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In the UK, as in many other places, a di�culty for ood observation is that standard gauges are
typically sited only every �20 km, so give little information on the spatial variations in the ood
level, which may be particularly important in urban areas. Much more spatial information is con-
tained in the ood extents captured in satellite Synthetic Aperture Radar (SAR) images. SAR is
generally used for ood detection rather than visible-band sensors because of its all-weather day-
night capability. Distributed water levels may be estimated indirectly along the ood extents in
SAR images by intersecting the extents with a oodplain Digital Elevation Model (DEM) (Horritt
et al., 2003; Lane et al., 2003; Raclot, 2006; Schumann et al., 2007). Consequently, a number of
studies have focused on assimilating SAR-derived WLOs into hydrodynamic forecasting models
(e.g., Neal et al., 2009; Hostache et al., 2010; Matgen et al., 2010; Giustarini et al., 2011). Specif-
ically, Neal et al. (2009) analysed how dense a gauge network would need to be to match the
performance of SAR-derived WLOs in a data assimilation context.

In the future, an alternative will be direct space-borne WLOs at high resolution using NASA/CNES’s
Surface Water and Ocean Topography (SWOT) mission, which will use Ka-band radar interferom-
etry to measure surface water levels to 10 cm accuracy on rivers �100 m wide. However, as SWOT
is not scheduled for launch until 2020 and will not measure levels for oods less than 100 m wide,
the water levels from SAR ood boundaries should continue to be an important source of data for
assimilation into models, especially in the near future (Mason et al., 2012b).

Data assimilation is an iterative approach to the problem of estimating the state of a dynamical
system using both current and past observations of the system together with a model for the
system’s time evolution. Within Data Assimilation (DA), the ensemble Kalman Filter (EnKF)
is becoming a method of choice for large-scale data assimilation systems, along with variational
methods, in a number of Earth science disciplines. For hydrodynamic experiments, e.g., Andreadis
et al. (2007), Durand et al. (2008), and Biancamaria et al. (2011) succesfully assimilated virtual
observations of the proposed SWOT mission with simulations from the LISFLOOD-FP hydraulic
model (Bates & De Roo, 2000). Speci�cally, the studies by Andreadis et al. (2007) and Biancamaria
et al. (2011) were based on the square root implementation of the analysis scheme proposed by
Evensen (2004). In variational techniques, Lai & Monnier (2009) used 4D-var to assimilate spatially
distributed water levels into a shallow-water ood model. Alternatively, Matgen et al. (2010) and
Giustarini et al. (2011) evaluated the performance of assimilation schemes based on the Particle
Filter (PF), which does not require the Gaussian distribution of error assumed by the EnKF and
variational methods. These two studies used SAR-derived WLOs, the former with synthetic and
the latter with two real observations (ERS-2 and ENVISAT). However, their studies, both in a
19-km reach of the Alzette River, used the 1-D HEC-RAS hydrodynamic model within a single
transect and one upstream boundary condition. With their model setup, the problem had a state
vector length n = 144, and they used 64 particles to approach the PF problem. While Matgen et al.
(2010) comment that their methodology can be extended to rivers with more complex geometry
(which would need a 2-D model), they do not consider the issue of increase in dimensionality.
As an example, the problem in the present study includes a number of distributed boundary
conditions and a�ects rural and urban areas. To adequately represent the geometry, we consider
664 � 408 = 270902 pixels within a rectangular domain. Just considering ooded cells in the
model, the maximum extent of the ooded area is about 15200 pixels. The state vector length
is thus more than 100 times bigger that in these two studies. The feasibility of the ensemble
Kalman �lter with ensemble sizes much smaller than the state dimension has been demonstrated
in operational numerical weather prediction (e.g., Houtekamer & Mitchell, 2005), and has some
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theoretical justi�cation (e.g., Furrer & Bengtsson, 2007). Conversely, as, discussed by Snyder
et al. (2008), there are results showing that the standard particle �lter must have an ensemble size
exponentially large in the variance of the observation log likelihood or the �lter will su�er from
a \collapse". Thus, despite current research to improve the PF e�ciency for large dimensional
problems, it remains unclear whether it will be a viable alternative in a near future for these
operational ooding problems in areas with high human or economical risk.

