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Abstract

A moving-mesh �nite-di�erence solution of a Lotka-Volterra
competition-di�usion model of theoretical ecology is described in which
the competition is su�ciently strong to spatially segregate the two
populations, leading to a two-phase problem with coupling conditions
at the moving interface. The moving mesh approach preserves the
identities of the two species in space and time, so that the parameters
always refer to the correct population. The model is implemented nu-
merically with a variety of parameter combinations illustrating how
the populations evolve through time.

1 Introduction

We apply a moving mesh �nite di�erence method based on conservation [4, 6]
to a problem in population dynamics. A Lotka-Volterra competition model
is considered that describes a two-phase segregated reaction-di�usion system
with a high competition limit such that the species are completely spatially



secondly, there is a parameter in the Lotka-Volterra model of the interface
condition (the equivalent of the latent heat coe�cient of the Stefan problem)
which is set equal to zero. Unlike the Stefan problem, one species does not
transform into another, which means that the competition system has an
interface condition that speci�es the interface velocity only implicitly.

A moving-mesh approach is an e�ective way to model this system because
unlike �xed mesh descriptions it provides a framework for keeping particular
mesh nodes attached to particular species rather than particular parts of
space, and the dynamics for any given location are automatically those of
the correct species.

We use the Lotka-Volterra model described by Hilhorstet al. in [3] ap-
proximated by the moving-mesh �nite-di�erence method (MMFDM) of [4].

2 The Lotka-Volterra system

The Lotka-Volterra system is the two-component reaction-di�usion system

@u1
@t

= � 1
@2u1

@x2
+ f (u1; u2)u1 x 2 R1(t); t > 0 (1)

@u2
@t

= � 2
@2u2

@x2
+ g(u1; u2)u2 x 2 R2(t) t > 0 (2)

where u1(x; t ) and u2(x; t ) are the population densities of two competing
species in abutting regionsR1(t) and R2(t), the parameters� 1, � 2 are constant
di�usion coe�cients, and

f (u1; u2) = r1

�
1 �

u1 + K 1u2

k1

�

g(u1; u2) = r2

�
1 �

u2 + K 2u1

k2

�
:

are reaction terms in whichK 1; K 2 are species-speci�c competition rates,
k1; k2 are the carrying capacities of the species, andr1; r2 are reproductive
rate parameters.

In [3] it is demonstrated that for two species completely segregated the
reaction terms can be reduced to

f (u1; u2) = r1(1 � u1=k1)
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g(u1; u2) = r2(1 � u2=k2):

so that equations (1) and (2) become

@u1
@t

= � 1
@2u1

@x2
+

�
r1

�
1 �

u1

k1

��
u1 x 2 R1(t); t > 0 (3)

@u2
@t

= � 2
@2u2

@x2
+

�
r2

�
1 �

u2

k2

��
u2 x 2 R2(t) t > 0 (4)

The resulting system represents the limit in which the carrying capacities
K 1; K 2 values are very large, i.e. the competition rate is high enough that
the two species cannot coexist in space and interact only through the interface
boundary.

Initial conditions on u1 and u2 are selected such that one species is in
growth and the other in decline. These are shown in �gure (1).

Zero Neumann boundary conditions@u1=@x= 0 and @u2=@x= 0 are
applied at �xed external boundaries away from the interface.

2.1 The interface conditions

At the interface between the two species there is a condition in [3] that
gives the relationship between their 
uxes. In essence, the species both 
ow
into the interface and annihilate each other in a ratio determined by the
competition coe�cient � . This condition is given as

�� 1
@u1
@x

= � � 2
@u2
@x

(5)

where � = K 2=K1
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Figure 1: Initial conditions for the competition system, with population den-
sity u1 of species 1 (on the left) andu2 of species 2 (on the right). The
interface node has zero population and must always satisfy the interface con-
dition.

