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Abstract

In this thesis we study the use of a velocity-based moving-mesh numerical method, driven

by conservation, for obtaining approximate solutions to nonlinear di�usion equations of

second, fourth and sixth-order in one dimension. These problems often have moving

boundaries and possess many properties that we are able to conserve using the method,

such as scale-invariance and conservation of mass.

A key feature of the method is that it possesses the ability to propagate similar-

ity solutions forward in time to within rounding error (termed the S Property). This

property, occurring when a scale-invariant time stepping scheme is used and when the
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Chapter 1

Introduction

1.1 Motivation

There are a number of physical processes which correspond to nonlinear di�usion prob-

lems when modelled mathematically (see, e.g., Barrett et al. (2004)). These problems

can be of various orders, but those of particular interest in this thesis are those of

high order (fourth and sixth-order), although we also consider the second-order Porous

Medium Equation (PME). Mathematically, problems of this type consist of a partial

di�erential equation (PDE), together with an initial condition and suitable boundary

conditions.

The high-order nonlinear di�usion problems considered in this thesis have a number

of interesting features, the most important of which is that the boundaries of the solution

can evolve over time. These moving boundaries add an extra complexity to the problems,

since (from a numerical viewpoint) some mechanism is required which can track the

position of the boundary.

There exists a large body of literature describing the behaviour of solutions to high-

order nonlinear di�usion problems. In particular, the degree of nonlinearity of the

problem can have an important e�ect on the behaviour of the solution close to the moving

boundary (see, e.g., Beretta et al. (1995), Bowen and King (2001)). The preservation of

nonnegative solutions has also been proven for a range of problems relevant to the work
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recovery can be achieved essentially to within rounding error using a �nite di�erence

scheme, in the case where the initial condition coincides with a similarity solution and

when a scale invariant time stepping scheme is used.

Both the BHJ method and that of Parker are velocity-based moving-mesh schemes

built upon the same conservation strategy. We shall refer to these as conservation-based

schemes (or simply the conservation method). This thesis generalises the conservation

method and provides an implementation in both �nite di�erences and �nite elements

which is able to propagate similarity solutions forward in time to essentially within

rounding error. A signi�cant feature of the implementations in this thesis is the use of

invariant time stepping schemes which preserve scale invariance.

Also of interest is whether such a method is able to accurately model the small-

time behaviours of solutions which do not initially correspond to a similarity solution.

Particular attention is given to (and comparison made with) the work in Blowey et al.



� Produce an implementation of the BHJ method using higher order basis functions

and scale-invariant time stepping in order to propagate similarity solutions forward

in time to within rounding error. This �nite element implementation should be

able to approximate solutions to second, fourth and sixth-order problems.

� Use these implementations to provide a comparison with the work in Blowey et al.

(2007) in order to verify whether the moving-mesh method is able to replicate the

small-time behaviours of solutions (computed in that paper using a �xed-mesh

method). It is hoped that the method can not only model such behaviour, but do

so at a reduced computational expense.

The key results of this thesis are as follows:

� The results of Parker (2010) are successfully extended to a more general class of

second-order nonlinear di�usion problems using a conservation-based �nite di�er-

ence method. The method (termed the Moving Point Conservation Method, or

MPCM) can be shown to be possess theS Property, with approximate solutions

matching the exact solutions essentially to within rounding error.

� The MPCM is extended to approximate fourth-order (written as two second-order

equations) and sixth-order (written as three second-order equations) nonlinear

di�usion problems. By careful construction of the numerical schemes used in the

method, the MPCM is shown to possess theS Property for the fourth and sixth-

order problems.

� Numerical results verifying the possession of theS Property reveal a slow build up

of global error in the method (shown to be bounded) when run over multiple time

steps.

� The BHJ method is implemented using piecewise linear �nite elements, with some

minor di�erences with regards to the solution recovery step.

� By selection of appropriate basis functions, a �nite element implementation of the

MPCM (termed the FEMPCM) for second, fourth and sixth-order problems is

4



also shown to possess theS Property, with numerical results verifying this for the

fourth-order problem.

� Study of the fourth-order problem in cases where an explicit similarity solution

does not exist highlights the issues which the MPCM can face related to the

boundary velocity of the domain (when the fourth-order PDE is written as a pair

of second-order equations). The presence of singularities at the moving boundary

causes the method to be unable to model a large range of cases where the boundary

experiences a �nite or zero velocity due to certain functions becoming unbounded

at the boundary. The method is also unable to model cases where the boundary

initially moves with an instantaneously unbounded velocity.

� An investigation into whether the FEMPCM is able to alleviate some of the is-

sues experienced by the �nite di�erence implementation (for the fourth-order PDE

when written as two second-order equations). It is shown that the boundary ve-

locity issues are molli�ed in the �nite element case, but not eliminated completely.

� An alternative expression for the velocity of the domain is proposed (in which the

fourth-order PDE is not written as a pair of coupled equations) which alleviates

the issues experienced in the instances where the boundary experiences a �nite

or zero velocity. This is achieved by rewriting the velocity in terms which are

smooth and �nite at the boundary. Numerical results show that this alternative

expression produces approximations to the velocity which are accurate, albeit with

some oscillations in the velocity still appearing.

1.3 Thesis Outline

In Chapter 2 we introduce the nonlinear di�usion PDEs which will be studied in this

thesis. Coupled with appropriate boundary conditions and an initial condition, these

PDEs make up the fourth, second and sixth-order problems, of which the fourth-order

problem (written as a pair of coupled equations) will form the main focus of the thesis.

5



A discussion of the existing literature surrounding these problems is presented, de-

tailing known properties and behaviours of the nonlinear PDEs. The properties which

are of the most relevance for this thesis are then expanded upon, including mass con-

servation and similarity solutions.

The chapter ends with a description of existing numerical methods for solving the

problems outlined at the beginning of the chapter, drawing upon the large body of

literature which exists around this topic. As all work in this thesis in concerned with

one spatial dimension we focus on this, but a short description of methods in higher

dimensions is provided.

Chapter 3 explores a particular type of moving-mesh numerical method, which forms

the basis of the numerical method developed for this thesis. A velocity-based moving-

mesh method based on conservation seeks to obtain the velocity of the discretised domain

along with the approximate solution to the PDE. This mesh velocity is then used to

update the domain over time. Of the di�erent velocity-based methods which exist the

conservation method is emphasised in the thesis.

The numerical method used for the work in the thesis, the MPCM, is then described,

with �nite di�erence implementations for the various nonlinear di�usion problems out-

lined. An important property which the MPCM may possess is then de�ned, the S

Property, with scale-invariant time stepping an essential ingredient in the MPCM for

this property to be present. If an implementation of the MPCM possesses theS Property,

then we are able to obtain extremely accurate solution approximations under certain

conditions.

An implementation of the MPCM is described in Chapter 4 for the fourth-order

problem. This implementation is shown to possess theS Property upon some modi�ca-

tion to the basic MPCM. Details on how the MPCM implementation can be modi�ed

to enable the method to possess theS Property for second and sixth-order problems are

also given.

Chapter 5 sees the introduction of the FEMPCM (building upon the BHJ method),

starting with the necessary weak forms. It is shown that by carefully selecting the �nite-

6



dimensional subspaces and the basis functions which lie in those spaces, the FEMPCM

can possess theS Property.

The cases where there is no explicit similarity solution available (so that the MPCM

implementations do not possess theS Property) are explored in Chapter 6. In particular,

we show that there are multiple possible initial behaviours of the boundary of the do-

main. We demonstrate these di�erent behaviours using both the MPCM and FEMPCM

and highlight issues stemming from singularities at the boundary which can cause the

MPCM and FEMPCM to fail. We also investigate convergence of the method through

tracking of the boundary position of the domain and solution comparisons.

Two attempts to alleviate the issues with boundary singularities for the MPCM are

proposed. The �rst of these is a hybrid numerical method making use of both �xed-

mesh and moving-mesh methods which allows for modelling of an initially unbounded

velocity. The hybrid numerical method is explored in a descriptive sense only without

validation.

The second proposal is to introduce an alternative expression for the velocity, by-

passing writing the fourth-order problem as a pair of coupled equations. Promising

numerical results are given to validate the alternative velocity method.

Finally, in Chapter 7 we summarise the main conclusions of the thesis and outline

possible areas of future work.

7



Chapter 2

Nonlinear Di�usion

2.1 Aims of this Chapter

In this chapter we introduce the various nonlinear di�usion equations which shall be

studied over the course of this thesis, with speci�c examples of second, fourth and sixth-

order equations considered. We also describe the boundary conditions used in the work,

as well as a discussion on alternative boundary conditions that have been used in the

literature.

We shall also outline various properties which these equations possess such as scale

invariance and conservation of mass. The preservation of these properties is a key aim

in the numerical methods to be discussed in this and later chapters.

We then provide a discussion on numerical methods for �nding approximate solutions

to nonlinear di�usion problems and give examples of their use in the literature.
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2.2 Nonlinear Di�usion Equations

2.2.1 General Form

The equations considered in this thesis are one-dimensional (1D) nonlinear di�usion

PDEs which can be written in the general form: Find u = u(x; t ) such that

@u
@t

= ( � 1)m @
@x

�
un @2m+1 u

@x2m+1

�
; in 
 T := 
( t) � (t0; T); (2.1)

where 
( t) � (a(t); b(t)) � R is a moving bounded domain,n is a positive constant

and the integer m = 0 ; 1; 2; : : : determines the order of the equation. We supplement

(2.1) with an initial condition u(x; t 0) = u0(x) and suitable boundary conditions (see

x2.2.2{x2.2.4 for a description of the boundary conditions to be used in the work in this

thesis).

We can rewrite the general form (2.1) as

@u
@t

=
@

@x

�
un @q

@x

�
; in 
 T ;

q = ( � 1)m @2m u
@x2m ; in 
 T ;

(2.2)

where q(u) is dependent on the order of the problem under consideration. Equation

(2.2) is the generalised Reynolds equation (Flitton and King (2004)) and the problems

considered in this thesis will be derived from (2.1) or (2.2) for second, fourth and sixth-

order problems with di�erent q(u) for each case.

The majority of the work covered in this thesis pertains to the fourth-order problem,

so this will form the main focus of this chapter.

2.2.2 A Fourth-Order PDE

A fourth-order PDE is obtained by taking m = 1 in (2.1) or by setting q = � @2u
@x2 in (2.2)

@u
@t

=
@

@x

�
un @q

@x

�
; in 
 T ; (2.3a)

q = �
@2u
@x2

; in 
 T : (2.3b)
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the motion of thin �lms and droplets spreading over a surface (see Greenspan (1978),

Bertozzi and Pugh (1996), Bernis and Friedman (1990) and many others). For this

reason the fourth-order PDE is often referred to as the thin �lm equation.

When n = 1 the PDE models the ow of uid between two plates in a Hele-Shaw

cell (Beretta et al. (1995)), while for n = 3 a droplet with no-slip conditions is modelled

(see, e.g., Greenspan (1978)). In this context, the functionq



boundary. This work is concentrated on dipole solutions to the problem, where the point

at x = 0 is not a moving boundary point. This half-line problem is also considered in

Bernis et al. (2000).

It is also possible to consider problems which do not possess a zero contact angle

boundary condition. Otto (1998) examines the existence of weak solutions for large-time

in the n = 1 case. In this case a �xed contact angle of�4 is used.

The issue of `dry spots' (alt. `dead cores'), in which the solution develops a region

of zero-values inside the moving boundaries has also been studied. King and Taranets

(2013) provide existence and uniqueness proofs for travelling wave solutions of this

nature, as well as upper and lower bounds on such solutions.

In Giacomelli et al. (2008) the fourth-order problem is transformed from a mov-

ing to a �xed domain for the n = 1 case. This paper notes the limiting expression

for the boundary velocity which is important for the work in this thesis (see equation

(6.3)). Existence, uniqueness, smoothness, decay of high derivatives and convergence to



shown that the value of n will determine the nature of the support of the solution. In

particular, if n � 3=2 then the support of u will not shrink over time, while for values

of n � 4 the support is constant.

Similar results are shown in King and Bowen (2001), where the initial condition is

of the form

u0(x) = I (x) + �;

where I (x) = 0 for jxj � a, I (x) > 0 for jxj < a for initial interface position x = � a

and � > 0. The behaviour in the limit � ! 0+ is considered and it is shown that for

n < 3=2 the interface velocity may be of either sign, while forn > 3=2 the velocity is

strictly nonnegative. This therefore identi�es n = 3=2 as a critical case. The support of

the solution is shown in this paper to be constant for values ofn � 3, which identi�es

the region n 2 (0; 3) as being of importance for the moving boundary problem.



as x ! b(t) � , where _b = db
dt and where B (t) needs to be determined as a part of the

solution. For the case when 3=2 < n < 3, the velocity of the boundary is strictly positive,

while for n < 3=2 the velocity may take either sign.

Blowey et al. (2007) consider the results of King and Bowen (2001) and apply them

to initial conditions of the form

u0(x) � A0(b0 � x) � + C0(b0 � x) � ;

where � , � are constants such that � > � , and explore the small-time behaviour of

the right-hand boundary. They demonstrate that, for various choices ofn and � , the

boundary behaves as detailed in King and Bowen (2001) and provide numerical results

to support the asymptotic analysis. In particular, they highlight a region in ( n; � ) space

in which a variety of waiting-time scenarios are exhibited.

2.2.3 A Second-Order PDE

We now describe the second-order problem considered in this thesis. The second-order

problem will not be covered in as much detail, but as the �rst in the hierarchy of the

generalised Reynolds equations (Flitton and King (2004)) it is worth detailing here.

A second-order PDE, obtained by settingm = 0 in (2.1) or by taking q = u in (2.2)

is
@u
@t

=
@

@x

�
un @u

@x

�
; in 
 T : (2.7)

We shall seek solutions to (2.7) subject to the initial condition

u(x; t 0) = u0(x); for x 2 
( t0); (2.8)

and subject to suitable boundary conditions imposed atx = a(t) and x = b(t). For

the second-order moving boundary problem we require two boundary conditions at each

boundary in order for the problem to be well-posed. For the work in this thesis we shall

consider boundary conditions

u = 0 ; at x = a(t); x = b(t); t > t 0; (2.9a)

uv + un @u
@x

= 0 ; at x = a(t); x = b(t); t > t 0; (2.9b)
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The �rst condition is speci�es the position of the moving boundary, while the second

condition denosond



(1983), a discussion on waiting time behaviour for a second-order equation is given,

with a focus on the initial movement of the boundary once the waiting time is over.

