
 
 

 
 
 



Satellite-supported �ood forecasting in river networks: a real case
study
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Abstract

Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the
�oodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast un-
certainty. This has the potential to keep the forecast on track, so providing an Earth Observation



1. Introduction

While there are recent advances in low-cost telemetered networks for long-life �ood monitor-
ing and warning applications, oriented to be deployed over large areas (e.g., Mar�́n-Pérez et al.,
2012), the actual number of operational gauges is actually declining in the world (Vörösmarty
et al., 2001



horizontal channel with a bump, with known in�ow and known downstream slope. Later, Durand
et al. (2014



2. Methods

2.1. Study domain

This study focuses on an area of the lower Severn and Avon rivers in the South West United
Kingdom, over a 30:6� 49:8 km2 (1 524 km2) domain. Fig. 1 depicts the study area for the �ood
model. Four our investigation, we used a real case based on an event that occurred in November
2012. We used a previous event in July 2007 in the same location as a calibration scenario. In
the calibration event, the two major rivers su� ered a substantial degree of overbank �ooding.
The event of 23 November–4 December 2012 recorded a maximum water depth of 5.21 m at
the Saxon's Lode gauge near Tewkesbury. Also both the Severn and Avon were in �ood in this
event. Tewkesbury lies at the con�uence of the Severn, �owing from the Northwest, and the
Avon, �owing from the Northeast.

2.2. Rainfall-runo� model and in�ow generation

In the experimental setup we emulated a real forecast scenario, in which the precipitation



the sequence was acquired just before the �ood peak in the Severn (see Fig. 3). Although the
river went back in bank on 30 November, we continued the imaging as a substantial amount of
water remained on the �oodplain. It is worth noting that water levels on the �ood plain at the
end of the event were much higher than those in the channel. All CSK images were HH polar-
isation, providing good discrimination between �ooded and non-�ooded regions. Details of the
overpasses are given in Table 1.

Processing level was 1C-GEC, which meant that the images were geo-corrected to� 100 m.
It was necessary to register the images to British National Grid coordinates using ground control
points and a digital map, when a registration accuracy of better than 2 pixels (of size 2.5 m) was
obtained.

Detection of the �ood extent in each image was performed using the segmentation technique
described in Mason et al. (2012a), which groups the very large numbers of pixels in the scene into
homogeneous regions. As there was no �ooding of urban areas, only the rural �ood detection
algorithm was used. The scale parameters for the segmentation were the same as those used
in Mason et al. (2012a). A critical step is the automatic determination of a threshold on the
region mean SAR backscatter, such that regions having mean backscatter below the threshold
are classi�ed as �ooded, and others as un-�ooded. The initial rural �ood classi�cation may be
improved in a number of ways. For example, in the clean-up stage, �ood regions were deleted
if their mean height was above 14 m above ordnance datum (AOD). Heights were obtained from
an image constructed from 24 2� 2 km UK Environment Agency (EA) LiDAR tiles covering
the hydrodynamic model domain (Fig. 1). Fig. 2 shows the �ood extents detected in the images,
overlain on the SAR data in the hydrodynamic model domain. The sequence shows the �ood
wave moving down the river, and the �ood at Tewkesbury gradually dying away, starting on the
Avon. In general terms, regarding the spatial coverage of the images, the Severn was imaged
up to the Latitude of Worcester, the Teme up to the Longitude of Bransford, and the Avon up to
the Longitude of Besford Bridge. Also, the �rst image (2012-11-27) just covered up to� 2 km
downstream from Kempsey.

WLOs were extracted from the �ood extent waterlines by intersecting the extents with high
resolution �oodplain topography (airborne LiDAR of 1 m or 2 m pixel size) using the method
described in Mason et al. (2012b). The method selects candidate waterline points in �ooded
rural areas having low slope and vegetation, so that small errors in waterline position have little
e� ect on waterline level. The waterline levels and positions are corrected for the e� ects of double



Table 1: Details of COSMO-SkyMed overpasses.

