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Abstract. In this paper we study the spectrum � of the in�nite Feinberg-Zee
random hopping matrix, a tridiagonal matrix with zeros on the main diagonal
and random �1's on the �rst sub- and super-diagonals; the study of this non-
selfadjoint random matrix was initiated in Feinberg and Zee ( Phys. Rev. E 59
(1999), 6433{6443). Recently Hagger (arXiv:1412.1937, to appear in Random
Matrices: Theory and Applications ) has shown that the so-called periodic part
� � of �, conjectured to be the whole of � and known to include the unit
disk, satis�es p� 1(� � ) � � � for an in�nite class S of monic polynomials
p. In this paper we make very explicit the membership of S, in particular
showing that it includes Pm (� ) = �U m � 1(�= 2), for m � 2, where Un (x) is
the Chebychev polynomial of the second kind of degree n. We also explore
implications of these inverse polynomial mappings, for example showing that
� � is the closure of its interior, and contains the �lled Julia sets of in�nitely
many p 2 S, including those of Pm , this partially answering a conjecture of
the second author.

Mathematics Subject Classi�cation (2000). Primary 47B80; Secondary 37F10,
47A10, 47B36, 65F15.

Keywords. random operator, Jacobi operator, non-selfadjoint operator, spec-
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1. Introduction

In this paper we study spectral properties of in�nite matrices of the form
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; (1.1)

where c 2 
 := f� 1gZ is an in�nite sequence of � 1's, and the box marks the
entry at (0 ; 0). Let `2 denote the linear space of those complex-valued sequences
� : Z ! C for which k� k2 := f

P
n 2 Z j� n j2g1=2 < 1 , a Hilbert space equipped

with the norm k � k2. Then to each matrix Ac with c 2 
 corresponds a bounded
linear mapping `2 7! `2, which we denote again byAc, given by the rule

(Ac � k2 := �
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(�; �) is the inner product on `2, is given by

W (Ac) = � := f x + i y : x; y 2 R; jxj + jyj < 2g: (1.3)

This gives the upper bound that � � �, the closure of �. Other, sharper upper
bounds on � are discussed in Section 2 below.

This current paper is related to the problem of computing lower bounds for �
via (1.2). If b 2 
 is constant then Ab is a Laurent matrix and specAb = [ � 2; 2] if
bm � 1, while specAb = i[ � 2; 2] if bm � � 1; thus, by (1.2), � 1 := [ � 2; 2][ i[� 2; 2] �
�. Generalising this, if b 2 
 is periodic with period n then specAb is the union of
a �nite number of analytic arcs which can be computed by calculating eigenvalues
of n � n matrices (see Lemma 2.2 below). And, by (1.2),� n � �, where � n is the
union of specAb over all b with period n. This implies, since � is closed, that

� � := � 1 � � ; (1.4)

where � 1 := [ n 2 N� n .
We will call � � the periodic part of �, noting that [3] conjectures that equality

holds in (1.4), i.e. that � 1 is dense in � and � � = �. Whether or not this holds is
an open problem, but it has been shown in [5] that� 1 is dense in the open unit
disk D := f � 2 C : j� j < 1g, so that

D � � � � � : (1.5)

For a polynomial p and S � C, we de�ne, as usual,p(S) := f p(� ) : � 2 Sg
and p� 1(S) := f � 2 C : p(� ) 2 Sg. (We will use throughout that if S is open then
p� 1(S) is open (p is continuous) and, if p is non-constant, then p(S) is also open,
e.g., [22, Theorem 10.32].) The proof of (1.5) in [5] depends on the result, in the
casep(� ) = � 2, that

p� 1(� 1 ) � � 1 ; so that also p� 1(� � ) � � � : (1.6)

This implies that Sn � � 1 , for n = 0 ; 1; :::, where S0 := [ � 2; 2] and Sn :=
p� 1(Sn � 1), for n 2 N. Thus [ n 2 NSn , which is dense inD, is also in � 1 , giving
(1.5).

Hagger [17] makes a large generalisation of the results of [5], showing the
existence of an in�nite family, S, containing monic polynomials of arbitrarily high
degree, for which (1.6) holds. For each of these polynomialsp let

U(p) :=
1[

n =1

p� n (D): (1.7)

(Here p� 2(S) := p� 1(p� 1(S)), p� 3(S) := p� 1(p� 2(S)), etc.) Hagger [17] observes
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sequence (pn (� ))n 2 N, the orbit of � , is bounded. Further, the boundary of K (p),
J (p) := @K(p) � K (p), is the Julia set of p.)

