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discontinuous on RN � n ; therefore, the PDE system (1.1) hasdiscontinuous coef-
�cients . The geometric meaning of (1.1) is that the Laplacian vector �eld � u is
tangential to the imageu(
) and hence (1.1) is equivalent to the next statement:
there exists a vector �eld

A : Rn � 
 �! Rn

such that
� u = D u A in 
 :

As we show later, the vector �eld is generally discontinuous (Lemma 7).
Our interest in (1.1) stems from the fact that it is a constituent component of the

p-Laplace PDE system for allp 2 [2; 1 ]. Further, contrary perhaps to appearances,
(1.1) is in itself a variational PDE system but in a non-obvious way. Deferring
temporarily the speci�cs of how exactly (1.1) arises and what is the variational
principle associated with it, let us recall that, for p 2 [2; 1 ), the celebrated p-
Laplacian is the divergence system

(1.3) � pu := Div
�
jDujp� 2Du

�
= 0 in 


and comprises the Euler-Lagrange equation which describes extrema of the model
p-Dirichlet integral functional

(1.4) Ep(u) :=
Z



jDujp; u 2 W 1;p (
 ; RN );

in conventional vectorial Calculus of Variations. Above and subsequently, for any
X 2 RN � n , the notation jX j symbolises its Euclidean (Frobenious) norm:

jX j =

 
NX

� =1

nX

i =1

(X �i )2

! 1=2

:

The pair (1.3)-(1.4) is of paramount important in applications and has been studied
exhaustively. The extremal case ofp ! 1 in (1.3)-(1.4) is much more modern and
intriguing. It turns out that one then obtains the following nondivergence PDE
system

(1.5) � 1 u :=
�

Du 
 Du + j

(1.4);p
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The e�ect of (1.1) to the 
atness of the image can be easily seen in the case of
n = 1 � N as follows: since

[[u0]]? u00= 0 in 
 � R

and in one dimension we have

[[u0]]? =

8
<

:
I �

u0 
 u0

ju0j2
; on f u0 6= 0g;

I; on f u0 = 0g;

we therefore infer that u00= fu 0 on the open setf u0 6= 0g � R for some function f ,
readily yielding after an integration that u(
) is necessarily contained in a piecewise
polygonal line of RN . As a generalisation of this fact, our �rst main result herein
is the following:

Theorem 2 (Rigidity and 
atness of rank-one maps with tangential Laplacian) .
Let 
 � Rn be an open set andn; N � 1. Let u 2 C2(
 ; RN ) be a solution to the
nonlinear system (1.1) in 
 , satisfying that the rank of its gradient matrix is at
most one:

rk(D u) � 1 in 
 :

Then, its image u(
) is contained in a polygonal line in, s5 4g5007(the91449pist 5.95 6 0 G
/62(ca50 9.962t0 9.96ient)d [(b)540( 9.-440(gr)51(adhe9144u�ble)-440(un9626 Tf71)]TJ
08(a.966ne)-440(stng)-44ight)-440(51(piece 9.9g)-4gmthas)-440(11 97.556 ssib-351(o726 ]TJ/and)-e 9.9lf-in[(,.9g)-4d [(Rs6 Tf.9.9626 Tf 10.516 0 een)-351333(the)-33L26 T26 Tus T26 TnF50 te T26 T2)]TJ/26 T2)e T26 Td [((Ri2455 Td [9g221 0 Td ecewisetptTJ/ieldin55 265 0n55 ]TJ/F8 9.9626 Tf 139.53.91(its)-263(i)1(mage)]TJ/F11)-3710 Td [((- equiv)56(al)-391(rd [(�od [((Ri2455 ex/62ef 122455  -11.97 9.4gonal9144u�ble)-(2)]Tw50�b)513934(one)ct65 0 its)-35(,)s Td [(in)]TJ/F8 9.96 9.3inear
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As a consequence of Theorem 2, we obtain the next result regarding the rigidity
of p-Harmonic maps for p 2 [2; 1 ) which complements one of the results in the
paper [K3] wherein the casep = 1 was considered.

Corollary 4 (Rigidity of p-Harmonic maps, cf. [K3]). Let 
 � Rn be an open set
and n; N � 1. Let u 2 C2(
 ; RN ) be ap-Harmonic map in 
 for some p 2 [2; 1 ),
that is u solves(1.3). Suppose that the rank of its gradient matrix is at most one:

rk(D u) � 1 in 
 :

Then, the same result as in Theorem 2 is true.
In addition, there exists a partition of 
 to at most countably many Borel sets,
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Note that our result is trivial in the case that N = n = 2 since the codimension
N � n vanishes. Further, one might also restrict their attention to domains of rect-
angular shape, since any map with separated form can be automatically extended
to the smallest rectangle containing the domain.