We note that the second-order problem (2.7){(2.9) has one important property miss-

ing from the fourth-order problem (2.3){(2.5), in that a maximum principle exists for

the second-order problem but not for higher-order problems (as explained in Barrett

et al. (1998)). This maximum principle can be used to obtain many of the important

results for the second-order problem (2.7){(2.9), particularly uniqueness of solutions.

2.2.4 A Sixth-Order PDE

We now describe the sixth-order problem which will also be considered in this thesis,

which is the third in the hierarchy of the generalised Reynolds equations. It shares many

properties with the fourth-order problem (2.3){(2.5), and as such we shall consider this

problem an extension of the fourth-order work. In particular, we note the lack of a

maximum principle for this problem.

The sixth-order PDE can be obtained by setting m = 2 in (2.1) or by setting q =

� @2p
@x2 ; p = � @2u

@x2 ; in (2.2) and writing it as

@u
@t

=
@

@x

�
un @q

@x

�
; in 
 T ; (2.10a)

q = �
@2p
@x2

; in 
 T ; (2.10b)

p = �
@2u
@x2

; in 
 T : (2.10c)

We seek solutions to (2.10) subject to the initial condition

u(x; t 0) = u0(x); for x 2 
( t0); (2.11)

and subject to boundary conditions

u = 0 ; at x = a(t); x = b(t); t > t 0; (2.12a)

@u
@x

= 0 ; at x = a(t); x = b(t); t > t 0; (2.12b)

@3u
@x3

= 0 ; at x = a(t); x = b(t); t > t 0; (2.12c)

uv + un @q
@x

= 0 ; at x = a(t); x = b(t); t > t 0: (2.12d)
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The boundary conditions (2.12a), (2.12b) and (2.12d) match those used in the fourth-

order problem (2.3){(2.5), with boundary condition (2.12c) new, in comparison to the

fourth-order problem.

From this point on, we shall refer to (2.10){(2.12) as the sixth-order problem

(with (2.10) the sixth-order PDE).

Applications and Results from Literature

The sixth-order PDE with n



equation given in (2.10a). The existence of blow-up similarity solutions occurring in

�nite time is covered in the �rst of these papers, while global similarity solutions are

explored in the second.

In Smith et al. (1996) the ow under a nitride cap is modelled using the sixth-order

equation

ut =
C
12

@
@x

�
u3 @5u

@x5

�
;

where C is a constant denoting the dimensionless exural rigidity. This problem is

solved subject to the conditions that u > 1 inside the moving boundary and u = 1

elsewhere, with the moving boundary not knowna-priori and therefore found as part

of the solution.

Moving Boundaries in the Sixth-Order Problem

It has also been noted that for the sixth-order problem (2.10){(2.12) a variety of be-

haviours of the moving boundary can be observed, dependent upon the value ofn.

In Flitton and King (2004), a number of initial boundary value problems relating

to the sixth-order problem (2.10){(2.12) are discussed. They note that the support of

the initial condition changes only for n < 5=2, with the boundary velocity able to take

either sign for n < 5=3. For values of n � 5=2 the boundary moves with a zero speed

for all problems considered in the paper.

2.3 PDEs in a Moving Framework

The PDEs described inx2.2 are written in a �xed frame of reference with v appearing

only in the boundary conditions. It is possible to rewrite the problems in a framework

moving with a general velocity v(x; t ) by considering some arbitrary sub-region
̂( t)

of our domain 
( t), which has a boundary @̂
( t) moving with this velocity. We shall

illustrate this framework for the alternate form (2.2) of the nonlinear PDE (2.1), but

the process applies to any of the problems considered inx2.2.
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Di�erentiating the integral Z


̂( t )
u(x; t ) dx;

with respect to t using Leibniz's Integral Rule with variable limits, we obtain

d
dt

Z


̂( t )
u(x; t ) dx =

Z


̂( t )

@u
@t

dx +
�
uv

�

@̂
( t )
: (2.13)

Then, using the divergence theorem, along with an integral form of the PDE (2.2), we

may rewrite (2.13) as

d
dt

Z


̂( t )
u(x; t ) dx =

Z


̂( t )

@
@x

�
un @q

@x

�
dx +

�
uv

�

@̂
( t )
;

=
�
uv + un @q

@x

�

@̂
( t )
;

(2.14)

which is now written in a framework moving with velocity v



Di�erentiation of (2.15) with respect to time shows how the area under the support

of u(x; t ) changes through time. We use Leibniz's Integral Rule with variable limits

again, resulting in

d
dt

Z b(t )

a(t )
u(x; t ) dx =

Z b(t )

a(t )

@u
@t

dx +
db
dt

u(b(t); t) �
da
dt

u(a(t); t): (2.16)

Substituting the expression for @u
@t from equation (2.2) into (2.16) and writing

da
dt

= v(a(t); t);
db
dt

= v(b(t); t);

gives

d
dt

Z b(t )

a(t )
u(x; t ) dx =

Z b(t )

a(t )

@
@x

 

un @q
@x

!

dx +

"

uv

#b(t )

a(t )

;

=

"

un @q
@x

+ uv

#b(t )

a(t )

; (2.17a)

= 0 ; (2.17b)

where the step from (2.17a) to (2.17b) holds due to the boundary conditionuv+ un @q
@x = 0

at the boundaries a(t); b(t).

Integrating (2.17b) with respect to t we see that� (t) as given by (2.15) is constant

with respect to t (and hence we may write� (t) = � for mass-conserving problems).

There is a link between the steps shown here to demonstrate mass conservation and

the steps required to rewrite the problems ofx2.2 in a moving framework. Comparing

(2.14) to (2.17a) in the case wherê
( t) = 
( t) demonstrates this link for the full domain.

2.4.2 Scale Invariance

An important property of PDEs of the form (2.1) is that they are scale invariant. A

PDE is said to be scale invariant if there exists a group transformation of the underlying

variables which satisfy the same equations (see, e.g., Budd and Piggott (2001)). In the



where � is an arbitrary positive quantity, which leaves the underlying PDE (2.1) un-

changed provided that

 � 1 = ( n + 1)  � 2(m + 1) �: (2.19)

An additional condition (such as that arising from the mass conservation property,

(2.15)) allows the indices  and �



2.4.3 Similarity Solutions

For general initial conditions we are unable to �nd an analytical solution to the problems

discussed inx2.2, but there may exist closed-form similarity solutions for certain choices

of n and m in (2.1) which we are able to write down explicitly.

Smyth and Hill (1988) note that an explicit closed-form source-type similarity solu-



A Fourth-Order Similarity Solution

In the case of the fourth-order problem (2.3){(2.5) equation (2.25) (with m = 1) leads

to

�
d
d�

(�� ) =
d
d�

�
� n d3�

d� 3

�
; (2.26)

where we have removed the negative sign from each side of (2.25) arising from the choice

m = 1.

Closed-form solutions to (2.26) exist for the choice ofn = 1. In this case, the ODE

integrates simply to give (subject to boundary conditions � = d�
d� = 0 at the � = � b and

the symmetry condition d�
d� = 0 at � = 0)

� =
1

120

�
� 2

b � � 2
� 2

+
: (2.27)

In equation (2.27) the subscript + indicates the positive part of ( � 2
b � � 2



A Second-Order Similarity Solution

Setting m = 0 in (2.25) produces the ODE

� �
d
d�

(�� ) =
d
d�

�
� n d�

d�

�
; (2.29)

which can be solved for anyn, as noted in Smyth and Hill (1988), subject to the boundary

condition � = 0 at � = � b and the symmetry condition d�
d� = 0 at � = 0. The solution to

this ODE can be written as

� =
�

n
2(n + 2)

� 1=n �
� 2

b � � 2
� 1=n

+
;

and hence (from (2.23)) the similarity solution is given as

uS(x; t ) =
1
t �

�
n

2(n + 2)

� 1=n �
! 2 �

x2

t2�

� 1=n

+
;

where ! is related to � b by the initial condition and � = 1=(n + 2) from (2.21) (since

m = 0). The similarity solution is again symmetric about � = 0 with moving compact

support (in terms of x). An example of a similarity solution for the second-order problem

(2.7){(2.9) is given by (Pattle (1959), also Barenblatt (1952))

uS(x; t ) =
1
t �

�
n�
2

� 1=n �
! 2 �

x2

t2�

� 1=n

+
; (2.30)

where � = 1=(n + 2).

A Sixth-Order Similarity Solution

Setting m = 2 in (2.25) produces the ODE

� �
d
d�

(�� ) =
d
d�

�
� n d5�

d� 5

�
: (2.31)

As in the fourth-order case, closed-form solutions exist only in the case wheren = 1,

in which case the ODE (2.31) integrates, subject to the boundary conditions� = d�
d� =

d3 �
d� 3 = 0 at � = � � b and the symmetry condition d�

d� = 0 at � = 0, to give

� =
1

5040

�
� 2

b � � 2
� 3

+
;
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The corresponding similarity solution to the sixth-order problem (2.10){(2.12) is of

the form

uS(x; t ) =
1

5040t �

�
! 2 �

x2

t2�

� 3

+
:

where ! is related to � b by the initial condition and where � = 1=7 from (2.21) in the

case wheren = 1. This solution is symmetric about x = 0 and has moving compact

support.

An example of a sixth-order similarity solution (presented in Barrett et al. (2004))

is given by

uS(x; t ) =
1

5040(t + � )1=7

�
! 2 �

x2

(t + � )2=7

� 3

+
; (2.32)

for constants � , ! .

2.5 Numerical Methods for Nonlinear Di�usion

As mentioned in x2.4.3, for most choices ofm or n in the PDEs (see (2.1), (2.2))

describing nonlinear di�usion in this thesis there are no closed form solutions available.

Indeed, for those cases such that closed form solutions exist they are useful only if the

initial condition is of the correct form. This lack of explicit solutions motivates the need

for numerical methods for use in obtaining approximate solutions to such nonlinear

di�usion equations.

We now present a review of some of the di�erent types of numerical method which

feature in the literature, with the main focus on numerical methods for fourth-order

problems. There is a large body of literature to draw on, and a wide variety of methods

which can be used to produce approximate solutions to the nonlinear PDEs, from which

a selection is made here.

We shall mention both moving-mesh methods and �xed-mesh methods in 1D, as well

as a brief mention on methods in higher dimensions. A particular class of moving-mesh

methods, velocity-based methods based on conservation, is of particular relevance to the

work presented in this thesis, and as such is covered separately in Chapter 3.
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2.5.1 Moving-Mesh Methods for Nonlinear Di�usion

A moving-mesh method allows the mesh of points to evolve over time, which adds an

additional complexity to the solution process but has the bene�t of allowing moving

features of the solution to be modelled more accurately (Budd et al. (2009)). Such

methods are also known asr-re�nement methods, as opposed toh-re�nement methods in

which mesh points are added or removed from the mesh where required. This latter form



rule and written here in terms of (2.2))

@u
@t

�
du
dx

dx
dt

=
@

@x

�
un @q

@x

�
; (2.35)

where du
dx denotes the rate of change ofu in the moving frame.

We refer the reader to Huang et al. (1994), Budd et al. (2009), Huang and Russell

(2011) and the references within for a detailed review of the MMPDE method. In

particular, Budd et al. (1999) present an application of the MMPDE method to the

porous medium equation for generating self-similar numerical solutions.

2.5.2 Fixed-Mesh Methods for Nonlinear Di�usion

A �xed-mesh method di�ers from a moving-mesh method (such as that discussed in

x2.5.1) in that the discretisation of the domain is such that the mesh points are no

longer moving over time. This necessitates a distinction between the boundary of the

computational domain and the interfaces which de�ne the support of the solutionu(x; t ),

as the interfaces may not lie exactly on the computational boundaries.

For the general PDE given by (2.1), solutionsu(x; t ) are sought to

@u
@t

= ( � 1)m @
@x

�
un @2m+1 u

@x2m+1

�
; in 
 � (t0; T);

where 
 := ( � B; B ) is a truncation of the real line such that x = � B are �xed points

chosen far enough away from the moving interfaces atx = a(t), x = b(t) (see Figure 2.1).

The approximate solution is then sought at each point on a mesh whose points

remain �xed over time. Standard numerical methods for boundary value problems

(BVPs) can then be used in obtaining the approximation (although there may be issues

with representing sharp features of the solution if the density of the mesh points is low

in the vicinity of the feature).

Fixed-mesh methods have di�culties modelling the position of a moving boundary,

since in general the moving boundary is not located at a mesh point. This generally

necessitates the inclusion of some mechanism for determining the position of the inter-

face between two mesh points, such as interpolation or extrapolation. In particular a
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Figure 2.1: Image highlighting the di�erence between �xed and moving domains 
 T .

The left-hand image shows a �xed-mesh domain, with interfaces given by the black

asterisk. The solution outside the interfaces exists but is equal to the value at the

interface. The right-hand plot shows a moving domain, where the black asterisk denotes

the boundary of the 
 T . The solution is not de�ned outside of the boundary.
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�xed-mesh method may have di�culty when approximating singularities in a solution,

with the qualitative behaviour of the solution di�ering from the true behaviour (see for

example Budd et al. (1996)).

An advantage of �xed-mesh methods is that there exists much analysis associated

with such methods, with known results on error estimates and convergence of numerical

solutions. In particular, a large body of literature has arisen looking at constructing



Barrett et al. (1998) present a �nite element scheme for solving the fourth-order

problem (2.3){(2.5) without the above regularisation. Convergence of numerical solu-

tions to a weak solution of the PDE in 1D is shown. Nonnegativity of the solution is

imposed as a constraint, since numerical solutions cannot be guaranteed to satisfy this

property otherwise.

Blowey et al. (2007) use the �nite element scheme of Barrett et al. (1998) with some

modi�cations to demonstrate the various small-time behaviours of the free boundary

outlined in King and Bowen (2001).

A mixed �nite element method is proposed in Burger et al. (2010) for a class of

second-order nonlinear PDEs, while Duque et al. (2013) use a �nite element method to

obtain solutions to a second-order problem with variable exponentn, which di�ers from

the problems considered in this thesis (which have constantn).

The literature for sixth-order problems is much less abundant than for the second and

fourth-order problems, which is likely to be due to the fact that less is known about the

behaviour of solutions to such problems. In Smith et al. (1996) a numerical method for

solving a sixth-order problem related to ow under a nitride cap is given. The method

uses �nite di�erences and Newton's method is employed at each time step to solve the

resulting system. Evans et al. (2000) provide a �nite di�erence scheme for a sixth-order

problem, which is restricted to one space dimension. In both cases, no analysis of the

�nite di�erence schemes is given.

