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nonparametric models. For instance, Ferraty and Vieu (2004) established the strong consistency
of kernel estimators of the regression function when the explanatory variable is functional and the
response is scalar, and their study is extended to non standard regression problems such as time
series prediction or curves discrimination by Ferraty et al. (2002) and Ferraty and Vieu (2003). The
asymptotic normality result for the same estimator in the alpha-mixing case has been obtained by
Masry (2005).
In addition to the regression function, other statistics such as quantile and mode regression could be
with interest for both sides theory and practice. Quantile regression is a common way to describe the
dependence structure between a response variable Y and some covariate X. Unlike the regression
function (which is defined as the conditional mean) that relies only on the central tendency of
the data, conditional quantile function allows the analyst to estimate the functional dependence
between variables for all portions of the conditional distribution of the response variable. Moreover,
quantiles are well-known by their robustness to heavy-tailed error distributions and outliers which
allows to consider them as a useful alternative to the regression function.

Conditional quantiles for scalar response and a scalar/multivariate covariate have received con-
siderable interest in the statistical literature. For completely observed data, several nonparametric
approaches have been proposed, for instance, Gannoun et al. (2003) introduced a smoothed estima-
tor based on double kernel and local constant kernel methods and Berlinet et al. (2001
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are the well-known Nadaraya-Watson weights. Here K is a real-valued kernel function, H a cumu-
lative distribution function and hK := hn;K (resp. hH := hn;H) a sequence of positive real numbers
which decreases to zero as n tends to infinity. This estimator given by (5) has been introduced in
Ferraty and Vieu (2006) in the general setting.

An appropriate estimator of the conditional distribution function F (t j x) for censored data is
then obtained by adapting (6) in order to put more emphasis on large values of the interest random
variable T which are more censored than small one. Based on the same idea as in Carbonez et al.
(1995) and Khardani et al. (2010), we consider the following weights
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where G(�) = 1�G(�). Now, we consider a "pseudo-estimator” of F (t j x) given by:
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where �i(x) = K (d(x;Xi)=hK). In practice G is unknown, we use the Kaplan and Meier (1958)
estimator of G given by:

Gn(t) =

( Qn
i=1

�
1� 1��(i)

n�i+1

�1lfY(i)�tg if t < Y(n);

0 Otherwise;

where Y(1) < Y(2) < � � � < Y(n) are the order statistics of (Yi)1�i�n and �(i) is the concomitant of
Y(i). Therefore, the estimator of F (t j x) is given by:

bFn(t j x) =
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; (9)
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Then a natural estimator of q�(x) is given by:

bqn;�(x) = inffy : bFn(y j x) � �g; (10)

which satisfies:

bFn(bqn;�(x) j x) = �: (11)

3 Assumptions and main results

In order to state our results, we introduce some notations. Let Fi be the �-field generated by
((X1; T1); : : : ; (Xi; Ti)) and Gi the one generated by ((X1; T1); : : : ; (Xi; Ti); Xi+1) : Let B(x; u) be
the ball centered at x 2 E with radius u. Let Di(x) := d(x;Xi) so that Di(x) is a nonnegative real-
valued random variable. Working on the probability space (
;A;P), let Fx(u) = P (Di(x) � u) :=

P (Xi 2 B(x; u)) and FFi�1
x (u) = P (Di(x) � u j Fi�1) = P (Xi 2 B(x; u) j Fi�1) be the distribution

function and the conditional distribution function, given the �-field Fi�1, of (Di(x))i�1 respectively.
Denote by oa:s:(u) a real random function ‘ such that ‘(u)=u converges to zero almost surely as
u! 0: Similarly, define Oa:s:(u) a real random function ‘ such that ‘(u)=u is almost surely bounded.
Furthermore, for any distribution function L, let �L = supft; such that L(t) < 1g be the support’s
right endpoint. Let S be a compact set such that q�(x) 2 S [ (�1; � ], where � < �G ^ �F :

3.1 Rate of strong consistency

Our results are stated under some assumptions we gather hereafter for easy reference.

