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A notable example is the Lotka-Volterra competition model in space. This model is well known
in the literature with numerous applications in mathematical biology and areas of game theory
such as voting models [38, 31, 34, 2, 12, 14]. In particular, this system is often considered as a
paradigm for biodiversity modelling. New types of patterns have been recently demonstrated in
this system which occur for spatially homogeneous di�usion coe�cients [2, 31, 14]. This includes,
for example, patchy invasion (the spread of a species via the formation and propagation of
chaotic patches without a smooth population front), which was originally believed to occur only
in predator-prey or inhibitor-activator types models [ 39]. Surprisingly enough, the Lotka-Volterra
system still remains poorly understood, especially when the interacting species di�use at di�erent
rates. Here, we show the existence of several new dynamical patterns, related to the spread of
travelling waves, which have been missed in the literature so far, and which may have important
biological applications. In particular, we demonstrate spreading patterns exhibiting complex
regular spatial structure which have not been observed so far in reaction-di�usion models with a
non-transitive competition such as the Lotka-Volterra cyclic model.

Note that another important gap in our knowledge about patterns and waves in reaction-
di�usion models is that most existing results have been obtained for either one or two dimensions
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second order Crank-Nicolson Adams-Bashforth implicit-explicit (IMEX) discretisation in time,
allowing us to treat the linear part of the di�erential operator implicitly while the nonlinear
reaction term is treated explicitly. The resulting scheme therefore allows us to e�ciently explore
the spatio-temporal patterns arising in the Lotka-Volterra cyclic competition model in both
two and three spatial dimensions. We demonstrate its e�ectiveness by revealing several novel
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1. Such cyclic dominance is analogous to the popular game of `rock-paper-scissors'. Some well-
known examples of cyclic interactions observed in nature include competition between side-
blotched lizards [45], coral reef invertebrates [9], yeast strains [37], and various bacterial strains [22].
The same model also arises in non-biological situations such as many-player prisoner's dilemma
games [20] or some types of voter models [46].

Formalising the above characterisation of cyclic competition can be tricky, although here we will
follow the de�nition given by [ 2]. This is based on considering the outcomes of pairwise interactions
in an unbounded one-dimensional spatial domain (i.e. in the absence of a third species), starting
from initial conditions such that the species densities at positive and negative in�nity are equal
to the carrying capacities for one species and zero for the other. Cyclic competition is then said
to occur if the direction of the resulting travelling waves preserves the cyclic order 1> 2 > 3 > 1.
For example, the domain occupied by species 2 at its carrying capacity level should eventually be
replaced by a spreading wave of species 1. This generic de�nition of cyclic dominance allows two
main types of local dynamics [2, 14]. In classical cyclic competition, the phase portrait of each
pairwise interaction should involve only one stable steady state corresponding to the presence of
the stronger competitor at its carrying capacity. In this case, adding a spatial dimension to the
local interaction does not reverse the outcome of the competition since the corresponding travelling
wave will be directed from the domain occupied by the stronger competitor to that of the weaker
competitor [21]. The mathematical conditions for this to occur are: � i;i +1 � 1 and � i +1 ;i > 1.
Under conditional cyclic competition, on the other hand, some local pairwise interactions can be
bistable: both of the axial steady states (corresponding to the carrying capacities of one species
and zero density for the other) are locally stable and the �nal outcome of the local competition
will depend on the initial conditions. Mathematically, assuming bistability occurs for interactions
between species 1 and 3 this means that� 1;3 > 1 and� 3;1 > 1. Adding a spatial dimension into the
model with conditional cyclic competition should preserve the displacement order 1> 2 > 3 > 1
as in the classical cyclic competition. However, the conditional cyclic competition involves some
constraints on the di�usion coe�cients [ 5

5
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subdomain such that the centres of the two circles do not coincide. In the three-dimensional case,
we explore using initial conditions formed by dividing the whole domain into 8 equal boxes and
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and we refer to, e.g., [1, 52] for more on Sobolev and Bochner functions spaces. Multiplying by
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(a) t = 0 (b) t = 40

(c) t = 120 (d) t = 240

(e) t = 400 (f) t = 600

Figure 2.
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domain once the bands move out of the domain. One can also see that regular droplet-like patterns
travel around the edge of the chaotic domain.