The de�nition of the set S in [17], while constructive, is rather indirect. The
�rst contribution of this paper (Section 3) is to make explicit the membership of
S. As a consequence we show, in particular, thatPm 2 S, for m = 2 ; 3; :::, where
Pm (� ) := �U m � 1(�= 2), and Un is the Chebychev polynomial of the second kind
of degreen [1].

The second contribution of this paper (Section 4) is to say more about the
interior points of � � . Previous calculations of large subsets of� 1 , precisely calcu-
lations of � n for n as large as 30 [3, 4], suggest that �� �lls most of the square �,
but int(� � ), the interior of � � , is known only to contain D. Using that the whole
family f
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this last equation obtained using (2.3). The following lemma, proved using these
representations, makes clear that many di�erent vectorsk correspond to the same
polynomial pk .

Lemma 2.6. If k = ( k1; :::kn ) 2 f� 1gn , for some n 2 N, and ` = k0 or ` is a cyclic
permutation of k, then pk = p` . If ` = � k then p` (� ) = i � n pk (i � ).

Proof. Using (2.6) and (2.3) we see that

p` (� ) � pk (� ) = q̀ (1: n � 1) (� ) � qk (1: n � 1) (� ) + kn qk (2: n � 2) (� ) � `n q̀ (2: n � 2) (� )

= �
�
q̀ (2: n � 1) (� ) � qk (1: n � 2) (� )

�
� `1q̀ (3: n � 1) (� )

+ kn � 1qk (1: n � 3) (� ) + kn qk (2: n � 2) (� ) � `n q̀ (2: n � 2) (� ):

If ` is a cyclic shift of k, i.e., ` j = kj � 1, j = 2 ; :::; n, and `1 = kn , then this last
line is identically zero. Thus p` = pk if ` is a cyclic permutation of k.

If ` = k0 then that pk = p` follows from (2.7) and Lemma 2.4. If ` = � k then
that p` (� ) = i � n pk (i � ) follows from (2.6) and Lemma 2.4. �

Call k 2 f� 1gn even if
Q n

j =1 kj = 1, and odd if
Q n

j =1 kj = � 1. Then [17,
Corollary 5], it is immediate from Lemmas 2.2 and 2.5 that

specAper
k = p� 1

k ([� 2; 2]); if k is even; specAper
k = p� 1

k (i[ � 2; 2]); if k is odd.
(2.8)

Complex dynamics. In Section 5 below we show that �lled Julia sets, K (p), of
particular polynomials p, are contained in the periodic part � � of the almost sure
spectrum of the Feinberg-Zee random hopping matrix. To articulate and prove
these results we will need terminology and results from complex dynamics.

Throughout this section p denotes a polynomial of degree� 2. We have
de�ned above the compact set that is the �lled Julia set K (p), the Julia set J (p) =
@K(p) � K (p), the Fatou set



8 Simon Chandler-Wilde and Ra�ael Hagger

If w is an attracting periodic point we denote by Ap(w) the basin of attraction
of the cycle C = f z0; :::; zn � 1g of z, by which we mean Ap(w) := f z 2 C :
d(pn (z); C) ! 0 asn ! 1g . Here, for S � C and z 2 C, d(z; S) := inf w
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fate under iterations of p of the components of the Fatou set it is helpful to
understand the possible behaviours of a periodic component. This is achieved in
the classi�cation theorem (e.g. [2]). To state this theorem we introduce further
terminology. Let us call a �xed component U of F (p) a parabolic component if
there exists a neutral �xed point w 2 @Uwith multiplier 1 such that the orbit
of every z 2 U converges tow. Call a �xed component U of F (p) a Siegel disk
if it is conjugate to an irrational rotation on U, which means that there exists a
conformal mapping ' : U
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and so pn (z) 2 S for some n. In the case that the orbit of z is eventually in a
Siegel disk then alsopn (z) 2 S for somen for, if the orbit of every critical point
w 2 K (p) is eventually in T, it follows that the boundary of every Siegel disk is in
T, and (as S is simply connected) that every Siegel disk is inS. �

Previous upper bounds on � . We have noted above that, if c 2 
 is pseudo-
ergodic, then � = spec Ac � W (Ac) = �, given by (1.3). Similarly, the spectrum
of A2

c is contained in the closure ofits numerical range, so that3

� � f�
p

z : z 2 spec (A2
c)g � N2 := f�

p
z : z 2 W (A2

c)g: (2.12)
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Clearly, f � �
n : n 2 Ng is a convergent family of upper bounds for � that is

in principle computable; deciding whether � 2 � �
n requires only computation of

smallest singular values ofn � n matrices (see [4, (39)]). Explicitly � �
1 = 2D, and

� �
n is plotted for n = 6 ; 12; 18 in [4]. But for these values � �

n � �, and computing
� �

n for larger n is challenging, requiring computation of the smallest singular value
of 2n � 1 matrices of order n to decide whether a particular � 2 � �

n . Substantial
numerical calculations in [4] established that 1:5 + 0:5i 62� 34, providing the �rst
proof that � is a strict subset of �, this con�rmed now by the simple explicit
bound (2.12) and (2.13).

3. Lower Bounds on� and Symmetries of� and ��

Complementing the upper bounds on � that we have just discussed, lower bounds
on � have been obtained by two methods of argument. The �rst is that (1.2) tells
us that specAb � � for every b 2 
. In particular this holds in the case when b is
periodic, when the spectrum ofAb is given explicitly by Lemmas 2.2 and 2.5, so
that, as observed in the introduction,

� n :=
[

k2f� 1gn

specAper
k � � :

Explicitly [4, Lemma 2.6], in particular,

� 1 = [ � 2; 2] [ i[� 2; 2] and � 2 = � 1 [ f x � ix : � 1 � x � 1g: (3.1)

In the introduction we have de�ned � 1 := [ 1
n =1 � n and have termed � � := � 1 ,

also a subset of � since � is closed, the periodic part of �. We have also recalled
the conjecture of [3] that � � = �. Let

� n :=
n[

m =1

� m � � 1 � � � � � :

Then it follows from Lemma 2.1 that

� n % � � as n ! 1 : (3.2)

If, as conjectured, � � = �, then (3.2) complements (2.16); together they sandwich
� by convergent sequences of upper (� �

n ) and lower (� n ) bounds that can both
be computed by calculating eigenvalues ofn � n matrices. Figures 2 and 3 include
visualisations of � 30, indistinguishable by eye from � 30, but note that the solid
appearance of� 30, which is the union of a large but �nite number of analytic arcs,
is illusory. See [3, 4] for visualisations of� n for a range of n, suggestive that the
convergence (3.2) is approximately achieved byn = 30.

The same method of argument (1.2) to obtain lower bounds was used in [3],
where a special sequenceb 2 
 was constructed with the property that spec Ab �
D, so that, by (1.2), D � �. The stronger result (1.5), that this new lower bound
on � is in fact also a subset of � � , was shown in [5], via a second method of
argument for constructing lower bounds, based on surprising symmetries of � and
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� � . We will spell out in a moment these symmetries (one of these described �rst
in [5], the whole in�nite family in [17]), which will be both a main subject of study
and a main tool for argument in this paper. But �rst we note more straightforward
but important symmetries. In this lemma and throughout � denotes the complex
conjugate of � 2 C.

Lemma 3.1. [4, Lemma 3.4](and see[19], [5, Lemma 4]). All of � n , � n , � � , and
� are invariant with respect to the maps� 7! i� and � 7! � , and so are invariant
under the dihedral symmetry groupD2 generated by these two maps.

To expand on the brief discussion in the introduction, [17] proves the exis-
tence of an in�nite set S of monic polynomials of degree� 2, this set de�ned
constructively in the following theorem, such that the elementsp 2 S are symme-
tries of � 1 and � in the sense that (3.3) below holds.

Theorem 3.2. [17] Let S denote the set of those polynomialspk , de�ned by (2.5),
with k = ( k1; :::; kn ) 2 f� 1gn for some n � 2, for which it holds that: (i) kn � 1 =
� 1 and kn = 1 ; (ii) pk = pbk , where bk 2 f� 1gn is the vector identical to k but with
the last two entries interchanged, so thatbkn � 1 = 1 and bkn = � 1. Then

� � p(�) and p� 1(� 1 ) � � 1 ; (3.3)

for all p 2 S.