3 The MMFDM conservation method

3.1 A relative conservation principle

De�ne the total population of speciesp as

� p(t) =
Z

Rp (t )
up(x; t ) dx

(p = 1; 2). Then by Leibnitz' Integral Rule,

_� p =
d� p

dt
=

d
dt

Z

Rp (t )
up(x; t ) dx =

Z

Rp (t )

@up
@t

dx + [ upvp]Rp (t )



We now suppose that populationfractions c(
 p) in each moving subdo-
main 
 p(t) are independent of time, so that� p(t) and up(x; t ) satisfy the
relative conservation principle

1
� p(t)

Z


 p (t )
up(x; t ) dx = c(
 p); (p = 1; 2); (7)

Since the population fractionsc(
 p) are constant in time, they are determined
by the conditions at the initial time t0, i.e.

c(
 p) =
1

� p(t0)

Z

Rp (t0 )
up(x; t 0) dx

Writing (7) as
Z


 p (t )
up(x; t ) dx = c(
 p)� p(t); (p = 1; 2): (8)

and di�erentiating the left hand side of (8) with respect to time using Leibnitz
Integral Rule,

d
dt

" Z


 p (t )
up(x; t )dx

#

=
Z


 p (t )

�
@up
@t

+
@

@x
(upvp)

�
dx; (p = 1; 2)

where vp is the velocity of points of the domain. Therefore, by (8), given
the population fractionsc(
 p), the velocity vp and rate of change of the total
mass _� p satisfy the equations

c(
 p) _� p �
Z


 p (t )

@
@x

(upvp)dx =
Z


 p (t )

@up
@t

dx; (p = 1; 2);

where the _� p are given by (3) or (4), giving

c(
 p) _� p � [upvp]
 p (t ) = � p

�
@up
@x

�


 p (t )

+ rp

Z


 p (t )
up(x; t )

�
1 �

up(x; t )
kp

�
dx;

(9)
We let the subdomains 
1(t) in the region R1(t) consist of the interval

(a; x(t)) where a is a �xed boundary and x(t) is any point in the region
R1(t). Similarly the subdomains 
 2(t) in the region R2(t) consist of the
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interval (x(t); b) where b is a �xed boundary and x(t) is any point in the
region R2(t).

The boundary conditions at the external boundaries2 Tf 648e6ere



From [3] the interface condition is given by (5). Whilst the interface ve-
locity is not given explicitly by (5) this equation does determine the location
of the interface implicitly. Thus, if we know @u=@xadjacent to the interface
in each region we may use the condition thatu = 0 at the interface to in-
fer an interface position such that the values of� p@up=@xeither side of the
interface are in the ratio� � .

We now describe a �nite di�erence numerical method for the solution of
the problem.

4 Numerical solution

Let the domain (a; b) be (0; 1). At time level t = tn de�ne time-dependent
mesh points

0 = x0 < x n
1 < ::: < x n

m� 1 < x n
m < x n

m+1 < ::: < x n
N < x n

N +1 = 1

wherexn
m is the node at the moving interface, and letun

i , (0 � i � N + 1),
approximate u(x; t ) by un

i at these points.
The total mass approximations� n

1 � � 1(t) and � n
2 � � 2(t) of (12) and (13)

are estimated by the composite trapezium rule

� n
1 =

mX

i =1

1
2

(ui � 1 + ui )(x i � x i � 1); � n
2 =

NX

i = m

1
2

(ui + ui +1 )(x i +1 � x i ); (14)

and the constant-in-time relative massesc1;i and c2;i in the interval (xn
i � 1; xn

i )
by

c1;i =
1
� 1

1
2

(u0
i � 1 + u0

i )(x0
i � x0

i � 1); (01tt
0;i; xn

ii



u(x; 0) = 30; (0 � x � 0:34)

u(x; 0) = ( x � 0:2)(0:5 � x) � 170� 7:85; (0:35 � x � 0:5)

u(x; 0) = 0; (x = 0:51)

u(x; 0) = ( x � 0:65)(0:5 � x) � 170� 94; (0:52 � x � 0:58)

u(x; 0) = 90; (0:59 � x � 1)

chosen to resemble the one in [2] (see �gure 1).

