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nonparametric models. For instance, Ferraty and Vieu (2004) established the strong consistency
of kernel estimators of the regression function when the explanatory variable is functional and the
response is scalar, and their study is extended to non standard regression problems such as time
series prediction or curves discrimination by Ferraty et al. (2002) and Ferraty and Vieu (2003). The
asymptotic normality result for the same estimator in the alpha-mixing case has been obtained by
Masry (2005).

In addition to the regression function, other statistics such as quantile and mode regression could be
with interest for both sides theory and practice. Quantile regression is a common way to describe the
dependence structure between a response variable Y and some covariate X. Unlike the regression
function (which is defined as the conditional mean) that relies only on the central tendency of
the data, conditional quantile function allows the analyst to estimate the functional dependence
between variables for all portions of the conditional distribution of the response variable. Moreover,
quantiles are well-known by their robustness to heavy-tailed error distributions and outliers which
allows to consider them as a useful alternative to the regression function.

Conditional quantiles for scalar response and a scalar/multivariate covariate have received con-
siderable interest in the statistical literature. For completely observed data, several nonparametric
approaches have been proposed, for instance, Gannoun et al. (2003) introduced a smoothed estima-
tor based on double kernel and local constant kernel methods and Berlinet et al. (2001






where

K hjd(x; Xi)

Whi(X) = p (6)

i K hfed(x Xi)

are the well-known Nadaraya-Watson weights. Here K is a real-valued kernel function, H a cumu-
lative distribution function and hk := hn.x (resp. hy := hn.y) a sequence of positive real numbers
which decreases to zero as n tends to infinity. This estimator given by (5) has been introduced in
Ferraty and Vieu (2006) in the general setting.

An appropriate estimator of the conditional distribution function F (t j x) for censored data is
then obtained by adapting (6) in order to put more emphasis on large values of the interest random
variable T which are more censored than small one. Based on the same idea as in Carbonez et al.
(1995) and Khardani et al. (2010), we consider the following weights

1 -
W.i() = —K hltdx; Xj) =—FP ' ; 7
nii(x) hk <06 X0) G(Yi) it he'K hitd(x; Xi) @)
where G() =1 G(). Now, we consider a "pseudo-estimator” of F(t j x) given by:
Pn iG (YK h MG X)) Hhit Y)) | Baxt)
Ba(t]x) = — = KT e = ®)
i=1 K hd(x; Xi) n(X)
where
1
Ba(t) = ———=  iG YY) H h'tt Yi) i)
h(X; 1) nE( 1(3) iy i (Yi) Al i) i(x)
and

1 X
‘nX) = ———= i(X);
where j(X) = K (d(x; Xj)=hk). In practice G is unknown, we use the Kaplan and Meier (1958)
estimator of G given by:
Co 1
1o _ . .
e Po 9 it t< Yny:

0 Otherwise;

Gn(t) =

where Yy < Yoy < < Y(ny are the order statistics of (Yij)1 i n and ¢ is the concomitant of
Yy- Therefore, the estimator of F (t  x) is given by:

Bt ) = 0D, ©)
where >
. — 1 . . . .- .
|bn(X, t) = m . |Gnl(Y|) H(hHl(t Yi)) i(x):



Then a natural estimator of g (x) is given by:

O, () =inffy :Bi(yjx) g (10)

which satisfies:

Paltn; ()X = : (11)

3 Assumptions and main results

In order to state our results, we introduce some notations. Let F; be the -field generated by

the ball centered at x 2 E with radius u. Let D;(x) := d(x; X;) so that D;(x) is a nonnegative real-
valued random variable. Working on the probability space ( ; A;P), let Fx(u) =P (Di(x) u):=
P (X 2 B(x;u)) and Ff‘ 'w)y=P(DiX) ujFj 1)=P(Xj2B(x;u)jFj 1) be the distribution
function and the conditional distribution function, given the -field F; 1, of (Dj(X)); 1 respectively.
Denote by 04.5:(u) a real random function “ such that “(u)=u converges to zero almost surely as
u ¥ 0: Similarly, define Oa:s:(u) a real random function * such that “(u)=u is almost surely bounded.
Furthermore, for any distribution function L, let | = supft;such that L(t) < 1g be the support’s
right endpoint. Let S be a compact set such thatqg (X)2S [( A; ], where < g™ E:

3.1 Rate of strong consistency

Our results are stated under some assumptions we gather hereafter for easy reference.

