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A �nite di �





solution. Numerical results for all our examples are provided in x4, and some conclusions are
presented inx5.64

We remark �nally that our investigation is con�ned to initial-boundary-value problems for
which the solutionu(x; t) is one-signed in the interior of the domain, which is su� cient for the66

validity of the method.

2. Conservation-based moving mesh methods68

Let u(x; t) be a positive solution of the generic time-dependent scalar PDE

@u(x; t)
@t

= L u(x; t); t > t0; x 2 (a(t); b(t)); (1)

whereL is a purely spatial di� erential operator. In all of our examples we have a moving70

boundary atx = b(t) at which we impose the following boundary conditions

u(b(t); t) = 0; (2)

u(b(t); t)
db
dt

= 0: (3)

The initial condition is72

u(x; t0) = u0(x); x 2 (a(t0); b(t0)):

We introduce a time-dependent space coordinate ˜x(x; t) which coincides instantaneously with the
�xed coordinatex. Consider two such coordinates, ˜x(x1; t) andx̃(x2; t), in (a(t); b(t)), abbreviated74

to x̃1(t) and x̃2(t). The rate of change of the mass in the subinterval ( ˜x1(t); x̃2(t)) is given by
Leibnitz' Integral Rule in the form76

d
dt

Z x̃2(t)

x̃1(t)
u(s; t) ds =

Z x̃2(t)

x̃1(t)

 
@u(s; t)

@t
+

@
@s

(u(s; t)v(s; t))
!

ds; (4)

where

v(x; t) =
dx̃
dt

�����
x̃=x

(5)

is a local velocity. We denote the total mass by78

� (t) :=
Z b(t)

a(t)
u(x; t) dx: (6)

2.1. A method based on preservation of partial masses

We begin by describing a solution method for problems that conserve the total integral (global80

mass) of the solution, i.e. for which(t))̃



and the Eulerian conservation law,

@u(x; t)
@t

+
@
@x

(u(x; t)v(x; t)) = 0: (8)

From (8) and the PDE (1) we have84

L u(x; t) +
@
@x

(u(x; t)v(x; t)) = 0; (9)

which, givenu(x; t









3.1. The Porous Medium Equation

The PME is the simplest nonlinear di� usion problem which arises in a physically natural158

way, describing processes involving �uid �ow, heat transfer or di� usion. It also occurs in math-
ematical biology and other �elds [24]. We assume the initialdata is symmetrical about its centre160

of mass, taken to be the origin, in which case the PME takes theform

@u
@t

=
@
@x

 
un @u

@x

!
; t > t0; x 2 (� b(t); b(t));

with u(� b(t); t) = u(b(t); t) = 0 andu(� b(t); t)db=dt = 0. For this problem the total mass (6) is162

conserved and the centre of mass is �xed in time [24], from which it follows that the solution
retains the symmetry of the initial data for all time. We therefore model only half of the region,164

i.e. x(t) 2 [0;b(t)], with a(t) = 0 as the anchor point for allt. For the half problem we have

@u
@x

= 0 at x = 0; (24)

by symmetry. From (10) the velocity is given by166

v(x; t) = �
1

u(x; t)

Z x

0

@
@s

 
u(s; t)n @u

@s

!
ds = � un� 1 @u

@x
= �

1
n

@(un)
@x

; t > t0; x 2 [0;b(t)): (25)