Timestamp (UTC) Pass Indicence angle
27/11/12 19:20 Descending 49�

28/11/12 18:01 Descending 51�

29/11/12 18:20 Descending 32�



2.6. The ensemble �lter
We conducted synchronous assimilation of the observations. That is, the �ood model simula-

tions were sequentially interrupted as assimilation was conducted at the time of the correspond-
ing CSK overpasses. Whenever we simultaneously estimated uncertain parameters or errors in
in�ow boundary conditions at the time of the assimilation, we did so as part of the data assimila-
tion by using state space augmentation (Friedland, 1969). As the model state is augmented with
model parameters, the assimilation scheme is able to take into account correlations between the
errors in the parameters and the errors in the model variables. In data assimilation schemes using
such an approach, the analysis updates an augmented state vector 2 < n,
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wherez is the ns-dimensional model state (water levels in our case) and� is a genericn� -
dimensional vector of parameters (including instantaneous in�ow errors for the cases where these
are simultaneously estimated). Thus,n = ns + n� .

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994), is characterised by a
two step feedback loop: a prediction and an observation update. In each step, an ensemble of
augmented state vectors is interpreted as a statistical sample of the forecast or analysis uncer-
tainty, respectively. Thus iff ig(i = 1; : : : ;m) is anm-member ensemble, then the ensemble
mean is then-vector de�ned by
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be indirect or not located at model grid points, so thep � n matrix H, known as the observation
operator (or “forward” operator) is required to map the state vector to the observation space. The
Kalman gain,

K = 	 f (H	 f )T
�
H	 f (H	 f )T + R

� � 1
; (9)

is ann � p matrix, where the superscript “T” denotes matrix transposition, andR is the p � p
observation error covariance matrix. This update may be thought of as a linear combination of
the forecast and the observations, weighted by the uncertainty in the given model and observa-
tion data. The term� y = y � H f is usually called the vector of “innovations”, indicating the
di� erence between the observations and the forecast; the Kalman gain,K, contains the weights
given to the innovations to update the system;� =  a �  f , is called the vector of “increments”
and is the di� erence between the analysis and the forecast.

As well as updating the ensemble mean, we must also update the ensemble perturbations,
giving an ensemble estimate of the analysis error covariance as

Pa =
�
	 f � KH 	 f

� �
	 f

�T
: (10)

There are a number of possible computational implementations for updating the ensemble.
In this work, we used an Ensemble Transform Kalman Filter (ETKF) in an unbiased formulation
with a symmetric square-root (



a novel distance metric based on a channel network distance, which allows us to distinguish
between �ows in adjacent channels that may be close together in a Euclidean sense.

For �oods developed around a channel network (e.g., a river network, as in this case study),
one could expect the physical connectivity of �ows to in�uence the development of the fore-
cast error covariance. Thus a localization taking into account the along-network distance would
not only be more physically meaningful than an “as-the-crow-�ies”-based localization, but also
should lead to an improved forecast skill. To this end, assuming that the �ood is developed around
a pre-existing (river/urban) network, the channel network can be vectorised and the chainage of
the network used for calculating along-network distances. LetX be the set of points of inter-
est for localization, and we denote asXc the minimum-distance mapping ofX into the channel
network. With this, let us de�ne our along-network metric for localization,dn(xi ; x j), as

dn(xi ; x j) = max
n
de(xi ; x j); ds(xc

i ; xc
j )

o
; (11)

wherede(:; :) denotes the “as-the-crow-�ies” Euclidean distance, which is evaluated uponX, and
ds(:; :) is the distance evaluated along the chainage provided by the vectorised channel network,
which is evaluated uponXc. The rationale for includingde(:; :) in the de�nition of dn(:; :) is
to provide a minimum distance threshold for nearby couple of points (xi ; x j), which might for





radius for bathymetry, to provide a minimal analysis of the in�uence of the localization radius
on the distributed bathymetry estimation and the general estimation process.

Regarding the parameter spatial support, friction was considered as two global parameters
described by the Manning's coe� cient: one scalar vs.



