deriving the associated transform [9]. However, for many problems the
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classical transform method fails. For example, as we will see in Chapter 2, there does not exists a

real fourier type transform for solving third order equations on the half line.

A new transform method was introduced by Fokas in 1997 [5], where the solution was found by

rewriting the PDE as a Lax pair and then performing a simultaneous spectral analysis of it. Using

this approach one can express the solution in the form of an integral for all linear and integrable non-
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we consider the following given data,8<: q(x;0) = xe�ax a 2 (0;1]

q(0; t) = sin(wt) w 2 R:
(1.7)

For the three linear cases a solution will be computed numerically both via the new Fokas method

and by spectral methods, which will enable us to compare the two methods. In the case of non-linear

KdV, the solution will be obtained using split step method where one step will compute solution

using Fokas method and other using spectral method. This will be compared to the results obtained

from purely spectral code. In Chapter 3 an overview of the pseudospectral methods will be given.

It will be shown in Chapter 4 that the novel integral representations given by the new Fokas method

are suitable for the numerical evaluation of the solution. This is possible, as using simple contour

deformations in the complex k-plane, to obtain integrals involving integrants with strong decay for

large k. [1] In Chapter 4 we look at the numerical results for the problems (1.3) - (1.5) and compare

the results obtained from both methods for each of the problems. Lastly, in Chapter 5 we solve

the problem (1.7) by pseudospectral methods using the Fourier split-step and give a motivation for

combining the Fokas method for the linear part with pseudospectral method for the nonlinear part.

All of the numerical schemes presented in this work are performed using Matlab. Codes, developed

in this project, for the new Fokas integral method have been adopted from [11] and codes for pseu-

dospectral methods have been adopted from [3]. It is possible that the codes’ performance can be

enhanced but this is not the focus of the present project.

1.1 Korteweg-de Vries (KdV) equation

The KdV equation is defined by,

qt +qx +qqx +qxxx = 0;

and it was derived in 1895 by Korteweg and de Vries to describe long wave propagation on shallow

water. It is an integrable, dispersive nonlinear evolution equation and it relates the amplitude of the

wave and its change in space, with the change of the amplitude in time [3]. The spatial variable x

is usually assumed to be real (so there is some decay at infinity) or on torus (so the data is periodic)

3
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[17].

The intriguing property of the KdV equation is that under certain circumstances the dispersion and

nonlinearity balance each other out, thus allowing the special solutions that travel without changing

there shape. Korteweg and de Vries showed that the equation posed on the real line possesses a

soliton solution, which takes the form

q(x; t) = 3c2sech2
�

cx� c3t
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The Fokas Spectral Transform Method for Linear Evolution PDEs on Half Line

In this project we study the linear KdV equation (2.4). Hence, we shall now use this as an example

to describe the general method. The heat equation and Stokes first equations follow similarly and

for Schrödinger equation and/or more detail on these and other problems the reader is referred to [1]

- [3], [5], [6].

2.1 General Solution

Consider the linear KdV equation (2.4) posed on the half line,

qt +qx +qxxx = 0; x 2 [0;¥):

To model an initial and boundary value problem, we need to supplement the equation with initial

conditions and one boundary condition at x = 0. Hence, we always assume

q(x;0) = q0(x) (2.5)

and we shall specify boundary conditions below.

Using Fourier Transform we have

q̂(k; t) =
Z

¥

0
e�ikxq(x; t)dx;

then by integration by parts we obtain

bqx(k; t) =�q(0;
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We can define t transforms on the left boundary by

g̃ j(k; t) =
Z t

0
e(ik�ik3)s

¶
j
xq(0;s)ds; t > 0 for j = 0;1;2 (2.10)

and

g̃(k; t) = g̃2(k; t)+ ikg̃1(k; t)+(1� k2)g̃0(k; t); k 2 R: (2.11)

Thus, rearranging (2.8) we get expression for x transform of q(x; t),

q̂(k; t) =
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where q̂(k;0) =
R

¥

0 sin(kx)q(x;0)dx.

Thus, the integral representation for the solution obtained via the sine transform in this case is fully

defined in terms of the data of the problem. Note however, that (2.14) is not uniformly convergent

as x! ¥, so we cannot compute q(0; t) by just letting x = 0.