4.1 Rates of change of the total populations

The rates of change of the total populations_� 1; _� 2 of (6) are approximated
by composite trapezium rules, in region 1,

_� 1 = � 1

�
un

m � un
m� 1

xn
m � xn

m� 1

�

+ r1

mX

i =1

1
2

�
un

i � 1

�
1 �

un
i � 1

k1

�
+ un

i

�
1 �

un
i

k1

��
(x i � x i � 1) (17)

from (12), and in region 2,

_� 2 = � � 2

�
un

m+1 � un
m

xn
m+1 � xn

m

�

+ r2

NX

i = m

1
2

�
un

i

�
1 �

un
i

k2

�
+ un

i +1

�
1 �

un
i +1

k2

��
(x i +1 � x i ) (18)

from (13).

4.2 Approximating the velocities

From (10), using the composite trapezium rule, the velocityvn
i in region 1

satis�es,

c1;i
_� n
1 + un

i vn
i = � 1

@u
@x

�
�
�
�

i

m
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+ r1

iX

j =2

1
2

�
un

j � 1

�
1 �

un
j � 1

k1

�
+ un

j

�
1 �

un
j

k1

��
(x j � x j � 1); (1 < i < m � 1);

where we have taken the subdomain 
n1 to be the interval (xn ; xn
m ). Similarly,

from (11),the velocity vn
2 in region 2 satis�es

c2;i
_� n
2 + un

i vn
i = � � 2

@u
@x

�
�
�
�

i

m

+ r2

NX

j = i

1
2

�
un

j

�
1 �

un
j

k2

�
+ un

j +1

�
1 �

un
j +1

k2

��
(x j +1 � x j ); (m+1 < i < N ):

where we have taken the subdomain 
n2 to be the interval (xn
m ; xn ). x n

j

n
i). +1: �





where the subscriptm denotes the interface node and thexm� 1; um� 1 are
adjacent node positions and solution values. Sinceum = 0, from (26) an
approximation to the position of the interface nodexn+1

m in terms of adjacent
nodal values atm � 1 is

xn+1
m =

�
�� 1un+1

m� 1xn+1
m+1 + � 2un+1

m+1 xn+1
m� 1

�� 1un+1
m� 1 + � 2un+1

m+1

�
: (27)

Thus, once the otherxn+1
i ; un+1

i have been updated,xn+1
m can be found from

(27).

4.5 Algorithm

In summary, the moving mesh �nite di�erence solution of the competition-
di�usion problem given by equations (3) and (4) with the interface condition
(5) on the moving mesh in 1-D is given by the following algorithm.

From the initial mesh and the initial condition compute the initial values
� p(0), (p = 1; 2) of the total populations of the species from (14) and the
values of the relative massescp;i and cp;i from (15), (16) and (23).

Then for each time step:

1. Find the rates of change_� 1; _� 2 of the total masses from (17) and (18),

2. Calculate the nodal velocitiesvi from (10) and (11),

3. Update � 1 and � 2 from _� 1 and _� 2 using the explicit Euler scheme (19),

4. Generate the nodal valuesx i at the next time-step from the vi using
the explicit Euler scheme (20),

5. Update the population densitiesui at the next time level in each region
from (24) and (25),

6. Update the new position of the interface nodexm at the next time level
from (27).
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5 Results

We �nd that the model is stable and robust. Even using the explicit Euler
integration scheme we observe minimal oscillations a�ecting the smoothness
of the results. in [1].

5.1 A parameter choice

In the body of work concerning Lotka-Volterra equations there is a vast range
of parameter values in use because there are so many varied but suitable
examples of the type of competition that are described here. We select a
conservatively representative set of parameters, chosen to demonstrate some
of the behaviour that this model is able to describe.
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Figure 2: Result of competition model att = 1:5. Here we use� 1 = � 2 = 0:01,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time
step of 0:00001 for 150000 iterations and plot the results every 0:01.We see
the internal dynamics of the species driving the population densities and
interface 
uxes, and the position of the interface responding to those 
uxes.
The domain is 0 < x < 1. The initial conditions are shown in red, with
species 1 in blue and species 2 in green.