The transition from the pattern of spread via droplet-like units (Fig. 1) to the one containing
bands (Fig. 4) can be understood by exploring the schematic diagram shown in Fig. 5. The spread
of the droplets in the wedge can be described by considering pairwise interactions of species,
most of which actually occur via plane wave interactions. We can neglect the presence of a third
species since the density of each species rapidly drops when entering the domain dominated by
another species (except the points where all three species meet, as at the tip of the wedge). In
Fig. 5, we show the direction of the spread of plane waves of cyclic displacement of species; here
Ci;j denotes the speed of the plane wave replacing speciesj by its stronger competitor i . One
can also see a round interface between species 1 and species 2. The corresponding wave speed
is denoted by V1;2 = V1;2(R), where R is the radius of the curvature. The values ofCi;j and
V1;2 can be determined by considering the one-dimensional case (in the case ofV1;2 one should
explore the system in polar coordinates). Our simulations show that for the parameters from
Fig. 1, in the one-dimensional case the prorogation of a travelling pulse composed of all three
species is impossible, whereas for pairwise switch waves we haveC1;2 > C 2;3. The curvature of
the wave reduces the spread of the propagation of the front of species 1 in the droplet, thus
C1;2 > V1;2(Ri6-416(in)-48 T
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(a) t = 40 (b) t = 160

(c) t = 320 (d) t = 640

(e) t = 960 (f) t = 1 ; 400

Figure 4. The evolution of the `band' patterns which are observed when" =
(1; 0:1; 0:9)
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Figure 5. Schematic representation of the movement of a droplet-like unit. A
detailed description is given in the main text.

di�usion coe�cients reveals that this pattern is robust and is observed within a 10% variation of
� 2 = 0 :55 and � 3 = 0 :5.

Finally, we extend our analysis to the three-dimensional case. We focus on exploring the
three-dimensional analogue of the regular droplet-like structured observed in the two-dimensional
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(a) t = 60 (b) t = 120

(c) t = 160 (d) t = 290

Figure 6. The evolution of the `glider' patterns which are observed when� 2 =
0:55 and � 3 = 0 :5, � 3;1 = 1 :3 and the initial conditions are the same as in Fig. 1.
The three colours indicate the regions of the domain in which each of the three
competing species dominates.

We introduce the function f h : H 1(
) ! Vh such that, for any v 2 H 1(
),

(f h (v); � ) = ( f (v); � ) 8� 2 Vh ;



NEW DYNAMICAL PATTERNS IN A CYCLIC COMPETITION MODEL 15
t

=
0

t
=

16
0

t
=

56
0

Figure 7. Evolution in three spatial dimensions using the parameters� 2 = 0 :1
and � 3 = 0 :6 (as in Fig. 1), computed on the domain 
 = [0 ; 600]3. The �gures
in the left column show the domains dominated by each species, while those on
the right show u 2 and u 3 only in the subdomain x > 300.
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Proof. Using the de�nitions of f h and the discrete Laplacian operator, we can rewrite (4) as

(uh;t � " � h uh � f h (uh ); � ) = 0 8� 2 Vh ;

implying that uh satis�es
uh;t � " � h uh � f h (uh ) = 0 ;

and therefore, from the de�nition of the elliptic reconstruction,

(uh;t ; v) + ( " rR uh ; r v) + ( f (uh ); v) = 0 8v 2 H 1(
) : (9)

To derive the required bounds, we �rst decompose the errore = u � uh into � := u � R uh and
� := Ruh � uh . Since(5) provides a bound on the reconstruction error� , we focus principally on
deriving a bound for � . Subtracting (9) from the original weak form (3), we �nd that

(� t ; v) + ( " r �; r v) = ( � � t ; v) + ( f (u) � f (uh ); v) 8v 2 H 1(
) ;

and therefore, picking v = � 2 H 1(
),

1
2

d
dt

�
k� k2

�
+ " kr � k2 � k � t k

2 + k� k2 + ( f (u) � f (uh ); � ): (10)