Table 2: Summary of �lter con�gurations for assimilation.a

code h q dsl � c bat

ub ic ld u i l u i l u i l u i l
a T 0.5 F F – – T 0.0 F F – – F – –
b T 0.5 F T 0.0 F T 0.0 F F – – F – –
c T 0.5 de(20) F – – T 0.0 de(10) F – – F – –
d T 0.5 de(20) T 0.0 de(20) T 0.0 de(10) F – – F – –
e T 0.5 dn(20) F – – T 0.0 dn(10) F – – F – –
f T 0.5 dn(20) T 0.0 dn(20) T 0.0 dn(10) F – – F – –
g T 0.5 dn(20) F – – T 0.0 dn(10) T 1.0 F F – –
h T 0.5 dn(20) F – – T 0.0 dn(10) F – – T 1.0 dn(10)



In Fig. 4 the updated forecast error covariance between level at Bredon and levels elsewhere
is also shown as the background for each con�guration. Note that both the colour scales and
the symbolic representation ofK i; j are independent for each plot to ease visualisation. For this
�gure we have selected �lters with in�ow updating, as these tend to behave better than similar
ones without in�ow estimation (see Section 3.3 below). Also, we focus here on the situation
pertaining to the assimilation of WLOs from the last CSK overpass, as this summarizes the
cumulative feedback of the di� erent �lters along the sequential assimilation in the event.

Filter (b), the global �lter, leads to sparsely distributed non-negligibleK i; j values through-
out the domain, with many distant observations in�uencing the updating at Bredon. Not only are
there many signi�cant gain values along the whole Severn, but also the highest value (max

�
K i;:

	
=

0:023) at this last overpass (t = 7) is in a tributary of the Severn, a signi�cant distance away from
Bredon. Also, the gain values have a skewed distribution with a just a few WLOs having high
gain values and then many other observations gathering around low, albeit non-negligible, val-
ues. In general, the situation is far from what one would expect from a properly constructed
assimilation system, and it is also likely to hamper the robustness of the �lter to possible anoma-
lous (outlying) innovations. This situation arises from the assimilation sequence throughout the
event, in which spurious correlations are not properly damped. Thus the global �lter ends up
with a system in which these spurious correlations have a dominant e� ect, leading to relation-
ships which are unlikely to happen in the real physical system. Moreover, at this stage in the
event the water levels at observation locations surrounding Bredon have a negative correlation
with the level at Bredon, leading to negative gain values (red squares), which do not have any
physical reason to happen. A strongly-related problem is the collapse of the variance, as the
development of spurious correlations leads in turn to too much weight being put onto the ob-
servations in the early stages of the event and promotes variance collapse. As the assimilation
proceeds, the global �lter leads to a general underestimation of the variance and �lter divergence,
here exempli�ed via the over-�attened map of the forecast error covariance with Bredon, and its
low sum of absolute values of the corresponding Kalman gain values (

P p
j=1 jK i; j j = 0:3).

On the other hand, �lter (d), withde



approach.
The in�uence of simultaneous parameter estimation is discussed in Section 3.4. However,

we include �lter (l), which is similar to (f) but with simultaneous estimation of global channel
friction and distributed bathymetry, to summarize that it leads to a situation which seems even
more physically sound than that from (f) from the point of view of the spatial distribution and
share of the Kalman gain values. The higher gain values are now very well distributed around
Bredon, and with slightly higher weights given to those WLOs downstream from Bredon. The
situation seems very close to ideal, with properly developed forecast error covariances, with
respect to what one could expect at this stage of the event. There are a few distant minor negative
gain values in the row, but given their relative values these become insigni�cant in the updating.
Other aspects of the case are discussed in Section 3.4.

3.3. In�ow estimation
As indicated in Section 2.4, the satellite sequence was not covering the boundary condition

locations for the major in�ows to the �ood model domain. For the three major rivers, the cover-
age was up to�



may be subject to biases because of errors or unaccounted hysteresis in the rating curves, etc.)
are to the assimilation-based estimates of total in�ow to the system.

Summarising Table 3, the assimilation in all �lter con�gurations generally moves the prior
in�ows away from the gauged in�ows. This is indicated by the positive values in parenthesis in
the RMS row. As indicated, this should not be interpreted as whether the assimilation is doing a
bad job. On the contrary, this may well be the case that the satellite-based WLOs are providing
information, to improve the estimation of total in�ows into the system, not contained either in
the gauged in�ow boundary condition nor in the prior in�ows, forecasted from the catchment-
scale hydrologic models. Without further information, to evaluate whether the assimilation is
then performing well in estimating in�ow errors and whether this online in�ow error estima-
tion/correction is an useful operational strategy, one needs to evaluate how the �ood forecast
behaves downstream and whether the estimated in�ow errors are properly allocated to the corre-
sponding sources. In the context studied, this refers to a loose relationship between �ooded areas
and corresponding assumed point in�ow boundary conditions.