.

Figure 3: Result of competition model att = 4:5. Here we use� 1 = � 2 = 0:01,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time
step of 0:00001 for 450000 iterations and plot the results every 0:01. The
interface continues to evolve and the masses of the species are now limited
by the respective carrying capacities. The domain is 0< x < 1. The initial
conditions are shown in red, with species 1 in blue and species 2 in green.
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Figure 4: Result of competition model att





5.2.2 Di�usion characteristics

Alternatively we may adjust the di�usion characteristics of the system. By
allowing species 2 to di�use at a higher rate, we observe that species 2 is
able to make territorial gains due to this property alone (�gure 7). Here we
use � 1 = 0:01; � 2 = 0:05, k1 = k2 = 100, r1 = r2 = 1 and � = 3. Due to
the growth characteristics we can see interesting temporal e�ects. Here the
interface velocity has actually reversed directions as the system changes from
di�usion dominated to growth dominated. We observe that species 2 is able
to make territory gains initially due to its high di�usion rate, even though
the competition rate is unaltered. However, as time goes on, the growth and
competition characteristics become increasingly important. We see species
1 becoming more dominant over time, so that the interface velocity actually
reverses direction.

Figure 8 shows the evolution of the system att = 11, and �gure 9 shows
the movement of the interface with the direction reversal.
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x

Figure 7: Result of competition model att = 1:5, considering the e�ect of
an increased di�usion rate for species 2. Here we use� 1 = 0:01; � 2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time step
of 0:00001 for 150000 iterations, and plot the results every 0:01. The �gure
shows the rapid territorial gains of species 2 over species 1 due to its high
di�usion rate. The initial conditions are shown in red, with species 1 in blue
and species 2 in green. The domain is 0< x < 1.
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Figure 8: Result of competition model att = 11, considering the e�ect of
an increased di�usion rate for species 2. Here we use� 1 = 0:01; � 2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time
step of 0:00001 for 1100000 iterations, and plot the results every 0:01. We
see that the initial di�usion-driven gains by species 2 are reversed, and that
the overall growth characteristics are dominating so that species 1 is gaining
territory. The initial conditions are shown in red, with species 1 in blue and
species 2 in green. The domain is 0< x < 1.

These illustrations give con�dence that the model is likely to be able to
satisfy the requirements of modelling a wide variety of competition systems.
It is stable to a large choice of set-up parameters and is able to produce
complex behaviours without problems.
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Figure 9: Position of interfacexm against time, showing interface movement
for the competition model at up to t = 11, considering the e�ect of an
increased di�usion rate for species 2. Here we use� 1 = 0:01; � 2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time
step of 0:00001 for 1100000 iterations. Due to the growth characteristics we
can see interesting temporal e�ects. Here the interface velocity has actually
reversed direction as the system changes from di�usion-dominated to growth-
dominated.

6 Summary

In this paper we have applied the moving mesh �nite di�erence method based
on a conservation principle (MMFDM) of [4] to a two-phase Lotka-Volterra
competition system with a high competition limit [3], such that the species
are completely spatially segregated and interact solely through an interface
condition based on this limit.

In section 2 the model is described in detail. In section 3 the MMFDM
implemented. In section 4 numerics. In section 5 illustrations are given for
a variety of parameter combinations, observing the various behaviours that
dominate as the species evolve through time.

For a set of parameters that favour species 1 we see an increasing interface
velocity in the initial stages followed by a long steady phase where the inter-
face velocity is approximately constant. Although the population of species
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2 initially grows it is eventually wiped out by the competition with species 1.
As the annihilation of species 2 is approached, the interface velocity increases
again. The interface continues to evolve and the populations of the species
are then limited by the respective carrying capacities. This is due to the low
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