However, for the first Stokes equation (2.3) or the linear KdV this approach fails and it has been

shown that for an odd number of spatial derivatives there are no x-transforms which could give a

solution involving only known functions [7]. This is confirmed by the linear KdV for which the

x-transform has the given solution (2.13) involving unknown functions.

The main difference between the new approach and the Fourier transform approach just obtained

is to integrate along complex contours instead of the real line. i.e. k is no longer real but rather a

complex variable. This allows the use of complex analytic techniques.

Using analyticity considerations, we obtain the integral representation in the form

q(x; t) =
1

2p

Z
¥

�¥

eikx�(ik�ik3)t q̂0(k)dk +
1

2p

Z
¶D+

eikx�(ik�ik3)t g̃(k; t)dk; (2.15)

where now k 2 C and where ¶D+ is the contour in the upper half complex k-plane where the expo-

nential ei(k�k3) is purely oscillatory. The domain D is defined by

D = fk 2 C : Re(ik� ik3)� 0g; D� = D\C�
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contour ¶D+, i.e. the integral along the rays (�¥;�1=
p

3][ [1=
p

3;¥) can be deformed along the

curves (in blue) shown in Fig.(2.1). These curves are the two branches of the curve Re(
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and consider a simplified global relation,

(k2�1)g̃0(k; t) = g̃2(k; t)+ ikg̃1(k; t)+ q̂0(k) Im(k)� 0: (2.18)

We consider this relation for k 2 ¶D+, as this is the contour at which we need to characterise the

unknown functions. Note that this contour is the boundary of the domain D+. Also, that the global

relation is only well defined if Im(k) � 0. This is due to the fact that the term q̂0(k)
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2.2.1 Dirichlet boundary condition

Let,

q(0; t) = f (t) (2.23)

for which our Fourier Transform is g̃0(k; t) =
R t

0 e(ik�ik3)sq(0;s)ds =
R t

0 e(ik�ik3)s f (s)ds.

Here, we can express terms g̃1(k; t) and g̃2(k; t) in terms of g̃0(k g g2( ik3
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Substituting (2.24) and (2.25) into (2.11) we have

g̃(k; t) = �k2g̃0(k; t)+
n1q̂0(n2)�n2q̂0(n1)

n2�n1
+

+ik
�
�k
i

g̃0(k; t)+
q̂0(n2)� q̂0(n1)

i(n1�n2)

�
+(1� k2)g̃0(k; t)

which simplifies to

g̃(k; t) = (1�3k2)g̃0(k; t)+ q̂0(n1)
k�n2

n2�n1
+ q̂0(n2)

n1� k
n2�n1

(2.26)

and substituting (2.26) into (2.15) gives

q(x; t) =
1

2p

Z
¥

�¥

eikx�(ik�ik3)t q̂0(k)dk +

+
1

2p

Z
¶D+

eikx�(ik�ik3)t(1�3k2)g̃0(k; t)+ (2.27)

+
1

2p

Z
¶D+

eikx�(ik�ik3)t
�

q̂0(n1)
k�n2

n2�n1
+ q̂0(n2)

n1� k
n2�n1

�
dk

which is the solution to the linear KdV (2.4) subject to initial conditions (2.5) and Dirichlet boundary

conditions (2.23).

Example 1: Linear KdV with Dirichlet BC and zero IC

Now we find a solution to the particular linear KdV problem with initial and boundary data defined

as follows,

q(x;0) = 0 (2.28)

q(0; t) = sin(wt): (2.29)

Fourier Transforms of the initial condition is

q̂0(k) =
Z

¥

0
e�ikxq(x;0)dx

= 0 (2.30)

and of boundary condition is,

g̃0(k; t) =
Z t

0
e(ik�ik3)sq(0;s)ds

14
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=
Z t

0
e(ik�ik3)s sin(ws)ds

=
�
� 1

w
cos(ws)e(ik�ik3)s

�t

0
+

ik� ik3

w

Z t

0
e(ik�ik3)s cos(wt)ds

= � 1
w

cos(wt)e(ik�ik3)t +
1
w

+
ik� ik3

w

��
1
w

sin(ws)e(ik�ik3)s
�t

0
� ik� ik3

w
g̃0(k; t)ds

�

so,

g̃0(k; t)
�

w2 +(ik� ik3)2

w2

�
= � 1

w
cos(wt)e(ik�ik3)t +

1
w

+
ik� ik3

w2
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Here, (2.21) - n2
1�1
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q(x;0) = x2e�ax; a 2 R+ (2.42)

qx(0; t) = sin(wt): (2.43)

