Department of Mathematics and Statistics

Preprint MPCS-2019-01

11 March 2019





http://arxiv.org/abs/1903.04449v1

2 of 39 A. GIBBS ET AL.

the number of DOFs needed to achieve a given accuracy (for scattering by a convex polygon in two-
dimensions) was shown to depend only logarithmically on the frequency for the h-BEM version of HNA
in Chandler-Wilde & Langdon (2007), this improved to the hp-BEM version in Hewett et al. (2013).
These ideas were extended, in Chandler-Wilde et al. (2015), to a certain class of non-convex polygons,
with the high frequency asymptotics arising from re-reflections and partial illumination (shadowing)
being fully captured by a careful choice of approximation space. Similar ideas have been applied to
penetrable obstacles in Groth et al. (2015, 2018) and to two- and three-dimensional screens in Hewett
et al. (2015) and Hargreaves



HIGH FREQUENCY BEM FOR MULTIPLE OBSTACLES 30f 39



4 of 39 A. GIBBS ET AL.

determine the total field u  C?(D) n C(D) such that

Au+k’u=0  inD, (2.2)
u=0 ondD=TI vy (2.3)

and u
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Naturally, one can rotate the coordinate system if required to ensure the above conditions hold.
The (Ro,R1) condition is central to many of the estimates in this paper, as this is the regime in which
k-explicit estimates for Dirichlet-to-Neumann maps are currently known. From these we can obtain
estimates of the solution to the boundary integral equation defined below. For further explanation and
examples of (Ro,R1) configurations, we refer to Chandler-Wilde et al. (2018, §1.2.1).

The BVP (2.2)—(2.4) can be reformulated as a boundary integral equation (BIE). We denote the
single layer potential Sy : L>(dD) — C?(D) by

Sk(x) := /d _Axy)B(yds(y). x D, (25)

where @y (x,y) := (i/4)H\" (Kx —y]) is the fundamental solution of (2.2), in which H{"' denotes the
Hankel function of the first kind and order zero. If u satisfies the BVP (2.2)-(2.4), then du/dn  L?(dD)
and the following Green’s representation holds (see, e.g., Chandler-Wilde et al. (2012, Theorem 2.43))

u:ui—Sk% inD. (2.6)

DEFINITION 2.4 (Combined potential operator) The standard combined potential operator Ay ; : L?(dD) -
L?(9D) (see, e.g., Colton & Kress (2013); Chandler-Wilde et al. (2012)) is defined by

1 .
Ak,n = > 1 +D,—inSy,
where 1 is the identity operator, 7 R\ {0} is a coupling parameter,

Skp(x) = [ dxy)p()dsy), x oD, ¢ LA0D).

denotes the single layer operator and

aq)k(xay) 2
D x::/i ds(y), x oD, L2(9D),
$00i= [ Zanog evasy) ¢ L%(0D)
denotes the adjoint of the double-layer operator.

From (2.6), the BVP (2.2)—(2.3) can be reformulated as a BIE (Chandler-Wilde et al., 2012, (2.69),
(2.114))

Ak.n% = fcn, onaDb, .7
where the right-hand side data f, , L?(dD) is
a .\ .
fin = (% — |r7) u'. (2.8)

It follows from Chandler-Wilde et al. (2012, Theorem 2.27) that A, j, is invertible. We shall solve the
BIE (2.7) numerically using an oscillatory basis, the use of which is justified by the representation and
regularity results in the next section.
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3. Representation and regularity of solution on I”

The structure of this section is as follows: In §
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:/me- lw (u(y) —ui(y)) _Gj(x’y)ﬁ(u—iu')(y)] ds(y)

any(y) \:/ 0ny
W[ gy - [L9Gixy) ou'(y)
3 yntGJ(X,y) an, ds(y)+'/rjwmyy[ “oni(y) - Hy)+Gj(x,y) an, ds(y).