For example, Table 3 shows two opposed con�gurations with similar RMS [�lter (b) and
�lter (l)]. Filter (b) is in fact the only con�guration which brings the updated in�ow from Be-
wdley closer to the gauged in�ows (� RMSE= � 2:95 m3s� 1). Fig. 5 shows the evolution of the
updated in�ows at Bewdley for these two �lters; i.e. the global �lter (b), and the �lter (l), with
dn-metric localization and simultaneous friction and bathymetry estimation. Filter (b) behaves
rather erratically, in agreement with the discussion about the lack of robustness of the �lter in
Section 3.2. For example, the assimilation of the WLOs from the 2nd and 6th overpasses creates
positive increments, which are interspersed with the negative increments related to the 3rd and
the 7th overpasses. On the other hand, �lter (l) has a small increment at the 1st overpass, and then
onwards, the increments become negligible. To provide some insight into the reasons leading to
these di� erent situations, let us focus now on the forecast error covariances after the 1st assimi-
lation step between the �ows at Bewdley (in�ow to the Severn) and the water levels elsewhere.
This is depicted by Fig. 6 for the same �lters as Fig. 4. Filter (b) shows a strong component of
the updating is due to spurious correlations, not only from smaller tributaries downstream, but
also even from a set of negative Kalman gain values assigned to WLOs too distant in the Avon.
The evolution of the spatial distribution of the Kalman gain values in �lter (b) is highly erratic
along the event, with the highest gain values continually displacing from one location to another
between sequential assimilation steps (not shown; available on request), and leading to a degen-
erate situation by the 7th overpass, where a highly skewed dsitribution of the gain values (in the
row) and the growth of spurious correlation with WLOs in smaller tributaries is very similar to
that of Fig. 4 for the same �lter.

Filter (d), however, adequately takes into account the most upstream observations in the
Severn to update the in�ows. Still there are non negligible spurious gain values in tributaries
downstream. Filters (f) and (l) are both similar to (d) but more e� ective at damping the spurious
correlation with water levels at downstream tributaries. The evolution of the distribution of
Kalman gain values in the sequential assimilation is then very similar for (d), (f), and (l) (not
shown). For these, the spatial distribution of gain values is much more stable in time, and the
�lters are e



without/with simultaneous in�ow estimation indicates that the online in�ow updating lead to
improved forecasts if localization is applied [e.g., (c) versus (d), or (e) versus (f)]. This improve-
ment also applies if friction is simultaneously estimated [(g) vs. (j)], but the statistics are similar
for those con�gurations with simultaneous bathymetry estimation [(h) vs. (k), or (i) vs. (l)].

On the other hand, in the global �lters [(a) vs. (b)] the simultaneous in�ow updating further
promotes ensemble collapse and divergence. This is re�ected in the larger RMSE in (b) with
respect to (a), and can be seen, e.g., in the water level time series plots for con�guration (b) in
Worcester in the Severn (Fig. 7), Mythe Bridge downstream in the Severn close to the junction
with the Avon (Fig. 8), or Bredon in the Avon (Fig. 9). Thus, just the �lters with localization,
with improved accounting of the forecast error covariances, are able to better exploit the added
freedom of in�ow updating, behaving better throughout the event than the versions with pre-
scribed in�ows. The bene�t of the simultaneous in�ows estimation shown in Table 4 is also
shown by a pairwise comparion of the �lter withde-metric localization [(c) vs. (d)] or the �lters
with dn-metric localization [(e) vs. (f)] in time series (Figs. 7, 8, and 9).

