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discontinuous on RN "; therefore, the PDE system (1.1) hasdiscontinuous coef-
cients. The geometric meaning of (1.1) is thatthe Laplacian vector eld u is
tangential to the imageu() and hence (1.1) is equivalent to the next statement:
there exists a vector eld

A:R" I R"
such that

u=DuA in

As we show later, the vector eld is generally discontinuous (Lemma 7).

Our interest in (1.1) stems from the fact that it is a constituent component of the
p-Laplace PDE system for allp 2 [2;1 ]. Further, contrary perhaps to appearances,
(1.2) is in itself a variational PDE system but in a non-obvious way. Deferring
temporarily the specics of how exactly (1.1) arises and what is the variational
principle associated with it, let us recall that, for p 2 [2;1 ), the celebrated p-
Laplacian is the divergence system

(1.3) pu :=Div jDuj’ 2Du =0 in

and comprises the Euler-Lagrange equation which describes extrema of the model
p-Dirichlet integral functional

(1.4) Ep(u):= jDuj’; u2wh( ;RV);

in conventional vectorial Calculus of Variations. Above and subsequently, for any
X 2 RN " the notation jX j symbolises its Euclidean (Frobenious) norm:
! =,
- NI . 1=2
Xj= (Xi)
=1 i=1

The pair (1.3)-(1.4) is of paramount important in applications and has been studied
exhaustively. The extremal case ofp!1  in (1.3)-(1.4) is much more modern and
intriguing. It turns out that one then obtains the following nondivergence PDE
system

(1.5) tu:= Du Du+j

(1.4)p
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The e ect of (1.1) to the atness of the image can be easily seen in the case of
n=1 N as follows: since

U9’ u®=0 in R
and in one dimension we havg

< u uo

Y= ' g

l; onfu®=0g;

onfu®60g;

we therefore infer that u®= fu °on the open setfu®6 0g R for some functionf,
readily yielding after an integration that u() is necessarily contained in a piecewise
polygonal line of RN . As a generalisation of this fact, our rst main result herein
is the following:

Theorem 2 (Rigidity and atness of rank-one maps with tangential Laplacian) .

Let R" be an open set anch;N 1. Let u2 C?( ;RN) be a solution to the
nonlinear system (1.1) in , satisfying that the rank of its gradient matrix is at
most one:

rk(Du) 1 in

Then, its image u() is contained in a polygonal line in, s5 495007 (the91449pist 5.95 6 0 G /62(ca50 9.962t0 9
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As a consequence of Theorem 2, we obtain the next result regarding the rigidity
of p-Harmonic maps for p 2 [2;1 ) which complements one of the results in the
paper [K3] wherein the casep = 1 was considered.

Corollary 4 (Rigidity of p-Harmonic maps, cf. [K3]). Let R" be an open set
andn;N 1. Let u2 C?( ;RN) be ap-Harmonic map in  for somep2 [2;1),
that is u solves(1.3). Suppose that the rank of its gradient matrix is at most one:

rk(Du) 1 in

Then, the same result as in Theorem 2 is true.
In addition, there exists a partition of  to at most countably many Borel sets,
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Note that our result is trivial in the case that N = n = 2 since the codimension
N n vanishes. Further, one might also restrict their attention to domains of rect-
angular shape, since any map with separated form can be automatically extended
to the smallest rectangle containing the domain.

Also, herein we consider only the illustrative case ofn = 2 < N and do not
discuss more general situations, since numerical evidence obtained in [KP] sug-
gests that Theorem 5 does not hold in general for solutions in non-separated form.
However, as a consequence of Theorem 5 we have the next particular result:

Corollary 6 (Rigidity and atness of p-Harmonic maps in separated form) Let

R" be an open set andh; N 1. Suppose thatu 2 C?( ;RN) is a p-Harmonic

map in  for somep2 [2;1 ], that is u solves(1.3) if p< 1 and (1.5)if p=1.
Then, if u has the separated Td69626 Tf 41o(ate)51(d)-426 Tf 326 Tf 9.963 0 Td [(.)]TJ -340.56rd [ulS
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The claim being obvious forfrk(Du) = 0g = fDu = 0g, it su ces to consider
only the set frk(Du) = 1 g in order to conclude. Thereon we have that u can be
written as

Du = a;, infrk(Du)=1g;
for some non-vanishing vector elds and
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We may now prove our rst main result.