Fourier Transforms of the initial condition is

q̂0(k) =
Z

¥

0
e�ikxq(x;0)dx =

Z
¥

0
x2e�(ik+a)x dx

=
��

�
��

��
"

e�(ik+a)x

�(ik +a)
x2

#¥

0

+
2

(ik +a)

Z
¥

0
xe�(ik+a)x dx

=
��

��
�
��

"
e�(ik+a)x

�(ik +a)
x

#¥

0

+
2

(ik +a)2

Z
¥

0
e�(ik+a)x dx

=
2

(ik +a)2

"
e�(ik+a)x

�(ik +a)

#¥

0

=
2

(ik +a)3 (2.44)

and of the boundary condition is the same as for the case 1, but here it is g̃1(k; t) which is provided

by given data,

g̃1(k; t) =
Z t

0
e(ik�ik3)sqx(0;s)ds

= :::

=
e(ik�ik3)t

2

 
e�(ik�ik3)t � e�iwt

(w� (k� k3))
+

e�(ik�ik3)t � eiwt

(w+(k� k3))

!
: (2.45)

Thus, again substituting the equations for initial and boundary data (2.45) and (2.44) into the general

solution (2.41) yields,

q(x; t) =
1
p

Z
¥

�¥

eikx�(ik�ik3)t 1
(ik +a)3 dk + (2.46)

+
1

4p

Z
¶D+

eikx
�

3ik� i
k

� 
e�(ik�ik3)t � e�iwt

(w� (k� k3))
+

e�(ik�ik3)t � eiwt

(w+(k� k3))

!
dk +

+
1

2p

Z
¶D+

eikx�(ik�ik3)t
�

q̂0(n1)
n2

2� k2

n2
1�n2

2
+ q̂0(n2)

k2�n2
1

n2
1�n2

2

�
dk
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integral representation to the linear KdV equation with Neumann boundary data,

q(x; t) =
1
p

Z
¥

�¥

eikx�(ik�ik3)t 1
(ik +a)3 dk +



Chapter 3

Pseudospectral Methods

Spectral methods were introduced in the 1970s and they have become widely popular for their accu-

racy and convergence speed when applied to smooth functions in comparison to the finite difference

(FD) and finite element (FE) methods.

In this chapter we give an overview of pseudospectral methods, concentrating on the case of non-

periodic problems, in particular for third order equations.

The essential difference between spectral as opposed to finite difference/finite element approxima-

tions is that the latter approximates functions locally, using only the information available in some
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of N thus making it much more accurate than finite elements or finite difference methods, but also

because of the high accuracy spectral methods are memory minimizing, too. Thus, if high accuracy



Pseudospectral Metu 7[

3. It should be fast to convert between coefficient[ ak, k = 0; :::;N, and the values for the sum

u(xi) at some set of node[ xi, i = 0; :::;N.It turns out that uN = INu is precisely the interpolant

of u on the given node[. Thus, spectral metu 7[ can also be de[cribed in term[ of interpolation

propertie[.

That is basis sets need to be easy to compute, have fast convergence and completenes[. The choice of

the basis functions is determined by the type of problem at hand, for periodic functions trigonometric

functions satisfy the above criteria and for non-periodic functions one resorts to using Chebyshev or

Legendre polynomials; we will concentrate on Chebyshev polynomials referring the reader to [12]

or [14] for background on other types of polynomials.

3.1 Non-periodic problems

Consider a non-periodic smooth function defined on [-1,1]. In general, when a smooth function

is extended it becomes non-smooth and if trigonometric interpolation in equispaced points is used,

then the above given criteria for fk(x) will not be satisfied. Thus, spectral accuracy will be lost and

hence, the main reason for using spectral metu 7[.