Table 3: RMSE of in�ows for �lters with in�ow updating.a;b

b d f j k l
besfordbridgeq 1.84(0.24) 1.94(0.35) 1.79(0.20) 1.74(0.15) 1.82(0.23) 1.75(0.16)

bewdleyq 82.87(-2.95) 122.26(36.44) 108.86(23.04) 107.34(21.52) 97.63(11.81) 95.92(10.10)
eveshamq 33.43(12.79) 32.07(11.43) 23.82(3.18) 23.49(2.85) 23.62(2.98) 23.93(3.30)

harfordhill q 1.12(0.37) 0.96(0.20) 1.32(0.57) 1.21(0.46) 0.96(0.20) 0.95(0.19)
hinton q 0.65(0.10) 0.48(-0.07) 0.49(-0.06) 0.49(-0.06) 0.53(-0.02) 0.52(-0.03)

kidder callows ln us q 1.24(-0.60) 1.20(-0.64) 1.42(-0.42) 1.41(-0.42) 1.50(-0.33) 1.54(-0.30)
knightsfordbridgeq 48.38(4.66) 49.56(5.84) 59.34(15.61) 58.08(14.35) 51.13(7.41) 49.00(5.27)

RMSc 38.42(5.27) 51.33(14.61) 47.73(10.59) 46.99(9.84) 42.61(5.39) 41.72(4.49)
a[m3s� 1]. RMSE measured against gauged in�ows within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].
bIn parentheses is the RMSE minus the RMSE of the prior in�ows (forecast of the hydrologic models).
cRMS of the values for the corresponding column.

Table 4: RMSE of water levels at gauged locations for the �lters evaluated.a

a b c d e f g h i j k l m
bransfordh 0.79 0.90 0.80 0.95 0.81 1.34 0.85 1.00 0.98 1.30 1.14 1.18 1.00

bredonh 0.66 0.65 0.69 0.40 0.69 0.40 0.67 0.85 0.89 0.45 0.74 0.72 0.60
kempseyh 1.22 1.43 1.26 0.57 1.27 0.60 1.17 1.22 1.28 0.65 1.16 1.18 1.06

mythebridgeh 0.69 0.79 0.73 0.50 0.73 0.46 0.72 0.86 0.79 0.51 0.76 0.76 0.65
saxonslode us h 0.94 1.12 0.98 0.56 0.99 0.55 0.94 1.16 1.22 0.60 1.20 1.26 1.24

shuthongerh 0.38 0.49 0.42 0.22 0.42 0.22 0.41 0.63 0.55 0.25 0.52 0.55 0.39
worcesterh 1.33 1.55 1.37 0.48 1.38 0.61 1.28 1.29 1.48 0.66 1.27 1.23 1.02

RMS 0.91 1.06 0.94 0.56 0.95 0.68 0.91 1.03 1.07 0.70 1.01 1.02 0.90
a[m]. RMSE measured against gauged water levels within [2012-11-27 19:20:00 UTC, 2012-12-05 23:00:00 UTC].

Overall, the two �lters with better performance in the group without friction and/or bathymetry
estimation (a–f) are the �lters with localization and simultaneous in�ow estimation. According
to Table 4, these are �lter (d) withde-metric localization (RMS= 0:56 m), and (f) withdn-metric
localization (RMS= 0:68 m). While the RMS is slightly better for �lter (d), the evaluation of
the forecast error covariance (for example, as shown in Figs. 4, and 6) indicates that the along-
network-based localization is preferable as a forecast error covariance moderation process, and
helps further to prevent the development of spurious correlations, which should be adequate for
local parameter estimation. Also in the downstream areas, where most of the �ood occurred
(Mythe Bridge, Saxons Lode US, and Bredon) the RMSE is equal or better for �lter (f).

Thus in the following section on simultaneous parameter estimation we focus the discussion
on �lter con�gurations withdn-based localization.
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3.4. Parameter estimation

In this section we focus on �lter con�gurations with simultaneous friction and/or bathymetry



be re�ected in a sensitivity of the �ood forecast to the (likely) improved friction estimates, so
leading to a better forecast. However, the convergence being gradual, it seems the DA-forecast
cycle does not have time to bene�t from the updated friction.