To treat the nonlinear term in (10), we use assumption (2) on the growth off , to �nd

j(f (u) � f (uh ); � )j �
Z



jf (u) � f (uh )jj � j dx � Cf

Z



(1 + juj 
 + juh j 
 ) ju � uh jj � j dx :

The restriction on 
 implies that ja + bj 
 � 2max f 1;
 g� 1(jaj 
 + jbj 
 ) � 2(jaj 
 + jbj 
 ), from which,
with a = u � uh and b = uh , it follows that

j(f (u) � f (uh ); � )j � 2Cf

Z



M ju � uh jj � j + ju � uh j 
 +1 j� j dx : (11)

The �rst term on the right hand side of (11) can be bounded as
Z



ju � uh jj � j dx �

Z



j� j2 + j�� j dx �

3
2

k� k2 +
1
2

k� k2: (12)

For the second term on the right hand side of (11), however, we make use of the bounds(7)
and (8), yielding

Cf

Z



ju � uh j 
 +1 j� j dx � Cf


 + 1

 + 2

Z



ju � uh j 
 +2 dx +

Cf


 + 2

Z



j� j 
 +2 dx

� Cf
(
 + 1)2 
 +1


 + 2
k� k
 +2

L 
 +2 (
) + Cf
1 + ( 
 + 1)2 
 +1


 + 2
k� k
 +2

L 
 +2 (
)

� C1k� k
 kr � k2 + C2k� k
 kr � k2;

where

C1 := Cf C
 2
 +1 
 + 1

 + 2

and C2 := C1 + Cf C
 (
 + 2) :

Combining this with (12), the error bound (10) becomes

1
2

d
dt

�
k� k2

�
+ " kr � k2 � k � t k

2 + 4MC f k� k2 + (1 + 4 MC f )k� k2 + C1k� k
 kr � k2 + C2k� k
 kr � k2:

Integrating through time, we �nd that

k� (t)k2 +
Z t

0
" kr � k2 dt � � (� )2 + (1 + 4 MC f )

Z t

0
k� k2 dt + C2

Z t

0
k� k
 kr � k2 dt;
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where we observe that, by construction,� (0) = 0, and the functional � is given by

� (� )2 :=
Z T

0
k� t k2 + 4MC f k� k2 + C1k� k
 kr � k2 dt:

The inequality a
 b �
�
a2 + b

� 1+ 

2 (a consequence of Young's inequality) then implies that

k� (t)k2+
Z t

0
" kr � k2 ds � � (� )2 + (1 + 4 MC f )

Z t

0
k� k2 ds + C2 sup

s2 [0;t ]
k� (s)k


Z t

0
kr � k2 dt

� � (� )2 + (1 + 4 MC f )
Z t

0
k� k2 ds + C2

 

sup
s2 [0;t ]

k� (s)k2 +
Z t

0
kr � k2 ds

! 1+ 

2

: (13)

To bound the �nal terms on the right hand side using � , suppose that the maximum sizehmax

of the mesh used to partition the domain 
 is small enough that for h < h max , the reconstruction
error � satis�es

� (� ) � C � 

2

�
4e(1+4 MC f )T

� � 2+ 

2 


;

implying that

C2

�
4� (� )2e(1+4 MC f )T

� 1+ 

2

� � (� )2:

Consider the set

I =

(

� 2 [0; T] : sup
s2 [0;� ]

k� (s)k2 +
Z �

0
" kr � k2 ds � 4� (� )2e(1+4 MC f )T

)

:

Upon observing that, by construction, we have� (0) = 0, this set is clearly not empty since it
contains � = 0. Moreover, the continuity of � in time implies that I must be closed, and thus the
maximum of the set is well de�ned. Thus denoting � � = max I , we suppose that� � < T . Then,
for t � � � :

C2

 

sup
s2 [0;t ]

k� (s)k2 +
Z t

0
" kr � k2 ds

! 1+ 

2

� C2

�
4� (� )2e(1+4 MC f )T

� 1+ 

2

� � (� )2:

Substituting this into (13) we �nd that, for t � � �

k� (t)k2 +
Z t

0
" kr � k2 ds � 2� (� )2 + (1 + 4 MC f )

Z t

0
k� k2 ds;

from which Gronwall's inequality implies

k� (t)k2 +
Z t

0
" kr � k2 ds � 2� (� )2e(1+4 MC f )T :