(A1) K is a nonnegative bounded kernel of class C1 over its support [0; 1] such that K(1) > 0.
The derivative K 0 exists on [0; 1] and satisfy the condition K 0(t) < 0; for all t 2 [0; 1] and
j
R 1

0 (Kj)0(t)dtj <1 for j = 1; 2:

(A2) For x



(ii)
R

R jtjf(t j x)dt <1, for all x 2 E,

(ii) For any x 2 E, there exist V (x) a neighborhood of x, some constants Cx > 0, � > 0 and
� > 0, such that for j = 0; 1, we have 8(t1; t2) 2 S � S, 8(x1; x2) 2 V (x)� V (x),���F (j)(t1 j x1)� F (j)(t2 j x2)

��� � Cx �d(x1; x2)� + jt1 � t2j�
�
:
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i
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�m j Xi

i
(A5) The distribution function H has a first derivative H(1) which is positive and bounded and

satisfies
R
juj�H(1)(u)du <1:

(A6) For any x0 2 E and m � 2, supt2S jgm(x0; t)j := supt2S jE[Hm(h�1
H (t � T1)) j X1 = x0]j < 1

and gm(x0; t) is continuous in V (x) uniformly in t:

sup
t2S

sup
x02B(x;h)

jgm(x0; t)� gm(x; t)j = o(1):

(A7) (Cn)n�1and (Tn; Xn)n�1 are independent.

Comments on hypothesis: Conditions (A1) involves the ergodic nature of the data and the small ball



3.2 Asymptotic normality

The aim of this section is to establish the asymptotic normality which induces a confidence interval
of the conditional quantiles estimator. For that purpose we need to introduce further notations and
assumptions. We assume, for k = 1; 2, that E

�
j�1

�G�1(Y1)H(h�1
H (t� Y1))jk

�
< 1 and that, for a

fixed x 2 E, the conditional variance, of �1
�G�1(Y1)H(h�1

H (t� Y1)) given X1 = x, say,
W2(t j x) := E

h�
�1

�G�1(Y1)H(h�1
H (t� Y1))� F (t j x)

�2 j X1 = x
i
exists.

(A8) (i) The conditional variance of �i �G�1(Yi)H(h�1
H (t�Yi)) given the �-field Gi�1 depends only

onXi, i.e., for any i � 1, E
h�
�i �G�1(Yi)H(h�1

H (t� Yi))� F (t j Xi)
�2 j Gi�1

i
= W2(t j Xi)

almost surely.
(ii) For some � > 0, E[j�1

�G�1(Y1)H(h�1
H (t� Y1))j2+�] <1 and the function

W 2+�(t j u) := E(j�1
�G�1(Yi)H(h�1

H (t�Yi))�F (t j x)j2+� j Xi = u), u 2 E, is continuous
in a neighborhood of x:

(A9) The distribution function of the censored random variable, G has bounded first derivative
G(1):

Theorem 3.3 Assume that assumptions (A1)-(A9) hold true and condition (12) is satisfied, then
we have p

n�(hK)
� bFn(t j x)� F (t j x)

�
D�! N

�
0; �2(x; t)

�
;

where D�! denotes the convergence in distribution and

�2(x; t) =
M2

M2
1

F (t j x)
�

�G�1(t)� F (t j x)
�

f1(x)
;

where Mj = Kj(1)�
R 1

0 (Kj)0�0(u)du:

Theorem 3.4 Under the same assumptions and conditions of Theorem 3.3, we havep
n�(hK) (bqn;�(x)� q�(x))

D�! N
�
0; 2(x; q�(x))

�
;

2(x; q�(x)) =
�2(x; q�(x))

f2(q�(x) j x))
=

M2

M2
1 f1(q



3.3 Application to predictive interval

Corollary 3.5 Assume that conditions (A1)-(A9) hold true, K 0 and (K2)0 are integrable functions
and

M1;n f̂n(bq�;n(x) j x)p
M2;n

s
nFx;n(hK)

�
�

�G�1
n (bq�;n(x))� �

� (bqn;�(x)� q�(x))
D�! N (0; 1);

where f̂n(� j x) is an estimator of the conditional density function f(� j x):

The corollary 3.5 can be now used to provide the 100(1��)% confidence bands for q�(x) which
is given, for x 2 E, by

bqn;�(x)� c�=2
M1;n f̂n(bq�;n(x) j x)p

M2;n

s
�
�

�G�1
n (bq�;n(x))� �

�
nFx;n(hK)

:

where c�=2 is the upper �=2 x x





Figure 2: A sample of 10 daily temperature curves and the associated electricity demand curves.
Observed daily peaks are in solid circle.