Both EnKF and PF are Monte Carlo-based �lters that require a number of ensembles of model
runs to represent the forecast uncertainty. 2-D hydrodynamic models for simulating oods are
expensive to run in ensemble mode with the result that, in operational cases, watershed scale



acquisition of the CSK image and the time at which its WLOs are available to the user (the in-
formation age) is negligible. In practice the event sequence is not currently near real-time for high
resolution SARs, though may become so in the near future. Operational considerations concerned
with acquiring high resolution satellite SAR images of a developing ood and extracting WLOs
in near real-time have been considered in Mason et al. (2012a,b). CSK is likely to be followed by
other constellations with lower information ages (e.g., Sentinel-1). The aim of this paper is to be
generic, so that the issue of information age should be an additional consideration for the particular
satellite concerned.

This study builds upon previous analyses of remotely-sensed WLO DA. Our main goal is to
evaluate the sensitivity of the forecasting and DA performance to a number of realistic hypothetical
visit scenarios using satellite-based SAR WLOs. For this, we use a real ood in an urban area
and real inow measurements as base scenario, but employ a controlled identical twin experiment
for the study. Firstly, we obtain a family of three curves that show mean forecast statistics (Root
Mean Square Error) for the event as a function of visit times. Each curve represents a revisit
time (�ta = 12 h, 24 h, and 48 h), and is built up by successively delaying the time of the �rst
visit but keeping a common last visit time (at a late stage within the ood event). Secondly, for
a selected revisit/DA time (�ta = 24 h) we simulate a budget-limited scenario, by successively
delaying a �xed number of SAR overpasses As a DA technique, we use an Ensemble Transform
Kalman Filter (ETKF) and conduct parameter (inow errors) estimation through augmentation of
the state vector. We expand the discussion by highlighting related issues, such as the importance
of inow error estimation and the evolution of the correct spread, that should deserve further
consideration in operational environments with sequential DA.

The rest of this paper is organised as follows: In Section 2, we describe the experimental design,
the study domain, the hydrodynamic model, the generation of synthetic satellite observations, the
ensemble �lter, the generation of inow boundary condition errors, and the applied veri�cation
methods. In Section 3, we present and discuss the results, describing the inuence of updating the
inow boundary conditions during the assimilation process, the evolution of the ensemble during
the sequential assimilation, and the sensitivity to �rst visit and revisit times. Conclusions are
provided in Section 4.

2. Methods

2.1. Experimental Design

We use an identical twin experiment with a hydrodynamic model grounded in a real ood
event. In this study, we assume that friction is known and constant (e.g., through prior model
calibration), but that inows are poorly known and their errors are estimated and corrected by
the �lter. For this, we choose pre-calibrated friction parameters for the oodplain and channels,
and a set of measured inow/stage boundary conditions to simulate a \true" event. Then, we
obtain synthetic SAR-type WLOs from this \truth", and for the same period we corrupt the inow
boundary conditions to generate an ensemble of inows with added errors. As we assume that
measured inows are the truth, to generate the ensemble of inows, we �rst impose a stationary
mean error as a multiplicative bias on this truth. Then, the biased inow time series are further
corrupted by spatiotemporallly-correlated errors to generate the ensemble of inows into the study
domain. This is described in Section 2.5. The inow ensemble is used for generating an open-loop
simulation, without DA, and for all the simulations assimilating the synthetic WLOs under various
SAR visit scenarios.
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Within ensemble Kalman �lters and several contexts, it has been shown that as the size of
the ensembles increases, correlations are estimated more accurately (e.g., Houtekamer & Mitchell,
2001). Note that ensemble Kalman �ltering quanti�es uncertainty only in the space spanned by
the ensemble. If computational resources restrict the number of ensemble members m to be much
smaller than the number of model variables n, this can be a severe limitation. Here, for our �
1:5�104 e�ective state vector length (pixels within the ooded area), we arbitrarily set the ensemble
size m = 210 as a relatively big one in comparison with that from typical operational applications
with high computational demand, as is this case. The size of m was chosen to keep reasonable
computing times given available computing resources. In this study, we do not conduct any test
of the forecast-error covariance sensitivity to the ensemble size, and we do not use localization.
Nevertheless, we investigate the ensemble reliability for the chosen size (see Section 3). We assume
that the system can be represented on a discrete grid and, for the purposes of this study only, that
the system model is \perfect", i.e. it gives an exact description of the true behaviour of the system.