Substituting this expression in (3.3) and using again (3.1), we obtain a representation for us;

S o 0CDk(x y) . - au(y)
e = /I_“\YVW *(y)ds(y) — yntGJ(Xay) ny ds(y)
-2 Il )asty).  x Dauy s
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Summing with (3.5) and taking the Neumann trace gives the representation for du/dn on [7:

du(x)  dul(x) ' 9% P(x,y)
an =2 on /I'J.‘”\Yy anj(x)anj(y)u(y)ds(y)
o[ 9%(xy)du(y) S
z/ynt a0 an, BSW X M mpd <o, (3.7)

where we used again (3.1) and du’/dnj = du' /anj on ;.
The representation (3.6)—(3.7) may be viewed as a correction to the Physical Optics approximation
for a single scatterer, which is defined as

. J 20u'(x)/on, x TI; T :nj(x)-d<0,

Y '_{ 0, x [j T :njx)-d>0. (38)

Specifically, this correction can be split into two parts. The first integral of (3.6) and (3.7) represents

the waves diffracted by the corners of I" (diffraction is ignored by the Physical Optics approximation),

whilst the second integral represents the correction to the waves reflected by the sides of I, as a result

of the presence of Y. Unless the distance between the scatterers is sufficiently large, it is reasonable to
expect the second correcting term to be not negligible.

We now write more explicitly the integral representation (3.6)—(3.7) in terms of the parametrisations

of the segments I and of their extensions I;. From the standard properties of Bessel functions (see,

e.g., DLMF (2019, §10)), we have that forx T,y I'ji\Yy,

aZCDk(va)
an(x)d
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we shall now discuss each term in the ansatz separately. Here W is the Physical Optics approximation
(3.8), with the envelopes of the diffracted waves on each side defined by

_ikz .

VIO = g angs HKEHD)E Uy T —t)dt s O.L) (311)
PINEj

_ ik? i ~

Vi (s) = 7/(0 oo)\Z__u(k(s+t))e'k(LJ“)u(yj(Lj +t))dt, s [0,Lj], (3.12)
’ ]

where ZJ-+ ={t R: yj(Ej_l —t) y}and Zy = {t R: yj(Ej +t) vy} are used to exclude from
the integral the points inside Yy (as is the case for Y, of Figure 2), to remain consistent with (3.6)—(3.7).
The interaction operator Gy._.r; : L2(y) — L2(r;) used in (3.10) is based on the final term of (3.6)—(3.7),
and is defined by

GH,»‘P(X)iZ—Z/ P20 pyyasty), x 1T (3.13)

you;  ONj(X)
for ¢  L%(y). We extend this definition to G, : L2(y) — L?(I") as
Gy.r¢:=Gy.r;¢ onfj forj=1,...,Nr,and¢ L*(y). (3.14)

REMARK 3.1 The ansatz (3.10) is an extension of Chandler-Wilde & Langdon (2007, (3.9)) and Hewett
et al. (2013, (3.2)), with an additional term which relates the solution on I" to the solution on y. It is
important to note that this additional term is not the only term influenced by the presence of y and that
one cannot solve for v on a single scatterer and then add the G,_.- [du/dn|,] term. The reason for this is
clear from (3.11)—(3.12): even if ZJ-“—L were of measure zero, so that the equations for (3.11)—(3.12) were
identical to the case of a single scatterer, the integral contains u, which depends on the configuration dD.
Intuitively this makes sense, diffracted waves emanating from the corners of I" will also be influenced
by the presence of additional scatterers.

Many of the bounds which follow are explicit only in k or the parameters which determine mesh-
width or polynomial degree of an approximation space. Henceforth we will use A < B to mean A < CB,
where C is a constant that depends only on the geometry of Y. To gauge the size of the contribution to
the reflected waves on I” arising from the presence of Yy, we require the following bound on the operator

Gyﬁ[_.
LEMMA 3.1 For dD =T y with I and y disjoint, we have the following bound on the interaction
operator G,_, - defined in (3.14), given kg > 0:

V_
Gy-r L2(y)-r2(r) <Co (k) Sk, fork = ko,

L L[’Lyk w/L[‘Ly
Co (k) := \| 2rdist(r,y)  wdist(r ) (3.15)

where L and L, denote the perimeters of Y- and Y}, respectively.
Proof. For0=¢ Lz(y), asing the Cauchy—Schwvrate2aTieoreiediti2 00as T aev (P HRSJK004100.180] TI/R499.9341] T/9310TA[(+)-5.92546] TI/RA09.96264TF17.639815.48

where
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N Zsz) </F
) D (x.y) | e
_ ( /r /y Sone | ) ds(x))
<2 <'/}ds/;ds)l/zx sru}pl) .