Figure 3: A sample of 6 censored daily load curves. Observed values of electricity consumption are
plotted in star points, dashed line corresponds to the time of censorship for each day.
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Figure 4: 90% predictive intervals of the peak demand for the last 30 days.

and Yd = Pd for completely observed days and Yd = Cd for censored ones. Here, we investigate, for
each day d = 971; : : : ; 1000, the conditional quantile functions of Yd given the predicted temperature
curveXd. The 5% and 95% quantiles consists of the 90% confidence intervals of the last 30 peak load
in the testing sample, say [q0:05(Xd); q0:95(Xd)] for d = 971; : : : ; 1000: Note that these confidence
intervals are derived directly from the conditional quantile functions given by (10). To estimate
conditional quantiles we chose the quadratic kernel defined by K(u) = 1:5(1�u2)1l[0;1]. Because the
daily temperature curves are very smooth, we chosed as semi-metric d(�; �) the L2 distance between
the sec ond derivative of the curves. Finally, we considered the optimal bandwidth h := hK = hH
chosen by the cross-validation method on the k-nearest neighbors (see Ferraty and Vieu (2006),
p.102 for more details). Figure 4 provides our results for the peak load interval prediction for the
testing sample. The true peaks are plotted in solid triangles. Solid circles represent the conditional
median values. On can easily observe that the conditional median is a consistent predictor of the
peak. In fact, let us define the Mean Absolute Prediction Error as

MAPE =
1

30

30X
d=1

jPd � q̂0:5(Xd)j
Pd

;

where Pd is the true value of the peak for the day d and q̂0:5(Xd) its predicted value based on the
conditional median. We obtain here MAPE = 0:24: Observe that we over-estimate the peak of the
16th day.
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5 Proofs of main results

In order to proof our results, we introduce some further notations. Let

eFn(x; t) =
1

nE(�1(x))

nX
i=1

E
�
�i �G�1(Yi) H(h�1

H (t� Yi)) �i(x) j Fi�1

�
and

‘n(x) =
1

nE(�1(x))

nX
i=1

E [�i(x) j Fi�1] :

Now, lets introduce the decomposition hereafter. For x 2 E, set

bFn(t j x)� F (t j x) = bFn(t j x)� eFn(t j x) + eFn(t j x)� F (t j x): (14)

To get the proof of Proposition 3.1, we establish the following Lemmas.

Definition 5.1 A sequence of random variables (Zn)n�1 is said to be a sequence of martingale
differences with respect to the sequence of �-fields (Fn)n�1 whenever Zn is Fn measurable and
E (Zn j Fn�1) = 0 almost surely.

In this paper we need an exponential inequality for partial sums of unbounded martingale differ-
ences that we use to derive asymptotic results for the Nadaraya-Watson-type multivariate quantile
regression function estimate built upon functional ergodic data. This inequality is given in the
following lemma.

Lemma 5.2 Let (Zn)n�1 be a sequence of real martingale differences with respect to the sequence
of �-fields (Fn = �(Z1; : : : ; Zn))n�1, where �(Z1; : : : ; Zn) is the �-filed generated by the random
variables Z1; : : : ; Zn. Set Sn =

Pn
i=1 Zi: For any p � 2 and any n � 1, assume that there exist

some nonnegative constants C and dn such that

E (Zpn j Fn�1) � Cp�2p!d2
n almost surely. (15)

Then, for any � > 0, we have

P (jSnj > �) � 2 exp

�
� �2

2(Dn + C�)

�
;

where Dn =
Pn

i=1 d
2
i :

As mentioned in Laib and Louani (2011) the proof of this lemma follows as a particular case of
Theorem 8.2.2 due to de la Peña and Giné (1999).

We consider also the following technical lemma whose proof my be found in Laib and Louani
(2010).
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Lemma 5.3 Assume that assumptions (A1) and (A2)(i), (A2)(ii) and (A2)(iv) hold true. For any
real numbers 1 � j � 2 + � and 1 � k � 2 + � with � > 0; as n!1, we have

(i)
1

�(hK)
E
h
�j
i (x) j Fi�1

i
= Mjfi;1(x) +Oa:s:

�
gi;x(hK)

�(hK)

�
;

(ii)
1

�(hK)
E
h
�j
i (x)

i
= Mjf1(x) + o(1),

(iii)
1

�k(hK)
(E(�1(x)))k = Mk

1 f
k
1 (x) + o(1):

Lemma 5.4 Assume that hypotheses (A1)-(A2) and the condition (12) are satisfied. Then, for any
x 2 E, we have

(i) ‘n(x)� ‘n(x) = Oa:s:

�r
log n

n�(hK)

�
,

(ii) limn!1 ‘n(x) = limn!1 ‘n(x) = 1 a.s.:

Proof. See the proof of Lemma 3 in Laib and Louani (2010).

Proof. of Proposition 3.1
Making use of the decomposition (14), the result follows as a direct consequence of Lemmas 5.5 and
5.6 below.

