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Abstract

In this paper we develop an asymptotic scheme to approximate the trapped mode solutions to
the time harmonic wave equation in a three-dimensional waveguide with a smooth but otherwise
arbitrarily shaped cross section and a single, slowly varying ‘bulge’, symmetric in the longitudinal
direction.

Extending the work in [4], we �rst employ a WKBJ-type ansatz to identify the possible quasi-
mode solutions which propagate only in the thicker region, and hence �nd a �nite cut-on region
of oscillatory behaviour and asymptotic decay elsewhere. The WKBJ expansions are used to
identify a turning point between the cut-on and cut-o� regions. We note that the expansions
are nonuniform in an interior layer centred on this point, and we use the method of matched
asymptotic expansions to connect the cut-on and cut-o� regions within this layer.

The behaviour of the expansions within the interior layer then motivates the construction of
a uniformly valid asymptotic expansion. Finally, we use this expansion and the symmetry of the
waveguide around the longitudinal centre, x = 0, to extract trapped mode wavenumbers, which
are compared with those found using a numerical scheme and seen to be extremely accurate,
even to relatively large values of the small parameter.

Keywords: trapped modes; quasi-modes; slowly varying waveguide; perturbation
methods; WKBJ; turning point

1 Introduction

By trapped modes, we are referring to acoustic modes wherein we �nd a localised region of �nite
oscillatory energy, and which decay elsewhere. The existence of trapped modes in various types of
topographically slowly varying waveguides has been demonstrated previously, in the cases of elastic
plates and rods (e.g., [8,10]), two-dimensional acoustic waveguides (e.g., [4,11]) and in weakly curved
quantum waveguides (e.g., [5]). Additionally, there has been previous research into the calculation of
quasi-modes|perturbed modes of a slowly varying waveguide|in both two- and three-dimensional
acoustic waveguides with a slow curvature (e.g., [2,6]), and in two-dimensional elastic plates (e.g., [7]),
amongst others.

In particular, in [4], an asymptotic scheme is developed to approximate the trapped mode solutions
of the time-harmonic wave equation in a two-dimensional waveguide with a slowly varying symmetric
bulge around the longitudinal centre x = 0. This slowness is incorporated into the scheme as a large
longitudinal length scale, Lx � 1=�, where � � 1 is taken as the small parameter used to construct
an asymptotic approximation to the solution. By expanding both the amplitude and phase in powers
of �, the cut-on and cut-o� regions are determined by the relative magnitudes of the wavenumber,
k, and the eigenvalues of the one-dimensional duct cross section at each x. A turning point between
the two regions is identi�ed, and the solution behaviour around this motivates the construction of a
uniformly valid approximation, which is used to calculate the trapped mode eigensolutions.

In this paper, we extend this work to create an asymptotic approximation to the trapped mode
solutions within a three-dimensional waveguide with a smooth and simply connected, but otherwise
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arbitrarily shaped cross section with a slow, symmetric variation centred on the plane x = 0. In
Section 2, the slowly varying nature of the waveguide boundary is introduced in terms of the small
parameter, 0 < � � 1, and the geometry is non-dimensionalised and mapped onto a stretched
coordinate system, such that this parameter is incorporated into the di�erential operator.

In Section 3, we �rst determine the possible oscillatory or evanescent quasi-mode solutions (see,
e.g., [2{4, 6]) that may be present within the waveguide by expanding the solution using a WKBJ-
type ansatz of the form � = A exp(P ), wherein the amplitude and phase terms are expanded as
A = A0 + �A1 + : : : and P = ��1P�1 + �P1 + : : :, respectively. A hierarchy of equations in the Ai and
Pi terms is obtained, which we solve iteratively to obtain a leading order quasi-mode approximation
to �. It will be seen that the behaviour of the solution depends upon the relative sizes of the
wavenumber, k, and the transverse eigenvalues of the waveguide cross section, which we denote �(x).