Given Xm
j andUm

j , j = 0;1; : : : ;N, m = 0;1;2; : : :, the �nite di� erence algorithm ofx 2.1 is
used to calculate the velocityVm

j at each nodej, j = 0;1; : : : ;N, then the new nodal positions168

Xm+1
j , and �nally the approximate solutionUm+1

j . A standard discretisation of the velocity (25)
at interior nodes is170

Vm
j = �

1
n

0
BBBBB@
(Um

j+1)n � (Um
j� 1)n

Xm
j+1 � Xm

j� 1

1
CCCCCA; j = 1;2; :::;N � 1;

which, although of second order on a uniform mesh, is only a �rst order discretisation on a non-
uniform mesh. An approximation which is second order on a non-uniform mesh (i.e. exact for172

quadratics) uses all three valuesUm
j� 1, Um

j andUm
j+1, and is

Vm
j = �

1
n

0
BBBBBBBBBB@

1
� + Xm

j

�
� + (U jm)n

� + Xm
j

�
+ 1

� � Xm
j

�
� � (U jm)n

� � Xm
j

�

1
� + Xm

j
+ 1

� � Xm
j

1
CCCCCCCCCCA

; j = 1;2; :::;N � 1; (26)

where174

� +(�) j = (�) j+1 � (�) j and � � (�) j = (�) j � (�) j� 1

(see [21]). We note that equation (26) is an inversely weighted sum, or linear interpolation, of
the gradients� � (Um

j )n=� � Xm
j . The velocity atx = 0 is zero and at the moving boundaryx = Xm

N176

the velocityVm
N is extrapolated by a polynomial approximation using three adjacent points. The

new mesh is obtained at timetm+1 = tm + � t by the explicit Euler time-stepping scheme (14).178

The updated approximate solutionUm+1
j is given by (15),j = 1; : : : ;N � 1. At j = 0 the

approximate solutionUm+1
0 is calculated using (26) withX� 1 = � X1, approximating the boundary180

condition (24). At the outer boundary,Um+1
N = 0 from (2). Results are presented inx4.
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3.2. Richards' Equation182

Richards' equation is a nonlinear PDE which models the movement of moisture in an un-
saturated porous medium [23]. In the present paper we model aparticular form of Richards'184

equation, where the solution describes liquid �owing downwards through an unsaturated porous
medium, making it applicable to the tracking of a contaminated liquid. The equation is of the186

form



for x 2 [0;1], as in [9], giving initial total mass� (0) = 1=



3.4. The Crank-Gupta problem with a modi�ed boundary conditions224

There is no known analytical solution for the Crank-Gupta problem although approximate
solutions have been given in [10]. Hence, in order to compareour results to an exact solution226

we have modelled the Crank-Gupta PDE with a modi�ed boundary



values ofN̂, we denote the points of the mesh for a particular value ofN̂ by x j;N̂(t), j = 0; : : : ;N.
We then compute bothx2N̂� 1i;N̂(t) and u2N̂� 1i;N̂(t) � u(x2N̂� 1i;N̂(t); t) for eachi = 0; : : : ;10; this252

new notation allows comparison ofx j;N̂(t) andu j;N̂(t) at eleven di� erent points, determined by

j = 2N̂� 1i, i = 0; : : : ;10, for variousN. Where possible we compare the numerical outcomes254

with the exact solution and boundary position. When such a solution is not known, we compare
with numerical results determined using other methods. In each case we denote our reference256

solution byū(x; t), and our reference boundary position by ¯x(t).
Recalling that we have used explicit Euler time-stepping, in order to balance the spatial and258

temporal errors, we take� t = O
�
1=N2

�
, anticipating that the pointwise errorsjx̄(t) � xN;N̂(t)j and

jū(x2N̂� 1i;N̂(t); t) � u2N̂� 1i;N̂(t)j will decrease aŝN increases, for eachi = 0; : : : ;10.260

As a measure of the errors, we calculate the`2 norm of the error in our solution, and the
relative error of our boundary position, as de�ned by262

Eu
N :=

vt P 10
i=0 jū(x2N̂� 1i;N̂(T);T) � u2N̂� 1i;N̂(T)j2

P 10
i=0 jū(x2N̂� 1i;N̂(T);T)j2

; Ex
N :=

jx̄(T) � xN;N̂(T)j

jx̄(T)j
;

for N̂ = 1;2;3;4; : : : (i.e. N = 10;20;40;80; : : :). We investigate the hypothesis that

Eu
N �



and the exact boundary position, is

x̄(t) = b(t) = t1=(n+2)

r
2(n + 2)

n
:

As stated above, to balance the spatial and temporal errors we use� t = O
�
1=N2

�
, precisely274

� t = 0:4
�
4� N̂

�
. Convergence results forn = 1 are shown in Table 1. We see thatEu

N andEx
N

decrease asN increases. This suggests that as the number of nodes increases our approximations276

to both the solution and the boundary position are converging. The p andq values presented
strongly indicate second-order convergence of both the numerical solution and numerical bound-278

ary position.