2.2. Study Domain and Hydrodynamic Model

This study focuses on the area of the lower Severn and Avon rivers in South West United
Kingdom, over a 30:6� 49:8 km2 (1524 km2) domain. The case study is 1-in-150-year ood event
that took place in July 2007 in the area. It resulted in substantial ooding of urban and rural
areas, with about 1_500 homes in Tewkesbury being ooded (Mason et al., 2010; Schumann et al.,
2011). Tewkesbury lies at the conuence of the Severn, owing from the Northwest, and the Avon,
owing in from the Northeast. Fig. 1 depicts the domain for the current study. The peak of
the ood (> 550 m3s�1 at Saxons Lode Us) occurred on July 22, and the river did not return to
bank-full until July 31 (� 350 m3s�1 at Saxons Lode Us).

We set up time-varying boundary conditions from real measurements of seven input ows and
one downstream stage time series (see Fig. 1). The three boundary conditions with highest inows
were Bewdley (peak inow Qp = 300 m3s�1) in the Severn, Evesham (Qp = 465 m3s�1) in the
Avon, and Knightsford Bridge (Qp = 315 m3s�1) in the Teme. The Severn also had inows from
Kidder Callows (Qp = 33 m3s�1) and Hardford Hill (Qp = 36 m3s�1



(DTM) was the NEXTMap British digital terrain model dataset (5�5 m resolution), derived from
airborne Interferometric Synthetic Aperture Radar (IFSAR), which was upscaled by explicitly
removing channel depth, later parametrized into the sub-grid geometry. To describe the channel
geometry, we used the power law relationship d = �w between the channel width (w) and depth
(d), where we used the parameters � = 0:30, and  = 0:78. For the main rivers, we estimated
mean channel widths from �eld campaigns, and calibrated � and  using within bank water level
dynamics measured by the available gauges, using the same method as Neal et al. (2012). Width
values were w = 20, 35, 50, and 60 m for the Teme, Avon, Severn upstream of its junction with
the Avon, and Severn downstream from this junction, respectively. For smaller tributaries we kept
the same � and  values, and assigned widths in 5{15 m on the basis of drainage areas obtained
from the DTM. These seemed reasonable when cross-checked with �eld observations. Simulations



2.4. Ensemble Filter

Unknown parameters can be estimated as part of the data assimilation by using state space
augmentation (Friedland, 1969). As the model state is augmented with model parameters, correla-
tions develop between the parameters and the model variables. In data assimilation schemes using
such an approach, the analysis updates an augmented state vector,

x =

�
z
�

�
; (1)

where z is the ns-dimensional model state and � is a generic n�-dimensional vector of parameters.
Thus x is the augmented n-dimensional state vector, with n = ns + n�. Here, we follow this
approach with an ensemble representation, where our parameters are the inow errors at the
assimilation time. Then, in our case, after each assimilation step, the updated z (an ensemble of
water stage grids) evolves by integrating each member of the ensemble forward in time with the
LISFLOOD-FP model, and, independently, the updated ensemble of inow errors evolves in time
according to our error forecast model (described in Section 2.5.2).

The Kalman �lter equations (Kalman, 1960) to update the state vector in a linear system are:

xa = xf + K(y �Hxf ); (2)

Pa = (I�KH) Pf ; (3)

where the forecast (prior) and analysis (posterior) quantities are denoted by the superscripts f
and a, respectively; y 2 <p is the vector of observations; H is the p � n observation matrix (or
\observation" or \forward" operator) mapping the state vector to the observation space; P is the
n�n state error covariance matrix; I is the n�n identity matrix; and K is the n� p Kalman gain
matrix:

K = PfHT
�
HPfHT + R

��1
; (4)

where the superscript \T" denotes matrix transposition, and R is the p � p observation error
covariance matrix.



In addition to linear problems, the EnKF-based methods have been applied to nonlinear prob-
lems, as is our case. In general, the (possibly nonlinear) observation operator



which is called the \symmetric solution" by Ott et al. (2004) or the \spherical simplex" solution
by Wang et al. (2004), and is also equivalent to the Local Ensemble Transform Kalman Filter
(LETKF) solution given by Hunt et al. (2007) in the case without localization. The solution (17)
is unbiased (Livings et al., 2008; Sakov & Oke, 2008), and is the solution adopted in this study.