We will call S Hagger's set of polynomial symmetries for� .
We remark that if p 2 S then it follows from (3.3), by taking closures and

recalling that p is continuous, that also

p� 1(� � ) � � � and p� 1(int(� � )) � int(� � ): (3.4)

We note also that p� 1(� 1 ) � � 1 implies that � 1 � p(� 1 ), but not vice versa,
and that � � p(�) i�

p� 1(f � g) \ � 6= ; ; for all � 2 � :

Further, we note that it was shown earlier in [5] that (3.3) holds for the particular
casep(� ) = � 2 (this the only element of S of degree 2, see Table 1); in [5] it was
also shown, as an immediate consequence of (3.3) and Lemma 3.1, that

p� 1(�) � � ;

for p(� ) = � 2. Whether this last inclusion holds in fact for all p 2 S is an open
problem.

Our �rst result is a much more explicit characterisation of S.

Proposition 3.3. The setS is given byS = f pk : k 2 Kg , whereK consists of those
vectors k = ( k1; :::; kn ) 2 f� 1gn with n � 2, for which: (i) kn � 1 = � 1 and kn = 1 ;
and (ii) n = 2 , or n � 3 and kj = kn � j � 1, for 1 � j � n � 2, so that (k1; :::; kn � 2)
is a palindrome. Moreover, if k 2 K , then

pk (� ) = �q k (1: n � 2) (� ): (3.5)
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Proof. It is clear from Theorem 3.2 that what we have to prove is that, if k 2 f� 1gn

with n � 2 and kn � 1 = � 1, kn = 1, then pk = pbk if n = 2 or 3; further, if n � 4,
then pk = pbk i� ( k1; :::; kn � 2) is a palindrome.

If k 2 f� 1gn with n � 2 and kn � 1 = � 1, kn = 1, then, from (2.6) and (2.3),

pk (� ) = qk (1: n � 1) (� ) � kn qk (2: n � 2) (� )

= �q k (1: n � 2) (� ) � kn � 1qk (1: n � 3) (� ) � kn qk (2: n � 2) (� )

= �q k (1: n � 2) (� );

sinceqk (1: n � 3) (� ) = qk (2: n � 2) (� ), this a consequence of the de�nitions (2.2) in the
casesn = 2 and 3, of Lemma 2.4 in the casen �
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Proof. This follows easily by induction from (3.5) and (2.3). �

We note that, using the standard trigonometric representations for the Cheby-
chev polynomials [1], form 2 N,

Pm (2 cos� ) = 2 cos �U m � 1(cos� ) = 2 cot � sinm� =: r m (� ): (3.6)

A similar representation in terms of hyperbolic functions can be given for the
polynomial pk whenk has length 2m� 1 andkj = ( � 1)j ; we denote this polynomial
by Qm . Clearly, for m � 2, Qm 2 S by Proposition 3.3, and Qm is an odd function
by Lemma 2.5. The proof of the following lemma, like that of Lemma 3.5, is a
straightforward induction that we leave to the reader.

Lemma 3.6. Q1(� ) = � , Q2(� ) = � 3 + � , and Qm +1 (� ) = � 2Qm (� ) + Qm � 1(� ),
for m � 2. Moreover, for m 2 N and � � 0,

Qm

� p
2 sinh�

�
=

8
><

>:

p
2 sinh�

sinh(m� ) + cosh(( m � 1)� )
cosh�

; if m is even,
p

2 sinh�
cosh(m� ) + sinh(( m � 1)� )

cosh�
; if m is odd.

The following lemma leads, using Lemmas 3.5 and 3.6, to explicit formulae
for other polynomials in S. For example, if P �

m denotes the polynomialpk when k
has length m � 2, km � 1 = � 1, km = 1, and all other entries are � 1's, then, by
Lemmas 3.5 and 3.7,

P �
m (� ) = i � m Pm (i � ) = i 1� m �U m � 1(i �= 2): (3.7)

Lemma 3.7. If k 2 f� 1gn and pk 2 S, then p� k 2 S and p� k (� ) = i � n pk (i � ).

