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solution. Numerical results for all our examples are prediih x4, and some conclusions are
presented ix5.

We remark nally that our investigation is con ned to initthoundary-value problems for
which the solutioru(x; t) is one-signed in the interior of the domain, which is sient for the
validity of the method.

2. Conservation-based moving mesh methods

Let u(x; t) be a positive solution of the generic time-dependent s€¥lHE

@(x;1t)
@

wherelL is a purely spatial dierential operator. In all of our examples we have a moving
boundary ai = b(t) at which we impose the following boundary conditions

u(b(t); t) 0; 2
w9 = o 3)

= Lu(x; 0); t> % x 2 (a(t); b(t)); @)

The initial condition is

u(x;t) = L(x);  x 2 (a(t%); b(t%)):
We introduce a time-dependent space coordir@tg) which coincides instantaneously with the
xed coordinatex. Consider two such coordinategxz;t) andx{xy; t), in (a(t); b(t)), abbreviated
to X1(t) and X5(t). The rate of change of the mass in the subinterxalt);%,(t)) is given by
Leibnitz' Integral Rule in the form

I
q Y4 Y4

¢ XX: ust)ds = XX: @g v, g(u(s; Ov(s) ds @
where
V= c(jj_i( %=x (5)
is a local velocity. We denote the total mass by
Z b
(t) = u(x; t) dx: ©)

a(t)

2.1. A method based on preservation of partial masses

We begin by describing a solution method for problems thaseove the total integral (global
mass) of the solution, i.e. for whicly)



and the Eulerian conservation law,

@xt) K @ N —
@ +@(u(x,t)v(x,t))—0. (8)

s« From (8) and the PDE (1) we have

Lupt) + g(u(x; V) = O; ©)

which, givenu(x; t
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3.1. The Porous Medium Equation
The PME is the simplest nonlinear dision problem which arises in a physically natural
way, describing processes involving uid ow, heat transée di usion. It also occurs in math-
ematical biology and other elds [24]. We assume the initiata is symmetrical about its centre
of mass, taken to be the origin, in which case the PME takefothe
!
@_0Q ,@.

@ @& @&’

with u( b(t);t) = u(b(t);t) = 0 andu( b(t);t)db=dt = 0. For this problem the total mass (6) is
conserved and the centre of mass is xed in time [24], fromahhit follows that the solution
retains the symmetry of the initial data for all time. We #fere model only half of the region,
i.e. x(t) 2 [0; b(t)], with a(t) = 0 as the anchor point for all For the half problem we have

t>1t% x 2 ( b(t); b(t));

@
— =0 at x=0; 24
& (24)
by symmetry. From (10) the velocity is given by
z !
1 @ @ @ 1@
vt )= —— = u(st)"= ds= U= = = . t>1% x2[0;b(t)): (25
x9= 5 . @ Vg G- na [0:b(®): (25)
Given XE“ and U;“, j=0;1:::;N, m= 0;1;2;:::, the nite di erence algorithm ok 2.1 is
used to calculate the velocity}“ at each nodg, j = 0;1;:::;N, then the new nodal positions

XJ'.T“, and nally the approximate solutiob ?“1. A standard discretisation of the velocity (25)
at interior nodes is

1 BURD" U)" :
VM= _p j=L2:uN 1
! n Xm XJT"l

j+1

which, although of second order on a uniform mesh, is onlysa arder discretisation on a non-
uniform mesh. An approximation which is second order on aungiform mesh (i.e. exact for

quadratics) uses all three valug$';, U" andU'}, and is

1 +(Ujm)" 1 ujm"
18 7 X X :
vi= = j=L2u5N 1 (26)
J n 1 + 1
Xm T

where

+0)j=0js2 O and  ()j=0); O

(see [21]). We note that equation (26) is an inversely weiglsum, or linear interpolation, of
the gradients (U JF")”= XJT“. The velocity atx = 0 is zero and at the moving boundary X{
the velocityV\] is extrapolated by a polynomial approximation using thréja@ent points. The
new mesh is obtained at tint&"* = t™+ t by the explicit Euler time-stepping scheme (14).

approximate solutiohJ{)ml is calculated using (26) witK 1 = X;, approximating the boundary
condition (24). At the outer boundary,* 1 = 0 from (2). Results are presentecif.
8



12 3.2. Richards' Equation
Richards' equation is a nonlinear PDE which models the mamnof moisture in an un-
18« Saturated porous medium [23]. In the present paper we mogeltaular form of Richards'
equation, where the solution describes liquid owing dovamds through an unsaturated porous
15 Medium, making it applicable to the tracking of a contaméddiquid. The equation is of the
form



for x 2 [0;1], as in [9], giving initial total mass(0) = 1=



24 3.4. The Crank-Gupta problem with a modi ed boundary caodi

There is no known analytical solution for the Crank-Guptalgbem although approximate
26 Solutions have been given in [10]. Hence, in order to compareresults to an exact solution
we have modelled the Crank-Gupta PDE with a modi ed boundary
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We then compute bothys 1;.5(t) and Uy .q(t)  U(Xn 4.5 (1); 1) for eachi = 0;:::;10; this
new notation allows comparison @&f.;(t) andu;(t) at eleven dierent points, determined by

with the exact solution and boundary position. When suchatisol is not known, we compare
with numerical results determined using other methods.abhecase we denote our reference
solution byu(x; t), and our reference boundary positionx{y).