(A1) K is a nonnegative bounded kernel of class C! over its support [0;1] such that K(1) > 0.
The derivative K exists on [0;1] and satisfy the condition K'(t) < 0; for all t 2 [0;1] and
i o (KI(tdtj < 1 forj =1;2:

(A2) For x



R
(i) R jtif(tjx)dt< 1, forall x 2 E,

(if) For any x 2 E, there exist V (x) a neighborhood of x, some constants Cx >0, > 0 and
> 0, such that for j = 0;1, we have 8(t1;t2) 2S S, 8(X1;X2) 2V (X) V(X),

FO@ jx) FOjx) Cx dixiix) +jti B
h N i h N i
(A4) Foranym landj=0;1,E HOMN Mt T)) jG 1 =E HDM 1t T))  jX

(A5) The distgibution function H has a first derivative H® which is positive and bounded and
satisfies  juj H®(u)du < 1.

(A6) Forany XX 2 E and m 2, SUPiog jOm (X" 1) := suptZSjE[Hm(hHl(t T))j X1 =x]j<1
and gm (XY; t) is continuous in V (x) uniformly in t:

sup sup  jgm(<% ) gm(X;t)j = o(2):
t2S x02B(x;h)

(A7) (Cn)n 1and (Tn; Xn)n 1 are independent.

Comments on hypothesis: Conditions (Al) involves the ergodic nature of the data and the small ball



3.2 Asymptotic normality

The aim of this section is to establish the asymptotic normality which induces a confidence interval
of the conditional quantiles estimator. For that purpose we need to introduce further notations and
assumptions. We assume, for k = 1;2, that E j 1G l(Yl)H(hHl(t Y1))j¥ < A and that, for a
fixed x 2 E, tl“ﬁz conditional variance, of 1G 1(Y1)H(hH1(t Yli)) given X1 = X, say,

Wo(tjx):=E 1G 1(Y1)H(hH1(t Y1) F(tjx) 2j X1 =X exists.

(A8) (i) The conditional variance oﬁ iG 1(Yi)H(hHl(t Yi)) given the -field G; idepends only
on Xj, i.e.,,foranyi 1,E iG 1(Yi)H(hHl(t Yi)) F(tjX) 2 JGi 1 = Ws(t) X;)
almost surely.

(ii) For some =0, E[j 1G 1(Y1)H(h,_,1(t Y1))j?* ] < A and the function
Wt (tju):=E( 1G (Y)H(h 't Yi)) F(tjx)j®" jX;=u), u2E, iscontinuous
in a neighborhood of x:

(A9) The distribution function of the censored random variable, G has bounded first derivative
GWD:

Theorem 3.3 Assume that assumptions (A1)-(A9) hold true and condition (12) is satisfied, then
we have

i Batix Ftin XN 0 201 ;

where ¥ denotes the convergence in distribution and

Mz F(tjx) G X(t) F(tjx)

M2 f1(x) ’
- R .

where Mj = Ki(1)  J(KJ) o(u)du:

2(x;t) =

Theorem 3.4 Under the same assumptions and conditions of Theorem 3.3, we have
@ T
n ()@ ) g ) TN 0 2(xq (X) ;

29 (X)) _ My

20y =
(x4 (x) = f2(q () jx) Mlzfl(q




3.3 Application to predictive interval

Corollary 3.5 Assume that conditions (A1)-(A9) hold true, K and (K?2)" are integrable functions
and

s
Mi:n f\p_gp :n(X) J X) NFx:n(hk)
“Man Gn'(t :n(X))

(B 0O 9 () ¥ N(0;1);

where f\n( j X) is an estimator of the conditional density function f( j x):