The result follows from Hél) (z2) = —Hfl)(z) and Chandler-Wilde et al.

aq)k(xa ) 2

on(x)

1/2

L2(y)

a(Dk(va) ‘
on(x) |
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case (i), the integral is bounded above by
1+kRp
& / s™Lds = ¢?log(L + kRp)
1
and in case (ii) it is bounded above by
kRp/2
262 / s~Lds — 282 log(KRop /2),
1

s0 in either case, (3.20) is bounded above by 2¢2log(1 + kRp). Combining this with (3.21) yields

Lypee G (5+|og(1+kRD)),

(P, ) fZ(am S g Not"—5

This gives the explicit form of the simplified estimate in our claim, proving the assertion.
O
Using this result, we can say more about the k-dependence of 83840Td[1)-57B8Tf7.078.44023Td[)-4.2653TJR1M6T{-1.3120T
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FIG. 3: A convex polygon with the parameters introduced in §3.3.

LEMMA 3.3 (Solution behaviour near the corners) Suppose that u satisfies the BVP (2.2)-(2.4) and
x Dsatisfiesr:=[x—P;| (0,1/k], and r < dist(Pj,y). Then there exists a constant C > 0, depending
only on D and ¢
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4. hp approximation space

We will combine two approximation spaces: the HNA-BEM space on I" and a standard hp-BEM space
on y. Hereafter, using the parametrisation of the boundaries I" and y, we identify L2(I'J-) with L2(0, Lj),
and L?(y) with L2(0,L,).

4.1 HNA-BEM approximation on I”

As in previous HNA methods, on I" we approximate only the diffracted waves

1 _ . s
Vr(s) = (vj*(s— Lj-1)e" +vj (
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i=1,...,n i=n+1,...,2n
Xj =Lo" ! Xi=L(1—0g"™"
Nodes: Xo=0 Xn=Lo Xn+1=L(1—0) Xone1 =1L
(1 | | il
I | | [
o X1 —Xo=La" Xnt1— X =L—20 Xont+1—Xon = Lo"
Widths: Xi —Xi—1 = La" "1 (1-0) Xi—Xi—1 =L (1—-0)
i=2,...,n i=n+2,...,2n

FIG. 4: The single-mesh space of Definition 4.1 on a segment [0, L].

DEFINITION 4.1 GivenL >0,n Nand a grading parameter o (0,1/2), we denote by Mp(0,L) =
{X07 cee 1X2n+l}
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where

2
Xq; 1= max{xi Mnj(O,Lj) such that xj < aj?n}
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Theorem 4.2 shows that we obtain exponential convergence of the best approximation to v+ with
respect to pr-, which controls both polynomial degree and mesh grading (via (4.2)), across all wavenum-
bers k. To maintain accuracy as k increases one needs to increase pr in proportion to logk, and hence
the total number of degrees of freedom (which is proportional to p,z-) in proportion to log?k.

REMARK 4.2 It is shown in Hewett et al. (2011, Theorem A.3) for the overlapping-mesh HNA space
that it is possible to reduce the number of degrees of freedom on I, whilst maintaining exponential
convergence, by reducing the polynomial degree in the smaller mesh elements, as is standard in hp
schemes. For example, given a polynomial degree pj > 1, we can define for each side I, j=1,...,Nr,
a degree vector pj by

j+1—i )
(pji:= pi_{njnj 'P1J7 1<i<nj,

where nj is as in Definition 4.1 of the single-mesh space. This may be applied to either the single or
overlapping mesh, and results in a linear reduction of polynomial degree on mesh elements closer to the
corners of ;. Numerical experiments in §6 suggest that exponential convergence is maintained for the
single-mesh HNA space if the degrees of freedom are reduced in this way, although we do not prove
this here.

4.2 Standard hp-BEM approximation on y

If Assumption 3.2 holds, as is the case in the configurations of Theorem 3.1, it follows from Theorem
4.2 that it is sufficient for the number of DOFs in V(! (I") to grow logarithmically with k, to accurately
approximate v+. However, this tells us nothing about the DOFs required on y. To account for the
contribution from y, we parametrise x, : [0,L,] — y and construct an appropriate (depending on the

geometry of Y,) N,-dimensional approximation space V,\Typ(y) L2(0,Ly) for

vy (s) ::%%(xy(s)), s [o,L]. (4.3)

While a representation analogous to (3.10) holds on y when Yy is a convex polygon, this approach is not
suitable for the present multiple scattering approximation. If such a representation were used on multiple
polygons, the system to solve would need to be written as a Neumann series and solved iteratively. This
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configurations (of Definition 2.3) for which we have from Chandler-Wilde et al. (2018, (1.28)): if
n = O(k), then given ko > 0,

-1
Ak,r; L2(r
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Proof. Throughout the proof we let C denote an arbitrary constant independent of k and n. It follows
from standard mapping properties of the single-layer operator (e.g., Chandler-Wilde et al. (2012, The-
orem 2.15(i))) that uir H'(w), where w is a bounded open subset of R? containing Yi- Yy. We may
therefore bound using Melenk (2012, Theorem B.6), choosing zero forcing term to obtain