In Section 4, the existence of a turning point is discussed, around which the solution is either
oscillatory or evanescent. Motivated by the quasi-mode solutions found in Section 3, we �nd this
to be a point x�, for which �(x�) = k. Taking established results in domain perturbation theory
(e.g., [9, 12]), we are able to assert that a positive turning point will be found in a region for which
the cross-sectional area is decreasing, such that we expect a solution to be oscillatory only in the
bulge, up until the turning point, and decaying toward in�nity.

An interior layer is then introduced around the turning point, wherein an interior solution is
found and asymptotically matched with the oscillatory and evanescent solutions on either side of the
region. We �nd that the interior solution takes the form of an Airy function in the x-direction, which
motivates the uniformly valid expansion introduced in Section 6. Using this expansion, we are able to
extract trapped mode wavenumbers by considering the symmetry of the waveguide about the x = 0
plane. As such, we �nd that to leading order, the wavenumbers of the trapped modes which are either
symmetric or antisymmetric in the x-direction are those for which �x(0; y; z) = 0 or �(0; y; z) = 0,
respectively. We �nd there to be a sequence of trapped mode wavenumbers in each case, of the form
kn;p, n; p 2 N, for the Laplacian eigenvalues �n(x) of the waveguide cross section at x.

Lastly, in Section 8, both the asymptotic scheme and a spectral collocation method are applied to
calculate the trapped mode wavenumbers of two example problems, to demonstrate the accuracy of
the former. The �rst test case considered is that of an azimuthally constant ‘cylindrical’ waveguide
with a slow variation. Due to this azimuthal invariance, the problem in this particular geometry may
be reduced to a sequence of two-dimensional problems, so that wavenumbers may be quickly extracted
via the spectral method, and we see an excellent agreement between these and those obtained using
the asymptotic scheme. Further bene�ts of the asymptotic method are shown in the second example
problem, wherein no such reduction is possible and a three-dimensional spectral collocation or similar
numerical method proves to be prohibitively expensive. In such a case, we see that the asymptotic
scheme can still be used to e�ciently approximate the trapped mode wavenumbers to a high degree
of accuracy.

2 Formulation

We are interested in time harmonic solutions to the wave equation, and hence omit the common factor
exp(�i!t) throughout. The problem is then equivalent to that of �nding trapped mode solutions to
the Helmholtz equation within a three-dimensional waveguide of arbitrary cross section and smooth
boundary. Using standard cartesian coordinates with x oriented along the waveguide, we take the
duct to be in�nite in the x-direction and symmetric about the plane x = 0. We will take the cross
section at x to be a simply connected domain �D(x) 2 R2, with smooth boundary @ �D(x). We seek
eigensolutions of

��xx + ��yy + ��zz + �k2 �� = 0

(
(y; z) 2 �D(x);

�1 < x <1;
��! 0 as x! �1: (2.1)

We will consider individually both the sound soft and sound hard waveguide, i.e., that with either a
Dirichlet or Neumann condition on the waveguide boundary, respectively, given by

��(x; y; z) = 0 for (y; z) 2 @ �D(x); (2.2a)

r��(x; y; z) � �n(x; y; z) = 0 for (y; z) 2 @ �D(x); (2.2b)
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with �n(x; y; z) denoting the outward normal vector to �D(x) at (x; y; z). If we de�ne a non-dimensionalisation
constant Lyz, which characterises the length scale of the waveguide in the y- and z-directions, by

Lyz = lim
x!�1

�
max

p1;p22@ �D
jjp1 � p2jj



3.1 Sound soft boundary

Note that to satisfy (2.5a), it is su�cient to choose

A





so that, as before,

~�(�) =
~A

j ~f 0(�)j1=2
;

for constant ~A. Hence, reintroducing the subscript notation, we have the sound hard quasi-mode
solutions