Since this is true for all t (and the integral on the left is non-decreasing), it follows that

sup
s2 [0;t ]

k� (s)k2 +
Z t

0
" kr � k2 ds � 2� (� )2e(1+4 MC f )T ;

which contradicts the assumption that � � < T due to the continuity of � in time.
Consequently, we have

k� (t)k2 +
Z t

0
" kr � k2 ds � 2e(1+4 MC f )s

Z t

0
k� t k

2 + 4MC f k� k2 + C1k� k
 kr � k2 ds;

for any s 2 [0; T]. Applying the triangle inequality and invoking the bound (5) for � then produces
the required bounds. �
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We note that the above error bounds are computable. Indeed, assuming the existence of the
constant M bounding the L 1 -norm of the �nite element solution uh is not unreasonable since we
can assume to have computed it, and thus have access to its maximal and minimal values. Hence
both bounds of Theorem 5.1 are computable since they depend only on the discrete solution and
problem data.

The error indicator which we use to mark mesh elements for either re�nement or coarsening
is derived from the a posteriori error bound of Theorem 5.1 and is of the form

�E 1(un )2 + E0

� un � un � 1

�

� 2
;

which may naturally be broken into contributions from each element by observing the structure of
E r in (6). We remark that a posteriori bounds for the time discretisation by the Crank-Nicolson
method are also available [4, 8]. Given the nature of the simulations, however, whereby the length-
scales present do not change over time, (but only in position,) the incorporation of a full-space
time a posteriori analysis in the spirit of [8] was not deemed necessary in this case. Crucially,
however, the modi�ed Crank-Nicolson method of [8] was used in the present context of temporal
mesh-modi�cation.

Figure 8 shows some examples of the computational meshes used to obtain the results of
Section 4, reporting the number of elements saved compared to an equivalent uniform mesh
in each case (which may be used as a rough estimate of the computational e�ort required to
compute the solution). What this clearly demonstrates is the e�ectiveness of the resulting adaptive
scheme, since the number of elements required is reduced by over 50% in each case and typically
dramatically more. Moreover, examining the areas in which the algorithm has opted to re�ne
or coarsen the mesh indicates that computational e�ort (in the form of high mesh resolution) is
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(a) Adapted mesh for the solution shown in
Fig. 2d containing 18,418 elements (73% saving
over equivalent uniform mesh)

(b) Adapted mesh for the solution shown in
Fig. 3d, containing 8,935 elements (83% saving
over equivalent uniform mesh)

(c) Adapted mesh for the solution shown in
Fig. 6d, containing 5,953 elements (91% saving
over equivalent uniform mesh)

(d) Adapted mesh for the solution shown in
Fig. 7, containing 1,015,660 elements (51% sav-
ing over equivalent uniform mesh)

Figure 8. Some examples of meshes produced by the adaptive algorithm, demon-
strating the reduction in the number of elements required compared to a uniform
mesh with the same resolution around the layers.

their work Contento and co-authors [14] hypothesised the existence of droplet-like structures in
a spreading wedge which is close to that shown in Fig. 1, although they did not �nd a practical
realisation of such a pattern and assumed that it would be unstable [14]. Here we found a stable
pattern consisting of droplets in a spreading wedge. It is worth observing, however, that in
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the spread is based on pairwise interactions between species and, unlike in the cited work, the
corresponding 1D case does not allow the spread of a travelling pulse involving all three species.
Moreover, the authors of [14] hypothesised that their pattern would exist under conditional cyclic
competition, while the droplet-shaped structures in Fig. 1 are found inclassical (i.e. unconditional)
cyclic competition. It therefore still remains to be determined whether the patterns predicted
by Contento and co-authors are actually possible in the case of conditional cyclic competition
involving local bistability.

The pattern of spread shown in Fig. 4 is of particular interest, not only because of the apparent
regularity in the direction of movement and irregularity in the opposite direction. A novel feature
of the pattern seems to be the coexistence of two di�erent waves moving towards the left hand
boundary: one wave is a wave of regularity composed of almost parallel bands in the middle
and two wedge-shaped waves of chaos on each side of the bands. Our simulations show a long
term coexistence of both types of waves. Using this pattern one can describe a complex spread
of species involving regular and irregular population patches.