U poizer) SCK™2 UR 20, fork>ko, n N, (4.8)

given ko > 0, where w is a bounded open set compactly containing T, and Y. From (4.7), we see that
the norm is the sum of n+ 1 terms, hence

"W Pory SO DY UF fgr . (4.9)
<C(n+1)"k"2 yk ﬁz(w), fork >ko, n N, (4.10)

given ko > 0, which follows by combining with (4.8) and (n+1)! < (n+1)". We now bound u}- in
terms of known quantities,

U L2() <1O1Y% Sc L2(r)atew) A -z T )
We may bound these norms using Lemma 3.17, (4.4) and (2.8) (choosing n = O(k)) to obtain
U L2() < CK*2log™?(kdiam(I") +1). (4.11)
Finally, we can combine the bound (4.11) with (4.10) to obtain

"Ur 21,y < CK/log"/?(kdiam() + 1)
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DEFINITION
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and
(F=Aror?%.0)imy | ¢ /7
(f —Arﬁy‘p,(P)Lz(y) o Ny

1
b'_R
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(v) py,Cy and Ty are as in Assumption 4.4.

Proof. First we focus on the best approximation of du/dn by an elementw = (wr-,wy) of ViINA (I y).
By the definition (4.13) we have
Lz(y)>

odu

A
an wly

. odu
inf — — (Y +kw|r +kGy_rw
w VHNA (r,y)(Han ( Ir r-riy)

4

L2(r)
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—k/OLV @ (x,yy(s))v';ly(s) ds, forx D. (5.10)

Here the parametrisation yr is as in (3.9) and y, as in §4.2. Expanding further, we can extend the
definition of G, to a parametrised form by

Grrf) s = [0 T2V O Sy s o)

where the indicator function

_ |1 yr(s) Fandy,(t) Uj,
Xy(s:t) = { 0, otherwise,

is used to ensure the path of integration remains inside the relative upper half-plane Uj;.

COROLLARY 5.1 Assume conditions (i)—(iv) of Theorem 5.1 hold. Then given kg > 0, the HNA-BEM
approximation to the BVP (2.2)—(2.4) satisfies the error bound

U—Un Loy SCq(k)kY/2log™/?(1+kdiam(dD))
x (CUC,—kB
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COROLLARY 5.2 Under the assumption of Theorem 5.1, the far-field pattern uy computed from the
HNA-BEM solution approximates u® with the error bound

U® —Uug L=(02n)
< Cq(k)ky/Lr +Ly (CUC,— kB—1/23 (K)e™TPr 4+ [1+Cqg (k)]cy(k)e—ry(k)py) .

The terms in the bound are as in Theorem 5.1.

Proof. We have

Ju Jdu
u®(8)—ug(6 / — —Wn|ds < (Lr + L)) Y2 || == — v
lu™(6) —un(6)] olan W (Lr+Ly) an W 00
and the result follows by Theorem 5.1. O

6. Numerical results

Here we present numerical results for the solution of the discrete problem (5.2)—(5.3). The configu-
ration tested con@ists of two equilateral triangles with perimeters L = 6 and L, = 31/5, separated
by dist(I",y) = 3m/5, as in Figure 5. It follows that there are exactly k wavelengths on each side
of I and k/10 on each side of y. Experiments were run for k  {20,40,80,160} (so the number of
wavelengths across the perimeter dD ranges from 66 to 528) and a range of incident directions d, for
p=pr=py, {1,...,8} Interms of obse\ryed error, each value of d tested gave very similar results,
hence we focus here on the case d = (1,1)/ 2, which allows some re-reflections between the obstacles
and partial illumination of I, see Figure 5.

To construct the approximation space V{™* (I, y), we first choose V{™A(I) to be the single-mesh

approximation space of 84 with p; = p for each side j = 1,...,Nr = 3, reducing the polynomial degree
close to the corners of I" in accordance with Remark 4.2, hence p now refers to the polynomial degree
on the largest mesh elements. We also remove basis elements close to the corners of the mesh on I in
accordance with Remark 4.1, choosing aj = max{(1+ p)/4, 2}, to improve conditioning of the discrete
system (5.4). A grading parameter of o = 0.15 is used (as in Hewett et al. (2011), where the rationale
for this choice is discussed), with nj = 2p layers on each graded mesh, for j =1,2,3 (hence we may
choose the constant from Theorem 4.2 ascj =2).