Proof. Suppose that k 2 f� 1gn and pk 2 S. If n = 2, then bk = � k and p� k =
pbk = pk 2 S. If n � 3, de�ning ` 2 f� 1gn by `n � 1 = � 1, `n = 1, and ` j = � kj ,
for j = 1 ; :::; n � 2, p` 2 S by Proposition 3.3, so that p� k = pb̀ = p` 2 S. That
p� k (� ) = i � n pk (i � ) comes from Lemma 2.6. �

We note that Proposition 3.3 implies that there are precisely 2d
n
2 e� 1 vectors

of length n in K, so that there are between 1 and 2d
n
2 e� 1 polynomials of degree

n in S, as conjectured in [17]. Note, however, that there may be more than one
k 2 K that induce the same polynomialpk 2 S. For example, pk (� ) = � 6 � � 2 for
k = ( � 1; 1; 1; � 1; � 1; 1), and, de�ning ` = (1 ; � 1; � 1; 1; � 1; 1) and using Lemma
3.7, also

p` (� ) = pb̀(� ) = p� k (� ) = � pk (i � ) = � 6 � � 2:

In Table 1 (cf. [17]) we tabulate all the polynomials in S of degree� 6.
If p; q 2 S, so that p and q are polynomial symmetries of � in the sense

that (3.3) holds, then also the compositionp � q is a polynomial symmetry of � in
the same sense. But note from Table 1 that, whileP3 � P2 2 S, none of P2 � P2,
P2 � P2 � P2, Q2 � P2, P2 � P3, or P2 � Q2 are in S. Thus S does not contain all
polynomial symmetries of �, but whether there are polynomial symmetries that
are not either in S or else compositions of elements ofS is an open question.
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k pk (� )
(� 1; 1) � 2 = P2(� )

(1; � 1; 1) � 3 � � = P3(� )
(� 1; � 1; 1) � 3 + � = Q2(� ) = P �

3 (� )
(1; 1; � 1; 1) � 4 � 2� 2 = P4(� )

(� 1; � 1; � 1; 1) � 4 + 2 � 2 = P �
4 (� )

(1; 1; 1; � 1; 1) � 5 � 3� 3 + � = P5(� )
(1; � 1; 1; � 1; 1) � 5 � � 3 + � = � iQ3(i � )

(� 1; 1; � 1; � 1; 1) � 5 + � 3 + � = Q3(� )
(� 1; � 1; � 1; � 1; 1) � 5 + 3 � 3 + � = P �

5 (� )
(1; 1; 1; 1; � 1; 1) � 6 � 4� 4 + 3 � 2 = P6(� )

(1; � 1; � 1; 1; � 1; 1) � 6 � � 2 = P3(P2(� ))
(� 1; � 1; � 1; � 1; � 1; 1) � 6 + 4 � 4 + 3 � 2 = P �

6 (� )
Table 1. The elementspk 2 S of degree� 6.

We �nish this section by showing in subsection 3.1 the surprising result that
S 1
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Proposition 3.9. Supposea; b; c; d2 f� 1g and k 2 f� 1gn , for some n � 2, and let
ek := ( k1; :::; kn � 1). Then

specA (n )
k � specAper

` ; for ` = ( ek0; a; b;ek; c; d) 2 f� 1g2n +2 ; (3.9)

where ek0 = ekJn � 1 = ( kn � 1; :::; k1). Further, specA (n )
k � � S

2n +2 .

Proof. The proof modi�es [4, Theorem 4.1] where the same result is proved for
the special case thata = c = � 1, b = d = 1. Following that proof, suppose that
� is an eigenvalue ofA (n )

k
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-2 -1.5 -1 -0.5 0 0.5 1 1.5

-1.5
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1.5

Figure 1. An illustration of Proposition 3.9 in the case n = 3,
k1 = k2 = 1. The red circles indicate the eigenvalues, 0 and�

p
2,

of A (3)
k . The black lines are the spectra ofAper

` , for the di�erent
choices of ` de�ned by (3.9). In this case there are 7 distinct
polynomials p` and 7 associated distinct spectra specAper

` , each

of which contains the eigenvalues ofA (3)
k . One cannot see all the

spectra as separate curves because some of them overlap.

spectrum specAper
` . In particular, if a = b = � 1, then the choicesc = � d = 1 and

c = � d = � 1 lead to the same polynomial by Proposition 3.3 and the de�nition
of S. But, if a 6= b, again by Proposition 3.3 and the de�nition of S, the choices
c = (3)

= = (3)
�
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�nite subset of S. Since, by (1.5),D � � � , it follows from (3.3) that all these sets
are subsets of �� .
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It is easy to check that
3[

m =0

im (W1 [ W2) = E [ iE [
p

iE � int(� � ): (3.12)

