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Abstract We extend the general framework of the Multilevel Monte Carlo method
to multilevel estimation of arbitrary order central statistical moments. In partic-
ular, we prove that under certain assumptions, the total cost of a MLMC central
moment estimator is asymptotically the same as the cost of the multilevel sample
mean estimator and thereby is asymptotically the same as the cost of a single
deterministic forward solve. The general convergence theory is applied to a class
of obstacle problems with rough random obstacle pro�les. Numerical experiments
con�rm theoretical �ndings.
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1 Introduction

Estimation of central statistical moments is important for many reasons. The vari-
ance (or the standard deviation) is one of the most important characteristics of
a random variable, along with the mean. Higher order moments, particularly the
third and the fourth moments (or the related skewness and kurtosis) are impor-
tant in statistical applications, e.g. for tests whether a random variable is normally
distributed [7]. Another example is [3], where skewness and kurtosis are utilized
in a stopping criteria for a Monte Carlo method. Higher order moments inherit
further characterization of a random variable; the problem of determining a prob-
ability distribution from its sequence of moments is widely known as the problem of
moments [1]. This paper is dedicated to estimation of arbitrary order central sta-
tistical moments by means of the Multilevel Monte Carlo method, a non-intrusive
sampling-based multiscale approach particularly suitable for uncertainty propaga-
tion in complex forward problems.
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Department of Mathematics and Statistics, University of Reading, Whiteknights Campus,
PO Box 220, Berkshire RG6 6AX, United Kingdom. E-mail: c.bierig@pgr.reading.ac.uk,
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2 CLAUDIO BIERIG AND ALEXEY CHERNOV

To facilitate the presentation, let us consider an abstract well posed forward
problem

u = S(� ); (1)

where � are model parameters (model input), u is the unique solution of the
forward problem (model output) and S is the corresponding solution operator.
As an illustrative example, we consider a contact problem between deformable
bodies. The quantity of interest (observable) X might be either the solution itself,
or some general, possibly nonlinear, continuous functional of the solution X =
F (u). Therefore the observable X might be either a spatially varying function
(e.g. the displacement of a deformable body or the contact stress) or a scalar
quantity (e.g. the size of the actual contact area). Typically, a model description
contains probabilistic information about input parameters � and if it is possible
to generate samples of � , then samples of X may be generated via the forward
map X = F � S(� ).

However, the solution operator S is usually given implicitly as an inverse of
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3. Direct evaluation of central moments is no more demanding in terms of the
overall computational cost than evaluation the non-centered moments. Partic-
ularly useful for stable and e�cient numerical evaluation are one-pass update
formulae from [15].

In this work we analyze simple and general form MLMC estimators for r -th
order central statistical moments introduced in (25) and (29) below. The simple
form of the estimators allowing for a uni�ed analysis comes at the expense of a
small systematic error which cannot be removed by a simple scaling when r � 4,
cf. [13,8]. The rigorous control of this systematic error is presented below.

The paper is structured as follows. After preliminaries in Section 2, we give an
overview of the general MLMC framework and the analysis strategy in Section 3.
In Section 4 study in detail the MC estimator of arbitrary order central moments
and particularly prove convergence of its bias and variance. In Section 5 we apply
the developed theory to the MLMC estimator of arbitrary order central moments.
Under additional assumptions we prove the same asymptotic work-error relation of
the estimator for an arbitrary r -th moment as the same as for the estimation of the
expectation value by the multilevel sample mean. In Section 6 we apply the general
theory to a class of random obstacle problems (see also [9,14,4]). In Section 7 we
report on the results of numerical experiments supporting the abstract theory.

2 Function spaces and statistical moments

Let (
; �;
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and distinguish the special case H = B 2 , i.e.

i) H = R or ii) H = W s;2(D ) � H s(D ): (6)

The nonnegative integer s will be �xed throughout the paper therefore is omitted
in the notation (5) and (6) for brevity. In both cases, H is a Hilbert space with an
inner product h�; �i H and B p is a Banach space with the a norm k � kB p speci�ed
in Table 1 for de�niteness.