The state space of our model is a water stage grid. We simply use a linear mapping H from the
state space into the SAR-derived WLOs by locating the inundated, and with \running water", grid
point closest to each individual observation. Thus, for each observation, the stage of this closest
grid point is mapped, with a weight equal to 1, while remaining grid points have a weight equal to
0. H is thus a sparse matrix containing 1s and 0s. The \running water" criterion refers to pixels
whose water depth is above a threshold (1 mm in this study) considered as surface depression
storage, below which water is not routed, and the pixel becames hydraulically disconnected from
the main ooded area.

2.5. Ensemble Generation

2.5.1. Perturbation to model inputs

The performance of most ensemble forecasts is inuenced by the quality of the ensemble gen-
eration method, the forecast model, and also the analysis scheme. The perturbation of the forcing
data to generate an ensemble of forecasted model state vectors is a key feature in the EnKF family.
Here we assume that the model is free of structural errors and parameter uncertainty, so that
all model errors arise from forcing data, i.e. input ow boundary conditions. At gauged points,
errors in streamows stem both from measurement errors in water level measurements and un-
certainties in the rating curves (stage-ow relationships). It is acknowledged that errors in ow
measurements are heteroscedastic (proportional to ow), and a number of approaches have been
proposed to generate the error ensemble for the inow boundary conditions into hydrodynamic
models. On the other hand, errors attributed to missing lateral ow inputs through the domain
boundary, not accounted for in the point ow boundary conditions, are not necessarily related to
ow measurements.

For DA studies, several authors have perturbed the input forcing of a hydrologic model to
obtain an ensemble of inows into the hydrodynamic domain. In this way, Andreadis et al. (2007)
used the VIC model with perturbed precipitation �elds, and included a negative bias of 25% to the
VIC simulated ows. Similarly, Matgen et al. (2010) and Giustarini et al. (2011) used the CLM
hydrologic model, the former including a positive 25% bias to the CLM generated hydrographs,
and the latter without adding any bias. Biancamaria et al. (2011) used Empirical Orthogonal
Functions (EOF), following the methodology developed by Auclair et al. (2003), to perturb the most
statistically signi�cant modes of precipitation and temperature �elds as input to the ISBA model,
whose ensemble hydrograph output drove the hydrodynamic model LISFLOOD-FP. However, the
statistics of the �nal inow perturbations into the hydrodynamic model are not evident in these
studies. For studies focused on DA within the hydrodynamic model it is useful to have a clear view
of �nal inow perturbations, as it is the errors in the hydrodynamic model and their value relative
to the observation errors that determine the weight given to observations in the DA analysis.

In essence, from the point of view of the generation of the inows for hydrodynamic models,
and domains with a number of tributaries and boundary conditions, we could pose two general
scenarios: a) input ows from real gauge observations, and b) input ows forecast by a hydrologic
model. In both cases, the error evolution at each inow will have some degree of temporal au-
tocorrelation. On the other hand, scenario (a) should not show a signi�cant correlation, if any,
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between the errors at the various gauge locations, as errors in stage measurements and uncer-
tainties in rating curves are normally independent between sites. In contrast, scenario (b) will
generally introduce a, normally high, spatial correlation between the errors at the various inows.
The degree of this spatial correlation will be highly dependent on the perturbation of the forcing
|chiey precipitation �elds| onto the hydrologic model, and the hydrologic model structure and
parameters. For complex hydrodynamic domains, this distinction is key, as it will govern the de-
velopment of the correlations in the state vector, and the general DA behaviour. Existing spatial
correlation between boundary errors in di�erent tributaries may well lead to one WLO (either from
remote sensing or a standard gauge) at the head of one tributary to inuence the error estimation
at the others. This may be, especially for sparse observations (as is common for stage gauges),
a positive DA outcome in linked hydrologic-hydrodynamic models as, in general, it will make the
observations more inuential in both correcting the hydrodynamic state and, possibly, correcting
the hydrologic model errors. However, for scenario (a), if spatial correlations between inow errors
are erroneously assumed, or are developed as spurious in Monte Carlo-based methods (e.g., due to
limited ensemble size), the DA updates could lead to biased error estimates.

In the current study, we evaluate a ood scenario with available real inow measurements at
the major tributaries. With this dataset, scenario (a) can be simulated by generating spatially-
independent time-autocorrelated (and heteroscedastic) random errors to perturb measured inows,
and scenario (b) can be simulated by incorporating a spatiotemporal autocorrelation into the
heteroscedastic errors.