One of the �rst attempts of producing a �nite element implementation to the sixth-

order problem (2.10){(2.12) is given in Barrett et al. (2004). The method is an extension

of the method of Barrett et al. (1998) for the fourth-order problem (2.3){(2.5), and the

paper notes the lack of research for this order of problem. The method presented is

shown to converge for dimensions less than three (although some of the analysis is valid

for d � 1). Flitton and King (2004) provide a brief description of a �nite di�erence

scheme for solving a sixth-order problem, but as an appendix to the analytical results

given in the paper.
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2.5.3 Moving-to-Fixed Domain Mappings

It is common to create numerical methods for solving nonlinear di�usion problems with

moving boundaries, such as those considered here, by introducing a mapping from the

moving domain to a �xed domain. Once this mapping has been constructed, the trans-

formed problem is then solved on the �xed domain using standard BVP techniques.

An example of this type of method in the literature arises in the �eld of modelling

tumour growth. Breward et al. (2002) transform the moving domain x 2 [0; b(t)] to a

�xed domain � 2 [0; 1] by using a coordinate transform based on a simple scaling and

then solve the problem on the �xed domain. This method is also described in Lee (2011)

(also Lee et al. (2013)), who uses a moving �nite di�erence method to �nd approximate

solutions to the tumour growth problem. It is mentioned in Lee (2011) that, although

standard techniques can be used in the transformed problem, care must be taken to

avoid disrupting the balance between di�usion and reaction laws present in the original

problem.

Another example of this type of method for a fourth-order problem is given in Gi-

acomelli et al. (2008), where after the moving-to-�xed domain mapping has been per-

formed the problem is further formulated by introducing a new variable which splits the

operator into linear and nonlinear parts. The authors then prove existence, uniqueness

and smoothness of the transformed problem. The problem considered in this paper is

the fourth-order PDE (2.3a), subject to zero solution, zero contact angle and

V = lim
u> 03 x! @f u> 0g

@3u
@x3

; on @f u > 0g;

at the boundaries, whereV denotes the speed at the free boundary. This is a slightly

di�erent problem to those considered in this thesis in that conservation of mass is not

enforced, at the expense of enforcing the limiting process for the boundary velocity. The

problem also di�ers in that the authors initially assume that u0 >



Figure 2.2 provides an illustrative example of the type of initial condition considered in

Giacomelli et al. (2008) for s0 = 2.

Figure 2.2: Example of the type of initial condition considered in Giacomelli et al. (2008)

with s0 = 2.

A further example of this type of method is given in Socolovsky (1988). The issue of

how to track moving boundaries using numerical methods is covered, with regard to the

porous medium equation and a generalised heat equation. Once transformed onto the

�xed domain, the problems in Socolovsky (1988) are solved using �nite di�erence and

�nite element discretisations, with numerical results presented for the �nite di�erence

schemes for the various problems considered.

2.6 Numerical Methods in Higher Dimensions

All the methods mentioned so far have been in 1D, as these are relevant to the work

presented in later chapters of this thesis. There also exist numerical methods in higher

dimensions which provide approximate solutions. We now provide a brief insight into

some of these methods.
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2.6.1 Meshless Methods

The numerical methods described inx2.5.1{x2.5.2 all involve obtaining the solution on

a given mesh of points in 1D. If considered in 2D, this mesh of points would include a

strong form of connectivity, which links the di�erent points together.

An alternative type of numerical method is known as a meshless, or mesh-free,

method. In this type of method a number of points are distributed throughout the

continuous domain, without concern for the connectivity of the points. The solution is

then sought on this cloud of points.

By ignoring connectivity between the points, the issue of mesh tangling is avoided,

which can cause problems for moving-mesh methods (see, e.g., Budd et al. (2009)) in

that instabilities can arise in the solution which cause an undesired blow-up. Avoiding

connectivity concerns also reduces the need for mesh generation procedures, which can

be complex and/or computationally expensive (Ma et al. (2008)).

The meshless method has issues with poorly approximating the solution if the points

are coarsely distributed through the domain (Belytschko et al. (1996)), or when points

are not positioned to accurately capture the dynamics of the solution. This can also

occur in �xed/moving-mesh methods, particularly if the mesh points are not positioned

to capture singularities (Nguyen et al. (2008)), so this issue is not limited to meshless

methods.

For a review of meshless methods, we refer to Belytschko et al. (1996), or the more

recent review paper of Nguyen et al. (2008). Ma et al. (2008) also present a study of an

adaptive algorithm for solving the Euler equation of gas dynamics.

2.6.2 MMPDE Methods in 2D

The MMPDE method described in x2.5.1 can be extended into higher dimensions. A ma-

jor di�erence between 1D and higher dimensional formulations of the MMPDE method

is that the mapping obtained through equidistribution is no longer unique (Budd et al.

(2009)). In order to obtain a unique mapping additional concerns such as the skew-

ness of the mesh and overlapping must be taken into consideration (Huang and Russell
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(1997)).

There are a number of di�erent ways of ensuring equidistribution in higher dimen-

sions, but the method presented in Huang and Russell (1997) and Huang and Russell

(1999) makes use of variational procedures and gradient ow equations to obtain the

MMPDE required. These variational-based methods are based on minimising a func-

tional I (� ), which in d dimensions has the general form (Budd et al. (2009))

I (� ) =
Z


 P

G(M ; � ; r � i )dx; i = 1 ; : : : ; d;

for some continuous functionG, monitor function M (which could be scalar or matrix-

valued) and wherer is the gradient operator in terms of physical coordinatesx.

The advantage of such formulations is that in a non-convex domain node tangling

is less likely than with other formulations. The resulting systems are highly nonlinear

however, which is a disadvantage of the method due to the additional computational

costs.

We refer the reader to Huang and Russell (2011) and Budd et al. (2009) for more

details on this method.

2.6.3 The Parabolic Monge-Amp�ere Method

If the mapping is represented by a gradient, then equidistribution in 2D leads to a

Monge-Amp�ere equation. This process is related to minimisation of a functional

I =
Z


 C

jF (� ; t) � � j2d� ;

where F is the mapping between computational and physical space. If the mapping

is written as the gradient r � of a mesh potential P(� ; t), the HessianH (P) of such a

potential gives rise to the Monge-Amp�ere equation

M (r � P; t)H (P) = � (t); (2.36)

where � (t) is de�ned as the 2D equivalent of (2.33).
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Budd and Williams (2009) provide a description of the Parabolic Monge-Amp�ere

method as a means of generating an equidistributed mesh in higher dimensions, not-

ing that for some applications an equidistributed mesh which is as close as possible to

a uniform mesh is desirable. The Parabolic Monge-Amp�ere solver then arises from a

parabolic relaxation of (2.36), involving a time-evolving function



Chapter 3

Velocity-Based Moving Mesh

Methods

3.1 Aims of this Chapter

In this chapter we discuss some velocity-based moving-mesh methods, one of which

forms the focal point of the numerical methods discussed in this thesis. We also provide

some insight into the literature that exists for this type of method.

We shall then present in detail a particular implementation of the approach for use in

solving the fourth-order problem (2.3){(2.5). We also describe how this implementation



This is achieved through time stepping the ODE

dX i

dt
= Vi ;

at each node of the mesh.

There are various methods of determining the point velocities in a velocity-based

method and we shall highlight some of these in this section. One of these methods (the

conservation based method) forms the basis of the Moving Point Conservation Method

(MPCM) which is used in this thesis to approximate high order nonlinear di�usion.

We now survey some of the key velocity-based methods in the literature.

3.2.1 Moving Finite Element Method

The Moving Finite Element (MFE) method is an early example of a velocity-based

method developed by Miller and Miller (1981) and Miller (1981). While a potentially

powerful tool for solving nonlinear PDEs it requires considerable care in the implemen-

tation in order to avoid inherent singularities.

In the discrete MFE method, the approximate solution U(x; t ) is written as a linear

combination of time dependent basis functionswj (x; t ) with moving nodes, as

U(x; t ) =
X

j

Uj (t)wj (x; t ); (3.1)

with coe�cients Uj (t).

The MFE method is a general method for PDEs of the form @u
@t = Lu, where L

is a purely spatial operator. The method involves the minimisation over dUi
dt (the rate

of change ofUi in the moving frame) and dX i
dt of the L 2 norm of the residual of the

Pseudo-Lagrangian form of the PDE (see (2.35)) in the form

Z b(t )

a(t )

0

@
X

j

dUj

dt
wj �

X

j

dU
dx

dX
dt

wj � L U

1

A

2

dx; (3.2)

at each node of the mesh. Carrying out the minimisation overdUi
dt and dX i

dt of (3.2) leads

to the following pair of equations for each nodei :
Z b(t )

a(t )
wi

�
dU
dt

� V
@U
@x

�
W dx =

Z b(t )

a(t )
wi LU dx; (3.3)
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Z b(t )

a(t )

�
@U
@x

wi

� �
dU
dt

� V
@U
@x

�
dx =

Z b(t )

a(t )

�
@U
@x

wi

�
LU dx: (3.4)

In later developments a more general weight function was used as standard, withwi

replaced by Wi = 1p
1+ r Ui

(see Carlson and Miller (1998a,b)).

The solution of (3.3){(3.4) determines the mesh velocitiesdX i
dt and solution rates of

change dUi
dt at each node in the mesh. Care must be taken however, in that the set of

equations may become singular and as such cannot be solved uniquely (Miller (1981)).

The two situations in which singularities occur are when a basis function is redundant

in (3.1) or when nodes overtake. The possibility of a singular set of equations appearing

leads to the need to introduce penalty functions into the minimisation of (3.2) (Miller

and Miller (1981)).

The MFE method has been used successfully in Carlson and Miller (1998a) and

Carlson and Miller (1998b), but the need for �ne-tuning to avoid singularities is a big

disadvantage for the method (Budd et al. (2009)).

3.2.2 The GCL Method

The Geometric Conservation Law (GCL) method (Cao et al. (2002)) arose as a means of

deriving an equation for the mesh velocity through di�erentiation of the equidistribution

equation with respect to time (seex2.5.1 for information on this equation, and also Budd

et al. (2009)). A simple explanation of the method in 1D is presented here (taken from

Cao et al. (2002)), but the reader is referred to this paper plus that of Budd et al. (2009)

and Baines et al. (2011) for more details, in particular the higher dimensional case.

Consider a coordinate transformationx = x(�; t ) between a computational domain


 C and a physical domain 
 P (t). Let AC be an arbitrary subset of 
 C with boundary

@AC . Under the coordinate transformation there exists a corresponding subset of the

physical domain AP (t) � 
 P (t).

The integral form of the GCL arises from noting that the change in volume ofAP (t)

is equal to the total inward ux over the boundary @AP (t), i.e.

d
dt

Z

A P (t )
dx =

�
v
�

@AP (t )
; (3.5)
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with v the velocity dx
dt as previously de�ned.

Under the coordinate transformation we may write

d
dt

Z

A P (t )
dx =

d
dt

Z

A C

J (�; t ) d� =
Z

A C

DJ
Dt

d�; (3.6)

where J is the Jacobian of the coordinate transformation and DJ
Dt denotes the total

derivative of J .

We may rewrite the right-hand side of (3.5) using the divergence theorem as
�
v
�

@AP (t )
=

Z

A P (t )

@v
@x

dx =
Z

A C

�
@v
@x

�
J (�; t ) d� =

Z

A C

DJ
Dt

d�;

from (3.6). Since AC is arbitrary, this leads to the di�erential form of the GCL

@v
@x

=
1
J

DJ
Dt

: (3.7)

This di�erential form can be used as the basis for moving-mesh methods. The choice

J (�; t ) =
c(� )

M (x; t )
; (3.8)

as highlighted in Cao et al. (2002), for some positive monitor functionM corresponds

to equidistribution, where c(� ) is a constant independent of time determined from the

initial coordinate transform.

Substituting (3.8) into (3.7) we see that

@v
@x

= �
1

M
DM
Dt

;

)
@M
@t

+ v
@M
@x

= � M
@v
@x

;

)
@(Mv )

@x
+

@M
@t

= 0 : (3.9a)

For a givenM , equation (3.9a) can be used to de�nev, with suitable boundary conditions

on v. In 1D, this problem can be solved uniquely, but in higher dimensions additional

conditions are required in order to solve uniquely forv (Budd et al. (2009)).

As an example, the monitor function M = u can be used to conserve the mass of

the solution. Then (3.9a) becomes

@u
@t

+
@

@x
(uv) = 0 ; (3.10)
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which is the Eulerian form of mass conservation. We shall use this property in the

MPCM described in x3.3. Combined with @u
@t = Lu



and non mass-conserving problems in terms of �nite elements in the moving frame.

Finite di�erence implementations have also been used in Lee (2011), Blake (2001) and

Partridge (2013) for a variety of di�erent problems.

In Chapter 2 we demonstrated that the fourth-order ((2.3){(2.5)) , second-order

((2.7){(2.9)) and sixth-order ((2.10){(2.12)) problems were mass-conserving. We now

use this property to de�ne a consistent local conservation of mass principle for obtaining

the velocity at all interior points of the domain 
( t).

3.2.5 Local Conservation of Mass

We �rst de�ne a local conservation of mass principle, consistent with conservation of

total mass, in which the mass under the curveu(x; t ) from a(t) up to an arbitrary point

x̂(t) 2 
( t) is conserved in time, i.e.

Z x̂ (t )

a(t )
u(x; t ) dx = c(x̂); (3.11)

where c(x̂) is independent of time. equivalently

d
dt

Z x̂ (t )

a(t )
u(x; t ) dx = 0 : (3.12)

We shall describe the derivation of the velocity in the case of the PDE (2.2), al-

though the process applies for any of the problems found inx2.2 since they are all

mass-conserving, being subject to zero-ux boundary conditions. The steps involved in

de�ning the local conservation of mass principle are similar to those taken inx2.4.1 for

demonstrating that the total mass of the PDE is mass conserving.

We begin by di�erentiating the left-hand side of (3.12) using Leibniz's Integral Rule,

giving
d
dt

Z x̂ (t )

a(t )
u(x; t ) dx =

Z x̂ (t )

a(t )

@u
@t

dx +
dx̂
dt

u(x̂(t); t) �
da
dt

u(a(t); t):

From (3.12) and (2.2),

Z x̂ (t )

a(t )

@
@x

�
un @q

@x

�
dx +

dx̂
dt

u(x̂(t); t) �
da
dt

u(a(t); t) = 0 ;
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Integrating and writing

da
dt

= v(a(t); t);
dx̂



in the next section, but shall provide details on how the implementation can be modi�ed

for second and sixth-order problems inx3.4 and x3.5.