H hf; g i H B p kf kB p

R fg R jf j

W s;
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for the norm on these spaces. Notice that L 2(
; H ) is a Hilbert space with inner
product

hX; Y i :=
Z



hX (! ); Y (! )i H dP
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occasionally call V(S) the variance of the estimator S. The reason for this slight
abuse of terminology is that V(S) 2 R+ is indeed a measure of variation of the
quantity S. Furthermore it is consistent with the existing literature on Monte
Carlo Methods and, in particular, the well-known splitting of the mean-square
error (MSE) of an estimator into the sum of its (squared) bias and the variance

kM � Sk2
L 2 ( 
;H ) = kM � E[S] + E[S] � Sk2

L 2 ( 
;H )

=kM � E[S]k2
L 2 ( 
;H ) + 2E hM � E[S]; E[S] � Si H + kE[S] � Sk2

L 2 ( 
;H )

=kM � E[S]k2
H + V(S):

(15)

Indeed, the inner product is zero since M � E[S] is deterministic and hM � E[S]; �i H
is a linear functional on H . In order to facilitate the further discussion we introduce
the relative root mean-square error

Rel(M ; S) :=
kM � SkL 2 ( 
;H )

kMkH
:

Frequently, in practical applications the approximate evaluation of the quantity
M involves some kind of deterministic approximation procedure. In this case the
method can be interpreted as a two-stage approximation: there exists a sequence
M ` ! M converging strongly in H as ` ! 1 , and a family of single level randomized
estimators S` approximating M ` . Then by the triangle inequality we have the upper
bound (notice that if ML = E[SL ], the identity (15) provides a sharper result)

kM � SL kL 2 ( 
;H ) � k M � ML kH + kML � SL kL 2 ( 
;H ) : (16)

This estimate suggests that SL
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ML =
P L

` =1 � M ` . Thus, similarly to (16) we obtain

kM � SML kL 2 ( 
;H ) � k M � ML kH + kML � SML kL 2 ( 
;H )

� k M � ML kH +
LX

` =1

k� M ` � T` kL 2 ( 
;H ) :
(21)
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where the X i are independent and identically distributed (iid) samples of X . The
estimator (25) is possibly the most natural and intuitive computable sample ap-
proximation for M r [X ] with r � 2. However, as we will prove in Lemma 3 below,
the estimator (25) is biased in general. In particular but important cases r = 2 and
3, the estimator (25) can be made unbiased with a minor modi�cation. Indeed,
the rescaled estimators

~S2
M [X ] := M

M � 1
S2

M [X ]; ~S3
M [X ] := M 2

(M � 1)(M � 2)
S3

M [X ]; (26)

are unbiased, i.e. satisfy E[ ~Sr
M [X ]] = M r [X ], for r = 2; 3. One might expect that

a multiple of Sr
M [X ] is an unbiased estimator for higher order central moments as

well, but already for r = 4 it holds that

E[S4
M [X ]] = M � 1

M 3

�
(M 2 � 3M + 3)M4 [X ] + 3(2M � 3)M2 [X ]2

�
(27)

see e.g. [13,8] (in Lemma 3 below we derive a general representation for E[Sr
M [X ]]

with an arbitrary r ). In this case the unbiased estimate for M4 [X ] takes the form

~S4
M [X ] := M 2

(M � 2)(M � 3)

�
M + 1
M � 1

S4
M [X ] � 3S2

M [X ]2
�

: (28)

A similar result holds for any r : an unbiased estimator ~Sr
M [X ] can be built as a

weighted sum of Sr
M [X ] with a nonlinear combination of S2

M [X ]; : : : ; Sr � 2
M [X ]. Such

representations for ~Sr
M [X ] can be obtained for an arbitrary r and used for a single

level Monte Carlo estimation of M r [X ]. However, an unbiased estimation for r � 4
may cause some technical di�culties, as we explain below.

Notice that the above description �ts into the abstract framework of Sec-
tion 3.1. Indeed, suppose that X ` is an approximation to X at level ` , then (16)
holds with

M := M r [X ]; ML := M r [X L ]; SL := Sr
M [X L ]:

We introduce a multilevel estimator

Sr
ML [X ] =

LX

` =1

Sr
M `

[X ` ] � Sr
M `

[X ` � 1 ]; (29)

where in the summands Sr
M `

[X ` ] � Sr
M `

[X ` � 1 ] are built from M ` pairs of samples
(X ` ; X ` � 1)i , both computed for the same realization of input parameters (the same
random event ! i 2 
 ). This �ts into the abstract framework of Section 3.1 with