Proof of Theorem 2. Suppose thatu : R" I RN is a solution to the
nonlinear system (1.1) inC?( ;RN) which in addition satis es that rk(D u) 1 in
. Since fDu =0gis closed, necessarily its complement in which isfrk(Du) =1g
is open.

By invoking Theorem 8, we have that there exists a partition of the open subset
frk(Du) = 1 g to countably many Borel sets B;)1 with respective functions (f;)1
and curves ()} as in the statement such that (2.1)-(2.2) hold true and in addition

Dfi 6 0 on Bj; i 2 N:
Consequently, on eachB; we have

(2 fi)) (P fi).
jio fij2 ,

[Dul’ =[( 2 fi) Dfi]* =1
us=( 2 f)ipfij? + (2 fi) fi
Hence, (1.1) becomes

(2 f) (1)

| - -
i 2 fij?

D f)iDf2+ (P f) fi =0;

on Bi. Sincej ij2 1 onf;(B;), we have that °is orthogonal to ?thereon and
therefore the above equation reduces to

( 2 £)jDf;j?=0 onBj;i2N:

Therefore, ; is ane on theinterval f;(Bij) R and as aresultu(B;)= ;(fi(Bi))
is contained in an a ne line of RN, for eachi 2 N. On the other hand, since

[
u() = ufbu=0g u(Bj)
. i2N
i
and u is constant on each connected component of the interior of Du = 0g, the
conclusion (d [(to)-323(coun)27(t-1.495 Td1.548 0 Td [(u)]TJ/F1 9.9626 Tf 5.703 8.07 Td [( )]TJ/F14 9.9626 Tf
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on B;. Since s orthogonal to ?and also ? has unit length, the above reduces
to

e 2
jDfij foow 1 00
2 p 2
on Bi. Again by orthogonality, the above is equivalent to the pair of independent
systems

iO fi) Dfi Dfi Zszi + fi)ijij4 = 0;

jDfij?

2
onB;. Sincej J 1 off;(B;), it follows that ,f; =0 on B; and since B;)} isa
partition of of the form described in the statement, the result ensues by invoking
Theorem 2.

? f) Dfi Df;:D; + fi =0; (® f)iDfij* = 0;

We may now prove our second main result.

Proof of Theorem 5. We begin by temporarily assuming that is a rectangle of
the form
Q=(ab (cd R?
and we X (Xo;Yo) 2 Q = . Let us also assume that the rank of the gradient is
full throughout:
rk(Du) 2 inQ:
Later we will remove both these extra assumptions. Letf : (a;b ! RN and
g:(c;d) ! RN be such thatu(x;y) = f(x)+ g(y). Then, the gradient matrix
then has the form
Du(x;y)= fx);gAy) 2 RV %
By assumption, we have that [Du]’ u = 0in . By Lemma 7, there exists a

vector eld A: R? I RZsuchthat u=DuA. If A has components (a;b),
this means that the functions f and g satisfy
(2.3) fOUx) + g®ly) = a(y)f 4x) + bix;y)g%y):

Although we will not utilise this in the sequel, it is instructive and quite possible
to express the coe cients a; bin terms of f; g; f % g®along the lines of Lemma 7 but
more concretely, as follows. By applying theRN N matrix
Wiz Ay 9y
to (2.3), the summand b(x;y)g¥y) on the right hand side is annihilated and we
Hbtain i h i
igWiEr ) Ay 0+ ) = aky) jigwifl dAy)  dAy) FAx):
Hence, onfrk(D u) = 2 g we have
i Wi’ dty)  dUy)
jewizl ody)  g¥y) %)
Arguing symmetrically, we may obtain
if )%l f9x)  fqx
boxy)= (_2)1 (x) F9x)
)izl 1A% £Ax) gqy)
Similar expression can be obtained orirk(Du) 1g as well.