3.3 A Finite Di�erence Implementation of the MPCM for

the Fourth-Order Problem

We now calculate approximate solutions to the fourth-order problem (2.3){(2.5) using a

�nite di�erence implementation of the MPCM. In the case where a self-similar solution

exists (i.e. for n = 1) u(x; t ) is a quartic function (Smyth and Hill (1988)), with q(x; t )

therefore a quadratic function from (2.3b). From (3.14), the velocity v(x; t ) is therefore

a linear function. We shall use this information in the implementation of the �nite

di�erence method, although the method itself applies to non self-similar cases.

3.3.1 Discretisations

At each time tk , the interval ( a(tk ); b(tk )) is discretised by an ordered mesh ofN nodes

a(tk ) = x1(tk ) < x 2(tk ) < : : : < x N (tk ) = b(tk ).

We shall denote byF k
i the approximation of the function f (x; t ) at time t = tk , node

X k
i , i.e. F k

i � f (X k
i ; tk ). We shall seek approximations

U k := f Uk
i g; for i = 2 ; : : : ; N � 1; (3.16a)

Qk := f Qk
i g; for i = 1 ; : : : ; N; (3.16b)

V k := f V k
i g; for i = 1 ; : : : ; N; (3.16c)

to u(x; t ), q(x; t ) and v(x; t ) on the moving mesh, with Uk
1 = Uk

N = 0 for all k from

(2.5a).

3.3.2 Initial Conditions

On the initial mesh X 0 we sample the initial condition u0(x) at each node to get an

initial approximation U 0 by setting

U0
i = u0(X 0

i );
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for i = 2 ; : : : ; N



The approach used here is that of extrapolation using a second-order Lagrange poly-

nomial. Sinceq(x; t ) is a quadratic in the self-similar case this is the appropriate degree

of polynomial required here.

Performing an extrapolation using second-order Lagrange polynomials we arrive at

an equation for determining the valueQ1 at a given time step:

L 1(X 4)Q1 + L 2(X 4)Q2 + L 3(X 4)Q3 � Q4 = 0 ; (3.18)

where the L 1; : : : ; L 4 are the second-order Lagrange polynomials.

Similarly, an equation for determining the value of QN at a given time step is

� QN � 3 + L N � 2(X N � 3)QN � 2 + L N � 1(X N � 3)QN � 1 + L N (X N � 3)QN = 0 : (3.19)

The Matrix System

To obtain the values of Q at a given time step at each of the nodal positions we solve

the matrix system

SQ = TU ; (3.20)

where Q = f Qi g (i = 1 ; : : : ; N ), U = f Ui g (i = 1 ; : : : ; N ) and S, T are matrices of

sizeN � N . Rows 2; : : : ; N � 1 of these matrices come from equation (3.17), while the

�rst and �nal rows are given by equations (3.18) and (3.19) respectively. The vectorU

includes the boundary valuesU1 = 0 and UN = 0 as well as the interior values.

By combining these equations, we see that the matrixS is of the form

S =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

L 1(X 4) L 2(X 4) L 3(X 4) � 1 0 : : : 0

0 1 0
...

0 1 0
...

. . . . . . . . . . . . . . .
...

0 1 0
... 0 1 0

0 : : : 0 � 1 L N � 2(X N � 3) L N � 1(X N � 3) L N (X N � 3)

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

(3.21)
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The matrix T is of the form

T =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 : : : : : : 0

T �
2 T2 T+

2 0
...

0 T �
3 T3 T+

3 0
...

. . . . . . . . . . . . . . .
...

0 T �
N � 2 TN � 2 T+

N � 2 0
... 0 T �

N � 1 TN � 1 T+
N � 1

0 : : : : : : 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (3.22)

where for i = 2 ; : : : ; N � 1

T �
i = �

1
1
2C �=��T�1C�



Given Uk
i and Qk

i , both for i = 1 ; : : : ; N , (denoted by Ui and Qi respectively for ease

of notation) we compute V k
i , i = 1 ; : : : ; N , (denoted Vi for ease of notation) as follows.

The gradient q0 of q(x; t ) in ( X i � 1; X i ) is approximated by

Q0
i � 1=2 =

Qi � Qi � 1

X i � X i � 1
;

say, and is of �rst order accuracy. A second order approximation can be obtained

by a linear interpolation of these gradients through the points (X i � 1=2; Q0
i � 1=2) and

(X i +1 =2; Q0
i +1 =2) such that

Vi = � (Un� 1
i )

0

B
B
@

(Qi +1 � Qi )
(X i +1 � X i )2 +

(Qi � Qi � 1)
(X ( Un� 1



We approximate the ODEs (3.25) by the explicit Forward Euler time stepping

method

X k+1
i = X k

i + � tV k
i ; (3.26)

where � t is the size of the time step used, fori = 1 ; : : : ; N . The scheme (3.26) is not

scale invariant with a �xed � t, which we shall discuss further in Chapter 4.

The size of � t in (3.26) is of great importance to the successful updating of mesh

positions from one time step to the next. In a moving-mesh method the value of �t must

be chosen in order to avoid node tangling occurring (seex3.3.7 for a description of node

tangling and the consequences of such an occurrence). The size of �t also inuences the

accuracy of the resulting mesh positions. The local truncation error of (3.26), which we

denote by � i , is

� i =
� t
2

d2x
dx2

�
�
�
�
t �

;

for somet � 2 (t; t + � t). This truncation error indicates that a smaller value of � t will

lead to a more accurate resulting mesh position at the updated time step.

3.3.6 Updating the Solution Values

We now recover the solution on the updated meshX k+1 using the mass constants of

(3.11). The discretised mass can be de�ned using a discrete form of the total mass� of

the solution (2.15). We discretise (2.15) using the composite trapezoidal rule

� �
1
2

NX

j =2

(X k+1
j � X k+1

j � 1 )(Uk+1
j � Uk+1

j � 1 ); (3.27)

which is constant for all k due to mass conservation.

Expanding and rearranging the terms in (3.27) we see that, using the boundary

conditions Uk+1
1 = Uk+1

N = 0,

1
2

NX

j =2

(X k+1
j � X k+1

j � 1 )(Uk+1
j � Uk+1

j � 1 ) �
1
2

NX

j =2

(X k+1
j +1 � X k+1

j � 1 )Uk+1
j :

Denoting by � i the mass constants

� i :=
1
2

(X k+1
i +1 � X k+1

i � 1:4



centred at nodei of the mesh, we see that
P

i � i = � .

As the total mass is conserved, it is consistent to make the� i constant for all time

and this is the approximation to (3.11) that we use. Due to conservation of mass, we

can use the initial valuesX 0
i and U0

i at time t = t0 to calculate the values of the mass

constants

� i = ( X 0
i +1 � X 0

i � 1)U0
i ; for i = 2 ; : : : ; N � 1: (3.29)

We can use the� i to recover the solution at any given time. From (3.28) and (3.29),

we use the new nodal positions to update the solution values for our approximationU k+1

to u(x; t



One of the consequences of performing solution recovery in the manner described in

x3.3.6 is that a nonnegative initial condition will remain nonnegative for all later times

(provided monotonicity of the mesh is upheld). This consequence is desirable since it

mimics the properties of the underlying problem (seex2.2.2 and Bernis and Friedman

(1990)). Node tangling is therefore extremely important to avoid when choosing the size

of � t in (3.26).

We next detail how the implementation of the MPCM described above can be mod-

i�ed for use in the second and sixth-order problems detailed inx2.2.

3.4 Implementation of the MPCM for Second-Order Prob-

lems

We now outline the steps required for implementing the MPCM for the second-order

problem given by (2.7){(2.9).

The implementation of the MPCM described in x3.3 requires some modi�cations in

order to be valid for the second-order problem (2.7){(2.9), with the most important

change being thatq(x; t ) = u(x; t ), so there is no need to solve forq(x; t ) in the second-

order problem (2.7){(2.9). We shall seek approximationsU k and V k from (3.16a) and

(3.16c) respectively.

The work described in this Section is an extension of that found in Parker (2010),

which considers the second-order problem (2.7){(2.9) for the speci�c value ofn = 3.

3.4.1 Approximating v(x; t )

Obtaining the velocity v(x; t ) at each node in the mesh is also slightly di�erent in the

second-order problem (2.7){(2.9), since there exists an expression for the velocity for

any value of n (Smyth and Hill (1988)).

From (3.14) and noting that q = u, the velocity (at all points where u > 0) is given

by

v = � un� 1 @u
@x

;
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which we may rewrite as

v = �
1
n

@(un )
@x

: (3.31)

Given Uk
i , i = 1 ; : : : ; N , (denoted Ui for ease of notation) we computeV k

i , i =

1; : : : ; N , (denoted Vi for ease of notation) as follows. The velocity is approximated

from (3.31) at interior points by (3.24) with Qi replaced by Un
i

Vi = �
1
n

0

B
B
@

Un
i +1 � Un

i

(X i +1 � X i )2 +
Un

i � Un
i � 1

(X i � X i � 1)2

1
X i +1 � X i

+
1

X i � X i � 1

1

C
C
A ; (3.32)

which is a linear interpolation through the points ( X i � 1=2; (U0
i � 1=2)n ) and (X i +1 =2; (U0

i +1 =2)n )

and is of second order on the irregular grid.

The approximation (3.32) is used for interior points of the mesh, with v at the

boundary approximated using a quadratic extrapolation as described inx3.3.4.

3.4.2 Mesh Movement and Solution Recovery

Updating the mesh and solution recovery is performed exactly as described inx3.3.5

and x3.3.6.

3.5 Implementation of the MPCM for the Sixth-Order

Problem

The implementation of the MPCM for the sixth-order problem (2.10){(2.12) is similar

to that for the fourth-order implementation given in x3.3, with the added requirement

of an approximation P k to the p



3.5.1 Approximating p(x; t )

We seek an approximation top(x; t ) at each node in the mesh. GivenUk
i , i = 1 ; : : : ; N ,

(denoted by Ui for ease of notation) we computeP k
i , i = 1 ; : : : ; N , (denoted Pi for ease

of notation) as follows.

On a variable mesh, a three-point central di�erence approximation Pi is

Pi = �

0

@
Ui +1 � Ui
X i +1 � X i

� Ui � Ui � 1
X i � X i � 1

1
2(X i +1 � X i � 1)

1

A ; (3.34)

which has a local truncation error, � i , that can be shown to be equal to

� i = �
(X i +1 � 2X i + X i � 1)

3
p0

i �
1
12

(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1
p00

i

�
�
�
�
�
;

for some� 2 (X i � 1; X i +1 ).

At the boundary points, we use second-degree Lagrange polynomials (as described

in x3.3.3), giving the following equations for obtaining P1 and PN :

L 1(X 4)P1 + L 2(X 4)P2 + L 3(X 4)P3 � P4 = 0 ; (3.35)

and

� PN � 3 + L N � 2(X N � 3)PN � 2 + L N � 1(X N � 3)PN � 1 + L N (X N � 3)PN = 0 : (3.36)

To obtain the values of P (from (3.33)) at a given time step we solve the matrix

system

SP = TU ;

arising from (3.34), (3.35) and (3.36), whereP = f Pi g (i = 1 ; : : : ; N ), U = f Ui g

(i = 1 ; : : : ; N , including boundary values U1 = UN = 0) and where the matrices S and

T are as given in (3.21) and (3.22) respectively.

3.5.2 Approximating q(x; t )

Given the Pi , i = 1 ; : : : ; N , obtained from x3.5.1, we now seekQk
i , i = 1 ; : : : ; N , (denoted

by Qi for ease of notation) approximating q(x; t ) from (2.10b) on each node of the mesh.
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On a variable mesh, a three-point central di�erence approximation Qi at node i is

Qi = �

0

@
Pi +1 � Pi
X i +1 � X i

� Pi � Pi � 1
X i � X i � 1

1
2(X i +1 � X i � 1)

1

A : (3.37)

The local truncation error, � i , of (3.37) can be shown to be equal to

� i = �
(X i +1 � 2X i + X i � 1)

3
q0

i �
1
12

(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1
q00

i

�
�
�
�
�
;

for some� 2 (X i � 1; X i +1 ).



3.6 The S Property

In the next chapter, we shall show that by modifying some of the steps in the MPCM

(i.e. by modifying the appropriate schemes such that they are of the required order to

match the exact solution for the relevant problem) and by use of a scale-invariant time

stepping scheme, it is possible to propagate initial conditions coinciding with a similarity

solution forward in time (over a single time step) to within rounding error. We shall

de�ne this property as the S Property:

De�nition: The S Property

A numerical method is said to possess theS Property in some norm if, given a self-similar

scaling solution to a time dependent problem, the norm of the error in the numerical

solution after a single time step is zero. In other words the exact solution is preserved

in that norm.

3.7 Summary of this Chapter

In this chapter we have provided a brief review of velocity-based moving-mesh methods,

including some of the more common approaches seen in the literature. We then intro-

duced the MPCM, which is a �nite di�erence implementation of a conservation-based

method. The method has been discussed in terms of the fourth-order problem detailed

in x2.2, with further details on how the method is adapted for second and sixth-order

problems provided.

In the next chapter we shall provide a discussion on how the MPCM as described in

this chapter can be modi�ed such that it then possesses theS Property. We shall detail

the required modi�cations to the basic MPCM presented in this chapter as well as the

other requirements for the MPCM (such as initial condition and time stepping method).
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Chapter 4

An Implementation of the

MPCM Possessing the S Property

4.1 Aims of this Chapter

In this chapter we shall demonstrate the ability of the MPCM described in Chapter 3

(with some modi�cations) to possess theS Property (described in x3.6) in the l1 norm.

This ability shall be proven for the fourth-order problem (2.3){(2.5) (with n = 1), with

numerical results shown to validate the claim of the method possessing theS Property.

We shall also outline and provide numerical results which demonstrate theS Property

for implementations of the MPCM in the second-order problem (2.7){(2.9) (for any n)

and the sixth-order problem (2.10){(2.12) with n = 1.

4.2 The Fourth-Order Problem with n = 1

In this chapter we shall mainly focus on the fourth-order problem (2.3){(2.5) with the

speci�c choice of n = 1. We recall that for this choice of n, closed-form similarity

solutions of the fourth-order PDE (2.3) exist. We shall demonstrate that if such a

similarity solution is used to provide the initial approximation U 0 at the nodes of the

initial mesh, the MPCM given in x3.3 can be modi�ed such that it possesses theS
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Property (seex3.6) in the l1 norm.