Instead, we must replace trigonometric polynomials with algebraic polynomials,

p(x) = a0 +a1(x)+ :::+aN(x)

on unevenly spaced points. We will use Chebyshev points, which are defined by

x j = cos
�

jp
N

�
; j = 0;1; :::;N; (3.1)

and are the projections onto the interval [-1,1], of equispaced points along the unit circle in the

complex plane, see Fig. 3.1. Chebyshev polynomials are defined a[

Tn(cosq)� cos(nq): (3.2)

We can see how the use of these points increases the accuracy of polynomial interpolant. For exam-

ple, if we interpolate u(x) = 4
5+128x2 on a 21 point grid, then the maximum error on an equispaced

grid is 72.4399, but using Chebyshev points the maximum error is only 0.014837. The difference in

23
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Figure 3.1: Chebyshev points, projections onto x axis of equally spaced points on the unit circle with

N = 27.

easily seen in Fig. (3.2), where the interpolant on the left is oscillating near the ends of the interval

(Gibbs phenomena see [10]). However, Chebyshev points approximate function u(x) very well. By

increasing the number of grid points accuracy for equispaced points decreases exponentially with

oscillations escalating, where as for Chebyshev points accuracy increases exponentially.

Figure 3.2: Interpolation of u(x) = 4
5+128x2 for equispaced and Chebyshev points.

3.1.1 Chebyshev differentiation matrices

Chebyshev points x j = cos( jp=N) can be used to construct Chebyshev differentiation matrices,

which then can be used to differentiate functions defined on these points. Now given a function u j

defined on Chebyshev points we obtain a discrete derivative w j in two steps:

� Let p(x) be the unique polynomial of degree � N with p(x j) = u j, 0� j � N.

� Set w j = p0(x j).

24
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The differentiation operator is linear so it can be represented by multiplication by an (N +1)� (N +

1) matrix, which is denoted by DN . Hence, we have

w = DNu;

where N is the number of grid points and can be odd or even positive integer.

Theorem 3.1.1 For each N � 1, let the rows and columns of the (N +1)� (N +1) Chebyshev spec-

tral differentiation matrix DN be indexed from 0 to N. The entries of this matrix are

(DN)00 =
2N2 +1

6
; (DN)NN =�2N2 +1

6
(3.3)

(DN) j j =
�x j

2(1� x2
j
; j = 1; :::;N�1 (3.4)

(DN)i j =
ci

c j

(�1)i+ j

xi� x j
; i 6= j; i; j = 0; :::;N (3.5)

where

ci =

8<: 2 i= 0N

1:
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We can truncate the spatial, x, domain, say at x = 40 as the solution decays rapidly and will be zero

at this point. Hence, the problem now is defined on a finite, closed domain by,

ut +ux +uxxx = 0 x 2 [0;40] (3.6)

with boundary conditions

u(0) = sin(t)

u(40) = 0 (3.7)

ux(40) = 0:

Note, that since now we have a bounded domain, we require three boundary conditions for the

problem to be well-defined. That is, we have forced the solution and it’s first derivative to be zero at

the right boundary.

Now to make use of the Chebyshev differentiation matrix we need to transform spatial variable

x 2 [0;40] to y 2 [�1;1]. We use simple map for this

y =
1

20
x�1:

With the change in variable our problem ( 3.6) has changed too,

0 = ut + yxuy + y3
xuyyy

= ut +
1

20
uy +

1
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this ’something else’ to be polynomials as they are the easiest to compute.

So let

u(y; t) = g(y)q(y)+h(y); (3.8)

where q(y) is a polynomial such that q(�1) = 0 and g(y) and h(y) are smooth functions and h(y)

satisfies the same boundary conditions as u.