The corollary 3.5 can be now used to provide the 100(1 )% confidence bands for q (x) which

is given, for x 2 E, by
s

Min fo® (%) Gn'(B n(X))
Hm NFx;:n(hk)

h; () ¢ =

where ¢ _, is the upper =2 X X
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Figure 2: A sample of 10 daily temperature curves and the associated electricity demand curves.
Observed daily peaks are in solid circle.
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Figure 3: A sample of 6 censored daily load curves. Observed values of electricity consumption are
plotted in star points, dashed line corresponds to the time of censorship for each day.
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Figure 4: 90% predictive intervals of the peak demand for the last 30 days.

and Y4 = Py for completely observed days and Y4 = Cq4 for censored ones. Here, we investigate, for

intervals are derived directly from the conditional quantile functions given by (10). To estimate
conditional quantiles we chose the quadratic kernel defined by K(u) = 1:5(1 u2)]l[0;1]. Because the
daily temperature curves are very smooth, we chosed as semi-metric d( ; ) the L, distance between
the sec ond derivative of the curves. Finally, we considered the optimal bandwidth h := hx = hy
chosen by the cross-validation method on the k-nearest neighbors (see Ferraty and Vieu (2006),
p.102 for more details). Figure 4 provides our results for the peak load interval prediction for the
testing sample. The true peaks are plotted in solid triangles. Solid circles represent the conditional
median values. On can easily observe that the conditional median is a consistent predictor of the
peak. In fact, let us define the Mean Absolute Prediction Error as

ixjpd fo:5(Xa)j .
30 d=1 Py ’

MAPE =

where Py is the true value of the peak for the day d and 6y.5(3Xy) its predicted value based on the
conditional median. We obtain here MAPE = 0:24: Observe that we over-estimate the peak of the
16th day.
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5 Proofs of main results

In order to proof our results, we introduce some further notations. Let

En(X;t) = m - E iG XYi) H(hHl(t Yi)) i¥)iFi1
and -
z _ 1 e 1
n(X)—miZlE[ i) JFi1l:

Now, lets introduce the decomposition hereafter. For x 2 E, set

Pa(tix) F(tjx)=Ba(tjx) Ea(tjx)+E(tjx) F(tjx): (14)
To get the proof of Proposition 3.1, we establish the following Lemmas.

Definition 5.1 A sequence of random variables (Z,)n 1 is said to be a sequence of martingale
diCerknces with respect to the sequence of -fields (Fn)n 1 Whenever Z, is F, measurable and
E(Zn ] Fn 1) = 0 almost surely.

In this paper we need an exponential inequality for partial sums of unbounded martingale diLert
ences that we use to derive asymptotic results for the Nadaraya-Watson-type multivariate quantile
regression function estimate built upon functional ergodic data. This inequality is given in the
following lemma.

Lemma 5.2 Let (Zn)n 1 be a sequence of real martingale di Cerences with respect to the sequence
of -fields (F, = (Zl;:::;Zn))F,, 1, where (Z1;:::;Zn) is the -filed generated by the random
variables Z1;:::;Z5. Set Sy = ?=1 Zi: Forany p 2 and any n 1, assume that there exist
some nonnegative constants C and d, such that

E(ZPjFn 1) CP ?pld2  almost surely. (15)

Then, for any >0, we have
2

P(Snj> ) 2exp m ;
n

P
where D, = [, d?:

As mentioned in Laib and Louani (2011) the proof of this lemma follows as a particular case of
Theorem 8.2.2 due to de la Pefia and Giné (1999).

We consider also the following technical lemma whose proof my be found in Laib and Louani
(2010).

12



Lemma 5.3 Assume that assumptions (Al) and (A2)(i), (A2)(ii) and (A2)(iv) hold true. For any
real numbers1 j 2+ andl k 2+ with >0;asn ¥ 1, we have

1 h ! gi;x(hK)

Q) (hK)E J.(X)J Fi 1 =M;jfi1(X) + Oas: () ;
1 h i

(i) —E Jx) = Mjfi(x) + o),

1

(i) ey (EC 1000 = MEFE(X) + o(1):

Lemma 5.4 Assume that hypotheses (Al)-(A2) and the condition (12) are satisfied. Then, for any
X 2 E, we have

r_
logn

n (hk)

(i) limpe 1 “‘a(X) =limhe1 ‘n(X) =1 as.:

(1) “n(x) Tn(X) = Oas:

Proof. See the proof of Lemma 3 in Laib and Louani (2010). .