These newly demonstrated patterns of travelling waves with spatially regular structure can
be interpreted in terms of the de�nition of convective stability introduced by [42]. Indeed, the
developing regular travelling structures are convectively stable since they emerge as a result of
complex spatio-temporal interactions. However, they are not globally stable, as shown in Fig. 4:
depending on the initial conditions, both the waves of regularity and the waves of chaos can be
simultaneously realised in the same system.

The spatially regular geometric shapes found by this study to exist in the wake of spreading
waves may have applications in the life sciences. It is well known that the distribution of vegetation
in semiarid or other regions show regular band-shaped patterns which slowly move over time [32,
26, 40]. The common point of view on the origin of these vegetation patterns is the interaction
between the soil and plants controlled by the level of moisture via various mechanisms such as
Turing pattern formation or periodic travelling waves [ 24, 17]. Here we suggest an alternative
mechanism for the formation such bands, due to the interaction of competitive plant species
which, for instance, does not require the existence of a steady gradient in the system.

The pattern containing regular droplet-shaped structures shown in Fig. 1 and Fig. 3 can
potentially be realised on growing domains [16, 36] such as in the pigmentation and relief-like
patterns found on mollusc shells, which remain a long standing question [29, 19]. Previously, it
was suggested that regular patterns in mollusc shells are the result of inhibitor-activator type
interactions via a Turing mechanism. Here we show that similar patterns can be produced by
a cyclic competition type of interaction via a non-Turing mechanism. Finally, the transient
glider-type patterns shown in Fig. 6 in the case of conditional cyclic competition provide an
example of a new mechanism of patchy spread of invasive species. This new pattern can be used
to improve our understanding and modelling of biological invasions since empirical observations
often report that the spread of a species into the habitat occupied by another species occurs
via the propagation of irregular patches [43]. This also supports the recent ecological theory
of invasional meltdown, when an invasive species facilitates the invasion of some other invasive
species [35]. Note that unlike the original concept of invasional meltdown, suggesting mutual
facilitation of invasion of species via mutualistic interactions, in our case we consider the case of
antagonistic competitors [44].

Our results have also allowed us to improve our understanding of the role of dimensionality
on the pattern formation in the considered type of models. This can be seen by comparing Fig. 1
and Fig. 6 alongside the corresponding 1D simulations (not shown here for the sake of simplicity).
In one spatial dimension, a wave of mutual spread of three species is impossible for the given
parameters: only pairwise switch waves are observed. With two spatial dimensions, the droplet-
shape pattern can emerge even through it is simply the result of the pairwise interaction of plane
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waves, as shown in Fig. 5 (the round-shaped interface can be formally considered as a plain wave
in polar coordinates). Thus, increasing from one to two spatial dimensions allows for species
coexistence through a structure which was previously impossible. Interestingly, adding a third
dimension continues to allow the persistence of the droplet-shape structure, although we argue
here that the pattern remains primarily two-dimensional since the three dimensional droplets
are observed to have a prismatic structure, and can still be described via pairwise interactions of
locally plain prismatic waves.

Bearing in mind the large domains and long time scales required for the full solution dynamics
to evolve, it is clear that the computational cost of these simulations would be prohibitively
expensive using a uniform mesh, an issue which is ampli�ed in three spatial dimensions. Instead,
the adaptive numerical method described in Section 3, based on the novel computable error
indicator derived in Section 5, allows us to obtain accurate simulations using just a fraction of
the computational e�ort of an equivalent non-adaptive scheme, as demonstrated by the adapted
computational meshes shown in Fig. 8. The savings this method provides means that highly
accurate simulations of this model are within reach of researchers without needing access to high
performance computing facilities. Moreover, since the error analysis of Section 5 is applicable
to a much wider class of semilinear reaction-di�usion problems, the adaptive method which we
describe can be easily applied by researchers wishing to study other phenomena.