Now at y =�1 we have that u(�1) = h(�1), but

uy(1) = g(1)qy(1)+hy(1)

since u(y; t) and h(y) satisfy the same boundary conditions, then we require that g(1) = 0. The

simplest function giving this is g(y) = y�1. Lastly we need to find h(y) such that h(1) = hy(1) = 0

and h(�1) = sin(t),

h(y) =
a+2c�b

4
y2 +

b�a
2

y+
3b+a�2c

4

=
sin(t)

4
y2 +

�sin(t)
2

y+
sin(t)

4

= sin(t)
�

y2

4
� y

2
+

1
4

�
: (3.9)

Hence, substituting above into ( 3.8)

u(y) = (y�1)q(y)+ sin(t)
�

y2

4
� y

2
+

1
4

�
; (3.10)

and so first three derivatives of u(y; t) are

uy = (y�1)qy +q+ sin(t)
�

y
2
� 1

2

�
uyy = (y�1)qyy +2qy + sin(t)

1
2

uyyy = (y�1)qyyy +3qyy:

Now, backward Euler formula is

u(t +Dt)�u(t)
Dt

= �
uy

20
�

uyyy

8000

= �
(y�1)qy +q+ sin(t)

� y
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3.2 Time-dependent problems

In general, the time coordinate is not treated spectrally. Discretising the spatial coordinate by a

pseudospectral algorithm leaves us with a system of ODEs of the form ut = f (u;x; t), with u and

f being vectors which can be marched forwards in time using some time stepping scheme like

Backward Euler or Runge-Kutta. In principle, one sacrifices spectral accuracy in doing so, but

in practice, small time steps with formulas of order two or higher often leave the global accuracy

quite satisfactory. Marching with small time steps is much cheaper than computing the solution

simultaneously over all space-time [12, 13].

We use backward Euler scheme in above polynomial trick method, which is applied to all linear

problems in this project. Backward Euler scheme is of order O(Dt) and thus for it not to undermine

the spectral accuracy we need to use small time steps. The fourth order Runge-Kutta scheme (RK4)

has been used to obtain nonlinear numerical results in Chapter 5. The benefits of using RK4, a



Chapter 4

Linear Numerical Results

In this chapter we consider the numerical solution of the linear KdV equation. In particular, we com-
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(2.32) to the problem (1.3), given by

q(x; t) =
1

4p
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Here we use the analytic function,

k(q) = igsin(a� iq) (4.1)

to map the points q onto the real line to a hyperbola type contours in complex k-plane [11]. Thus,

once mapping is applied, the solution becomes

q(x; t)=
1

4p

Z
R

eik(q)x(1�3k(q)2)

0BBB@e�(ik(q)�ik(q)3)t � e�iwt

(w� (k(q)� k(q)3))
+

e�(ik(q)�ik(q)3)t � eiwt

(w+(k(q)� k(q)3))| {z }
(??)

1CCCAgcos(a�iq)dq

(4.2)

Hence, we want to deform ¶D+ to a contour for which we can expect Trefethen’s results. For this

we need the solution to be bounded and analytic in the shaded regions in the Figures (4.3), (4.6).

Now eikx is analytic and decaying in C+, e�i(k�k3)t is analytic and decaying in the shaded regions in

the Figures (4.3), (4.6) and eiwt does not depend on k and so is analytic and decaying for fixed t but

any k values. Lastly, we need to check if there are any singularities in the denominators of (??). For

simplicity we take w = 1, then roots of k3� k +1 = 0 are

k0 ��1:32472; k1 � 0:662+0:562i; k2 � 0:662�0:562i (4.3)

and roots of k3� k�1 = 0 are,

k00 ��k0; k01 ��0:662+0:562i; k02 ��0:662�0:562i: (4.4)

Thus, we can deform ¶D+ to any contour inside the shaded regions, if we avoid zeros of the denom-

inators of (??).

Keeping this in mind we consider the following two possibilities as integration contour:

� Hyperbola along ray p=12

The simplest case is to define ¶D+ on a hyperbola through the origin asymptotic to the rays

p=12 and 11p=
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-
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This mapping gives the following solution to the problem (1.3) on x 2 [0;200]; t 2 [0;2p],

Figure 4.4: Numerical solution for the linear KdV by simple mapping along p=12 ray

� Shifted hyperbola along the ray p=6

A more involved but equally simple case is to take k(q) = q for 0 � Re(k) � 1=
p

3 and for

Re(k) > 1=
p

3 apply mapping k(q) = igsin(a� iq)� iIm(k(1=
p

3)), see Fig. (4.5).