Proof. of Proposition 3.1
Making use of the decomposition (14), the result follows as a direct consequence of Lemmas 5.5 and
5.6 below.

Lemma 5.5 Under Assumptions (Al1)-(A7) and the condition (12) , we have
s L]

. . logn
sup Ba(tjx) F(tjx) = Oa:s:(hK +hy) + Oass: _o9n
125 n (hk)

Lemma 5.6 Assume that hypothesis (Al)-(A7) and the condition (12) hold, we have
r 1

loglogn

. :

sup Iiﬁ"'n(tj X) PBa(tjx) =O0as:
t2S

We provide, in the following lemma, the almost sure consistency, without rate, of tn. (X).

Lemma 5.7 Under assumptions of Proposition 3.1, we have

lim ;) g () =0 as.
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Proof. of Lemma 5.7

Following the similar steps as in Ezzahrioui and Ould-Said (2008), the proof of this lemma is based

in the following decomposition. As F( j X) is a distribution function with a unique quantile of order
, then for any >0, let:

()=minfE(@@ )+ jx) F@ )jx);F@ x)jix) F@ x) jx)g;

then
8 >0;8t>0; ja ) t DjF@C)jx) FEjx)j ()



which is enough, while considering Proposition 3.1, to complete the proof of Theorem 3.2.

Proof. of Theorem 3.3
To proof our result we need to introduce the following decomposition

|bn(tj X) F@jx):=Jdyn+JI2n+ J3n;

where Jin = Bt jx)  Ba(tjx), Jon = Ba(tjx) EBotjx)and Jan = Ba(tjx) F(tjx):

First, we establish that J;.n, and Js., are negligible, as n ¥ 1, whereas Jz., is asymptotically

normal. Observe that the term Ji., = Ibn(tj X) P(tjx) has been studied in Lemma 5.6, then

we have

r 1
log,n
—

Ji;n = Oas: (20)

On the other hand the term Jz.n = En(t j X)  F(tjx)is equal to Bh(Xx;t) which uniformly
converges almost surely to zero (with rate h, + h) by the Lemma 5.11 given in the Appendix.
Then, we have

Now, let us consider the term J,., which will provide us the asymptotic normality. For this end,
we consider the following decomposition of the term Jo..

Jon = F.(tjx) En(tj X)
— Qn(xt) +Rn(x; 1)
. “n(X) : (22)

where Qn(X;t) := [Fn(x;t)  Ena(x )]  F(tjx)(“n(x) “n(x)) and Ra(x;t) == Bn (X% D)(“n(X)
“n(X)), where Bn(x;t) := % F(t j x). Using results of Lemma 5.11, we have, for any fixed
X 2 E, Bn(X; t) and therefore Rn(X;t) converge almost surely to zero when n goes to infinity. Thus,
the asymptotic normality will be provided by the term Qn(X;t) which is treated by the Lemma 5.9
below.

Lemma 5.9 Suposd that assumptions (A1)-(A3), (A5), (A8)-(A9]TJI/F16a65(th)-1(-dd((A)93(th50Alce)-38ndi






Define the “pseudo-conditional bias™ of the conditional distribution function estimate of Y; given
X =xas -
B.(x;t)

B0 =2 60

F(tjx):
Consider now the following quantites

Ra(xt) = Bn()(n(x) “n(X);

and _ 7
Qn(t) = (Ba(x;t) Pr(t) FEjxX)(a(X)  “n()):

It is then clear that the following decomposition holds

Ba(tix) F(tjx) =Ba(xt)+ nCED* Nkl

(25)

‘n(x)
Remark 5.10 Using statement (29) and Lemma 5.4, one can easily get, for all x 2 E,
s L
. . logn
su X;1)] = Ogas:
tzngn( )i = Oas N (h)

Finally, the combination of results given in Lemma 5.11 and Remark 5.10 achieves the proof of
Lemma 5.5.