Throughout this chapter we shall make use of the scaled time variables rather than

t, since a scale-invariant time stepping scheme will be used (seex4.3.3 for details on the

scale-invariant time stepping scheme used).

We restate the problem being considered for clarity. We seek a solutionu(x; s) to

the 1D fourth-order nonlinear di�usion equation with n = 1,

@u
@s

=
@

@x

 

u
@q
@x

!

; (4.1a)

q(x; s) = �
@2u
@x2

; (4.1b)

for x 2 
 S, subject to the initial condition at time s = s0 given by

u(x; s0) = u0(x); for x 2 
( s0);



We are given an initial meshX 0 discretisating the domain 
( s0) and an approxima-

tion U 0 to the initial condition u0(x) such that u0(x) = uS(x; s0) at each node in the

mesh. We therefore have that

U0
i = uS(X 0

i ; s0); for i = 1 ; : : : ; N:

4.3.1 Approximating q(x; s)

As noted in x3.3.3, we �rst seek an approximationQk at the nodes. The scheme given in

x3.3.3 has a local truncation error proportional to @q
@xand as such is not zero for quadratic

q(x; s), quartic u(x; s). We therefore seek to modify the �nite di�erence scheme used so

that it is exact for quadratic q(x; s), quartic u(x; s). Given Uk
i , i = 1 ; : : : ; N , (denoted

by Ui for ease of notation) we computeQk
i , i = 1 ; : : : ; N , (denoted by Qi for ease of

notation) as follows.

We obtain Q at interior points of the mesh using a modi�ed three-point central-

di�erence approximation of (4.1b) of the form

Qi � �
Ui +1 � Ui
X i +1 � X i

� Ui � Ui � 1
X i � X i � 1

1
2(X i +1 � X i � 1)

+ C1
Qi +1 � Qi � 1

X i +1 � X i � 1
+ C2

Q i +1 � Q i
X i +1 � X i

� Q i � Q i � 1
X i � X i � 1

1
2(X i +1 � X i � 1)

; (4.3)

where we chooseC1 and C2 such that terms relating to the �rst and second derivatives

of q in the local truncation error will vanish. The method will then be exact for quartic

u(x; s), quadratic q(x; s).

The local truncation error, � i , of the modi�ed approximation (4.3) can be shown to

be equal to

� i = qi + u00
i �

�
1
3

(X i +1 � 2X i � X i � 1) + C1

�
q0

i

�
�

1
12

�
(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1

�
+

1
2

(X i +1 � 2X i � X i � 1)C1 + C2

�
q00

i

�
�
�
�
�
;

(4.4)

for some� 2 (X i � 1; X i +1 ), where qi = q(X i ), q0
i = @q

@x

�
�
�
�
X i

, q00
i = @2q

@x2

�
�
�
�
X i

.

From equation (4.4) we can see that usingq = � u00at X i and choosing

C1 = �
(X i +1 � 2X i � X i � 1)

3
; (4.5)
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removes all derivatives up to q0
i from the local truncation error, which then becomes

equal to

� i = �
�

C1

2
(X i +1 � 2X i � X i � 1) + C2 +

1
12

(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1

�
q00

i

�
�
�
�
�
;

for some� 2 (X i � 1; X i +1 ).

Therefore, choosing

C2 = �
C1

2
(X i +1 � 2X i � X i � 1) �

1
12

(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1
;

=
(X i +1 � 2X i � X i � 1)2

6
�

1
12

(X i +1 � X i )3 + ( X i � X i � 1)3

X i +1 � X i � 1
;

=
(X i +1 � X i )2 � 3(X i +1 � X i )(X i � X i � 1) + ( X i � X i � 1)2

12
;

(4.6)

removes allq00
i terms from the local truncation error, which then vanishes for quadratic

q(x; s).

We can therefore use equation (4.3) to construct a system of equations, with the

values ofC1 and C2 from equations (4.5) and (4.6) respectively. Once solved, the system

will produce an approximation Q



By combining these equations, we see that the matrixS is of the form

S =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

L 1(X 4) L 2(X 4) L 3(X 4) � 1 0 : : : 0

S�
2 S2 S+

2 0
...

0 S�
3 S3 S+

3 0
...

. . . . . . . . . . . . . . .
...

0 S�
N � 2 SN � 2 S+

N � 2 0
... 0 S�

N � 1 SN � 1 S+
N � 1

0 : : : 0 � 1 L N � 2(X N � 3) L N � 1(X N � 3) L N (X N � 3)

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

(4.7)

where for i = 2 ; : : : ; N � 1

S�
i =

 
C1

X i +1 � X i � 1
�

C2
1
2(X i � X i � 1)(X i +1 � X i � 1)

!

;

Si =

 

1 +
C2

1
2(X i +1 � X i � 1)

�
1

X i +1 � X i
+

1
X i � X i � 1

� !

;

S+
i =

 

�
C1

X i +1 � X i � 1
�

C2
1
2(X i +1 � X i )(X i +1 � X i � 1)

!

:

The matrix T is of the form

T =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 : : : : : : 0

T �
2 T2 T+

2 0
...

0 T �
3 T3 T+

3 0
...

. . . . . . . . . . . . . . .
...

0 T �
N � 2 TN � 2 T+

N � 2 0
... 0 T �

N � 1 TN � 1 T+
N � 1

0 : : : : : : 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (4.9)

where for i = 2 ; : : : ; N � 1

T �
i = �

1
1
2(X i � X i � 1)(X i +1 � X i � 1)

;

Ti =
1

1
2(X i +1 � X i � 1)

�
1

X i +1 � X i
+

1
X i � X i � 1

�
;

T+
i = �

1
1
2(X i +1 � X i )(X i +1 � X i � 1)

:
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The matrix S is pentadiagonal due to the �rst and last rows, with the remaining

rows tridiagonal. Through the application of two Gaussian elimination steps the whole

system becomes tridiagonal.

4.3.2 The Nodal Velocity

The nodal velocitiesV are found using the steps detailed inx3.3.4 with no modi�cations.



4.3.3 Updating the Nodal Positions

We noted in x3.3.5 that the explicit Forward Euler time stepping scheme was not scale-

invariant. It is possible to make the time stepping scheme scale invariant however,

through the introduction of a scaled time step with a new time variable s, where s = t �

(Budd and Piggott (2001), Budd et al. (2001), Baines et al. (2006)). Writing (3.15) in

terms of the known function v(x; t ),

dx
ds

=
dx
dt

dt
ds

=
dx
dt

1
�t � � 1 =

1
�

s1=� � 1v(x; t ); (4.12)

the explicit Euler time stepping scheme for (4.12),

X k+1
i = X k

i +
1
�

(sk )1=� � 1� sVk
i ; (4.13)

is then scale invariant with constant � s. We shall refer to (4.13) throughout this thesis

as a scale invariant time stepping scheme.

For the fourth-order problem (2.3){(2.5) with n = 1 we have � = 1=5 from (2.21)



from which we have, at any �xed time,

d2x
ds2 = 0 : (4.16)

From (4.14) and (4.16), we see that in the case where a scale invariant time stepping

scheme is used, the LTE relating to the time discretisation of the mesh movement is

equal to zero. This implies that the mesh points are updated to within rounding error



We write (4.17) in terms of � and � as

Uk+1
i � uS(X k+1

i ; sk+1 ) =
(� 0

i +1 � � 0
i � 1)

(� k+1
i +1 � � k+1

i � 1 )

� 0
i

sk+1 �
� k+1

i

sk+1 ;

=
(� 0

i +1 � � 0
i � 1)

(� k+1
i +1 � � k+1

i � 1 )

 
C

sk+1

�
D 2 � (� 0

i )2
� 2

+

!

�
C

sk+1

�
D 2 � (� k+1

i )2
� 2

+
;

=
C

sk+1

 
(� 0

i +1 � � 0
i � 1)

(� k+1
i +1 � � k+1

i � 1 )

�
D 2 � (� 0

i )2
� 2

+
�

�
D 2 � (� k+1

i )2
� 2

+

!

:

(4.19)

Since� and � are invariant, they are independent of time and therefore independent

of k. From this invariance, � 0
i = � k+1

i , for i = 2 ; : : : ; N � 1, provided that the mesh

points (and hence� i values) have been moved exactly. The right hand side of (4.19) is

equal to zero and hence the error at nodei is equal to zero. The solution is therefore

recovered exactly on each node of the mesh in the case where the error in the mesh

positions is equal to zero.

4.3.5 Implications

We have shown that in the case where the initial condition coincides with a similarity

solution at the nodes of an initial mesh, the modi�ed MPCM implemented in this

section will approximate q(x; s) and v(x; s) with zero local truncation error. These

approximations are then equal to the exact values to within rounding error at the nodes

over a single time step. The local truncation error incurred by the method in moving

mesh points is also equal to zero, and hence mesh points are moved to within rounding

error, if a scale-invariant time stepping scheme is used. The approximation tou(x; s) is

then also recovered exactly since the mesh points are moved exactly.

We therefore argue that the modi�ed MPCM described here possesses theS Property

in the l1 norm (although in practice rounding errors will be present in all approxima-

tions).
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4.3.6 Numerical Results

We now present numerical results for the implementation of the MPCM given in x4.3.

We shall demonstrate that over a single time step the method is able to propagate a

similarity solution to within rounding error in the l1 norm. We then present results

over a larger time window consisting of multiple time steps in order to illustrate how

the MPCM performs over multiple steps.

Our choice of the l1 norm for the numerical results in this section stems from the

point-wise nature of the �nite di�erence method. If our claim that the MPCM possesses

the S Property



time s0 = 1, such that

U0



Figure 4.1: Absolute error in the MPCM over a single time step. The top left window

contains the absolute error in U 1 (O(10� 17)), the top right window the error in Q0

(O(10� 15)), bottom left the error in V 0 (O(10� 14)) and bottom right the error in the

mesh positions (O(10� 16)).
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error in the approximations and the boundary nodes.

At the end of each time step, we determine the accuracy of the method by calculating

the l1 norm of the error, given by (in the case of the error in the solutionU k )

E U
N = max

i =1 ;:::;N
jUk

i � uS(X k
i ; sk )j for k = 1 ; : : : ; K;

whereK is the total number of time steps performed. Similar quantities for the error in

Qk (denoted by E Q
N ) and V k (denoted by E V

N ) are calculated, using (4.21) for the exact

values ofqS and vS.

The error in the boundary node positions is denoted byE B
N (for the right-hand

boundary node) and is given by

E B
N =

jX k
N � b(sk )j
jb(sk )j

;

where b(sk ) denotes the exact position of the right-hand boundary at time sk and from



We see that the error increases at the start of the time window, reaching a peak at time

s � 1:25 which is approximately 3:25� 10� 14. The error then remains of this magnitude

throughout the remainder of the time window, with slight uctuations observed.

Figure 4.3: l1 error in Qk (top) and V k (bottom) over the time window s 2 [1; 2:5].

Vertical scale of the top plot is O(10� 13), while the vertical scale for the bottom plot is

O(10� 12)

The errors E Q
21 and E V

21 for this run are shown in Figure 4.3. In these cases the

error appears to be much more random, with an increase in the error at the beginning

of the time window which has fallen by the end of the window. This suggests that the

approximations Qk and V k are being calculated to within rounding error in each time

step.

Figure 4.4 shows the error in the right-hand boundary positionE B
21 for this run of the

MPCM. We observe that the error increases throughout the time window, but initially

remains very small, with the increase only visible ats � 1:1. The di�erence between the

computed and exact value of the boundary is therefore increasing as time progresses,

but still remains within 10 � 11 at the end of the time window. The maximum di�erence
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between two successive time steps is approximately 2� 10� 15, which suggests that the

S Property is being upheld in each individual time step.

Figure 4.4: Boundary node errorE B
21 over the time window s 2 [1; 2:5]. Vertical scale of

plot is O(10� 11).

The errors observed in Figures 4.2{4.4 are a result of the large number of steps

being taken (60,000 in the results from this subsection). The di�erence in errors be-

tween successive time steps can be attributed to rounding error, which indicates that a

propagation of rounding error is taking place over multiple time steps.

In the case where we are propagating an initial condition coinciding with a similarity

solution, the results displayed in this section demonstrate that a single time step of the

required size is more bene�cial than running several smaller time steps and is in fact a

major advantage of the MPCM. Not only is the risk of node tangling eliminated, but

the build up of rounding error highlighted in Figures 4.2{4.4 is also avoided.

We shall now attempt to explain the source of this accumulation of rounding error

in the MPCM.
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4.4 Propagation of Rounding Error

We observed in x4.3.6 that the l1 error in the solution does not always remain in

the region of rounding error, despite each individual time step of the MPCM arguably

possessing theS Property. The reason for this appears to be a propagation of rounding



Figure 4.5: l1 error in the solution when Q, V and X in the method are set equal to

the exact value, but the solution is recovered approximately. Scale of y-axis is 10� 17.

Performing these alterations produces zero error over the whole time window (not

shown), since no quantity is being approximated in the method.

We then repeat the experiment, but recover the solution using the approximation

(3.30) while setting Qk
i , V k

i , X k
i equal to the exact values. This solution recovery is

expected to be within rounding error of the similarity solution (4.20). Figure 4.5 shows

that this is the case, with E U
21 remaining proportional to 10� 17 throughout the time

window. Note that in Figure 4.5 the large number of time steps taken has forced the

noise-like structure of the errors to be compressed and hence less distinguishable.

Finally, we repeat the experiment one further time. In this instance we update the

nodal positions using the time stepping scheme (4.14) and recover the solution using

the approximation (3.30), while keeping all other functions equal to their exact values.

Figure 4.6 shows the value ofE U
21 for this experiment. We see that in this case the error

increases throughout the time window and has reached a larger value than observed

in Figure 4.2 by one order of magnitude. Since the only change made in the method
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Figure 4.6: l1 error in the solution when Q and V in the method are set equal to the

exact value, but the nodes are updated using a scale-invariant time stepping scheme and

the solution is recovered approximately. Scale of y-axis is 10� 13.
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between this and the previous experiment was to perform time stepping of the nodal

positions, we conclude that this is the step responsible for the increase of error in the

solution.

Interestingly, the original experiment (in which every function was approximated)

performs more accurately than this last experiment. This implies that the process of

approximating q(x; s) and v(x; s) may help to `correct' some of the error caused by the

time stepping scheme.