-

6

p3 �

1

q3))������
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have singularities. However, the shift of the imaginary part in the second case introduces numerical

instability in the solution and as a result the solution possesses periodic waves, see Fig. (4.7). This

can be solved by finer discretisation in q, but that means more computation time. Hence, we give

the upper hand to the first method, and will use it for all of the numerical computations here.

Next is the question: how far along the q
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f o r kk = 0 :N

t h e t a = kk�h ;

k = i �ga� s i n ( a l p h a � i � t h e t a ) ;

q = 1 / ( 4� p i ) exp ( i k x )(1�3 k ˆ 2 ) . � . . .

( ( exp(� i ( k�k ˆ 3 ) t ) � exp(� i w t ) ) / ( w�(k�k ˆ 3 ) ) + . . .

( exp(� i ( k�k ˆ 3 ) t ) � exp ( i w t ) ) / ( w+( k�k ˆ 3 ) ) ) ;

t e rm = r e a l ( q�gamma� cos ( a lpha�i � t h e t a ) ) ;

s o l = s o l + te rm ;

i f k == 0 ; s o l = 0 . 5 s o l ; end

end

s o l = (2 h ) s o l ;

Exponentials eikt and e�ikt can be computed once outside the loop as their value does not depend on

k and terms can be grouped for e�i(k�k3)t , for faster computations.

4.1.3 Results for the linear KdV problems for t 2 [0;2p]
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4.1.4 Results for the linear KdV problems for t 2 [0;15p]

To see how the initial wave is dispersing we need to compute the solution for larger t.

Numerical solution of Example 1

Figure 4.12: Numerical solution of the linear KdV with q(x;0) = 0 and q(0; t) = sin(wt) for t 2

[0;10p], where w = 1 using the new Fokas transform method, with a = p=12, g = 0:53

Numerical solution of Example 2

Figure 4.13: Numerical solution of the linear KdV with q(x;0) = xe�ax and q(0; t) = sin(wt) for

t 2 [0;10p], where w = 1 using the new Fokas transform method, with a = p=12, g = 0:53

40
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terms involving the unknown function q(y) can be grouped together (all matrices) as in (3.11),

L =
(y�1)

Dt
D0

N +
(y�1)

20
D1

N +
D0

N
20

+
(y�1)D3

N +3D2
N

8000

and all the left over terms are known (all vectors), as in (3.12)

f (y) =
u(t)
Dt
� 1

Dt
sin(t +Dt)

�
y2

4
� y

2
+

1
4

�
� sin(t)

20

�
y
2
� 1

2

�
:

Hence, we have a simple matrix problem to solve (3.13), given by

Lq(y) = f (y):

To do this, we exploit the simple Matlab matrix solver q(y) = Ln f (y).

The error for spectral methods is exponentially decreasing, i.e. it is of order O(hN) or O(1=NN), as

we use N = 128 in all the computations, then for all of the spectral methods the error introduced by

spectral discretisation is

pseudospectral error � 1:89288 �10�270:

However, the backward Euler method is of orderh
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4.2.1 Results for the linear KdV problems for t 2 [0;2p]

Here we present the numerical results of the three linear KdV problems as set out in Chapter 1 and

for which integral representations were found in Chapter 2.

Numerical solution of Example 1

Figure 4.15: Numerical solution of the linear KdV with q(x;0) = 0 and q(0; t) = sin(wt) for t 2

[0;2p], with w = 1.

Numerical solution of Example 2

Figure 4.16: Numerical solution of the linear KdV with q(x;0) = xe�ax and q(0; t) = sin(wt) for

t 2 [0;2p], with w = 1
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4.2.2 Results for the linear KdV problems for t 2 [0;24p]

To see how the initial wave is dispersing we need to compute the solution for larger t.

Numerical solution of Example 1

Figure 4.17: Numerical solution of the linear KdV with q(x;0) = 0 and q(0; t) = sin(wt) for t 2

[0;24p], with w = 1

Numerical solution of Example 2

Figure 4.18: Numerical solution of the linear KdV with q(x;0) = xe�ax and q(0; t) = sin(wt) for

t 2 [0;24p], with w = 1
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4.3 Comparison between the methods

To compare the two methods, since the pseudospectral method can only be used in conjunction with

Chebyshev points, then we can either run the code for the Fokas method on Chebyshev points, which

are mapped into x space, i.e. y 2 [�1;1]! x 2 [0;40], or on an equally spaced x grid and with small

Dx which then leaves us to match the nearest points. We measure the absolute difference between

the two solution matrices to gain the error estimate. The two methods at most differed by 0.04,

and that could be lowered provided the Fokas integral is evaluated on much finer grid. Hence, the

two methods are approaching the same solution. Even though this does not provided an estimate of

the error in either of the methods or codes, it still gives a verification that methods are computing

correctly the solution.