SML := Sr
ML [X ]; T` := Sr

M `
[X ` ] � Sr

M `
[X ` � 1 ]:

Evidently, since the estimator (25) is biased the multilevel estimator (29) is (in
general) biased as well, whereas an unbiased estimator can be de�ned as

~Sr
ML [X ] =

LX

` =1
M
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Applying (40) and the H�older inequality (9) gives us

kX j � Yj k2 =














rX

i =1

(X j i � Yj i )
i � 1Y

k=1

X j k

rY

k= i +1

Yj k














2

�
rX

i =1

cr � 1
H kX � Y k2pkX ki � 1

2q( r � 1) kY kr � i
2q( r � 1) :

(41)

Estimating the sum with
rX

i =1

kX ki � 1
2q( r � 1) kY kr � i

2q( r � 1) � min
�

r max
�

kX kr � 1
2q( r � 1) ; kY kr � 1

2q( r � 1)

	
;

(kX k2q( r � 1) + kY k2q( r � 1) )r � 1
�

completes the proof.

4.2 Estimation of the building blocks (31) and (32)

In this section we obtain upper bounds for (31) and (32) required later on in
convergence theorem for the multilevel estimator in the forthcoming Section 5.
The following notation will be essential in the forthcoming analysis. Let r � 2
be an integer and 1 � k � r . Denote m := min(k + 1; r ). For an m-multiindex
j = (j 1 ; : : : ; j m ) 2 � m

M we de�ne its extension to an r -multiindex by

E(j ) =

8
<

:

(j 1 ; : : : ; j k ; j k+1 ; : : : ; j k+1| {z }
r � k times

); k < r;

(j 1 ; : : : ; j r ); k = r;

(42)

Notice the alternative expression: m = k + 1 � � k;r where � kr is the Dirac delta.
These de�nitions and notation (34) allow for a compact representation of the
sample estimator (25) as a sum products. Indeed, opening the brackets in (25) we
observe

Sr
M [X ] =

rX

k=0

(� 1)k

M k+1 � � k;r

 
r
k

!
X

j 2 ^�
k +1 � � k;r
M

X E( j ) : (43)

The following lemma provides the quantitative structure for the bias of the esti-
mator Sr

M [X ].

Lemma 3 SupposeX is a su�ciently smooth random �eld so that its statistical mo-
ments of any order up to r � 2 exist. Then it holds that

E [Sr
M [X ]] = M r [X ] + M � 1

�
r (r � 1)

2
M r � 2 [X ]M2 [X ] � r M r [X ]

� ]
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where the constants c(j ; M; r ) are independent of X . This set of constants is non-
unique, however, there existc(j ; M; r ) such that for r � 4

X

j 2 � r
M

jc(j ; M; r )j � 2
r � 2X

k=3

M �d k
2 e

 
r
k

!

(k � 1)k � 1 + (r � 1)r M �d r
2 e: (45)

Proof We assume w.l.o.g. that E[X ] � M1 [X ] = 0, since estimator Sr
M [X ] and

central moments are independent of the value E[X ]. Notice that (44) is satis�ed
when r = 2. Indeed, (45) implies that the sum over j 2 � 2

M vanish and therefore,
since M0 [X ] � 1, the identity (44) is equivalent to

E
h
S2

M [X ]
i

= M2 [X ] + M � 1
�

M0 [X ]M2 [X ] � 2M2 [X ]
�

= M � 1
M

M2 [X ] (46)

Analogously, for r = 3 the estimate (44) is equivalent to

E
h
S3

M [X ]
i

= M3 [X ] �
3

M
M3 [X ] + 2

M 2 M3 [X ]: (47)

and for r = 4 we have

E
h
S4

M [X ]
i

=M4 [X ] + 1
M

(6M2 [X ]2 � 4M4 [X ]) + 1
M 2 (6M4 [X ] � 15M2 [X ]2)

+ 1
M 3 (9M2 [X ]2 � 3M4 [X ]):

(48)

Representations (46), (47) and (48) hold true in view of (26),(27) and the assertion
of the lemma follows for 2 � r �
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the identity (54) follows by the counting argument similar to the proof of Lemma
1. Utilizing the estimate (37) we get the upper bound

r � 2X

k=4

1
M k

 
r
k

! �
j� k

M j + kj� k � 1
M � 1 j

�

�
r � 2X

k=4

1
M k

 
r
k

! �
(k � 1)k � 1M b k

2 c + k(k � 2)k � 2(M � 1)b k � 1
2 c

�

�
r � 2X

k=4

2M �d k
2 e

 
r
k

!