Next note from Table 1 that p 2 S where p(� ) := � 5 � � 3 + � factorises as

p(� ) = � (� � ei �= 6)( � + e i �= 6)( � � e� i �= 6)( � + e � i �= 6):

Thus, for � = exp( � i�= 6) + w with jwj � � ,

jp(� )j � (1+ � )� (2+ � )(2 sin(�= 6)+ � )(2 cos(�= 6)+ � ) = � (1+ � )2(
p

3+ � )(2+ � ) =: g(� ):

Let � � 0:174744 be the unique positive solution ofg(� ) = 1. Clearly jp(� )j < 1 if
� = exp( � i�= 6) + w, with jwj < � , so that

exp(� i�= 6) + � D � p� 1(D) � int(� � ): (3.13)
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Figure 2. A plot showing W1 (green), W2 (red), e� i �= 6 + � D
(blue), and their rotations by multiples of �= 2. The union of the
green, red, and blue regions isW � � � , de�ned by (3.14). W
contains 1:1D, indicated by the black circle, see Proposition 3.13.
In the background in grey one can see� 30 � � � . The dotted and
dashed-dotted curves are the boundaries of� and N2, respec-
tively, de�ned by (1.3) and (2.12), with � � N2 � � � � � .

last inequality holds since cos(�= 24) = 1
2

q
2 +

p
2 +

p
3 > 0:991 andg(0:174) < 1

so that � > 0:174. �

4. Interior points of ��

We have just, in Proposition 3.13, extended to a regionW � 1:1D the part of the
complex plane that is known to consist of interior points of � � . In this section we
explore the relationship between � � and its interior further. We show �rst of all,
using (3.4) and that Pn 2 S for every n � 2, that [0; 2) � int(� � ). Next we use
this result to show that, for every n � 2, all but �nitely many points in � S

n are
interior points of � � . Finally, we prove, using Theorem 3.8, that � � is the closure
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of its interior. If indeed it can be shown, as conjectured in [3], that � � = �, then
the result will imply the truth of another conjecture in [3], that � is the closure
of its interior.

Our technique for establishing that [0; 2) � int(� � ) will be to use that
P � 1

m (( � 1; 1)) � int(� � ), for every m � 3, this a particular instance of (3.4).
This requires �rst a study of the real solutions of the equations Pm (� ) = � 1 and
their interlacing properties, which we now undertake.

From (3.6),

Pm (2) = 2 m; Pm (2 cos(�=m )) = 0 ; and Pm (2 cos(3�= (2m))) = � 2 cot(3�= (2m)) :

This implies that the equation Pm (� ) = 1 has a solution in (2 cos(�=m ); 2). Let
� +

m denote the largest solution in this interval. Further, if m � 5 then Pm (� ) = � 1
has a solution in (2 cos(3�= (2m)) ; 2) since � 2 cot(3�= (2m)) < � 1. For m � 4 let
� �

m denote the largest solution to Pm (� ) = � 1 in (0; 2), which is in the interval
(2 cos(3�= (2m)) ; 2) if m � 5, while an explicit calculation gives that � �

4 = 1.
Throughout the following calculations we use the notation r n (� ) from (3.6).

Lemma 4.1. For m � 4 it holds that P0
m (� ) > 0 for � �

m < � < 2, that � �
m < � +

m ,
and that � 1 < P m (� ) < 1 for � �

m < � < � +
m .

Proof. Explicitly P4(� ) = �U 3(�= 2) = � 4 � 2� 2, so that P0
4(� ) = 4( � 3 � 1) and

these claims are clear form = 4.
Suppose now thatm � 5. We observe �rst that, by induction, it follows that,

for n 2 N, r n (� ) is strictly decreasing on (0; �=n + �=n 2). For r 1(� ) = 2 cos � , so
that this is clearly true for n = 1, and if it is true for some n 2 N then

r n +1 (� ) = 2 cot � sin((n + 1) � ) = cos � (r n (� ) + 2 cos n� )

is strictly decreasing on (0; �= (n + 1) + �= (n + 1) 2) � (0; �=n ). We observe next
that

r m (�=m + �=m 2) = � 2 cos(�=m + �=m 2) sin(�=m )=sin(�=m + �=m 2)

< �
2m cos(�= 5 + �= 25)

m + 1
< � 10 cos(6�= 25)=6 < � 1;

where we have used that sina=sinb > a=b for 0 < a < b < � . Since r m (� ) =
Pm (2 cos� ), these observations imply that, on (2 cos(�=m + �=m 2); 2), Pm (� ) is
strictly increasing, and that � �

m > 2 cos(�=m + �=m 2). Thus P0
m (� ) �

m � +
m
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Lemma 4.3. For m
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As an example of the above lemma, suppose thatk = ( � 1; 1) 2 K 2. Then
(see Table 1) pk (� ) = � 2 and, from (2.8), specAper

k = f x � ix : � 1 � x � 1g.
There are precisely four points,� 1� i 2 specAper

k nint(� � ). These are not interior
points of � � since they lie on the boundary of� � � � � � .