Fig. 11 shows the evolution of bathymetry, along the event, for the rivers Severn and Avon,
and �lter con�guration (k). The chainage 0 for the Avon refers to its junction with the Sev-
ern, very close to Mythe Bridge. All the �lters including bathymetry estimation with identi-
cal localization radius for bathymetry, either with/without simultaneous friction estimation, or
with/without simultaneous in�ow bias correction (i.e. �lters [h], [i], [k], and [l]) show a nearly
identical convergence, supporting the robustness of the estimation shown in Fig. 11, indepen-
dently from other factors. The sequential updating converges systematically toward a pro�le in
which, after the event, the lower part of the Severn is nearly 2 m higher than the prior bathymetry,
and the transect between Saxons Lode US and Kempsey gauges is lower than the prior (at some
points reaching� 1.5 m of di� erence with respect to the prior). The highest increments in the
updating are due to the assimilation of WLOs from the �rst overpass. Thereafter, the updating
increments become gradually smaller along time. The updatings summarize the in�uence of the
channel conveyance on the �ood development. Globally, the SAR-WLOs seem to indicate that
the prior bathymetry was leading to a model which overestimated the release of water from the
�ooded domain during the early stages of the event. The sequential increments in the bathymetry
along the Avon are also systematic, leading to a raised channel bed pro�le with respect to the
prior. In both rivers, the e� ect of the localization is clearly visible. That is, moving upstream,
the increments become gradually smaller as the bed locations move away from the observations
(e.g., in the Severn the WLOs roughly generally covered up to the 40 km chainage coordinate,
close to Kemspey). The consistent and systematic sequential increments indicate a physical basis
for these, as happened with



5 km of the domain remained unobserved during the event (i.e., as a results of the multicriteria
screening to obtain the WLOs to be assimilated, none of these was located in the last 5 km of
the Severn within the domain). As in the experimental design we did not provide any in�ation
for bathymetry, the channel bed estimated variance is gradually reduced along the sequential
assimilation, and by time the most downstream area (around Mythe Bridge and toward the South)
has the strongest in�uence on the release of water from the domain, the bathymetry spread is
too low to be properly updated (and the WLOs did not reach the last� 5 km of the South
of the domain —see, e.g., Fig. 4—). A plot similar to Fig. 11, but regarding the evolution of
the bathymetry ensemble spread along the sequential assimilation indicates that the standard
deviation of bathymetry around Mythe Bridge decreases from an initial 0.8 m until a �nal 0.4 m
(not shown; available on request). The chosen c.v.=0.15 in the bathymetry error generation,
re�ects our con�dence in the prior bathymetry estimates.

Overall, it seems that either the chosen 5 000 m spatial correlation length in the stochastic
generation of the bathymetry error was too high or the 10 000 m localization window for the
dn-based localization for bathymetry estimation was too high (or both factors), leading to an
overshooting of the downstream bathymetry increments, and subsequent problems. To test this
point, we conducted a further simulation (�lter con�guration [m]) with 5 000 m as localization
window for bathymetry estimation. In e� ect, the general trends in the sequential bathymetry
updating are similar to the previous experiments, but the increments gradually fade downstream
(see supplementary material). This translates into a steeper recession limbs (closer to those of
con�guration [f]) and better statistics (see [m] versus [l] in Table 4). Thus everything indicates
that by tuning the localization radii and correlation length in the bathymetry error generation
the simultaneous parameter/state estimation process could be further improved. However, as
indicated in the experimental design, to provide a detailed exploration of the parameter space
and localization parameters goes beyond the scope of the current study.

4. Conclusions

We have shown that under a relatively complex scenario with simultaneous uncertain in-
�ows into a �ooded domain, a satellite-based forecast of the �ood with high accuracy is possible
through the assimilation of the satellite-based WLOs into a �ood forecast model. However, sev-
eral aspects should be taken into account for a successful operational application of EnKF-based
assimilation of EO-based WLOs and forecast. First, a moderation of the forecast error covariance
based on spatial localization is necessary to avoid �lter divergence. Second, in�ow estimation
also improves the forecast. This second point is only valid if localization is applied, otherwise
the incorrect forecast error covariance development in the global �lter prevents any bene�t from
online in�ow estimation and bias correction. Third, the implementation should consider the
possible uncertainty in model parameters and their simultaneous online estimation.