~�n =
~An

j ~f 0nj1=2
~En exp

n
��1 ~fn

o
+O(�) (3.16)

where

~fn(�) =

8>><>>:
�i
Z �q

k2 � ~�2
n(��) d�� for jkj �

���~�n(�)
���

�
Z �q

~�2
n(��)� k2 d�� for jkj �

���~�n(�)
��� ; (3.17)

for constants ~An.
These solutions thus imply that the presence of oscillations in the �-direction depend upon the

relative magnitudes of the wavenumber, k, and the eigenvalues, �n(�), of the Laplacian over the
domain D(�). In the case presented here, in which we have a waveguide symmetric about the plane
� = 0, we require, for a trapped mode solution, a region of oscillatory energy up to a particular point,
0 � j�j � j��j, and decay for j�j � j��j. In fact, we may restrict our attention to just the � � 0 half of
the waveguide, since it is symmetric, and we see from (3.17) that we hence require a turning point
�� > 0 satisfying �n(��) = k and �0n(��) > 0 for such a solution to exist.

4 Turning point

We brie
y discuss a result in domain perturbation theory for a necessary condition for a suitable
turning point to exist in the Dirichlet waveguide. Given an arbitrary, piecewise smooth domain

(x) � R2 and a domain 
�(x) � R2, with a small (i.e., O(�) for 0 < � � 1), but not necessarily
localised, perturbation from 
(x), it follows from the work of [9], [12] that the perturbed Dirichlet
eigenvalues can be expressed as a uniform asymptotic expansion in �. In particular, if we denote by
�j a particular Dirichlet eigenvalue on 
(x), and by ��j the associated perturbed eigenvalue on 
�(x),
then we can expand

��j = �j + ���j;1 + �2��j;2 + : : : :

We then �nd that for the leading order variation, sgn(��j;1) = � sgn(f), wherein f is the normal
distance between the boundaries @
 and @
�. We may say, then, that a decrease in the size of the
domain coincides with an increase in the magnitude of the eigenvalues of the Dirichlet Laplacian
on it. In terms of our sound soft waveguide, a necessary condition for the existence of a turning
point �� > 0, with the properties described above, is for the size of the waveguide cross section to be
decreasing at ��.

In the example waveguide geometry that we will return to in Section 8.1, for instance, we consider



5 Asymptotic matching

Given the quasi-mode solutions (3.7), with (3.8), and the existence of a turning point, �� > 0, we
now discuss the behaviour of the solution near this turning point, and show that the asymptotic
expansions exhibit nonuniformity within a small layer around it. To do so, we consider the related
re
ection-transmission problem formed by the half-waveguide D(�) in � 2 [0;1) and the constant
duct D(�) � D(0) for � 2 (�1; 0].

5.1 Region of nonuniformity

We consider for clarity just the sound-soft waveguide, but note that the analysis shown also holds
for the sound-hard duct. Given that the bulge maximum is at � = 0 and the waveguide tapers with
increasing �, we can write the general quasi-mode solutions in the cut-on and cut-o� regions as

�o =

IE exp

(
i��1

Z �q
k2 � �2(��) d��

)
+RE exp

(
�i��1

Z �q
k2 � �2(��) d��

)
(k2 � �2(�))

1=4
+O(�) for k � �(�);

(5.1a)

�d =

TE exp

(
���1

Z �q
�2(��)� k2 d��

)
(�2(�)� k2)

1=4
+O(�) for k � �(�); (5.1b)

respectively, where the oscillatory solution is comprised of an incident and re
ected component. We
expect there to be a layer of nonuniformity between these two regions within which these expansions
break down around a turning point ��, where �(��) = k, and consider the behaviour of the quasi-mode
solutions as �



The O(1) terms vanish and we are left with

�2=3
�
X 00E

��
�=��

�X� @

@�
(�2(�)E)

��
�=��

+X��2(��)E�
��
�=��

�
+O(�4=3) = 0;

=) �2=3
n
X 00E

��
�=��

� 2�0



provided that

T =
�1=6�1=6

2
p
�

F = e�i�=4I: (5.6)

