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  1.  Introduction 
Understanding the processes acting in near-shore environments is increasingly important as the 
potential risk to coastal environments from the combination of sea-level rise and more frequent and 
intense storms resulting from global climate change needs to be assessed. In many coastal areas the 
local conditions can change rapidly, and tracking these changes is crucial for assessing flood risks, 
environmental impacts, safety for shipping and recreational uses of the coastal zones. In areas where 
the bathymetry evolves rapidly over time the collection of data from surveys and in-situ measurements 
with the frequency required to monitor the changes is not feasible due to cost and logistical difficulties. 
Newer approaches have used remote sensing to provide data over a larger area than local surveys 
typically provide, and allow the overall changes in local near-shore and inter-tidal bathymetry to be 
measured over the time-frame of the observations (e.g. Mason et al., 2010).  In order to compensate 
for the general scarcity of data, complex computational morphodynamic models have been developed, 
including 3D morphodynamic models (e.g. Lesser et al 2004). However, the ability of these models to 
predict the state of the near shore environment can be limited (de Vriend et al 1993, Sutherland et al 
2004b) due to inadequate modelling of all the hydrodynamic processes acting, and imperfect 
knowledge of the initial conditions. The integration of remotely-sensed data with morphodynamic 
models offers the possibility to make predictions which are more accurate than using the models alone, 
and provide more insight into the evolution of the near-shore zones than intermittent data collection 
alone. Previous work using data assimilation to improve bathymetric modelling includes the Beach 
Wizard assimilation system, which used a combination of wave roller dissipation and inter-tidal 
bathymetry derived from video sources and radar-derived wave celerity as data sources. These were 
incorporated into the model using an optimal least squares estimator to update the model (van 
Dongeren 2008), which resulted in improved skill for their predictions of near-shore bathymetry. 
  The work described here follows from the previous work of Scott and Mason (2007), where a 
simple coastal area morphodynamic model was coupled with an Optimal Interpolation (O.I.) data 
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and the Isle of Man and the spits at the mouth of the bay limit wave size by restricting fetch (Mason et 
al 1999). The duration of the semi-diurnal flood and ebb tides are unequal, with the ebb running for 
about 40 min longer than the flood at Heysham (Coomber and Hansom 1994).  The spring tide attains 
a maximum velocity of 1.5ms

-1 
in the large sub-tidal channels, with currents being higher on the flood 

than the ebb. The sediments in the inter-tidal zone are predominantly composed of very fine and fine 
sand (0.06 – 0.2 mm), with coarser sand and fine gravel at the mouth of the bay and silts in the inner 
bay (SMP, 1996). The channels and sandbanks in the bay constantly migrate and in the case of the 
Ulverston Channel there is evidence for migration of the order of 5 
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  3.   Datasets 
       An extensive data set of inter-tidal bathymetry for Morecambe Bay was assembled for the study, 
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bay’s inter-tidal bathymetry, and do not provide observations across the whole of the inter-tidal zone. 
They are also irregular in terms of the temporal resolution, in some cases there are only a few hours 
between waterline observations, and in other cases a gap of up to 6 months may occur.  
 

 

 Fig. 2: Datasets: a) 
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laser altimetry (LiDAR) survey that covered the entire inter-tidal zone of the bay. The spatial resolution 
was 2m, and the error on the mean heights was found to be ±5 cm when compared with independently 
measured heights in urban areas around the bay. The complete data set included almost 200 million 
height samples. Such surveys are rare due to the difficulty of over-flying the bay at low tide, and the 
cost of acquiring and processing the data. These data were used solely for validation purposes in this 
study. 

 
 

        4. Data Assimilation 
Data assimilation is a technique widely used in environmental science to combine information from a 
variety of sources of observational data with dynamic models. The purpose of this is to improve a 
model's predictive ability, and to permit a rigorous assessment of the relative accuracy of the model 
and the observations. A forecast is produced (referred to as the 'background') by running the model to 
the point where observations are available, then observations valid at the simulated time of the forecast 
are 
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the model state and the observations and initial state: 
  

   
     
 

 
where:  
 

 z is the model state vector (dimension n, where n is the number of model grid cells) 

 zb is the background state vector (dimension n) 

 y is the observation vector (dimension p, with p << n) 

 H is the observation operator that maps model variables to observation space (in this case a 

simple linear interpolation from the model grid to the locations of the observations) (dimension p 

x n) 

 B is the covariance matrix of background errors (dimension n x n) 

                          R is the covariance matrix of observation errors (dimension p x p) 
 

This cost function is minimized with respect to z, and the vector za where the function is a minimum is 
referred to as the 'analysis'. The vector zb is the background vector, representing the bathymetry 
predicted by the model. The vector z is usually taken to be the same as the background vector for the 
first iteration. In our case the observation operator H simply interpolates nearby model bathymetry 
values to the observation position. The matrix B is an error covariance matrix which represents the 
errors in model prediction (also referred to as the ‘background’ or ‘forecast’ errors), and R is the error 
covariance matrix for the observation errors. Choosing appropriate values and structures for these 
covariance matrices is important for the correct weighting between the observations and the 
background. In our implementation, the minimisation is done using a conjugate gradient method 
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performed to calculate the cost function above. The scaling factor must be calculated such that the 

maximum element of  



 