(k � 1)k � 1 :

Moreover, it holds that

2
M 2

 
r
2

!

+ 4
M 2

 
r
3

!

� 2M � 2

 
r
3

!

22 ; (r � 1)M � r j� r
M j � M �d r

2 e(r � 1)r

and thereby the proof is complete.

Lemma 4 Let X; Y : 
 ! H be two su�ciently smooth random variables with H the
Hilbert space R or W s;2(D ). For r � 2 the estimate

kM r [X ] � M r [Y ] � E[Sr
M [X ] � Sr

M [Y ]]kH �
r (r + 1)

2M
(1 + "b(M; r ))K( �X; �Y ; r) (55)

holds, whereK( �X; �Y ; r) is the upper bound in Lemma 2. We have"b(M; r ) 2 O (M � 1)
and for r > 3 the estimate holds for

"b(M; r ) = 2
r (r + 1)

 

2
r � 2X

k=3

M �d k
2 e+1

 
r
k

!

(k � 1)k � 1 + (r � 1)r M �d r
2 e

!

(56)

and "b(M; r ) = 0 for r = 2; 3.

Proof Assume w.l.o.g. that E[X ] = E[Y ] = 0. Then by Lemma 3 and the triangle
inequality, we obtain

kM r [X ] � M r [Y ] � E[Sr
M [X ] � Sr

M [Y ]]kH

� M � 1 r (r � 1)
2

kM r � 2 [X ]M2 [X ] � M r � 2 [Y ]M2 [Y ]kH

+ M � 1r kM r [X ] � M r [Y ]kH +
X

j 2 � r
M

jc(j ; M; r )jkE[X j � Yj ]kH :

We �rst apply Lemma 2 to estimate the norms in H and then Lemma 3 to bound
the sum over � r

M and gain "b for r > 3. For r = 2; 3 we have "b(r ) = 0 due to (46)
and (47). Thus the Lemma is proved.

Lemma 5 Let X; Y : 
 ! H be two su�ciently smooth random variables with H the
Hilbert space R or W s;2(D ). For r � 2 the estimate

V(Sr
M [X ] � Sr

M [Y ]) � M � 1(r + 1)2(1 + " v (M; r ))K( �X; �Y ; r)2 (57)
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The summands are only nonzero when



MLMC FOR HIGHER CENTRAL MOMENTS 19

2 3 4 5 6 10 50

100

102

104

r

M b(r )
2
5 r 3

2 3456

1050

1

0

0

100

10

4

104

r

M r(r ) 5r 3



20 CLAUDIO BIERIG AND ALEXEY CHERNOV

where we have the estimate

M e(r ) � max(M b(r ); M v (r ); 2r 2): (68)

Proof Due to (15) we have

kM r [X ]� Sr
M [X L ]k2

2 = kM r [X ] � E[Sr
M [X L ]]k2

H + V(Sr
M [X L ])

� 2kM r [X ] � M r [X L ]k2
H + 2kM r [X L ] � E[Sr

M [X L ]]k2
H + V(Sr

M [X L ]):

by applying the triangle inequality in the second step. Using Lemma 4 and Lemma
5 we gain

kM r [X ] � Sr
M [X L ]k2

2 � 2kM r [X ] � M r [X L ]k2
H

+ M � 2 r 2(r + 1)2

2
c2( r � 1)

H k �X L k2r
2r (1 + "b(M; r
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6 A random obstacle problem

We apply the abstract framework developed above to a class of obstacle problems
with rough random obstacles. In this section we brie
y introduce the mathematical
framework (see [4, Sect. 6, 8] for further details) and present results of numerical
experiments in Section 7.

Let D � Rd be a bounded convex domain,  2 C(D ),  � 0 on @Da continuous
function and f 2 L 2(D
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The solution u` (! ) is unique, cf. [11]. Moreover, according to [4] it holds that

ku � u` kL 2p ( 
;W 1 ; 2p ( D )) . h
1
p

`

�
kf kL 2p ( 
;L 2 ( D )) + k kL 2p ( 
;H 2 ( D ))

�
(84)

for 1 � p � 1 provided f 2 L 2p(
; L 2(D )) and  2 L 2p(
; H 2(D )), see [4] for
details.