We therefore have the exterior expansions

�



6.1 Sound soft boundary





7 Trapped modes

Given the leading order uniform expansions (6.9) and (6.12), valid for � 2 [0;1), we notice that by
considering a re
ection of this semi-in�nite duct through the (�; �)-plane, we may extract leading order
trapped mode solutions by considering those solutions which are either antisymmetric or symmetric
about � = 0. We hence choose appropriate wavenumbers, k, for which either �(0; �; �) = 0 or
��(0; �; �) = 0, respectively. Taking just the Dirichlet expansion, for example, this is equivalent to
requiring either

Antisymmetric: Ai



all positive �, h0(�) � 0, and hence �0mn(�) > 0. Thus, as discussed in Section 4, we may reasonably
anticipate the existence of one or more turning points per wavenumber, and hence associated trapped
mode solutions.

We notice that the separability and behaviour of (8.2) in the �-direction permits the rewriting of
(8.1) as

�2r2�



and



problem described by (8.1), with the waveguide pro�le given instead by

h(�; �) =
2 + 2 (h1 � 1) sech � exp

n
�16 sin

�
�
2 �

�
4

�2oq
cos2(�) + 4 sin2(�)

; (8.4)

and a bulge height h1 = 1:5, as shown in Figures 2(a) and 2(b). We map this geometry onto a

(a) Waveguide with wall pro�le given by (8.4). (b) Waveguide cross section at � = 0.

Figure 2: Elliptical waveguide with an axially symmetric bulge around � = 0.

circular cross section cylinder of unit radius in order to apply a spectral collocation method, using
the transformation � = r=h(�; �). Thus (8.1) becomes

�2�2h2
�
 �� + 2 ���� +  ���� +  ���

2
�

�
+ �2 �� + � �+

 ���
2
� + 2 ���� +  ���� +  �� + �2h2k2 = 0;

where, similarly to the previous case,

�� = � (�+ 1)h�
h

; ��� =
(�+ 1)

�
2h2

� � hh��
�

h2
;

�� = � (�+ 1)h�
h

; ��� =
(�+ 1)

�
2h2

� � hh��
�

h2

and such that � 2 [0; 1), � 2 [0; 2�] and � 2 (�1;1). It is of note here that, following the methods
of [13], we map � onto the interval [0; 1), as opposed to the ‘full’ Chebyshev interval [�1; 1), and
later discard the negative Chebyshev interpolation points. This ensures a much more even spacing
of Chebyshev points in the �-direction and thus far greater accuracy for a marginal computational
cost. We note, however, that even with such a modi�cation, a full spectral collocation method with
M , N and P interpolation points in the �-, r- and �-directions, respectively, involves calculating the
eigenvalues of an (M�N�P )-by-(M�N�P ) matrix. For the purposes of this veri�cation, we apply
this method with an interpolation grid of (18� 18� 20) points, such that the problem is discretised
into a 6480-by-6480 matrix.



k
(a;s)
np Asymptotic Spectral Rel. error

ks11 1.785610713 1.781332958 0.2401%

ka11 1.803862094 1.798011732 0.3254%

ks12 1.81886783 1.814169297 0.2590%

ka12 1.833185541 1.828951766 0.2315%

ks13 1.845360806 1.842142284 0.1747%

ka13 1.856266363 1.853653319 0.1410%

ks14 1.865307241 1.863482336 0.0979%

ka14 1.872942432 1.87174977 0.0637%

Table 3: Relative error between the asymptotic and spectral collocation calculations of the �rst eight
wavenumbers for the duct described in pro�le by (8.4), with small parameter � = 0:1 and h1 = 1:5.

Figure 3: Cross sections of the �rst four (in the azimuthal / radial directions) antisymmetric trapped
mode solutions at � = 0:



A Appendix

Given a smooth surface S = (x; y; z), parameterised by

x = x; y = �(x; 
); z = �(x; 
);

it is clear that the rate of change of the cross section with x is given by v = (�x; �x). We also have
that the surface normal is given by the cross product

n =
@S
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