With the number of operational gauges actually declining in the world (V�or�osmarty et al.,
2001), and considering that a linked hydrologic-hydrodynamic model should lead to increased
ood forecast lead times, we choose scenario (b) for the remainder of this study. This approach
has an advantage over selecting a speci�c hydrologic model in that it can be regarded as using a
\generic" hydrologic model whose inuence in generating inow boundary conditions is explicitly
modelled and known. This clari�es the analysis for our study.

Below, within Section 2.5.2, we detail how we simulate the inow ensembles with random errors.





(Evensen, 2003). wk 2 <n@
 is a here white noise obtained by drawing samples fromN (0;�), where
� 2 <n@
�n@
 is a distance-dependent correlation matrix (described below in Section 2.5.4).

Let fqkig (i = 1; : : : ;m) be an m-member ensemble 2 <n@
 of inow errors at time k. The
ensemble matrix for the inow errors is the n@
 �m matrix de�ned by

Qk = [qk1jqk2j : : : jqkm] ; (20)

where each member of the ensemble Qk has evolved individually according to (19). This ensures
that the diagonal of the covariance matrix of the ensemble Qk is made (approximately) of 1s as
long as this is also true for Qk�1. In this way, we use the stochastic process de�ned by (19) to
generate the spatiotemporally correlated errors in a normalized space, previous to the consideration
of heteroscedasticity (i.e. Qk is analogous to �1=2A in (18)). After assimilation steps, errors are
regenerated (k = 1). So Qk�1 � Q0 refers to the errors updated by the assimilation process. With
this formulation, � being an scalar, we are assuming that the temporal autocorrelation dynamics
of the errors are similar for all inows.

Then, we account for heteroscedasticity in a later step. Let s 1



After an assimilation step is conducted, the q00 ensemble at each inow is the result from an
updating together with the other variables in the state vector, and will generally deviate from both
the mean and the variance given by (23). However, in time, both the mean and the variance of the
newly simulated forecast errors will converge to these values, and this will occur faster for lower �
values.

2.5.3. Determination of �

The factor � should be related to the real time step used and a speci�c time decorrelation
length � . The decay term in (24) can be also expressed as an exponential decay:

�ji�jj = e�
�t
� ; (25)

which relates � and � , and clari�es that, disregarding the heteroscedastic variance term in (24),
the covariance in time between q0i and q0j is damped by a ratio e�1 over a time period �tij = � (see
Evensen, 2003). For a speci�c time step k of length �tk, then

�k = e�
�tk
� ; (26)

which allows one to use (19) for any time step length by subtituting � by the corresponding �k,
and, instead of (24), the error covariance, at each inow, between any two time steps (i; j) is more
generically expressed as

q0iq
0T
j =

s�
sisj
s2

0

�h
�2

0

jY
k=i+1

�k: (27)

2.5.4. Spatial correlation model for inow errors

The spatial correlation matrix �, for generation of the white noise wk in (19), can be created
by any procedure which considers that correlation in inow errors is dependent on the distance
between the locations of the point inow boundary conditions. Here we chose the Gaussian-decay
correlation model

�ij = e
� 1

2

�
dij
�

�2

; (28)

where the subscripts i and j refer to any two boundary conditions, �ij 2 [0; 1] is the corresponding
spatial correlation and element in �, dij is the distance between the corresponding locations, and
� is a spatial correlation coe�cient.