 9 



 

 10 

 
 
,       (5) 
 

 where 
 

   As = (Ass+Asb)F   ,       (6) 
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  Ass         = suspended sediment load 
                     Asb           = bed sediment load 
   u         = depth-averaged current 
   ucr  

      
= critical current for sediment movement 

         h        = water depth 
         d50     = median grain diameter 
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 5.2  Initial bathymetry 

In general it may be difficult to provide a correct initial bathymetry in most operational cases and the 
most likely situation would be an imperfect or out-of-date bathymetry for the beginning of a model run. 
In this case, we wanted to provide the best estimate of the likely bathymetry at the start of our model 
run thus reducing the probable errors for the initial conditions and providing a more stringent test for the 
comparison of predictions with and without assimilation. The differences between the previously 
available bathymetry valid for 1997 (Mason et al 1999) and the LiDAR data for November 2005 show 
that substantial changes in the channel positions had occurred over this period. In order to update the 
1997 data to provide a new initial state for 2004, we ran the model using the earlier data and 
assimilated the waterlines available for May 2003 – December 2004. This was done using default 
parameters for the model and assimilation, and was the simplest method for updating the old 
bathymetry to a state which would be more likely to represent the ‘true’ state of the bathymetry for the 
beginning of our model runs in January 2004. Fig. 3(a) and (b) show the differences between the 1997 
bathymetry and our updated initial bathymetry. 
 
 
 

 
 

 Fig. 3: (a) Bathymetry for 1997 (after Mason et al 1999) (b) Initial bathymetry created as initial bathymetry for 

 January 2004 

 
6.  Calibration of the Assimilation System 
 The system needs to be calibrated for the sediment transport parameter F, and also to find the best     
value of the covariance length scale l to produce the best results for the assimilation scheme. This was 

done by changing the values of the parameters over a reasonable range, and using performance 
measures to select the values providing the best predictions of the bathymetry. 
 
6.1  Performance measures for the calibration 
The calibration was carried out against the swath bathymetry from February 2005, as this covered a 
larger part of the domain than the individual waterlines. The model was run to the time of the swath 
dataset, and then the predicted bathymetry was compared to the swath bathymetry wherever they 
overlapped, using interpolation to match the model points to the data. Measures of model performance 
were calculated so that the impact of different values of model parameters could be assessed. The 
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main measures calculated from the set of height differences were the mean difference, the Mean 
Square Error (MSE), the variance, and the Brier skill score (Sutherland et al 2004a). The Mean 
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 Fig. 4: Background – analysis showing the effect of different length scales:  (a) l = 0.5 (b) l = 3.0 

  
6.3  Calibration of sediment transport factor  F 
The Soulsby-van Rijn equation (5) is used to calculate the sediment transport and includes a calibration 
factor F. Several runs of the model were carried out using different values of F, ranging from F = 0.1 to 



 

 14 

2.0 2.0 0.5 -0.090 2.330 2.320 0.311 

2.0 2.0 1.0 -0.170 2.090 2.060 0.382 

2.0 2.0 2.0 -0.360 2.430 2.300 0.281 

2.0 2.0 3.0 -0.400 2.770 2.610 0.181 

2.0 0.8 1.0 -0.170 2.150 2.120 0.151 

       

 

 
Fig. 5: 
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b
2
 = 2.0 after 23 months. The plot shows the bathymetry for b

2
 = 2.0 subtracted from the bathymetry for b

2
 = 0.8. 

 
6.4  
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(waterlines and swath 
data) 

With assimilation 
(excluding swath data) 0.480 2.300 2.080 0.262 

 

 
Fig. 6:  Plots of differences between predicted bathymetry  and bathymetry measured by LiDAR (prediction – 

data). The letters in each plot are referred to in the text. 

 (a) without assimilation (b) with assimilation.  c) Differences between model output bathymetry and LiDAR data 

for model run excluding assimilation of swath data. d) Differences between weighted ensemble mean bathymetry 

and LiDAR data. 
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The advantage of the reduced chi-squared compared to the normal chi-squared test is that it 
normalizes for the number of degrees of freedom. 