4.4.2 Examining the Time Stepping Scheme

The scale invariant time stepping scheme (4.13) is

X k+1 = X k + � s bVk ;

where � s is the size of the time step using the scaled time variables and bVk is the mesh

velocity in terms of the s time variable. The subscript k denotes the time level (written

as a subscript as opposed to the previous superscript time level notation).

In the case where the similarity solution is known, the exact value of the nodes is

xS
k+1 = xS

k + � sbvS
k ; (4.23)

where the similarity velocity bvS
k is

bvS
k =

� xS
k

s1=�
k

: (4.24)

Substituting (4.24) into (4.23) gives

xS
k+1 =

 

1 +
� � s

s1=�
k

!

xS
k :

Hence the global error, which we denote by� S
k , is de�ned by

� S
k = xS

k � X S
k ;

� S
k+1 =

 

1 +
� � s

s1=�
k

!

� S
k ;

) � S
p =

p� 1Y

k=0

 

1 +
� � s

s1=�
k

!

� S
0 ;

(4.25)
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at a particular time step p.

We see that there is an ampli�cation factor multiplying � S
0 of

 

1 +
� � s

s1=�
k

!

;

which we know is always greater than 1 since all quantities are positive.

We know that � S
0 should equal zero, so� S

p = 0 for all p. In a computational sense

however, we will have� S
0 in the region of rounding error (O(10� 16), say) and we see that

this global error � S
p is magni�ed over time.

We now seek to obtain an upper bound for� S
p in order to demonstrate that this error

will not grow unboundedly over time.

4.4.3 Bounding the Error

We begin by noting that  

1 +
� � s

s1=�
k

!1�



which implies that

p� 1X

k=1

1
(s0 + k� s)5 �

Z p� 1

0

1
(s0 + x� s)5 dx;

=
1

4� s

�
1
s4

0
�

1
(s0 + ( p � 1)� s)4

�
:

Therefore,

� s
5

p� 1X

k=0

1
(s0 + k� s)5 �

� s
5s5

0
+

1
20

"
1
s4

0
�

1
s4

p� 1

#

(4.29)

Using (4.27) and (4.29) we see that

� S
p � exp

 
� s
5s5

0
+

1
20

"
1
s4

0
�

1
s4

p� 1

#!

� S
0 ;

� exp
�

� s
5s5

0
+

1
20s4

0

�
� S
0 ;

(4.30)

sinces� 4
p� 1 > 0.

The bound is dependent upon the values ofs0 and � s (both �xed). Let us consider

the values used to generate the numerical results presented inx4.3.6. In the numerical

results run over multiple time steps, values ofs0 = 1 and � s � 2:5 � 10� 5 were used.

The bound (4.30) is then

� S
p � exp

�
1:6 � 10� 6

5
+

1
20

�
� S
0 ;

� 1:0513� S
0 :

If � S
0 is in the region of rounding error, then the bound indicates that the error at the

p



4.5 The S Property in the MPCM for the Second-Order

Problem

We shall now demonstrate that the implementation of the MPCM for the second-order

problem (2.7){(2.9) possesses theS Property (seex3.6) in the l1 norm for any value of

n.



4.5.1 Numerical Results

We now present numerical results for the implementation of the MPCM for the second-

order problem (2.7){(2.9) given in x4.5 for values ofn = 1 ; 1:5; 2.

We shall perform experiments over a single time step in order to demonstrate that

the implementation of the MPCM possesses theS Property in the l1 norm. We shall

then present results for the MPCM run over multiple time steps in order to illustrate

how the method performs over multiple steps.

We shall make use of the similarity solution (2.30) from Pattle (1959) and rewritten

for general n:



Figure 4.7: Absolute error in the velocity in the MPCM over a single time step. The

blue line with asterisk markers denotesn = 1, the green line with + markers denotes

n = 2 and the red line with o markers denotesn = 3. Vertical scale on the plot is

O(10� 16).
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Figure 4.8: Absolute error in the approximate solution in the MPCM over a single time

step. The blue line with asterisk markers denotesn = 1, the green line with + markers

denotesn = 1 :5 and the red line with o markers denotesn = 2. Vertical scale on the

plot is O(10� 16).
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We can see that the errors shown in Figures 4.7 and 4.8 are in the region of rounding

error, as expected, for each value ofn. This indicates that the MPCM is operating as

expected over a single time step.

Multiple Time Steps

If we repeat the experiment performed above for a single time step, but instead allow

the method to run for multiple time steps, we would anticipate that an accumulation of

rounding error would cause the error in the approximate solution to increase over the

time window (as observed for the fourth-order implementation in x4.3.6).

We therefore run the MPCM implementation using the same value of � s as in the

single time step case (�s = 10 � 4



Figure 4.9: l1 error in the approximate solution U k from the MPCM over multiple

time steps. The solid blue line is forn = 1, the dashed green line forn = 1 :5 and the

dash-dotted red line for n = 2. Vertical scale of the plot is O(10� 13).

Figure 4.10: l1 error in the velocity V k from the MPCM over multiple time steps. The

solid blue line is for n = 1, the dashed green line forn = 1 :5 and the dash-dotted red

line for n = 2. Vertical scale of the plot is O(10� 13).
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We also calculateE B
N , the error in the right-hand boundary position, given by

E B
N



4.6 The S Property in the MPCM for the Sixth-Order

Problem

We shall now demonstrate that the implementation of the MPCM given in x3.5 for the

sixth-order problem (2.10){(2.12) can be modi�ed in order to possess theS Property

(see x3.6) in the l1 norm. As closed-form similarity solutions exist only in the case

when n = 1, we shall focus on this choice ofn in this section. We shall also describe the

implementation in terms of the scaled time variable s as we use a scale-invariant time

stepping scheme in this implementation.

For clarity, we summarise the problem being considered, for the choice ofn = 1. We

seek solutionsu(x; s) to the sixth-order PDE

@u
@s

=
@

@xu



Similarity solutions to the sixth-order problem (2.10){(2.12) exist in the case when

n = 1 which are sextic functions (Smyth and Hill (1988)). The function p(x; s) is there-

fore a quartic function, while q(x; s) will be a quadratic. We modify our implementation

of the MPCM given in x3.5 such that it is exact for sextic u(x; s), quartic p(x; s) and

quadratic q(x; s) in the case whenn = 1.

We are given an initial meshX 0 discretising the domain 
( s0) and an approximation

U 0 to the initial condition such that u0(x) = uS(x; s0) at each node of the mesh.

4.6.1 Approximating p(x; s)

We seek to �nd an approximation P k to p(x; s). The scheme (3.34) given inx3.5.1 has a

local truncation error proportional to @p
@x at node i of the mesh and as such is not exact

for sextic u(x; s), quartic p(x; s). We therefore wish to modify the �rst approximation

(3.34) such that it becomes exact for quarticp(x; s).

Given Uk
i , i = 1 ; : : : ; N , (denoted by Ui for ease of notation), we computeP k

i ,

i = 1 ; : : : ; N (denoted by Pi for ease of notation) as follows.

The modi�ed scheme for obtaining P at interior points in the mesh is given by a

seven-point central di�erencing scheme of the form

Pi = �

0

@
Ui +1 � Ui

h i
� Ui � Ui � 1

h i � 1

1
2(hi + hi � 1)

1

A + C1

�
Pi +1 � Pi � 1

hi + hi � 1

�
+ C2

0

@
Pi +1 � Pi

h i
� Pi � Pi � 1

h i � 1

1
2(hi + hi � 1)

1

A

+
C3

(hi + hi � 1)

0

@

0

@
Pi +2 � Pi +1

h i +1
� Pi +1 � Pi

h i

1
2(hi +1 + hi )

1

A �

0

@
Pi � Pi � 1

h i � 1
� Pi � 1 � Pi � 2

h i � 2

1
2(hi � 1 + hi � 2)

1

A

1

A

+
C4

1
2(hi +1 + hi + hi � 1 + hi � 2)

0

@

0

@
Pi +3 � Pi +2

h i +2
� Pi +2 � Pi +1

h i +1

1
2hi +1 (hi +2 + hi +1 )

1

A �

0

@
Pi +2 � Pi +1

h i +1
� Pi +1 � Pi

h i

1
2hi +1 (hi +1 + hi )

1

A

�

0

@
Pi � Pi � 1

h i � 1
� Pi � 1 � Pi � 2

h i � 2

1
2hi



hi +2 = X i +3 � X i +2 , hi +1 = X i +2 � X i +1 , hi = X i +1 � X i , hi � 1 = X i � X i � 1, hi � 2 =

X i � 1 � X i � 2 and hi � 3 = X i � 2 � X i � 3 for ease of notation.

The local truncation error � i in the modi�ed method (4.36) can be shown to be equal

to

� i = pi + u00
i �

�
hi � hi � 1

3
+ C1

�
p0

i �
�

h3
i + h3

i � 1

12(hi + hi � 1)
+

C1

2
(hi � hi � 1) + C2

�
p00

i

�
�

h4
i � h4

i � 1

60(hi + hi � 1)
+

C1

6
(h2

i � hi hi � 1 + h2
i � 1) +

C2

3
(hi � hi � 1) + C3

�
p000

i

�
�

h5
i + h5

i � 1

360(hi + hi � 1)
+

C1

24
(h3

i � h2
i hi � 1 + hi h2

i � 1 � h3
i � 1)

+
C2

12
(h2

i � hi hi � 1 + h2
i � 1) +

C3

2
(hi � hi � 1) + C4

�
p0000

i

�
�
�
�
�
;

(4.37)

for some � 2 (X i � 3; X i +3 ), where pi = p(X i ), p0
i = @p

@x

�
�
�
�
X i

, p00
i = @2p

@x2

�
�
�
�
X i

, p000
i = @3p

@x3

�
�
�
�
X i

,

p0000
i = @4p

@x4

�
�
�
�
X i

.

In order to remove the p0
i terms from equation (4.37), we choose our constantC1

such that

C1 = �
(hi � hi � 1)

3
: (4.38)

Similarly, the p00
i terms can be removed from equation (4.37) through utilising the

constant C1 in equation (4.38), and setting

C2 = �
C1

2
(hi � hi � 1) �

h3
i + h3

i � 1

12(hi + hi � 1)
;

=
(hi � hi � 1)2

6
�

h3
i + h3

i � 1

12(hi + hi � 1)
:

Removing the p000
i terms in (4.37) involves setting the constantC3 such that

C3 = �
h4

i � h4
i � 1

60(hi + hi � 1)
�

C1

6
(h2

i � hi hi � 1 + h2
i � 1) �

C2

3
(hi � hi � 1);

=
(2h4

i + 8h4
i � 1 + 5h3

i hi � 1 � 15hi h3
i � 1)



Finally, setting

C4 = �
h5

i + h5
i � 1

360(hi + hi � 1)
�

C1

24
(h



The values ofP are then obtained by solving the matrix system

SP = TU ;

where the matrices S, T are of sizeN � N . The vector U contains the boundary

conditions U1 = UN = 0 as well as the interior values.

4.6.2 Approximating q(x; s)

Given P k
i , i = 1 ; : : : ; N (denoted Pi for ease of notation) detailed inx4.6.1, we now seek

an approximation Qk
i , i = 1 ; : : : ; N , (denoted by Qi for ease of notation) which is exact

for quadratic q(x; s), quartic p(x; s).

We have previously outlined the steps required in obtaining a quadraticq(x; s) from

a quartic u(x; s) in the fourth-order problem (2.3){(2.5) (see x4.3.1), so we use the same

steps in obtaining a quadratic q(x; s) from quartic p(x; s) by substituting any references

to U by P. We shall restate the appropriate schemes in terms ofP for completeness.

For interior points we obtain Q using

Qi � �
Pi +1 � Pi

h i
� Pi � Pi � 1

h i � 1

1
2(hi + hi � 1)

+ C1
Qi +1 � Qi � 1

hi + hi � 1
+ C2

Q i +1 � Q i
h i

� Q i � Q i � 1
h i � 1

1
2(hi + hi � 1)

;

with choices of

C1 = �
(hi + hi � 1)

3
; C2 =

h2
i � 3hi hi � 1 + h2

i � 1

12
;

from (4.5) and (4.6).

The local truncation error of this approximation is then proportional to q000
i and will

therefore be exact for a quadraticq(x; s).

At the boundary points we use the second-degree Lagrange interpolating polynomials

described inx3.5.2.

Q is then found by solving the matrix system

SQ = TP;

where the matricesS and T are from (4.7) and (4.9) respectively.
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(2005, 2006, 2011)), before showing that through careful selection of basis functions it

is possible to construct a �nite element method which possesses theS Property in the

same cases as were demonstrated in this chapter (i.e.n = 1 for fourth/sixth order and

any n for second-order).
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Chapter 5



5.2 Comparison between the MPCM and FEMPCM

In this section we shall provide a brief description of the main di�erences between the



5.3 Weak Forms

Motivated by a desire to implement a conservation-based method using �nite elements,

the required weak forms of equations in the fourth-order problem (2.3){(2.5) are con-

structed.

Weak forms are generally constructed by multiplying the equation by a time-dependent

test function w(x; t ) 2 W , where W is a suitable test space of functions to be de�ned in

due course. The resulting equation is then integrated with respect tox. In the approach

used here weak forms are constructed in a moving framework.

Remark. Throughout this chapter we shall assume that functions in the test spaceW

are suitably smooth. In particular, if @u
@t and un @q

@x are both L 2 in space thenH 1 is a

suitable choice forW . This chapter is motivated by the implementation of the FEMPCM,

as opposed to a thorough analysis of the required spaces or the spaces in which functions

lie, so these details are left deliberately vague.

5.3.1 Weighted Conservation of Mass

In order to determine a weak form for the velocity v(x; t ) using conservation, we require

the implementation of a weighted conservation of mass principle, as opposed to the local

conservation of mass principle described inx3.2.5.