Theorem 4.2 ensures that we will observe exponential convergence on I if the polynomial degree
is consistent across the mesh, and Proposition 4.3 ensures that we observe exponential convergence on
y if y is analytic. In these numerical experiments we test problems where these two conditions are not
met, and encouragingly still observe exponential convergence. As hypothesised by Remark 4.2 and
Assumption 4.4, our experiments suggest that our method converges exponentially under conditions
much broader than those guaranteed by our theory.

For the standard hp-BEM space Vh',’yp(y), we use the same parameters pj, o and c; to grade towards
the corners of y, so the construction of the mesh on y is much the same as on I". The key difference
is that on y every mesh element is sufficiently subdivided to resolve the oscillations. The polynomial
degree p;j is decreased on smaller elements, as on I, in accordance with Remark 4.1.
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Fic. 5: The total field Re{un} for scatteripg by two triangles, at the lowest frequency considered. Here
Lr =6m L, =3m/5k=20,d=(1,1)/
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REMARK 6.1 (Quadrature) The integrals in (5.4) and (5.5) and the L? norms used to estimate the error
in Figure 7 may be oscillatory and singular. In particular, care must be taken when evaluating the
triple integral (Ar_,Gy_rV,
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A. A coercive multiple scattering formulation

In §5 it was noted that there exists a boundary integral formulation of the BVP (2.2)-(2.4) which is
coercive (sometimes called V -elliptic), provided |y| is of the order of one wavelength. With a coercive
formulation, it follows by the Lax—Milgram Theorem that the corresponding discrete problem (equiva-
lent to (5.4)-(5.5)) is well posed, on any finite dimensional subspace of L?(I~ y). We now present this
formulation.

For problems of scattering by a single star-shaped obstacle, it was shown in Spence et al. (2011) that
the star combined formulation is coercive for problems on a single star-shaped obstacle. In the thesis
Gibbs (2017) this formulation was extended to the constellation combined formulation, where it was
shown to be coercive for certain configurations consisting of multiple star-shaped obstacles. We present
a version with sharper bounds here, specialising the coercivity result to the case of one large obstacle
Y and one or many small obstacles Y,. We begin by formally defining the configurations of interest:

DEFINITION A.1 (Star- and constellation-shaped) A bounded open set Y with boundary aY is star-
shaped if there exists x® Y and a Lipschitz continuous g : S! - R, where St :={& R?:|%| = 1},
such that g(X) > 0 forall X S* with

Y ={x¢+g(R)(X—x°):% S}

Intuitively, this may be interpreted as the following: Givenany x Y, one can draw a straight line from
x® to x, without leaving Y.

We say a domain is constellation-shaped if it can be represented as the finite union of multiple star-
shaped, pairwise disjoint obstacles. In such a case, for each star-shaped component we denote the above
x¢ parameter by x¢, where i is the index of that component.

We will use the integral operator

sSipx):= [ sqxy)odsy). forg LHaY). x oy, (A1
with the surface gradient operator of the fundamental solution as its kernel:
OCDk(X,y)

5¢k(X,Y) = (Dk(x,y) - n(x) (A2)

on(x) ’

where @)2.54T1@4023-3.Tfi)d[()2.5681(s)-24B78(w)-0.8)-345.76(n)0.8521(n)-234. 745(i)-4.263(5)-5.889(0)-5.889(5)-5.889()) 31.8745()-3531471(1)-4.282 T JRE52(w)-0. 785
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where Z(x) = x—x{ (with x{ Y; chosen as x® for each star-shaped component in Definition A.1) on
aYi, fori=1,... Ny and N(x) :=k|Z(x)| +i/2. This operator yields an alternative BIE to (2.7), namely

Jdu
Ak% = fk, onay,

where the right-hand side data is
fi:=(Z- —if)u’, onadY.

Invertibility of Ay follows by Chandler-Wilde et al.
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< (kdiam(x)+%)

1 1
mkdist(X,Y) 2nkdist(X,Y)] '
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We want to find conditions under which the right-hand side of the above inequality is positive, hence we
require the negative term to be sufficiently small. We bound these off-diagonal terms

(Acossd, )iz )| < Adross Lz otz ) @ Loy (A-9)

We now split the above norm on Agoss Using the triangle inequality noting the terms in (A.6), and apply
the bound (A.4) to each component,

Ny

Across 12(r p-12(r y) S Aky-r + Akroy +21 Ak yi- ()
i=

1
<



REFERENCES 39 of 39

Proof.
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