Lemma 5.5 Under Assumptions (A1)-(A7) and the condition (12) , we have

sup
t2S

��� eFn(t j x)� F (t j x)
��� = Oa:s:(h

�
K + h�H) +Oa:s:

 s
log n

n�(hK)

!
:

Lemma 5.6 Assume that hypothesis (A1)-(A7) and the condition (12) hold, we have

sup
t2S

��� bFn(t j x)� eFn(t j x)
��� = Oa:s:

 r
log logn

n

!
:

We provide, in the following lemma, the almost sure consistency, without rate, of bqn;�(x).

Lemma 5.7 Under assumptions of Proposition 3.1, we have

lim
n!1

���bqn;�(x)� q�(x)
��� = 0; a.s.
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Proof. of Lemma 5.7
Following the similar steps as in Ezzahrioui and Ould-Said (2008), the proof of this lemma is based
in the following decomposition. As F (� j x) is a distribution function with a unique quantile of order
�, then for any � > 0, let:

�(�) = minfF (q�(x) + � j x)� F (q�(x) j x); F (q�(x) j x)� F (q�(x)� � j x)g;

then
8� > 0; 8t > 0; jq�(x)� tj � �) jF (q�(x) j x)� F (t j x)j � �(�)



which is enough, while considering Proposition 3.1, to complete the proof of Theorem 3.2.

Proof. of Theorem 3.3
To proof our result we need to introduce the following decomposition

bFn(t j x)� F (t j x) := J1;n + J2;n + J3;n;

where J1;n := bFn(t j x) � eFn(t j x), J2;n := eFn(t j x) � eFn(t j x) and J3;n := eFn(t j x) � F (t j x):
First, we establish that J1;n and J3;n are negligible, as n ! 1, whereas J2;n is asymptotically
normal. Observe that the term J1;n := bFn(t j x) � eFn(t j x) has been studied in Lemma 5.6, then
we have

J1;n = Oa:s:

 r
log2 n

n

!
: (20)

On the other hand the term J3;n := eFn(t j x) � F (t j x) is equal to Bn(x; t) which uniformly
converges almost surely to zero (with rate h�K + h�H) by the Lemma 5.11 given in the Appendix.
Then, we have

J3;n = Oa:s:(h
�
K + h�H): (21)

Now, let us consider the term J2;n which will provide us the asymptotic normality. For this end,
we consider the following decomposition of the term J2;n.

J2;n = eFn(t j x)� eFn(t j x)

:=
Qn(x; t) +Rn(x; t)

‘n(x)
; (22)

where Qn(x; t) := [ eFn(x; t)� eFn(x; t)]� F (t j x)(‘n(x)� ‘n(x)) and Rn(x; t) := �Bn(x; t)(‘n(x)�

‘n(x)), where Bn(x; t) :=
eFn(x;t)

‘n(x)
� F (t j x). Using results of Lemma 5.11, we have, for any fixed

x 2 E, Bn(x; t) and therefore Rn(x; t) converge almost surely to zero when n goes to infinity. Thus,
the asymptotic normality will be provided by the term Qn(x; t) which is treated by the Lemma 5.9
below.

Lemma 5.9 Suppose that assumptions (A1)-(A3), (A5), (A8)-(A9]TJ/F16a65(th)-1(-dd((A)93(th50A1ce)-38ndi(s)-3050A1) 0 0 rg 1 0 0 RG
 [-317(5(12 g 0 G
 [(,)-3926a65(th)-1sat-364.28 0 Td [9 Td [(b)-28(ist)28ee)-3d(-)-38en-)-we-)-havF56 10.9891 Tf 9.747 08 Td26 Td37(‘)]TJ/pT
q
1 0 0 1 198.2628m
[8905 Td 610 d 0 J 0.436 w 0 0 m 28.39836 Td1
Q
BT
/F56 10.9091 Tf 72 29928m
[8901 Td78(‘)]TJ/itx; x̀;(x; t





Define the “pseudo-conditional bias" of the conditional distribution function estimate of Yi given
X = x as

Bn(x; t) =
eFn(x; t)

‘n(x)
� F (t j x):

Consider now the following quantites

Rn(x; t) = �Bn(x; t)(‘n(x)� ‘n(x));

and
Qn(x; t) = ( eFn(x; t)� eFn(x; t))� F (t j x)(‘n(x)� ‘n(x)):

It is then clear that the following decomposition holds

eFn(t j x)� F (t j x) = Bn(x; t) +
Rn(x; t) +Qn(x; t)

‘n(x)
: (25)

Remark 5.10 Using statement (29) and Lemma 5.4, one can easily get, for all x 2 E,

sup
t2S
jQn(x; t)j = Oa:s:

 s
log n

n�(hK)

!
:

Finally, the combination of results given in Lemma 5.11 and Remark 5.10 achieves the proof of
Lemma 5.5.



fact that 1lfTi�Cig’(Yi) = 1lfTi�Cig’(Ti), we get

eFn(x; t) =
1

nE(�1(x))

nX
i=1

E
�

�i(x)E
�
�i �G�1(Yi) H(h�1

H (t� Yi)) j Gi�1; Ti
�
j Fi�1

	
=

1

nE(�1(x))

nX
i=1

E
�

�i(x)E
�
�i �G�1(Yi) H(h�1

H (t� Yi)) j Xi; Ti
�
j Fi�1

	
=

1

nE(�1(x))

nX
i=1

E
�

�G�1(Ti) H(h�1
H (t� Ti))�i(x)E

�
1lfTi�Cig j Xi; Ti

�
j Fi�1

	
=

1

nE(�1(x))

nX
i=1

E
�

�i(x) H(h�1
H (t� Ti)) j Fi�1

	
Then, by a double conditioning with respect to Gi�1, we have

eFn(x; t)� ‘n(x)F (t j x) =
1

nE(�1(x))

nX
i=1

E
�

�i(x)[E(H(h�1
H (t� Ti)) j Xi)� F (t j x)] j Fi�1

	
Now, because of conditions (A3) and (A5), we get���E(H(h�1

H (t� Ti)) j Xi)� F (t j x)
��� � Cx Z

Ri8910.9091 Tf 11. 6.5F15 10.9091 Tf 3.381 1.637 Td .091737 Td .091737 T1600F (t jFFFFFFFFFF



Proof. of Lemma 5.12
Observe that

eFn(x; t)� eFn(x; t) =
1

nE(�1(x))

nX
i=1

Li;n(x; t);

where Li;n(x; t) = �i �G�1(Yi)H(h�1
H (t� Yi))�i(x)� E

�
�i �G�1(Yi)H(h�1

H (t� Yi))�i(x) j Fi�1

�
is

a martingale difference. Therefore, we can use Lemma 5.2 to obtain an exponential upper bound
relative to the quantity eFn(x; t) � eFn(x; t): Let us now check the conditions under which one can
obtain the mentioned exponential upper bound. In this respect, for any p 2 N� f0g, observe that

Lpn;i(x; t) =

pX
k=0

Ckp

�
�i

�G(Yi)
H(h�1

H (t� Yi))�i(x)

�k
(�1)p�k

�
E
�

�i
�G(Yi)

H(h�1
H (t� Yi))�i(x) j Fi�1

��p�k

In view of condition (A4),
�
E
�
�i �G�1(Yi) H(h�1

H (t� Yi))�i(x) j Fi�1

��p�k is Fi�1-measurable, it
follows then that

E(Lpi;n(x; t) j Fi�1) =

pX
k=0

CkpE
h�
�i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
�k j Fi�1

i
(�1)p�k �

�
E
�
�i �G�1(Yi) H(h�1

H (t� Yi))�i(x) j Fi�1

��p�k
:

Thus, ���E(Lpi;n(x; t) j Fi�1)
��� � pX

k=0

CkpE
h���i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
��k j Fi�1

i
�

�
E
����i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
�� j Fi�1

��p�k
:

Making use of Jensen inequality, one can write

E
h���i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
��k j Fi�1

i �
E
����i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
�� j Fi�1

��p�k �

E
����i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
��k j Fi�1

�
E
����i �G�1(Yi) H(h�1

H (t� Yi))�i(x)
��p�k j Fi�1

�x)
��k ))�))H (h�� t � Yi))�i(x)

��k j Fi�1

�
E
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In view of assumption (A6), we have
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where C1 is a positive constant. Therefore, choosing �0 large enough, we obtain

X
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s
log n

n�(hK)

!
<1:

Finally, we achieve the proof by Borel-Cantelli Lemma.

Proof. of Lemma 5.6
From (8) and (9) we have
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Let us now examine the term Kn1,
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�
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��2

= I1 + I2:

The first term of the last equality can be developed as follow,

I1 = E
�
H2

�
t� Yi
hH

�
1

�G(Yi)
j Xi

�
=

Z
R
H2

�
t� z
hH

�
1

�G(z)
f(z j Xi)dz

=

Z
R
H2(v)

1
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By the first order Taylor expansion of the function �G�1(�) around zero one gets
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Z
R
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where t? is between t and t� hHv:
Under assumption (A9), we have I 02 � h2

H
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�G2(t)

R
R vf(t�hHv j Xi)dv. Then, using assump-

tion (A3), we get I 02 = O(h2
H):

On the other hand, by integrating by part we have
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