The study shows that if the physical connectivity of �ows is considered in the form of the
newly proposed along-network metric for the localization, the development of forecast error
covariances is sounder than that resulting from the use of a standard as-the-crow-�ies distance.
The relevance of this regarding the forecast skill should depend on the geometry of the network



studied case. In other cases (steeper rivers, faster �ow, etc.) things might be di� erent. The
localization parameters used in the case study for bathymetry estimation seem to be far from
optimal, and tuning these parameters could lead to a better estimates in the inverse problem (i.e.
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Figure 1: Flood model domain. OSGB 1936 British National Grid projection; coordinates in meters. Grey labels indicate
the three larger rivers (thick black lines). The red polygon surrounds the Tewkesbury urban area. Orange labels/dots refer
to the 7 in�ow boundary conditions, some of them on smaller tributaries (thin black lines). The yellow line to the South
indicates a free-surface boundary condition, with the label indicating theprior mean bed slope. Red labels/green dots
show locations with available stage observations, just used for validation in the forecast mode. The background is the
75 m resolution DEM used for the model, obtained by upscaling the 5 m NEXTMAP British digital terrain model.
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Figure 2: Flood extents (blue) for the forecast event (November 2012), overlain on SAR in �ood model domain.

Figure 3: In�ows into the �ood domain for the forecast event, in November 2012. As a reference, blue lines are in�ows
as measured by standard gauges (not used as data input here). Grey lines are the 150-member forecast ensemble from
the hydrologic models, used as input by the �ood model. Dashed red lines are the ensemble means. Vertical dashed lines
show COSMO-SkyMed overpass times.
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Figure 4: Updated error covariance between the state variable (water level) at Bredon and the state vector (water level
elsewhere) at the last assimilation step (7th CSK overpass). Plot labels (b, d, f, and l) refer to the corresponding �l-
ters (see Table 2). The red circle indicates the location of Bredon. The set of squares, with each one centered at the
corresponding observation location, is a symbolic representation ofK i;: (beingi the state vector index corresponding to
water level Bredon) at the corresponding assimilation step and �lter. The side length of each square is proportional to the
correspondingK i; j value, where the biggest square in each plot relates to max

�
K i;:

	
(e.g., 0:023 in �lter [b]). The sum

of the absolute Kalman gain values in the row is indicated by
P p

j=1 jK i; j j. Green/red squares are positive/negative gain
values.
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Figure 5: In�ow estimation at Bewdley for �lters with con�guration (b) and (l), as speci�ed in Table 2.
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Figure 6: Updated error covariance between the in�ow boundary conditions at Bewdley and the state vector (water
level elsewhere) at the �rst assimilation step (1th CSK overpass) for the same �lter than Fig. 4. Plots focus on the
satellite coverage area, thus Bewdley location is not shown. Description is as Fig. 4, being nowi the state vector index
corresponding to in�ow errors at Bewdley.
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Figure 7: Water level forecast at Worcester, whose major in�ows come from Bewdley (river Severn), Kidder Callows Ln
Us (river Stour), and Harford Hill (river Salwarpe). Plot labels refer to the corresponding �lter con�gurations (Table 2).
For each plot, grey lines are the forecast ensemble, the red line is the mean forecast and the blue line is the gauged water
level, included as a reference. Vertical dashed lines indicate the times of the CSK overpasses/assimilation. Horizontal
lines indicate the bank level (labelled as “dtmd”), and theprior mean channel bottom level (labelled as “SGCz”).
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Figure 8: Water level forecast at Mythe Bridge, in the Severn. Description as in Fig. 7.
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Figure 9: Water level forecast at Bredon, in the Avon. Description as in Fig. 7.
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Figure 10: Evolution of the estimate of the global Manning's coe� cient along the sequential assimilation steps for the
three major rivers (Severn, Avon, and Teme), and �lter con�guration (j).
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Figure 11: Evolution of the estimate of bathymetry along the sequential assimilation steps for the river Severn (top), and
the Avon (bottom), for the �lter con�guration (k). The ticks at the bottom indicate the location of the available cross
sections. The vertical dashed lines and corresponding labels indicate the location of level gauges used for water level
validation.
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