Let w(x; t ) be a weight function in W . We then di�erentiate the weighted mass
Z b(t )

a(t )
w(x; t )u(x; t ) dx with respect to t using Leibniz's Integral Rule, giving

d
dt

Z b(t )

a(t )
w(x; t )u(x; t ) dx =

Z b(t )

a(t )

@
@t

(w(x; t )u(x; t )) dx

+
�
w(x; t )u(x; t )v(x; t )

� b(t )

a(t )

where

v(b(t); t) =
db(t)

dt
; v(a(t); t) =

da(t)
dt

: (5.1)

92



This implies that

d
dt

Z b(t )

a(t )
w(x; t )u(x; t ) dx =

Z b(t )

a(t )
w(x; t )

@u
@t

+
@w
@t

u(x; t ) +
@

@x
(wuv) dx;

=
Z b(t )

a(t )

�
w

@u
@t

+
@w
@t

u +
@u
@x

wv +
@w
@x

uv +
@v
@x

wu
�

dx;

=
Z b(t )

a(t )

�
u

�
@w
@t

+ v
@w
@x

�
+ w

�
@u
@t

+
@

@x
(uv)

��
dx;

(5.2)

where v(x; t ) is any velocity consistent with the boundary velocities (5.1). We now

specify the evolution of functions w(x; t ) in the space W which vary in time such that

w(x; t ) is convected with the velocity v(x; t ) in the weak sense that
Z b(t )

a(t )
u(x; t )

�
@w
@t

+ v(x; t )
@w
@x

�
dx = 0 8w 2 W; (5.3)

which reduces equation (5.2) to

d
dt

Z b(t )

a(t )
w(x; t )u(x; t ) dx =

Z b(t )

a(t )
w(x; t )

�
@

@x
(uv) +

@u
@t

�
dx: (5.4)

for all w 2 W satisfying (5.3).

Using equation (2.3a) we may write equation (5.4) in the moving integral form

d
dt

Z b(t )

a(t )
w(x; t )u dx �

Z b(t )

a(t )
w(x; t )

@
@x

(uv) dx = �
Z b(t )

a(t )

@w
@x

�
un @q

@x

�
dx; (5.5)

where v(x; t ) is yet to be chosen but must be consistent with (5.1) and (5.3).

We now de�ne the velocity v(x; t ) implicitly by the weighted conservation of mass

principle, Z b(t )

a(t )
w(x; t )u(x; t ) dx = � (w); 8w 2 W; (5.6)

where the weighted masses� (w) remain constant in time. In order to be consistent with

the global conservation of mass (2.15) the functionsw(x; t ) must constitute a partition

of unity (this is tacitly assumed in what follows). Equation (5.6) implies that

d
dt

Z b(t )

a(t )
w(x; t )u(x; t ) dx = 0 ; 8w 2 W; (5.7)

and hence from (5.4) that
Z b(t )

a(t )
w(x; t )

�
@

@x
(uv) +

@u
@t

�
dx = 0 ; 8w 2 W; (5.8)
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which are respectively weak forms of Lagrangian and Eulerian conservation principles

for the function u(x; t ).



for q(x; t ) and
Z b(t )

a(t )
w(x; t )p(x; t ) dx =

Z b(t )

a(t )

@w
@x

@u
@x

dx; 8w 2 W: (5.13)

for p(x; t ).

5.4 An Implementation of the FEMPCM for the Fourth-

Order Problem

We now describe an implementation of the FEMPCM for the fourth-order problem

(2.3){(2.5). The implementation is based on the weak forms (5.6), (5.10) and (5.11)

constructed in x5.3.

5.4.1 Finite Dimensional Subspaces

From the weak forms described inx5.3 we can construct a moving-mesh �nite element

method. We select �nite-dimensional subspacesS1
E (t); S1(t); bS1(t); eS1(t) 2 W , where

the subscript E



5.4.3 Updating the Nodal Positions

Once Q(x; t ) and V(x; t ) have been obtained, the evolution of each moving point with

coordinate X (t) is determined by solving the ODE

dX (t)
dt

= V (X (t); t);

using a suitable time stepping method.

5.4.4 Recovering the Solution U(x; t )

Since we have stipulated that the distributed masses� i remain constant over time, we

are able to use the evolved moving pointsX (t) in order to update our numerical solution

U(x; t ). This is achieved by inverting the distributed weighted form of the Conservation

of Mass Principle (5.6) within the appropriate subspace.



one dimensional implementation of this method, following the steps inx5.4. We shall

provide an overview of the implementation, since many of the details are found in the

given papers (with the main di�erence being in the solution recovery step, seex5.5.3).

Additionally, numerical results on this implementation for n = 2 shall be provided.

The �rst step is to discretise the domain de�ned by the support of the solution U(x; t )

at a given time level tk into elements using a number of nodes. If there areN nodes in

the domain this implies that there are N � 1 elements to consider. The nodal positions

are given by the vector X k = f X k
i g, where X k

i is the position of nodei; (i = 1 ; : : : ; N )

at time level tk .

We shall require that X k
i < X k

i +1 , for i = 1 ; : : : ; N � 1, at any given time tk otherwise

the nodes will have tangled. If the nodes tangle in any time step, the solution recovery

step (seex5.5.3) will cause the solution to become negative, which is inadmissible as

the the local conservation of mass principle (3.30) will no longer be consistent with

conservation of the total mass of the solution. The solution becoming negative also

causes the method to fail to preserve nonnegativity of the solution.

Remark. The results given in Section 4.2 (in particular Figure 4) of Baines et al.

(2005) demonstrate that in a �nite element method for obtaining approximate solutions

to the fourth-order problem (2.3){ (2.5), the choice of piecewise linear basis functions is

suitable in terms of accuracy of the resulting solution. The authors demonstrate results

with fourth order accuracy whenn = 1 for both the solution and mesh error, when the

initial condition is sampled from a similarity solution.

5.5.1 Basis Functions

We next de�ne the basis functions to be used in this implementation of the moving mesh

method. We choose the basis functionsw(x; t ) to be the linear Lagrange polynomials

� i (x; t ), i = 1 ; : : : ; N , lying in the space of piecewise linear functions. An example of

such a function is given in Figure 5.1.

The test functions have a time dependence due to the fact that the nodal positions

move with the velocity v(x; t ).

97



Figure 5.1: An example� i(x; t ) function used in this implementation of the FEMPCM,

plotted over a two consecutive elements.

The approximations U(x; t ),

Q(x; t ) and V(x; t ) in the method are de�ned as piece-

wise linear functions, which we write as linear combinations of the� i(x; t ):

U(x; t ) =
N � 1X

j =2�j(x; t )Uj(t); (5.17a)

Q(x; t ) =NX

j =1�j(x; t )Qj(t); (5.17b)

V (x; t ) =NX

j =1�j(x; t )Vj(t); (5.17c)

with the reduced number of � i(x; t ) in (5.17a) due to the u = 0 boundary conditions.

5.5.2 Finite Dimensional Subspaces

Throughout x5.5 our function approximations are chosen to lie in �nite dimensional

subspaces of the test space given by

S1E (t) = spanf � j(x; t )g; for j = 2 ; : : : ; N � 1;

S1(t); bS1(t) eS(t) = spanf � j(x; t )g; for j = 1 ; : : : ; N;

The reduced span ofS1E (t) is due to the boundary conditions u = 0 and therefore there

are no test functions attributed to the boundary points in this case.
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5.5.3 An Algorithm for the FEMPCM

With the above information, we next describe the algorithm used to obtain the approx-

imations Q(x; t ), V (x; t ) and U(x; t ):

Obtaining the Q(x; t ) Approximation

Given U(x; t ) (either from the initial approximation or the previous time step), we obtain

Q(x; t ). The coe�cients). The coe�cients



Obtaining the Velocity V (x; t )

Using the Q(x; t ) obtained in the previous step, we can now obtain the approximation

V (x; t ) to the velocity v(x; t ). The coe�cients Vj (t) of



Introducing a Velocity Potential z(x; t )

The skew-symmetric matrix B (U) may be ill-conditioned or singular in some cases (when

U is uniform and N is odd, B (U) is singular for example) and hence we may be unable to

accurately determine V using (5.20) (see Baines et al. (2005, 2011)). We can overcome

this issue through the introduction of a velocity potential z(x; t ) such that

v(x; t ) =
@z
@x

:

The weak form (5.10) now becomes
Z b(t )

a(t )
u

@w
@x

�
@z
@x

+ un� 1 @q
@x

�
dx = 0 ; 8w 2 W:

We then seek the �nite element approximation Z (x; t ) of z(x; t ) for a given U(x; t ) 2

S1
E (t), Q(x; t ) 2 S 1(t) in the form: Find Z (x; t ) 2 S 1(t) such that

Z b(t )

a(t )
U(x; t )

@w
@x

�
@Z
@x

+ Un� 1 @Q
@x

�
dx = 0 ; 8w 2 bS1(t); (5.23)

in place of (5.15).

Choosingw in (5.23) to be one of the� i (x; t ) functions, writing Q(x; t ) and U(x; t )

using (5.17b) and (5.17a) respectively, and writingZ (x; t ) as the linear combination

Z (x; t ) =
NX

j =1

� j (x; t )Z j (t);

we can obtain the coe�cients Z j (t) by solving the matrix system

eK (U)Z = � eK (Un )Q;

where eK (U) and eK (Un ) have entries given by (5.22) (usingn = 1 in (5.22) in the case

of the former).

The eK (U) matrix is singular (see Remark 5.1 below) and hence non-invertible, but

we may obtain a uniqueZ through the imposition of a suitable constraint, such as

NX

j =1

Z j (t) = 0 ; (5.24)

thereby also putting a constraint on S1(t). There is no loss of generality sincez(x; t ) is

a potential and has a free parameter.
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Remark 5.1. The matrix eK (U) is singular as a result of the choice of basis functions

made in this implementation of the FEMPCM. Over a single element, the basis functions

have been chosen in order that they sum to one (i.e. that they form a partition of unity).

The derivative of such functions will therefore sum to zero over a single element.

This results in the determinant of the eK (U) matrix being equal to zero, and hence

that the matrix is singular.

Using Z (x; t ) to obtain V (x; t )

An additional step is required to obtain the velocity V (x; t ) from Z (x; t ). We use the

weak form Z b(t )

a(t )
w(x; t )

�
v(x; t ) �

@z
@x

�
dx = 0 ; 8w 2 W;

from which we seek the �nite element approximation V (x; t ) of v(x; t ) given Z (x; t ) 2

S1(t) in the form: Find V 2 bS1(t) such that

Z b(t )

a(t )
w(x; t )V (x; t ) dx =

Z b(t )

a(t )
w(x; t )

@Z
@x

dx.023 0 Td [())-383051



where the vector V k contains the coe�cients Vj (tk ) of the velocity from (5.17c) calcu-

lated from (5.20) and where � t denotes the size of the time step.

Recovery of Solution U(x; t ) on the Updated Mesh

With the new nodal positions calculated, we can recover the solutionU(x; t ) using the

updated mesh valuesX k+1 . This step is the main di�erence between the implementation

presented in Baines et al. (2005, 2006, 2011) and the method presented here. The

coe�cients Uj (t) in (5.17a) can be found by solving the matrix system

AU = � ; (5.25)

where A is of dimensionN � N � 2 and has time-dependent entries given by

A ij (tk ) =

8
>>>>>>>>><

>>>>>>>>>:

Z X k
2

X k
1

� 1(x; t )� j (x; t ) dx; for i = 1 ;

Z X k
i +1

X k
i � 1

� i (x; t )� j (x; t ) dx; for i = 2 ; : : : ; N � 1;

Z X k
N

X k
N � 1

� N (x; t )� j (x; t ) dx; for i = N;

for j = 2 ; : : : ; N � 1. The lack of values forj = 1 and N is due to the reduced number of

� j (x; t ) in U(x; t ) (see (5.17a)). The values of� = f � i g, i = 1 ; : : : ; N , can be obtained

using the initial condition u0(x), where

� i =
Z b(t0 )

a(t0 )
� i (x; t 0)u0(x) dx; for i = 1 ; : : : ; N: (5.26)

The integrals in (5.26) can be obtained using a suitable numerical integration scheme

(such as Gaussian quadrature), or in some cases can be evaluated exactly depending

upon the choice ofu0(x).

The system given in (5.25) is overdetermined at present, since the matrixA has

dimension N � N � 2. In order to alleviate this issue we may introduce modi�ed basis
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functions ~� i (x; t



Then,

eAU = ~� ; (5.29)

where eA is a mass matrix of dimensionN � 2 � N � 2 with entries given by

eA ij (tk ) =
Z b(t )

a(t )

~� i (x; t )� j (x; t ) dx; for i; j = 1 ; : : : ; N � 2:

The coe�cients Uj (t) obtained through solving the matrix system (5.29) giveU(x; t )

at the interior mesh points. If we had solved for U(x; t ) at all N nodes of the mesh,

the zero boundary condition (2.5a) would only have been enforced weakly and henceU1

and UN would have been unknowns (Baines et al. (2005)). By introducing the modi�ed

basis functions with their partition of unity property we are able to solve for unknown

U2; : : : ; UN � 1 and combine this information with the boundary condition U1 = UN = 0

to ensure that the zero boundary condition (2.5a) is strongly enforced. Further details

of the strong enforcement of boundary conditions can be found in Hubbard et al. (2009).

5.5.4 Numerical Results

We shall now present numerical results for this implementation of the FEMPCM de-

scribed in x5.5, for the choice ofn = 2.

We shall perform experiments on meshes of di�erent numbers of nodes. In each

successive experiment we increase the number of nodes such that the initial mesh spacing

is halved (on an initially uniformly-spaced mesh), resulting in meshes ofN = 21; 41, 81

and 161 nodes. In each experiment the method is run over the time windowt 2 [1; 1:25],

with the time step size � t kept proportional to 1 =N4 in order to reduce the risk of node

tangling occurring. Speci�cally, we choose � t such that

� t =
10� 4

16j for j = 1 ; 2; : : : :

The initial condition used in the experiments is

u0(x) =
1

120

�
4 � x2

� 2

+
;

which is incidentally a similarity solution in the n = 1 case at time t0 = 1 but has no

such relevance ton = 2. This initial condition is symmetric about x = 0 with initial
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boundary positions at x = � 2. This initial condition is used to calculate the � i values

and the initial approximation U0(x) following the steps in x5.5.3.

At the end of the time window, we record the nodal values of the approximations

U(x; 1:25), Q(x; 1:25) and V(x; 1:25). We also record the position of the right-hand

boundary point at each time step of the method.

Figures 5.3, 5.4 and 5.5 show the nodal values for the various meshes. In the case of

the approximations U(x; 1:25) and Q(x; 1:25) there appears to be little visible di�erence

between the various meshes. In the case of the approximate velocityV (x; 1:25) however,

there is a noticeable di�erence in the nodal values near to the boundary points.

Figure 5.3: Nodal values ofU(x; 1:25) on meshes ofN = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan � s) nodes.