We have not computed the Example 3, defined in (1.5), using pseudospectral methods as it is requires

a method other than the polynomial trick for us to apply the Chebyshev differentiation matrix and it

is out of the scope of this project. However, this illustrates the benefits of using the Fokas integral

solutions as not only the method is general to all linear PDEs of type (1.1), but also the numerical

method is exactly the same for all of these problems, one only needs to change the integral obtained

(as in Chapter 2) and put it in the code. When using other methods we are forced to use different

methods depending on the problem for computing the solution.

Max t value



Linear Numerical Results



Linear Numerical Results

Solutions from both of methods, as expected show decrease in hight of the main solitary wave. This

process is slow, especially if energy in initial condition is large. We can see this especially well in

Fig. (4.19).



Chapter 5

Nonlinear Numerical Results

As the numerical computation has proved to be so easy to implement and to such high accuracy, it

is just natural to try to compute the nonlinear KdV next. In this chapter we are interested in looking

at the nonlinear KdV equation defined in (1.6),

q
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and hence, the boundary data for this part is

q(�1; t) = 0:

Hence, we have

ut(y; t) = (1� y)q(y; t)t

uy(y; t) = �q(y; t)+(1� y)qy(y; t);

and in terms of q(y; t), (5.3) is given by

(1� y)qt(y; t)+
1

20
(1� y)q(y; t) [�q(y; t)+(1� y)qy(y; t)] = 0

Rearranging above we obtain,

qt(y; t) = � 1
20

q2(y; t)+
1

20
q(y; t)qy(y; t)(1� y)

= � 1
20

q2(y; t)+
1

40
�
q2(y; t)

�
y (1� y): (5.5)

Given an initial condition u(y j;0), 0 � j � N, then in terms of q(y; t) from (5.4), initial condition

becomes

q(y j;0) =
u(y j;0)
(1� y j)

: (5.6)

We use the fourth order Runge Kutta scheme, given by,

qn+1 = qn +
1
6

(d1 +2(d2 +d3)+d4) (5.7)

where

d1 =
Dt
2

�
� 1

20
q2

n(y; t)+
1
40

[qn(y; t)]
2
y (1� y)

�
d2 =

Dt
2

 
� 1

20

�
qn(y; t)+

1
2

d1

�2

+
1

40

�
qn(y; t)+

1
2

d1

�2

y
(1� y)

!

d3 =
Dt
2

 
� 1

20

�
qn(y; t)+

1
2

d2

�2

+
1

40

�
qn(y; t)+

1
2

d2

�2

y
(1� y)

!

d4 =
Dt
2

�
� 1

20
[qn(y; t)+d3]

2 +
1

40
[qn(y; t)+d3]

2
y (1� y)

�
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the same polynomial method as in Chapter 3 and it is readily seen that we obtain the same linear

system as in (3.13) but with half a time step, i.e. now instead of (3.11) we have

L =
2
Dt

(y�1)D0
N +

(y�1)
20

D1
N +

D0

20
+

(y�1)
8000

D3
N +

3D2
N

8000
(5.11)

and instead of (3.12) we have

f (y) =
2
Dt

u(t)� 2
Dt

sin(t +Dt)
�

y2

4
� y

2
+

1
4

�
� sin(t +Dt=2)

20

�
y
2
� 1

2

�
: (5.12)

Hence, the method can be summarized as follows,

� set initial data u0

set initial time t = 0

set final time tMax

set Dt

compute number of plots nplots = tMax=dt

� for i = 1 : nplots

1. Advance the nonlinear part ut +uux = 0 by t +Dt=2 from time t to time t +Dt=2.

If i = 1 use given initial data u0, else use data from linear part obtained at i�1.