Combining the above lemma with Theorem 3.8, we obtain the last result of
this section.

Theorem 4.6. � � is the closure of its interior.

Proof. Suppose� 2 � � . Then, by Theorem 3.8,� is the limit of a sequence (� n ) �
� S

1 , and, by Lemma 4.5, for eachn there exists� n 2 int(� � ) such that j� n � � n j <
n� 1, so that � n ! � as n ! 1 . �

5. Filled Julia sets in ��

It was shown in [17] that, for every polynomial symmetry p 2 S, the corresponding
Julia set J (p) satis�es J (p) � U(p) � � � , where U(p) is de�ned by (1.7). (The
argument in [17] is that J (p) � U(p) by (2.10), and that U(p) � � � by (3.4).) It
was conjectured in [17] that also the �lled Julia set K (p) � U(p) � � � , for every
p 2 S. In this section we will �rst show by a counterexample that this conjecture
is false; we will exhibit a p 2 S of degree 18 for whichK (p) 6� U(p). However, we
have no reason to doubt a modi�ed conjecture, that K (p) � � � , for all p 2 S.
And the main result of this section will be to prove that K (p) � � � for a large
class ofp 2 S, including p = Pm , for m � 2.

Our �rst result is the claimed counterexample.

Lemma 5.1. Let k = (1 ; � 1; 1; 1; 1; � 1; 1; � 1; � 1; 1; � 1; 1; 1; 1; � 1; 1; � 1; 1), so that
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for 1:215� � � 1:216. But this implies that jp0(� � )j � j p0(1:2155)j+0 :0005� 400�
0:91, so that � � is an attracting �xed point. �

Numerical results suggest that amongst the polynomialsp 2 S of degree� 20,
there is only one other similar counterexample of a polynomial with an attracting
�xed point outside the unit disk, the other example of degree 19.

We turn now to positive results. Part of our argument will be to show, for
every p 2 S, that f z, that f z0005
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in Section 2, J (p) = @K(p) = @Ap(0) = @Ap(1 ), and, sinceK (p) has more than
one component,FB (p) has in�nitely many components [2, Theorem IV 1.2].

The above example is a particular instance of a more general result. It is
straightforward to see that if p is a polynomial with zeros only on the real line,
then all the critical points are also on the real line. Since, by Lemma 3.5,Pm (� ) =
�U m � 1(�= 2), and all the zeros of the polynomialUm � 1 are real, it follows that all
the zeros ofPm are real, so all its critical points are also real, and so the orbits of
all the critical points are real. Further, by Corollary 5.3, the orbits of the critical
points in K (p) stay in ( � 2; 2). Likewise, as (see (3.7))P �

m (� ) = i � m Pm (i � ), all the
critical points of P �

m lie on iR, and so the orbits of these critical points are real if
m is even, pure imaginary ifm is odd. Further, by Corollary 5.3, the orbits of the
critical points in K (p) stay in ( � 2; 2) [ i( � 2; 2). Applying Theorem 5.5 we obtain:

Corollary 5.6. K (Pm ) � � � and K (P �
m ) � � � , for m � 2.

Numerical experiments carried out for the polynomials p 2 S of degree�
6 (exhibited in Table 1) appear to con�rm that these polynomials satisfy the
conditions of Theorem 5.5, i.e., it appears�

mm
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� 1 and to � � and � and their boundaries. Further, [17] has shown that � � contains
the Julia sets of all polynomials in S, and Proposition 5.5 and Corollary 5.6 show
that � � contains the �lled Julia sets, many of which have fractal boundaries, of
the polynomials in an in�nite subset of S.

Regarding these polynomial symmetries we make two further conjectures:

5. K (p) � � � for all p 2 S.
6. p� 1(�)
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