N Eu
N pN Ex

N qN

10 7:715� 10� 3 - 1:451� 10� 3 -
20 1:941� 10� 3 2.0 3:066� 10� 4 2.2
40 4:976� 10� 4 2.0 7:138� 10� 5 2.1
80 1:259� 10� 4 2.0 1:730� 10� 5 2.0
160 3:166� 10� 5 2.0 4:262� 10� 6 2.0
320 7:937� 10� 6 2.0 1:058� 10� 6 2.0

Table 1: Relative errorsEu
N andEx

N, for the porous medium equation withn = 1.

The results from the self-similar solutions forn = 1;2;3 andN = 20 are given in Figures 1–3.280

In each case we see that with only twenty nodes in our mesh, theboundary position (Figures 1(b)–
3(b)) is computed very accurately (better than 1% relative error att = 5 in each case). From (47)282

we note that the exact solution forn = 2;3 has a steep gradient at the boundaries, as can be seen
in Figures 2(a) and 3(a). Figures 1(c)–3(c) show exactly howthe mesh moves. We observe a284

smooth even spread of the nodes, without mesh tangling, in all three cases.

4.2. Richards' Equation286

In this section we present results from applying the moving mesh method to Richards' equa-
tion, as described inx3.2. To test that the numerical solution from the moving meshmethod288

converges we compare the solution with that from a very �ne �xed mesh. All numerical results
presented here are forn = 3. In the absence of an exact reference solution we do not compare290

the position of the boundary.
We solve fort 2 [0;0:5] and compute results forN = 10 � 2N̂� 1, N̂ = 1; : : : ;4. We compare292

the numerical solutions with a numerical solution calculated by solving Richards' equation on
the �xed mesh ¯x j̄ 2 [� 4; 4], j̄ = 0;1; : : : ;10000, which is given by294

ū j̄+ 1

j = ) t j̄+ 1
j=

) = j=
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and compute results forN = 10� 2N̂� 1, N̂ = 1; : : : ;6. We compare the numerical outcomes with334

the exact solution (38), att = 0:1,

ū(x j;N̂(0:1); 0:1) = ex j;N̂(0:1)� 0:9 � x j;N̂(0:1) � 0:1:

To balance the spatial and temporal errors we use� t = O
�
1=N2

�
= 0:02

�
4� N̂

�
.336

Numerical results are shown in Table 4. We see thatEu
N decreases asN increases, and the

N Eu
N pN

10 7:581� 10� 3 -





Crank-Gupta problem, which models oxygen-di� usion through tissue. We examined the accu-
racy in all cases and found that the numerical solution converged with roughly second-order360

accuracy. Furthermore, for the Crank-Gupta problem, we found that preservation of mass frac-
tions can lead to higher resolution at the boundary, which isdesirable.362

Throughout this paper we have used an explicit Euler time-stepping scheme. Other explicit
time-stepping schemes we experimented with are the higher order methods built into Matlab364

(ODE23, ODE45, ODE15s); see [15] for details. There was little di� erence in the results from
all the Matlab solvers, indicating that none of the problemslead to a sti� system of ODEs for the366

x̃ j(t). We found that all the time-stepping schemes produced accurate and stable results, with no
mesh tangling, provided that su� ciently small time-steps were taken. It has been shown in [2]368

that the PME can also be solved by this moving mesh method witha semi-implicit time-stepping
scheme using larger time steps.370
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