Recalling that we have used explicit Euler time-steppingyrder to balance the spatial and
temporal errors, we taket = O 1=N? , anticipating that the pointwise errgsgt) Xy (1)j and

As a measure of the errors, we calculate theorm of the error in our solution, and the
relative error of our boundary position, as de ned by

EU = rilzoojag‘xzﬂ (M T) e (T2 EX o XM xyw(Mi
. Tl s (TR N U

for N = 1;2;3:4;:::(i.e. N = 10;20;40; 80; : : ). We investigate the hypothesis that

Ex



274

276

278

280

282

284

286

288

290

294

and the exact boundary position, is
r

X(t) = b(t) = ™2 M;
n

As stated above, to balance the spatial and temporal errersse t = O 1=N? , precisely

t = 0:4 4 N . Convergence results for = 1 are shown in Table 1. We see tt#} and EY
decrease aN increases. This suggests that as the number of nodes iasr@asapproximations
to both the solution and the boundary position are convgrgifhe p andq values presented
strongly indicate second-order convergence of both theamigad solution and numerical bound-
ary position.

N Ex PN EX aN
10 | 7:715 10°3 - 1451 10° -
20 | 1:.941 10°% 2.0 3066 104 2.2
40 | 4976 104 2.0 7138 10° 21
80 | 1:.259 104 2.0 1730 10° 2.0
160 | 31166 10° 2.0 4262 106 2.0
320| 7:937 10% 2.0 1058 10°% 2.0

Table 1: Relative errorky, andEY, for the porous medium equation with= 1.

The results from the self-similar solutions for 1;2; 3 andN = 20 are given in Figures 1-3.
In each case we see that with only twenty nodes in our meshgtinedary position (Figures 1(b)—
3(b)) is computed very accurately (better than 1% relativeratt = 5 in each case). From (47)
we note that the exact solution for= 2; 3 has a steep gradient at the boundaries, as can be seen
in Figures 2(a) and 3(a). Figures 1(c)-3(c) show exactly mvmesh moves. We observe a
smooth even spread of the nodes, without mesh tanglingl fhrak cases.

4.2. Richards' Equation

In this section we present results from applying the movimgimmethod to Richards' equa-
tion, as described in3.2. To test that the numerical solution from the moving mesthod
converges we compare the solution with that from a very nedxmesh. All numerical results
presented here are far= 3. In the absence of an exact reference solution we do not aamp
the position of the boundary. X

We solve fort 2 [0; 0:5] and compute results fod = 10 2V 1 N = 1;:::;4. We compare
the numerical solutions with a numerical solution calcediby solving Richards' equation on
the xed meshxj2[ 4;4], j = 0;1;:::,;10000, which is given by

UJ-_+;
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s and compute results fod = 10 N1 N=1;:06. We compare the numerical outcomes with
the exact solution (38), at= 0:1,

U(x;(01);0:1) = @@ 09 . 0(01) Ol

= To balance the spatial and temporal errors we use O 1=N? = 0:02 4 N
Numerical results are shown in Table 4. We see Hjatlecreases a increases, and the

10 [ 7581 10°% -
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Crank-Gupta problem, which models oxygen-asion through tissue. We examined the accu-
racy in all cases and found that the numerical solution cgae with roughly second-order
accuracy. Furthermore, for the Crank-Gupta problem, waddhat preservation of mass frac-
tions can lead to higher resolution at the boundary, whictesrable.

Throughout this paper we have used an explicit Euler tirepghg scheme. Other explicit
time-stepping schemes we experimented with are the higtikar anethods built into Matlab
(ODE23, ODE45, ODE15s); see [15] for details. There wakeldt erence in the results from
all the Matlab solvers, indicating that none of the problésasl to a sti system of ODEs for the
X;(t). We found that all the time-stepping schemes producedratzand stable results, with no
mesh tangling, provided that seiently small time-steps were taken. It has been shown in [2]
that the PME can also be solved by this moving mesh methodangmi-implicit time-stepping
scheme using larger time steps.
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