Also, herein we consider only the illustrative case ofn = 2 < N and do not
discuss more general situations, since numerical evidence obtained in [KP] sug-
gests that Theorem 5 does not hold in general for solutions in non-separated form.
However, as a consequence of Theorem 5 we have the next particular result:

Corollary 6 (Rigidity and 
atness of p-Harmonic maps in separated form). Let

 � Rn be an open set andn; N � 1. Suppose thatu 2 C2(
 ; RN ) is a p-Harmonic
map in 
 for some p 2 [2; 1 ], that is u solves(1.3) if p < 1 and (1.5) if p = 1 .

Then, if u has the separated  Td69626 Tf 41o(ate)51(d)-426 Tf 326 Tf 9.963 0 Td [(.)]TJ -340.56rd [uIS
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The claim being obvious for f rk(D u) = 0 g = f Du = 0g, it su�ces to consider
only the set f rk(D u) = 1 g in order to conclude. Thereon we have that Du can be
written as

Du = � 
 a; in f rk(D u) = 1 g;

for some non-vanishing vector �elds� and
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We may now prove our �rst main result.

Proof of Theorem 2. Suppose that u : Rn � 
 �! RN is a solution to the
nonlinear system (1.1) in C2(
 ; RN ) which in addition satis�es that rk(D u) � 1 in

. Since f Du = 0g is closed, necessarily its complement in 
 which isf rk(D u) = 1 g
is open.

By invoking Theorem 8, we have that there exists a partition of the open subset
f rk(D u) = 1 g to countably many Borel sets (B i )1

1 with respective functions (f i )1
1

and curves (� i )1
1 as in the statement such that (2.1)-(2.2) hold true and in addition

Df i 6= 0 on B i ; i 2 N:

Consequently, on eachB i we have

[[Du]]? = [[( � 0
i � f i ) 
 Df i ]]? = I �

(� 0
i � f i ) 
 (� 0

i � f i )
j� 0

i � f i j2
;

� u = ( � 00
i � f i )jDf i j2 + ( � 0

i � f i )� f i :

Hence, (1.1) becomes
�
I �

(� 0
i � f i ) 
 (� 0

i � f i )
j� 0

i � f i j2

� �
(� 00

i � f i )jDf i j2 + ( � 0
i � f i )� f i

�
= 0 ;

on B i . Since j� i j2 � 1 on f i (B i ), we have that � 00
i is orthogonal to � 0

i thereon and
therefore the above equation reduces to

(� 00
i � f i )jDf i j2 = 0 on B i ; i 2 N:

Therefore, � i is a�ne on the interval f i (B i ) � R and as a resultu(B i ) = � i (f i (B i ))
is contained in an a�ne line of RN , for each i 2 N. On the other hand, since

u(
) = u
�
f Du = 0g

� [

i 2 N

u(B i )

and u is constant on each connected component of the interior off Du = 0g, the
conclusion (d [(to)-323(coun)27(t-1.495 Td1.548 0 Td [(u)]TJ/F1 9.9626 Tf 5.703 8.07 Td [(�)]TJ/F14 9.9626 Tf )-323(cou8j27)]TJ90u8j27)626 Tf 9.619 0 Td [(is)-393(constan)28(t)-393(on)-394(eac)28(h)-393(connected)-393(comp)-28(onen)egularit7 6.9738nenTf 4.982 738 Tf 4.878 -8.1.495 Td1.548 0 Td [(u)]TJ/F1 1926 Tf 9.6b]TJ/F7 aus-8.07 Td [(f)]TJ/F8 (co029/F14 9.9626 Tf 15.498 0 Td [(g)]TJ/F1 9.9626 Tf 4.981 8.07 Td [(�)]TJ 7.304 1.394 Td [([)]TJ/F10 6.9738 Tf -1.077 -21.408 Td [(i)]TJ/F13 6.9738 Tf 2.819 0 Td [(2)]TJ 3.616 Td =Tf 22.368 0 Td [(N)]TJ/F11 9.7.571 -25.558 11.944 Td [(u)]TJ/F8 9.9626 Tf 5.703 0 T819 0 Td [(2)]TJ0t)- 7.304 1.39iconnectalsoonnect(h)]TJ/F11/F8n4 2.463nnect 9.9626 274.74456 4.114 Td [(00)J
0 g 0 evious Tf 4.un626 Tf 7.4 9.9 [(i)]TJ/F14 9.96/F826 s 2.46 Tf 5.T0=[[Du

i
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on B i . Since � 00
i is orthogonal to � 0

i and also � 0
i has unit length, the above reduces

to

(� 0
i � f i )

�
Df i 
 Df i : D2f i +

jDf i j2

p � 2
� f i

�
+

1
p � 2

(� 00
i � f i )jDf i j4 = 0 ;

on B i . Again by orthogonality, the above is equivalent to the pair of independent
systems

(� 0
i � f i )

�
Df i 
 Df i : D2f i +

jDf i j2

p � 2
� f i

�
= 0 ; (� 00

i � f i )jDf i j4 = 0 ;

on B i . Sincej� 0
i j � 1 of f i (B i ), it follows that � pf i = 0 on B i and since (B i )1

1 is a
partition of 
 of the form described in the statement, the result ensues by invoking
Theorem 2. �

We may now prove our second main result.