2.5.5. Selection of � and � and inow error estimation

As abovementioned (Section 2.5.1), the true dynamics of the mean error of measured or fore-
casted inows are unknown in real cases. In this synthetic study we impose a deterministic station-
ary bias as a \true" mean error evolution, and we approach the DA problem as if we did not know
about this error evolution to evaluate how it inuences the forecast, and how DA is able to partially
solve for it. To emulate errors from a \generic" hydrologic model, we �rst imposed a positive 20%
bias on measured inows. Then we perturbed the biased inows with spatiotemporally correlated
errors to generate the inow ensemble. Generally, errors in precipitation inputs, and hydrologic
model parameters and structures can generate a wide range of possible spatiotemporal correlations
in the simulated hydrographs. Thus, two single values of � and � cannot embrace all possible
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situations. Here, our parameters for the error forecast model were � = 3 days and � = 62000 m
(e.g., the spatial correlation for the inow errors between Bewdley and Evesham is 0.8). Despite
being arbitrary, we chose these values as we believe they are representative of a relatively normal
situation with a spatially distributed or semidistributed model, making use of continuous rainfall
�eld inputs, and having undergone a certain degree of calibration with previous events. Fig. S1,
in the supplementary material, shows a hypothetical example of the error forecast evolution, after
one assimilation step, for two values of � . In this study, as we have imposed a stationary bias
in the true mean error, higher values of � , will lead to better results, as they will exert a more
persistent correction of the bias. So, the intentional mismatch between the error forecast model
and the stationary bias serves to emulate the lack of knowledge of the mean error evolution in real
cases. On the other hand, for a real case, the error forecast model should try to approach the real
error dynamics; either by the parsimonious assumption of stationarity (e.g., Matgen et al., 2010),
or by more complex models.

2.6. Veri�cation Methods

To assess the strength and weaknesses of the forecasts, we use standard veri�cation methods.
The Root Mean Square Error (RMSE) is used as measurement of overall accuracy. The Brier Skill
Score (BSS) is used to evaluate the forecast relative to a standard, which is chosen to represent an
unskilled forecast. In our case, the unskilled forecast is the open loop simulation. The vectorized
form of the BSS is

BSS = 1� (fs � o)2

(fr � o)2
; (29)

where fs is the evaluated forecast state vector, fr, is the reference forecast (open loop) vector, o
is the actual outcome vector (here, the truth), and the overline denotes the average. The BSS
2 (�1; 1], where BSS= 0 indicates no skill when compared to the reference forecast, and BSS= 1
is a perfect score.

Finally, we use rank histograms for determining the reliability of ensemble forecasts and for
diagnosis of errors in its mean and spread. A at rank histogram is usually taken as a sign of
reliability. A detailed interpretation of rank histograms for verifying ensemble forecasts is given by
Hamill (2001).

3. Results and Discussion

3.1. Updating Inow Boundary Conditions

Our results indicate that the improvement in forecasting skill due to assimilation of observations
may have a short time span in hydrodynamic domains, as the inow errors propagate downstream
counterbalancing the improvement. This is in agreement with previous studies (e.g., Andreadis
et al., 2007; Matgen et al., 2010; Giustarini et al., 2011). However, it is also important, in this
context, to evaluate how the inows are corrected at the boundary conditions themselves, as this
is an indicator of the capability of the data assimilation scheme to obtain inow time series that
can be used as surrogate observations to feed back into an inverse hydrodynamic-hydrologic DA
modelling cascade.

Fig. 3 compares the evolution of the inow ensemble at the upstream boundary condition at
Bewdley and the forecasted ood stage at a dowstream location (Worcester) when inow errors
are not estimated and corrected by the assimilation against the case when they are corrected.
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Simulations refer to a SAR assimilation revisit time �ta = 24 h. If inows are not updated they
are similar to an open loop without DA, so the DA-bias line overlies the input bias one (Fig. 3a).
If inow errors are also estimated and corrected according to the used error forecast model, each
sequential assimilation pushes the inows used by the model toward the truth (Fig. 3b). In both
cases, the DA process does a good job in correcting the forecast toward the truth at Worcester. For
each ensemble, this is clari�ed by the upper plots at Worcester, which show the evolution of the
standard deviation (DA-SDev lines) and the mean bias (DA-bias lines) between the forecast and
the truth. However, if the biases in the inow (here mostly inuenced by Bewdley at the North)
are not corrected they have a control e�ect that, after any assimilation update, causes the forecast
to drift away from the truth, leading to an early overestimation of the ood stage. A similar e�ect
was shown by Matgen et al. (2010). The case with inow updating keeps the forecast on track
very close to the truth. Curves at the other inows and sampled forecast locations show similar
e�ects (see Figs. S2{S15; supplementary material). The speed at which the updated inows drift
away from the truth when they are updated is related to the lack of match between the used error
forecast model (with � = 3) and the imposed stationary bias. As described in Section 2.5, in
this case, higher � values would result in a more persistent propagation of the errors estimated
at the assimilation time, giving an improved mean inow error estimation and correction in time
with the forecast. In the remainder of this paper we use simulations with updating of the inow
errors, as this leads to a clear forecast improvement. However, we keep � = 3 to emulate the fact
that any error forecast model that could be chosen for real cases (e.g., a stationary bias model
as Matgen et al., 2010) will always fail to completely match the true (non-stationary) inow
error evolution. Here we assumed that friction parameters are known. In real cases, if friction in
the channels and oodplain are considered to be uncertain, an attempt may be done to estimate
them simultaneously by additional augmentation of the state vector. Generally, with additional
parameters to be estimated, the �lter would bene�t from larger ensemble sizes. Estimation of
friction, however, is beyond the scope of this study.