Instead of only having a random obstacle and a random volume force, one
might also have to model random material parameters. For such formulations and
related convergence results see [9,14].

In this paper we are particularly interested in the case of rough random ob-
stacles representing e.g. the uneven structure of asphalt read surfaces. We utilize
a rough obstacle model from [16], representing of the obstacle  (x) as a Fourier
series

 (x) =
X

q

Bq(H ) cos(q � x + � q); (85)

where x 2 [0; L ]2 for simplicity. The sum is over all q 2 2�
L Z2 , the amplitudes Bq(H )

depend on the frequency q and the so called Hurst coe�cient H 2 [0; 1]. The � q are
independent random variables, uniformly distributed in [0; 2� ). Isotropic self-a�ne
obstacles obey the law

Bq(H ) �

(
jqj � ( H +1) ; q̀ � j qj � qs

0; otherwise:
(86)

As obstacle for the numerical experiments in the following section we use the
surface (85) with particular parameters

Bq(H ) = �
25

(2� max(jqj; ql ))� ( H +1) ; q0 � j qj � qs ;

q0 = 1; ql = 10; qs = 26;
(87)

0 0.2 0.4 0.6 0.8 1

−2

0

2

Fig. 2 Self a�ne surfaces  (x) in 1d with
H = 1 ; 0:5 and 0 (left column, from top
to bottom). The right column shows the
magni�cation of the box on the left.

10
0

10
1

10
2

10
−5

10
−4

10
2

Fig. 3 The values of B q (H ) for  de�ned
in (87) in double logarithmic scale. H in-
dicates the height of the plateau and the
slope for q` � q � qs .
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where the sum in (85) now runs over Z2 (see Figure 3). To gain a randomly rough
obstacle we model H as a random variable as well as all phase shifts ' q:

H � U (0; 1); ' q � U (0; 2� ); q0 � j qj � qs : (88)

Those random variables are assumed to be mutually independent. Two realizations
of this obstacle are plotted in the next section (Figures 4 and 5). We refer to [16]
and our previous work [4] for further details on this model.

7 Numerical Experiments

In this section we report on results of numerical experiments for the model obstacle
problem described above with D = [� 1; 1]2 , f = � 5, uj@D = 1

2 and random obstacle
parametrized by  (x) as described in Section 6. In Fig. 4 and 5 we show two
realizations of the obstacle pro�le and the corresponding solutions for the case of
high and low roughness respectively. The computations involve the hierarchy of the
�nite element spaces V` de�ned in (83) with meshes T` . The coarsest triangulation
T� 1 consists of four congruent triangles sharing (0; 0) as a vertex. Finer meshes
T` +1 are de�ned recursively as the uniform red re�nement of coarser meshes T` by
halving the edge of each element so that h` � N

� 1
2

` .
As a solver we implemented di�erent variants of the Monotone Multigrid

Method described in [12]; the Multilevel Subset Decomposition Algorithm appeared
to be the best for our model problem. For this algorithm a log-linear cost has been
proved, cf. [17], [14, Section 4.5]. In our experiments we observe almost linear
complexity, see Fig. 8 indicating that 
 � 1 in (73).
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is a space of polynomials of degree r . Notice, however, that V r
` is not required for

solving the discrete formulation, but only for evaluating the estimator Sr
ML [u] (cf.

[4] for estimation of the variance). Therefore the computational cost associated
with the use of the high order space V r

` is negligible.
Obviously, this issue does not appear when estimating higher order statistical

moments of scalar quantities. In this paper we report on convergence results for
the r -th central statistical moments of the size of the coincidence set

� (! ) = f x : u
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Fig. 6 Convergence of the bias part of the
estimator for the �rst six moments.

Fig. 7 Convergence of the variance of the
level corrections (the variance part of the es-
timator)
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which is a consequence of the above mentioned condition. Starting from the third
level we observe an almost uniform distribution of the runtime over the re�nement
levels whereas the number of samples M ` decays exponentially with increasing
level index.

Finally we show the convergence of two consecutive approximation of the �rst,
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