Proof of Theorem 5. We begin by temporarily assuming that 
 is a rectangle of
the form

Q = ( a; b) � (c; d) � R2

and we �x ( x0; y0) 2 Q = 
. Let us also assume that the rank of the gradient is
full throughout:

rk(D u) � 2 in Q:
Later we will remove both these extra assumptions. Letf : (a; b) �! RN and
g : (c; d) �! RN be such that u(x; y) = f (x) + g(y). Then, the gradient matrix
then has the form

Du(x; y) =
�
f 0(x); g0(y)

�
2 RN � 2:

By assumption, we have that [[Du]]? � u = 0 in 
. By Lemma 7, there exists a
vector �eld A : R2 � 
 �! R2 such that � u = D u A. If A has components (a; b),
this means that the functions f and g satisfy

(2.3) f 00(x) + g00(y) = a(x; y)f 0(x) + b(x; y)g0(y):

Although we will not utilise this in the sequel, it is instructive and quite possible
to express the coe�cients a; b in terms of f; g; f 0; g0 along the lines of Lemma 7 but
more concretely, as follows. By applying theRN � N matrix

jg0(y)j2 I � g0(y) 
 g0(y)

to (2.3), the summand b(x; y)g0(y) on the right hand side is annihilated and we
obtain
h
jg0(y)j2 I � g0(y) 
 g0(y)

i �
f 00(x) + g00(y)

�
= a(x; y)

h
jg0(y)j2 I � g0(y) 
 g0(y)

i
f 0(x):

Hence, onf rk(D u) = 2 g we have

a(x; y) =
jg0(y)j2 I � g0(y) 
 g0(y)

�
jg0(y)j2 I � g0(y) 
 g0(y)

�
f 0(x)

�
f 00(x) + g00(y)

�
:

Arguing symmetrically, we may obtain

b(x; y) =
jf 0(x)j2 I � f 0(x) 
 f 0(x)

�
jf 0(x)j2 I � f 0(x) 
 f 0(x)

�
g0(y)

�
f 00(x) + g00(y)

�
:

Similar expression can be obtained onf rk(D u) � 1g as well.
Let us consider (2.3) as a �rst order ODE with unknown function f 0 in the

variable x. By integrating the equation in x, we view its �rst integral as an �rst
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order ODE with solution the function g0 in the variable y, which can be integrated
again. Therefore, by sparing the reader the tedious computations, we arrive at the
following integral identity

(2.4)

8
>>><

>>>:

g0(y) e�
Ry

y 0

B ( x;s )
A ( x;s ) ds + f 0(x)

Z y

y0

e�
Rx

x 0
a(s;t ) d s

A(x; t )
e�

Rt
y 0

B ( x;� )
A ( x;� ) d� dt

= g0(y0) + f 0(x0)
Z y

y0

1
A(x; t )

e�
Rt

y 0

B ( x;� )
A ( x;� ) d� dt;

where
8
>><

>>:

A(x; y) :=
Z x

x 0

e�
Rs

x 0
a( �;y ) d � ds ;

B (x; y) :=
Z x

x 0

b(s; y) e�
Rs

x 0
a( �;y ) d � ds:

Note that

A(x; y) 7 0 if and only if x � xA( x 7 (x; y
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For brevity, we set
8
>>>>>><

>>>>>>:

H (x; y) := e�
Rx

x 0

G ( s;y )
F ( s;y ) ds;

I (x; y) :=
Z x

x 0

e�
Ry

y 0
b( t;s ) d s

F (t; y)
e�

Rt
x 0

G ( �;y )
F ( �;y ) d� dt;

J (x; y) :=
Z x

x 0

1
F (t; y)

e�
Rt

x 0

G ( �;y )
F ( �;y ) d� dt:

Then (2.6) can be re-written in the simpler form

f 0(x) = H � 1
�

g0(y0)J + f 0(x0) � g0(y)I
�

:

Substituting the above into (2.5), after some elementary calculations we obtain the
equation

(2.7)
�
C � IH � 1�

g0(y) =
�
E � DH � 1�

f 0(x0) +
�
1 + JH � 1�

g0(y0);

for all ( x; y) 2 Q. Note that

I < 0 if (x � x0)(y � y0) < 0; (x; y) 2 Q:

Moreover, we have thatC > 0 and alsoH > 0, for all (x; y) 2 Q. Hence, if y < y 0,
we may choosex > x 0 and if y > y 0, we may choosex < x 0. In either case, we can
arrange