Let us consider (2.3) as a rst order ODE with unknown function f° in the
variable x. By integrating the equation in x, we view its rst integral as an rst

£ + gfy)

a(x;y) =

fOUx) + g%y) :
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order ODE with solution the function g°in the variable y, which can be integrated

again. Therefore, by sparing the reader the tedious computations, we arrive at the
following integral identity

Z. R
R s y <. a(sit)ds R y
2 oglye wAETE 4 ) S e w9
(2.4) w  AGGD
o3 o) + 1%x0) T B gy
: = g(yo) + X —e Yo Ak :
° o AT
h
wnere 8 7 § .. |
3 A(xy) = e ¥ gs;
3 Z R g
T OB(xy) = bsy)e <Y gs:
Xo
Note that

A(x;y)7 0 ifandonlyif x Xxa7(Xy
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For brevity, we set

8 Ry &s:
% HOCY) = e xo Ftor s,
R
oy m eI R s
X,y = - X0 3y ,
o FEY)
ooy = e B g
X;y) = A :
xo F(tY)

Then (2.6) can be re-written in the simpler form

F) = H * gAyo)d + fUx0) gAY
Substituting the above into (2.5), after some elementary calculations we obtain the
equation
(2.7) C IH *dgy)= E DH *f%qxo)+ 1+JIH * gyyo);
for all (x;y) 2 Q. Note that
<0 if (x Xy Yo)<O (xy)2Q:

Moreover, we have thatC > 0 and alsoH > 0, for all (x;y) 2 Q. Hence, ify <y,
we may choosex > X ¢ and if y >y, we may choosex < X ¢. In either case, we can
arrange

C IH >0
for all y 6 yg such that (x Xg)(y Vo) < 0. Therefore, from (2.7) we deduce that
E DH ! 1+JH ¢
0, — 0, 0, .
g(y) = c H T fA(xo) + c 11 g(Yo);

which yields

gAy) 2 span[ fUx0); gAyo) I:
By an integration, the above inclusion implies that the curve g is valued in an a ne
plane of the form

g(y) 2 9(yo) +span fxo); gYyo) I
By arguing similarly for f, we also infer that
f9x) 2 span[ f (xo); g%yo) 1
and hence
f(x) 2 f(xo) +span[ f%xo);gYyo) I:
Conclusively, by putting the above together we have obtained

fTf 2.795 -4.114 Td [((JTI/F11 9.9626 Tf 3.875 0 Td [(X)]TI/F7 6.9738 ( uf 5.109 4.113 Td [(0)]TJ

a( (xo) +span|

g i9 RAR
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open subset of given by frk(Du) = 2g. We cover each component with countably
many (overlapping) rectangles Q; :i 2 N where

Qi =(ai;b) (cidi); 12N;
and respective points inside the rectangles
(X0i;Y0i) 2 Qi © 12N :
On each rectangle, by the previous reasoning the solution will be contained in an
ane plane ; RN. By choosing Xoi;Yoi) on the overlaps of eachQ; with all
its neighbouring rectangles, connectedness of the component allows us to conclude
that all the planes coincide.

It remains to consider the complement nfrk(Du) = 2g, which we decompose
to the sets [
int rk(Du) 1 @rk(Du) 1 ;
where \int" denotes topological interior. If the interior is non-empty, on each
connected component of it we apply Theorem 2 to infer thatu intfrk(Du) 1g is
contained in a polygonal curve ofRN , given by an at most countable union of a ne

straight line segments. Finally, by continuity of u, we have thatu @rk(Du) 1g
is also contained in the union of planes. The result ensues.

We conclude by establishing the remaining corollary.

Proof of Corollary 6. Suppose thatu is a C2 p-Harmonic mapping as in the
hypotheses of the corollary for somep 2 [2;1 ], namely that it has additively
separated form and solves either (1.3) ipb< 1 or (1.5)if p= 1 . By (1.9)-(1.10),
we deduce thatu solves the PDE system
iDUj?[Du]’ u=0 in

On the open setfDu 6 0g, we readily have that u solve the system (1.1). On the
other hand, we decompose its complement to

int Du=0 @Du=0 ;

If int f Du = 0g is non-empty, then u is constant on each connected component of it.
Finally, again by the regularity of u, we have thatu @Du =0g is also contained
in the previous union of planes. The claim has been established.
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