3.2. Ensemble Properties

The use of a �nite ensemble size to approximate the error covariance matrix introduces sampling
errors that are seen as spurious correlations. With each spurious update there is an associated
reduction of ensemble variance. This ensemble collapse problem is present in all EnKF applications
and can lead to �lter divergence (Evensen, 2009). To the authors’ knowledge, there is no published
study that evaluates the problem of ensemble collapse for hydrologic or hydrodynamic studies
using sequential EnKF-based DA. Let us conduct a quick examination of the properties of the
ensemble, taking as an example a simulation with �ta = 24 h revisit time, starting on the 20th
of July, before the ood goes out of bank. Fig. 4 shows the evolution of the rank histograms
evaluated with the forecasted ensemble at each assimilation time. To build the histograms, at
least 5�m



with the sequential assimilation steps. This indicates that the ensemble size is enough, in general
terms, for the case study. Here we use an ensemble size m = 210 for a state vector length of
the order O(104



Generally, for inows and stage, the improvement due to the decrease of the revisit time is
most clear when assimilation starts at an early stage of the ood event. After the peak stage is
reached, from 22th July onwards, the curves have mostly converged. Also, for each �ta curve, the
increase in the RMSE at the forecasted stages is very sharp just before the peak stage is reached,
that is, when variation in stage is higher. This indicates that the early satellite overpasses on the



the rank histograms. For the forecast stage, disregarding the 20th July forecast when ows are



case-dependent. These techniques could be required in other scenarios for sequential ETKF-based
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Figure 1: Study domain. OSGB 1936 British National Grid projection; coordinates in meters. Grey labels indicate
major rivers (thick black lines). The red polygon surrounds the Tewkesbury urban area. Orange labels/dots refer
to inow boundary conditions, some of them on smaller tributaries (thin black lines). The orange line to the South
indicates a time-varying stage boundary condition. Green labels/dots show locations with available stage observations
for the event, from which we just use their locations as a reference in the current study. The background is the 75 m
resolution DEM used for the model, based on upscaling the NEXTMAP British digital terrain model.
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Figure 3: Evolution of the inow at Bewdley (a), and corresponding forecast at Worcester (c), without attempting
to estimate/correct the errors in the inow boundary conditions. Inow (b) and forecast (d) are as (a) and (c),
respectively, but estimating and correcting the inow errors by augmentation of the state vector. For each ensemble
at Worcester, upper summary plots show the standard deviation of the ensemble (DA-SDev), and the bias between
the mean of the ensemble and the truth (DA-bias). For the inow at Bewdley, the input bias is also shown. Vertical
lines indicate satellite overpass/DA times (�ta = 24 h).
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Figure 4: Evolution of the rank histogram evaluated for the forecast ensemble at each assimilation time for the
�ta = 24 h revisit time simulation. The subplot at the lower-right corner is included as a reference indicating the
corresponding assimilation times in relation with the various true inow boundary conditions.
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Figure 5: RMSE for inows at the two boundary conditions with the highest inow (Bewdley at the Severn, and
Evesham at the Avon), and forecasted stage at four gauges: Worcester, at the river Severn; Kempsey, just after the
junction between the Teme and the Severn; Bredon, in the Avon; and Mythe Bridge, in the Severn by Tewkesbury.
True inow/stage at the corresponding location is shown as a reference. Curves are calculated for revisit times
�ta = 12 h, 24 h, and 48 h. Each point in each curve denotes the �rst visit time and the corresponding RMSE over
the entire window.
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Figure 6: Brier Skill Scores (BSS) for the �ta
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Figure 7: As Figure 5 for �ta = 24 h revisit time, but for �ve SAR overpasses successively delayed by one hour.
Each blue point denotes the �rst visit time, and the corresponding RMSE over the entire window. As an example,
for the �rst and last �rst visit time, all visits/DA times are shown as grey points.
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