C � IH � 1 > 0

for all y 6= y0 such that (x � x0)(y � y0) < 0. Therefore, from (2.7) we deduce that

g0(y) =
�

E � DH � 1

C � IH � 1

�
f 0(x0) +

�
1 + JH � 1

C � IH � 1

�
g0(y0);

which yields
g0(y) 2 span[

�
f 0(x0); g0(y0)

	
]:

By an integration, the above inclusion implies that the curve g is valued in an a�ne
plane of the form

g(y) 2 g(y0) + span[
�

f 0(x0); g0(y0)
	

]:

By arguing similarly for f , we also infer that

f 0(x) 2 span[
�

f 0(x0); g0(y0)
	

]

and hence
f (x) 2 f (x0) + span[

�
f 0(x0); g0(y0)

	
]:

Conclusively, by putting the above together we have obtained

fTf 2.795 -4.114 Td [(()]TJ/F11 9.9626 Tf 3.875 0 Td [(x)]TJ/F7 6.9738 (�uf 5.109 4.113 Td [(0)]TJ/F8 9.9626 Tf 2.795 -4.113 Td [(()]TJ/F11 9.9626 Tf 3.875 0 Td [(y)]TJ/F8 9.9626 Tf 5.242 0 Td [())-278(=)]TJ/F1 9.9626 11 9.9626 Tf 232.978 360.036 51()]TJ/F11 9.9626 Tf 7.748 0 Td [(y)]TJ/F14 9.9626 Tf 7.139 0 Td [(�)]TJ/F11 9.9626 Tf 9.646 0 Td [(y)]TJ/F7 37 4.113 Td [(04f9626 Tf 5.693 0 l) Tf 58.966 -17.582 Td [(fTf 2.795 -4.114 rnTJ/F11 9(g)]542J5F14 9.9626 Tf 7.139 0 Td [(�)]TJ/F11)]TJ/F81hat

g( (x0) + span[ g is R w 0 0 m 20.425 0 l S3811 9.9626 Tf 5.-8.07 Td [(E)]TJ/F14 9.9626 Tf9626 Tf D2.176 0 Td [(0)]TJ -2.9813 Tf 5u6 Tf 9.646 a4.95826 7[(x;)-167(y)]TJ/F8 9./F14 9.9626 Tf 75907 0 Td (also)-333(infer)-334(that)]TJ/F11 9.9626 T11d [(span[)]TJ/F1 9.9626 Tf 2[(�)]TJ/F11) 2/F8 D-334(ob)1(tain 9626 Tf 5.-�)]TJ/F11 9.9626 Tf 4.566 -9626 Tf -28(o)28(v)28(e)-334(57.2.494 84)]TJ0 Td [(x)-Tf 6J/F8 Tf 6y
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open subset of 
 given by f rk(D u) = 2 g. We cover each component with countably
many (overlapping) rectangles

�
Qi : i 2 N

	
where

Qi = ( ai ; bi ) � (ci ; di ); i 2 N;

and respective points inside the rectangles
�

(x0i ; y0i ) 2 Qi : i 2 N
	

:

On each rectangle, by the previous reasoning the solution will be contained in an
a�ne plane � i � RN . By choosing (x0i ; y0i ) on the overlaps of eachQi with all
its neighbouring rectangles, connectedness of the component allows us to conclude
that all the planes coincide.

It remains to consider the complement 
 n f rk(D u) = 2 g, which we decompose
to the sets

int
�

rk(D u) � 1
	 [

@
�

rk(D u) � 1
	

;

where \int" denotes topological interior. If the interior is non-empty, on each
connected component of it we apply Theorem 2 to infer thatu

�
int f rk(D u) � 1g

�
is

contained in a polygonal curve ofRN , given by an at most countable union of a�ne
straight line segments. Finally, by continuity of u, we have that u

�
@f rk(D u) � 1g

�

is also contained in the union of planes. The result ensues. �

We conclude by establishing the remaining corollary.

Proof of Corollary 6. Suppose that u is a C2 p-Harmonic mapping as in the
hypotheses of the corollary for somep 2 [2; 1 ], namely that it has additively
separated form and solves either (1.3) ifp < 1 or (1.5) if p = 1 . By (1.9)-(1.10),
we deduce thatu solves the PDE system

jDuj2[[Du]]? � u = 0 in 
 :

On the open setf Du 6= 0g, we readily have that u solve the system (1.1). On the
other hand, we decompose its complement to

int
�

Du = 0
	 [

@
�

Du = 0
	

;

If int f Du = 0g is non-empty, then u is constant on each connected component of it.
Finally, again by the regularity of u, we have that u

�
@f Du = 0g

�
is also contained

in the previous union of planes. The claim has been established. �
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