We should point out that our numerical investigation of the model cyclic Lotka-Voltera system
is by no means exhaustive. We do not claim that combined with the previous studies of the
system [31, 34, 2, 12, 14] we have now completed a full classi�cation of possible patterns. Further
research will be needed specially to further explore the case of conditional cyclic competition.
Another interesting direction is to further explore the in
uence of the number of spatial dimensions
on the species persistence. In other words, it is interesting to verify whether or not adding a
third dimension will enhance the coexistence of all species and which possible patterns of mutual
coexistence can occur. This is a biologically relevant question which is important for understanding,
for example, the coexistence of competing bacterial strains or microalgae in laboratory and natural
conditions.

Acknowledgements

EHG acknowledges �nancial support by The Leverhulme Trust (grant no. RPG-2015-306). OJS
acknowledges �nancial support by the EPSRC (grant no. EP/P000835/1). This research used the
ALICE High Performance Computing Facility at the University of Leicester. The authors thank
Ruslan Davidchack (University of Leicester) for his encouragement and support of this project.

References
[1] R. A. Adams and J. J. F. Fournier , Sobolev spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam),



NEW DYNAMICAL PATTERNS IN A CYCLIC COMPETITION MODEL 23

[8] E. B �ansch, F. Karakatsani, and C. Makridakis , A posteriori error control for fully discrete Crank-Nicolson
schemes, SIAM J. Numer. Anal., 50 (2012), pp. 2845{2872.

[9] L. W. Buss and J. B. C. Jackson , Competitive networks: Nontransitive competitive relationships in cryptic
coral reef environments , Am. Nat., 113 (1979), pp. 223{234.

[10] A. Cangiani, E. H. Georgoulis, and M. Jensen , Discontinuous Galerkin methods for mass transfer through
semipermeable membranes, SIAM J. Numer. Anal., 51 (2013), pp. 2911{2934.

[11] A. Cangiani, E. H. Georgoulis, I. Kyza, and S. Metcalfe , Adaptivity and blow-up detection for nonlinear
evolution problems , SIAM J. Sci. Comput., 38 (2016), pp. A3833{A3856.

[12] C.-C. Chen, L.-C. Hung, M. Mimura, and D. Ueyama , Exact travelling wave solutions of three-species
competition-di�usion systems , Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 2653{2669.

[13] P. G. Ciarlet , The �nite element method for elliptic problems , vol. 40 of Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original
[North-Holland, Amsterdam; MR0520174 (58 #25001)].

[14] L. Contento, M. Mimura, and M. Tohma , Two-dimensional tr.970ems



24 A. CANGIANI, E. H. GEORGOULIS, A. YU. MOROZOV, AND O. J. SUTTON

[38] S. Petrovskii, K. Kawasaki, F. Takasu, and N. Shigesada , Di�usive waves, dynamical stabilization and
spatio-temporal chaos in a community of three competitive species , Jpn. J. Ind. Appl. Math., 18 (2001),
pp. 459{481.

[39] S. V. Petrovskii, A. Y. Morozov, and E. Venturino , Allee e�ect makes possible patchy invasion in a
predator{prey system , Ecol. Lett., 5 (2002), pp. 345{352.

[40] M. Rietkerk and J. Van de Koppel , Regular pattern formation in real ecosystems , TREE, 23 (2008),
pp. 169{175.

[41] R. A. Satnoianu, M. Menzinger, and P. K. Maini , Turing instabilities in general systems , J. Math. Biol.,
41 (2000), pp. 493{512.

[42] J. A. Sherratt, A. S. Dagbovie, and F. M. Hilker , A mathematical biologists guide to absolute and
convective instability , Bull. Math. Biol., 76 (2014), pp. 1{26.

[43] N. Shigesada and K. Kawasaki , Biological invasions: theory and practice , Oxford University Press, UK,
1997.

[44] D. Simberloff and B. Von Holle , Positive interactions of nonindigenous species: invasional meltdown? ,
Biol. Invas., 1 (1999), pp. 21{32.

[45] B. Sinervo and C. M. Lively , The rock-paper-scissors game and the evolution of alternative male strategies ,
Nature, 380 (1996), p. 240.

[46] K.-I. Tainaka , Paradoxical e�ect in a three-candidate voter model , Phys. Lett. A, 176 (1993), pp. 303{306.
[47] M. Tsyganov and V. Biktashev ,


	

