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Abstract

Driven by a range of modern applications that includes telecommunications,

e-business and on-line social interaction, recent ideas in complex networks can be

extended to the case of time-varying connectivity. Here we propose a general frame-

work for modelling and simulating such dynamic networks, and we explain how

the long time behaviour may reveal important information about the mechanisms

underlying the evolution.

1 Introduction



• networks of mobile phone users with a link denoting current interaction [24, 26],

• transportation networks defined over a dynamic infrastructure [6],

• networks describing transient social interactions [25],

• correlated neural activity in response to a functional task [11].

Our aims here are (a) to set out and study some general options for describing such
evolving networks in a stochastic setting and (b) to discuss practical challenges in inter-
preting and calibrating suitable models. In particular, we show how ideas from [11] can
be extended to produce a wider class of models.

In section 2 we introduce a range of models under successively less restrictive assump-
tions. Section 3 focusses on a particularly promising model class and in section 4 we
make some observations about long-time behaviour. In section 5 we give some illustrative
simulations on synthetic data and then show computational results on a real evolving
mobile phone network. Concluding remarks appear in section 6.

2 Stochastic models

For simplicity, we consider here undirected, unweighted graphs, defined on a set V of
exactly n > 2 vertices, with no self-loops. Extensions to directed graphs and self-
loops follow naturally. Any such graph G may be represented by a symmetric (n × n)
adjacency matrix, A, with elements Aij = Aji = 1 if the edge e = (i, j) is present, and
zero otherwise.

Let Sn denote the set of all such graphs defined over these n vertices. We have |Sn| =

2
n(n−1)

2 = M(n), say. An evolving graph over discrete time steps is simply an ordered
sequence, {Gk} for k = 0, 1, 2, ..., within Sn. We think of the evolving graph as taking
the particular state Gk at kth time step, that is, at time tk from some monotonically
increasing time sequence.

To introduce a stochastic element, suppose we have a set of conditional probabilities,
defined for all possible networks, Gk+1 ∈ Sn, given all of the networks earlier within the
evolving sequence: say

P (Gk+1|Gk, Gk−1, ....).

This set determines a probability distribution for the next element, Gk+1, in the sequence,





3.1 Births and deaths dependent upon degree

Suppose the edge e that connects vertices vi and vj is not in Gk. Let di and dj denote
the degree of vertices vi and vj within Gk, respectively. Then let us define

α(e) = Fα(di, dj),

where Fα is any continuous mapping from pairs of integers onto the interval [0,1]. In
the undirected edge case that we consider in this work, symmetry demands Fα(z1, z2) =
Fα(z2, z1) for all nonnegative integers z1 and z2. For example, Fα might be monotonically
increasing in both arguments, meaning that edges are more likely to appear between
vertices of higher degree. Such a case is given by

Fα(di, dj) =
didj + a

didj + a + b

for positive reals a and b. This mirrors the concepts of preferential attachment and
assortativity found in static models [3, 21].

Similarly suppose e is in Gk, and connects vertices vi and vj . Then we may define

ω(e) = Fω(di, dj),

where



where Fα is any continuous mapping from triples of integers onto the interval [0,1].
Note that rij ≤ min{di, dj}. As before we require Fα(z1, z2, z3) = Fα(z2, z1, z3) for all
nonnegative integers z1 and z2. For example Fα may be monotonically decreasing in
both z1 − z3 and z2 − z3, but increasing in z3, so that that edges are likely to appear
between vertices that have many adjacent vertices in common. Such a case is given by

Fα(di, dj, rij) =
1 + rij

√

1 + didj

.

Similarly, suppose e is in Gk, and connects vertices vi and vj . Then we may define

ω(e) = Fω(di, dj, rij),

where Fω is any continuous mapping from from triples of integers onto the interval [0,1],
with Fω(z1, z2, z3) = Fω(z2, z1, z3) . For example Fω may be monotonically decreasing in
z3 meaning that edges are less likely to disappear between vertices of with many common
adjacencies. Such a case is given by

Fω(di, dj, rij) =
1 +

√

didj

1 + rij
.

3.3 Births and deaths dependent upon edge range

In some circumstances, it is reasonable to assume that connections between vertices
are determined in part by their relative locations in some physical or abstract space
[18, 23, 29]. This concept of location in space may be more than geographical; there is
evidence for a more general ‘social distance’ metric that, in principle, could be inferred
form the network data [30]. Specifically, for range dependent graphs [9, 10, 12, 14, 15]
the vertices are considered to have an underlying (generally unknown) ordering on the
integer lattice, and the range





Suppose this model does not use some additional (imposed) knowledge that differentiates
between the vertices. Of course range-dependent evolving graphs employ an imposed or-
dering of the vertices for example; whilst Barabási style aggregative graphs allow vertices
to become active in some predefined order, externally imposed. But for evolving graphs
having no such vertex discrimination, symmetry demands that G⋆ is invariant to any
permutations of the vertices. Hence all possible edges in G⋆ are equally likely: G⋆ is
an Erdös-Rényi random graph, with a Poisson distribution of vertex prt
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As a final computational test, we consider an evolving network from [5]. This data
comes from a “Reality Mining” study that used mobile phones to follow 106 subjects at
MIT over the course of the 2004–2005 academic year. Pairwise calls, SMS activity and
proximity information were recorded. Here we consider just the voice call component
of the data, summarized into weekly activity. So a link between nodes i and j in the
kth adjacency matrix indicates that at least one phone call took place between subjects
i and j in week k. This represents an an evolving network over 52 time points. This
network sequence was also used in [13], a visualization of the complete data set can be
found there. Of course, understanding the mechanisms that drive this type of dynamic
network has immediate benefits for designing mobile phone contracts, identifying and
marketing to specific customer groups, and predicting future patterns of network useage.
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8 this would correspond to a Toeplitz structure (common values along each super-
diagonal). No such obvious pattern is observed, although there is an indication
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