fact that U¢r; c;7 (Yi) = Jgr; ;97 (Ti), we get

Ba(t) = nE(ll(x)) jE 0B iG H(Y) H(h 't Y))jGi 1;Ti jFi1
= L T (0E G MY HMGE Y XaTi IFi
nE( 109) _, " |
— #XE G YT)H(h 't Ti) i(E Ter, cgd XosTi jFi 1
nE( 109) _, 3 L
N e ) H(h A T))iFi 1
nE( 1() ._, :

Then, by a double conditioning with respect to G; 1, we have

_ B x
Fa(xt) ‘n(F(tjx) = nE(ll(X)) E GQQEMME T)iX) FEixIjFi
i=1

Now, because of conditions (A3) and (A5), we get
z

E(H( Mt T))iXi) F(tjx) Cx |
ROHE QL FOFFRFFEER=5F15 10.9091 Tf 3.381 1.637 T



Proof. of Lemma 5.12
Observe that

X

Ba(t)  Ba(xt) = nE( 1(X))
i=1

Li:n(X; 1),
where Lin(x;t) = iG Y(Y)DH(h 't Yi)) i) E G Y(Y)DH(h 't Yi)) ix)jFi1 is

a martingale dilerence. Therefore, we can use Lemma 5.2 to obtain an exponential upper bound

relative to the quantity F,(x;t) Fn(x;t): Let us now check the conditions under which one can
obtain the mentioned exponential upper bound. In this respect, for any p2 N  f0g, observe that

X . k . p k
P (w 1) = k I 1 i i p k 1 1 . i s
Ln;I(X,t) k:OCp G H(hg (t Yi)) ix) (1) E G(Y) Hy (t Y)) i)jFi 1
In view of condition (A4), E ;G 1(Yi) H(hHl(t Yi)) iX)jFi 1 P Kis F; 1-measurable, it
follows then that
X h " i
E(LY, () jFi )= CKE G (YD) H(hl(t YD) () “jFi1 ( 1P K
k=0
E (G YY) HMh'(t V) i(0iFi1 "
Thus,
X h " i
E(LE () Fi 1) CsE G (YD H(h'(t Yi)) () "jFi1
k=0
E G YY) HMhMt YD) i) jFi1 P
Making use of Jensen inequality, one can write
h . i 0
E G (YD) H((h'(t YD) i) iFi1 E G YY) HMh( Y)) i) jFi 1 Jk W
X

E G YY)HGOAE YD) i) iFi1 E G YY) HGOAE YD) 0 “iFi .

h 8 20.991 TFf 41X Tf 1 A1 _-86Td [CDODDITI/F23 7911 Tf 3.86 JTIZF1S 20_-9096 03 9_.091 12_ 202 _ A(C



In view of assumption (A6), we have

E G(;i)H(hHl(t Y)) i) jFia



where C; is a positive constant. Therefore, choosing ¢ large enough, we obtain

s 1
> _
P F,(xt) Paxt) > o logn < 1:

- n (he)
Finally, we achieve the proof by Borel-Cantelli Lemma.
Proof. of Lemma 5.6
From (8) and (9) we have

1 X 1 1
Ba(tjx) Ba(tjx i i) Hh It Y

SUPt2s JGn(t)  G(D)]







Let us now examine the term Kp,

t Y . i t Y
H
G(Yi) hy

Kni = E —5—H? j X;
nl G2(YVy) g I X

= 11+ 1y
The first term of the last equality can be developed as follow,

t Y 1
I, = E H? L X
v hw GOy !
t z 1
= H2 —= — f(zjXjdz
1
2 H )
H (v)ie(t th)dF(t hpv j Xj):

R

By the first order Taylor expansion of the function G 1() around zero one gets
z z

1 . H
I, = HXWV) - dF(t huvjX)+ 5~

Q) 742 .
G(t) VHV)GD()dF(t  hv j X;) +0o(1)

= 1+ 15
where t? is between tand t  hyv: R
Dy

Under assumption (A9), we have 1} hﬁw s VF(t hyvjXi)dv. Then, using assump-
tion (A3), we get 13 = O(h2):

On the other hand, by integrating by part we have

z | =
1l = L 2H (V)H(V)Ft hy O
GO repsShi-E SR8 I T R0 8P DR T IAF R 9Nl HbO-eeE- i 20D T.DSIT 7 D) 111 @6
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