2. Advance the linear part ut +ux +uxxx = 0 by t +Dt=2 from time t +Dt=2 to time t +Dt .

Initial data is always the solution from the nonlinear part.

end
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Figure 5.2: Comparison between linear and nonlinear KdV solution with u(x;0) = xe�x and u(0; t) =

sin(t), for x 2 [0;40], t 2 [0;8
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Figure 5.4: Comparison between linear and nonlinear KdV solution with u(x;0) = x2e�x and

u(0; t) = sin(t), for x 2 [0;40], t 2 [0;8p].

the split step method.

This would involve solving the nonlinear part, ut +uux = 0, as above using the Chebyshev differen-

tiation matrix and a time stepping scheme like RK4. Then, the linear part, ut +ux +uxxx = 0, would

use the solution obtained from the Fokas integral method. Since, both linear and nonlinear parts have

to ”communicate” with each other, that is the linear part needs to use the solution from the nonlinear

part and vice versa, we cannot use the code developed for the Fokas method as is. If we would use

the numerical integration on the linear part as we have done in Chapter 4 then the ”communication”

would be only one way and the linear part would never know what the nonlinear part does. What we

require is to take the solution from the nonlinear part as an initial data for the linear part and evaluate

it at k, µ1 and µ2 (e.g. for Dirichlet case q̂0 in (2.27)). Note, that since we cannot solve now for the

initial data analytically we compute it using the FFT (Fast Fourier Transform) and the IFFT(Inverse

Fast Fourier Transform) pair.

The difficulty is in the computation via FFT of the transform of the new initial condition not only for

k real, but also at the other points needed in order to evaluate the integral representation. This work is

in progress, as it presents a more serious challenge than we originally envisaged. This method should

produce more accurate results than the pure pseudospectral method and its computation speed should

also improve, especially for larger domains.

55



Chapter 6

Conclusions and Further Work

In this chapter we summarize the work carried out in this dissertation. We will discus the main re-

sults of the work carried out here and refer the reader to the relevant chapters. We will also indicate

the areas for possible further research in the topic.

The aim of this dissertation was to compare the numerical results of the recently developed Fokas

integral method for solving boundary value problems for linear and integrable nonlinear PDEs in

two variables and the well known pseudospectral methods. The Fokas integral method produces the

exact solution in the integral form. This only leaves us to do the numerical integration, which is

much easier to do than use any other methods developed until now for the numerical computation of

linear evolutionary PDEs on the half line. Moreover, it also proves to be much more accurate.

The theory of the Fokas integral method was developed in Chapter 2 and we used the linear KdV

equation to illustrate the method. Even though the method was explained only in terms of the lin-

ear KdV, exactly the same method applies to ALL linear evolutionary PDEs. Because of this, the

method is of great importance as it provides a generalized way of solving such equations, rather than

needing to resort to a specific transform (and in many cases not being able to solve the problem at

all). Moreover, in comparison to solutions obtained using classical Fourier transforms, the integral

representation obtained from the Fokas method is uniformly convergent at the boundaries and it is

spectrally decomposed. In Chapter 2, we found the general solutions for both Dirichlet and Neu-
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Thus, the conclusion is that the new Fokas integral method is a first general method which can be

applied to all the linear evolutionary PDEs. It produces an analytic integral representation of the

solution around a contour in the complex plane. Using simple numerical integration method, it is

extremely easy to implement the method numerically. It is more accurate than the pseudospectral

methods, and if accuracy is an issue, the Fokas method is also faster too (as currently implemented).

Because of the ease of implementation of the linear method it would be very useful to apply this

approach for the nonlinear case too. Thus, in Chapter 5 we first described the split step method

for solving the nonlinear KdV equation using pseudospectral methods as currently one of the most

accurate schemes for this equation. Then we give an outlay of how the solution from the Fokas

method for the linear KdV could be used in the second step to give us a hybrid method, one which

is half pseudospectral and half numerical integration of the solutions from the Fokas method. We

have not been able to develop or implement this idea in this project because of the time constraints.

However, it would be an interesting path to explore, as if implemented successfully, it would provide

a more accurate solution than the purely pseudospectral method and the speed of computation should

improve too, as the step size in time would not need to be so small.
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