 The variance (
2
) at the i’th grid cell is taken as the weighted standard deviation of the model runs 

squared, added to the variance for the sub-sampled LiDAR observations (0.05 m
2
). This gives us the 

combined variance of the difference between the observation and the combined model runs at each 
grid cell. On the assumption that the null hypothesis is true, the values of the predicted differences f( xi ) 
are zero. In principle, a reduced chi-squared value of 1 indicates that the extent of the match between 
observations and predictions is in 
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provide an improvement over the best individual run, and reduce the differences between the validation 
data and the predicted bathymetry. This may be due to combining the parameter values so that there is 
effectively a variable value of the parameters from the different individual runs providing a better overall 
match. A plot showing the differences between the LiDAR data and the weighted mean of the runs (Fig. 
6(d)) shows where the ensemble prediction has improved over the nominal run shown in Fig. 6(b). The 
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The changes in the bathymetry over the course of the 23 month run shown in Fig. 9(a) are based on 
comparing the initial bathymetry from January 2004 used for the model run, and the bathymetry as 
measured by the LiDAR data in November 2005. The LiDAR data are averaged to produce a single 
point for each model grid cell for this comparison and this is subtracted from the initial bathymetry. This 
is not a comparison of actual observed changes, as the initial bathymetry is a modelled bathymetry as 
described in Section 5.2. The comparison shows where the assimilation system should produce 
changes to the initial bathymetry in order to match the final LiDAR data. The LiDAR data is subtracted 
from the initial model estimated bathymetry, so areas appearing positive (red and orange) are where 
erosion has occurred, and the initial estimate is higher than the LiDAR data; conversely, the blue and 
purple areas show where there has been deposition over the model run period. The main changes are 
in the migration of the Ulverston Channel, which shows as the red and orange area between the Leven 
and Kent estuaries (A), and the purple areas to the south of this (B). Along the Kent estuary there has 
been considerable deposition, which extends across to Wharton Sands (C). The Lune Estuary (D) is 
also higher as measured by the LiDAR data, while the channels leading up to Wharton Sands are 
deeper (E). The differences between the initial bathymetry and the final model bathymetry produced by 
the assimilation scheme are shown in Fig. 9(b) for comparison, using the values of F = 2.0, l = 1.0. If 

the assimilation system was perfect, the two figures would be identical. Although the two figures show 
changes occurring in similar areas, the results from the assimilation scheme do not show the larger 
areas of deposition along the Cartmel Wharf (A), and the removal of sediment along the Ulverston 
Channel has been over-estimated. The changes in the Lune Estuary are also not apparent in the 
assimilation system. This may be in part because the model itself is simplistic and is not reflecting fully 
the sediment transport processes active in the bay, particularly secondary currents which are 
responsible for meander migration. This means that changes in the channel positions are not well 
represented by the model alone. The use of the waterline assimilation should correct for this in part, but 
can only do so if the changes are adequately captured by the waterline data. Also the temporal spacing 
of the data assimilated can be large in some cases, and is certainly not regular. In some cases 
waterlines are separated only by a matter of hours, in others several months elapse between 
observations. Where the model runs without assimilation for a period of months, it may drift away from 
the correct bathymetry. If the next assimilation is a waterline that does not cover the areas where the 
change has been greatest, it may not be able to correct the model sufficiently over the required areas, 
leaving discrepancies between the true state of the bathymetry and the prediction from the assimilation 
scheme.  
 

 
 

Fig. 9: Change in bathymetry over 23 months from initial model bathymetry: (a) compared to LiDAR data 
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(b) compared to final model bathymetry prediction. The letters in each plot are referred to in the text. 
 
7.6  The impact of storms 
 Storms in Morecambe Bay may be expected to affect the bathymetry due to storm surges and increased 
wave action. This can result in more rapid changes in the bathymetry during a storm, and would result in 
the model being less effective at predicting these changes, as it includes neither storm surges nor wave 
action. If this assumption is correct, the assimilation system would be expected to provide a larger 
correction to the predicted bathymetry after a storm than after a relatively calm period.  As the 



 

 23 



 

 24 

9.  



 

 25 

Conservation, Morecambe Bay. Coastal Research Group, University of Glasgow, 79pp. 
 
de Vriend, H.J., 1987. 2DH mathematical modelling of morphological evolutions in shallow water. 
Coastal Engineering 11, 1-27. 
 
de Vriend, H.J., Zyserman, J., Nicholson, J., Roelvink, J. A., Pechon, P., Southgate, H. N. 1993. 
Medium-term 2DH coastal area modelling. Coastal Engineering 21, 193-224. 
 
Järvinen, H. 1998. Observations and diagnostic tools for data assimilation, 
http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION/OBS_AND_DIAG_TO
OLS/Obs_and_diag_tools.html 
 
Johnson, C., 2003. Informational content of observations in variational data assimilation. PhD Thesis, 
Department of Mathematics, University of Reading. 
 
Johnson, C., Hoskins, B.J., Nichols, N. K., 2005. A singular vector perspective of 4D-Var: Filtering and 
interpolation. Quarterly Journal of the Royal meteorological Society, 131 part A, 1, 19. 
 
Laub, C., Kuhl, T. L., 2005. How Bad is Good? A Critical Look at Iterative Fitting of Reflectivity Models 
using the Reduced Chi-



 


	Cover_12_01
	GTetal_FinalEditableVersion_CoastDyn