This di�erence in the nodal values of the velocity V (x; 1:25) causes the nodes to move

di�erently in each of the di�erent meshes. This is illustrated clearly in the case of the

right-hand boundary, which is shown in �gure 5.6. As the number of nodes in the mesh

increases, the boundary moves a smaller distance over the time window. Examining the

approximate velocities in �gure 5.5, the boundary velocity is approaching zero as the
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Figure 5.4: Nodal values ofQ(x; 1:25) on meshes ofN = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan � s) nodes.

Figure 5.5: Nodal values ofV (x; 1:25) on meshes ofN = 21 (blue xs), 41 (green os), 81

(red +s) and 161 (cyan � s) nodes.
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number of nodes increases. This will then cause the boundary to move outwards less

(and is consistent with the expected velocity as we shall discuss in Chapter 6).

Figure 5.6: Position of the right-hand boundary node on meshes ofN = 21 (blue solid

line), 41 (green dashed line), 81 (red dotted line) and 161 (cyan dash-dotted line) nodes.



n = 1 only, possesses theS Property in the L 2 norm.

The steps involved in the implementation are similar to those described inx5.5,

which leads to some repetition between the information in this section andx5.5. The

basis functions used in this section are of higher order however, and as such many of

the details are more involved. We shall therefore describe the implementation in more

detail than that given in x5.5. We shall also be using the scale-invariant time stepping

scheme (5.47), so we replace any reference to the time variablet with the new scaled

time variable s in this section.

The similarity solution for the fourth-order problem (2.3){(2.5) with n = 1 is a

quartic function (Smyth and Hill (1988)). This results in the exact values of q(x; s)

and v(x; s) being quadratic and linear respectively. We shall therefore choose our �nite-

dimensional subspacesS1
E (s), S1(s) bS1(s) in this particular implementation such that

U(x; s) is piecewise quartic, Q(x; s) piecewise quadratic andV(x; s) piecewise linear.

Combined with a suitable choice of piecewise quartic, quadratic and linear basis function

in each weak form and scale-invariant time stepping, the method can be shown to possess

the S Property in the L 2 norm.

5.6.1 Discretisation

The �rst step is to discretise the domain de�ned by the support of the solution U(x; s)

at a given time level sk into elements, using a number of nodes. If there areN nodes in

the domain this implies that there are N � 1 elements to consider. The nodal positions

are given by the vector X k = f X k
i g, where X k

i is the position of nodei; (i = 1 ; : : : ; N )

at time level sk .

As stated in x5.5, we shall require that X k
i < X k

i +1 , at any given time sk , for i =

1; : : : ; N � 1, otherwise the nodes are considered to have tangled (with the consequences

regarding resulting loss of consistency between local and global mass conservation and

loss of positivity of the solution applying).
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5.6.2 Basis Functions

We next de�ne the basis functions to be used throughout this implementation of the

moving mesh method for the fourth order problem (2.3){(2.5) with n = 1. We choose

the basis functionsw(x; s) to be Lagrange polynomials of either �rst, second or fourth

order, as follows:

� For functions lying in the space of piecewise quartics we setw(x; s) to be a fourth

order Lagrange polynomial denoted by� i (x; s), for i = 1 ; : : : ; 4N � 3. In a given

element we require �ve di�erent � i (x; s) to specify a unique quartic function,

resulting in a total of 4N � 3 basis functions� i (x; s) over the mesh.

� For the space of piecewise quadratics we choosew(x; s) to be a quadratic Lagrange

polynomial denoted by ' i (x; s) for i = 1 ; : : : ; 2N � 1. There are three di�erent

' i (x; s) required to specify a unique quadratic function over a given element, re-

sulting in 2N � 1 basis functions' i (x; s) over the mesh.

� Finally, we de�ne w(x; s) to be a linear Lagrange polynomial, denoted by� i (x; s),

i = 1 ; : : : ; N , chosen for functions lying in the space of piecewise linears. There

are two di�erent � i (x; s) required to de�ne a unique linear function over a given

element, resulting in a total of N basis functions� i (x; s) over the mesh.

In Figure 5.7 we plot examples of these functions over a single element, with� i (x; s)

given in the left plot, ' i (x; s) in the central plot and � i (x; s) in the right plot.

The test functions have a time dependence due to the fact that the nodal positions

move with the velocity v(x; s).
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Figure 5.7: Plot of the various choices of Lagrange polynomial used in this implemen-

tation of the Finite Element Method, plotted over a single element.

5.6.3 Finite Dimensional Subspaces

Throughout x5.6, our function approximations are chosen to lie in �nite dimensional

subspaces of the test space given by

S1
E (s) = spanf � j (x; s)g; for j = 2 ; : : : ; N̂ � 1;

S1(s) = spanf ' j (x; s)g; for j = 1 ; : : : ; ~N;

bS1(s) = spanf � j (x; s)g; for j = 1 ; : : : N;

eS1(s) = spanf � j (x; s)g; for j = 1 ; : : : ; N̂ :

where we have introducedN̂ = 4N � 3 and ~N = 2N � 1 for ease of notation. The

reduced span ofS1
E (s) is due to the boundary conditions u = 0 and therefore there are

no test functions attributed to the boundary points in this case.

5.6.4 Obtaining the Q(x; s) Approximation

Given U(x; s), we can then �nd the approximation Q(x; s) to q(x; s) from (5.14).

We choose our test functionw(x; s) in (5.14) to be one of the' i (x; s) ( i = 1 ; : : : ; ~N ).
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Due to the properties of the ' i (x; s) functions this produces the system of equations

Z b(s)

a(s)
' 1(x; s)Q(x; s) dx =

Z b(s)

a(s)
' 0

1(x; s)U0(x; s) dx; for i = 1 ;

Z b(s)

a(s)
' i (x; s)Q(x; s) dx =

Z b(s)

a(s)
' 0

i (x; s)U0(x; s) dx; for i = 2 ; : : : ; ~N � 1;

Z b(s)

a(s)
' ~N (x; s)Q(x; s) dx =

Z b(s)

a(s)
' 0

~N (x; s)U0(x; s) dx; for i = ~N:

Writing Q(x; s) as a linear combination of the ' j (x; s),

Q(x; s) =
~NX

j =1

' j (x; s)Qj (s); (5.32)

and U(x; s) as a linear combinf9x; s) dx; for



The time-dependent entries ofM are given by

M ij (sk ) =

8
>>>>>>>>><

>>>>>>>>>:

Z X k
2

X k
1

' 1(x; s)' j (x; s) dx for i = 1 ;

Z X k
i +1

X k
i � 1

' i (x; s)' j (x; s) dx for i = 2 ; : : : ; ~N � 1;

Z X k
~N

X k
~N � 1

' ~N (x; s)' j (x; s) dx for i = ~N;

for j = 1 ; : : : ; ~N , while time-dependent entries ofK are given by

K ij (sk ) =

8
>>>>>>>>><

>



We then make use of the �nite element approximation (5.23), which we repeat here

for clarity (in terms of s): Find Z (x; s) 2 S 1(s) such that
Z b(s)

a(s)
U(x; s)

@w
@x

�
@Z
@x

+
@Q
@x

�
dx = 0 ; 8w 2 bS1(s); (5.37)

which is used instead of (5.15).

Choosingw in (5.37) to be one of the� i (x; s) functions, writing Q(x; s) using (5.32),

and writing Z (x; s) as the linear combination

Z (x; s) =
~NX

j =1

' j (x; s)Z j (s); (5.38)

we can obtain the coe�cients Z j (s) by solving the matrix system

eK (U)Z = � eK (U)Q; (5.39)

where eK (U) is of dimension ~N � ~N and has time-dependent entries given by

eK (U) ij (sk ) =

8
>>>>>>>><

>>>>>>>>:

Z X k
2

X k
1

U(x; s)� 0
1(x; s)' 0

j (x; s) dx for i = 1 ;

Z X k
i +1

X k
i � 1

U(x; s)� 0
i (x; s)' 0

j (x; s) dx for i = 2 ; : : : ; N � 1;

Z X k
N

X k
N � 1

U(x; s)� 0
N (x; s)' 0

j (x; s) dx for i = N;

(5.40)

for j = 1 ; : : : ; ~N .

The eK (U) matrix is singular and hence non-invertible (see Remark 5.1). We may

obtain a unique Z through the imposition of a suitable constraint, such as (5.24)

~NX

j =1

Z j (s) = 0 ;

thereby putting a constraint on S1(s). There is no loss of generality sincez(x; t ) is a

potential with a free parameter.

5.6.6 Obtaining the Velocity V(x; s)

The velocity V (x; s) can be obtained fromZ (x; s) through the weak form
Z b(s)

a(s)
w(x; s)

�
v(x; s) �

@z
@x

�
dx = 0 ; 8w 2 W; (5.41)
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from which we seek the �nite element approximation V (x; s) of v(x; s) given Z (x; s) 2

S1(s) in the form: Find V 2 bS1(s) such that

Z b(s)

a(s)
w(x; s)V (x; s) dx =

Z b(s)

a(s)
w(x; s)

@Z
@x

dx; 8w 2 bS1(s): (5.42)

We selectw(x; s) in (5.42) to be one of the� i (x; s) functions (i = 1 ; : : : ; N ), resulting

in the system of equations

Z b(s)

a(s)
� 1(x; s)V (x; s) dx =

Z b(s)

a(s)
� 1(x; s)

@Z
@x

dx; for i = 1 ;

Z b(s)

a(s)
� i (x; s)V (x; s) dx =

Z b(s)

a(s)
� i (x; s)

@Z
@x

dx; for i = 2 ; : : : ; N � 1;

Z b(s)

a(s)
� N (x; s)V (x; s) dx =

Z b(s)

a(s)
� N (x; s)

@Z
@x

dx; for i = N:

Expanding V (x; s) as the linear combination

V (x; s) =
NX

j =1

� j (x; s)Vj (s); (5.44)

and using the expansion forZ (x; s) given by (5.38), we obtain the modi�ed system of

equations

NX

j =1

Vj (s)
Z b(s)

a(s)
� 1(x; s)� j (x; s) dx =

~NX

j =1

Z j (s)
Z b(s)

a(s)
� 1(x; s)' 0

j (x; s) dx;

for i = 1 ;

NX

j =1

Vj (s)
Z b(s)

a(s)
� i (x; s)� j (x; s) dx =

~NX

j =1

Z j (s)
Z b(s)

a(s)
� i (x; s)' 0

j (x; s) dx;

for i = 2 ; : : : ; N � 1;

NX

j =1

Vj (s)
Z b(s)

a(s)
� N (x; s)� j (x; s) dx =

~NX

j =1

Z j (s)
Z b(s)

a(s)
� i (x; s)' 0

j (x; s) dx;

for i = N:

The coe�cients of Z (x; t ) can be obtained by solving the matrix system

M V = B Z; (5.46)
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where the M matrix is as given in (5.19), and the B matrix is of dimension N � ~N and

has time-dependent entries given by

B ij (sk ) =

8
>>>>>>>><

>>>>>>>>:

Z X k
2

X k
1

� 1(x; s)' 0
j (x; s) dx for i'



Since the � i



with U0
1 = U0

N̂
= 0 from the zero boundary conditions. Once substituted, the partitioned

form (5.16) becomes equivalent to solving the system of equations

N̂ � 2X

j =1

U0
j

Z b(s0 )

a(s0 )
~� 1(x; s0)� j (x; s0) dx = ~� 1; for i = 1 ;

N̂ � 2X

j =1

U0
j

Z b(s0 )

a(s0 )
~� i (x; s0)� j (x; s0) dx = ~� i ; for i = 2 ; : : : ; N̂ � 3;

N̂ � 2X

j =1

U0
j

Z b(s0 )

a(s0 )
~� N̂ � 2(x; s0)� j (x; s0) dx = ~� N̂ � 2; for i = N̂ � 2;

which gives the bestL 2 �t to the initial condition in the space S1
E (s0). These equations

can be written in the matrix form

eA0U 0 = ~� ; (5.51)

where eA is a mass matrix of dimensionN̂ � 2� N̂ � 2 with time-dependent entries given

by



principle (5.16), the system of equations becomes

N̂ � 2X

j =1

Uj (s)
Z b(s)

a(s)
~� 1(x; s)� j (x; s) dx = ~� 1; for i = 1 ;

N̂ � 2X

j =1

Uj (s)
Z b(s)

a(s)
~�=1

Uj



where the superscript 0 indicates the initial values of the quantity considered.

Remark. Since (5.54) is derived from

Z b(s0 )

a(s0 )
~� i (U0(x) � u0(x)) dx = 0 ; for i = 1 ; : : : ; N̂ � 2;

using the ~� i values, it follows that the initial approximation U0(x) is identical to the

similarity solution at time s0 to within rounding error since the self similar solution

uS(x; s) 2 S 1
E (s), the space of quartic functions.

Obtaining Q(x; s0)

Given the initial approximation U0(x), we obtain the coe�cients Q0
j in (5.32) using

equation (5.35):

M 0Q0 = K 0U 0:

Remark. The exactq(x; s) function is a quadratic in the case whenn = 1 . The approx-

imation Q0(x) to q0(x) calculated in x5.6.4 is also quadratic. Since the initial function

U0(x) used in calculatingQ0(x) is identical to the similarity solution to within rounding

error, Q0(x) is also exact within rounding error.

Obtaining Z (x; s0)

Given Q0(x) and U0(x), we obtain Z 0(x) by solving the matrix system (5.39):

eK (U0)Z0 = � eK (U0)Q0;

giving the coe�cients Z 0
j in (5.38).

Remark. The exact velocity potentialz(x; s) is quadratic and the approximationZ 0(x)

calculated in x5.6.5 is piecewise quadratic. Hence the approximate velocity potential

Z 0(x; s0) will be identical to the exact velocity potential to within rounding error at time

s0.
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Calculating the Nodal Velocities

The velocity V 0(x) is calculated using the previously calculatedZ 0(x) by solving the

matrix system (5.46),

M V 0 = B 0Z0;

giving the coe�cients V 0
j



which implies from (5.55) that

Z b(s1 )

a(s1 )
~� i (x; s1)(U(x; s1) � uS(x; s1)) dx = 0 ; for i = 1 ; : : : ; N̂ � 2;

and hence that U(x; s1) is the L 2 best �t to the similarity solution over one time step.

Remark. In practice the best �t of the solution is preserved only to within rounding

error. The arguments in this section are not a proof that this implementation of the

FEMPCM possesses theS Property, but by choosing our approximations to lie in the

appropriate space matching the order of the function we wish to approximate, the method

should compute an approximation to within rounding error over a single time step.

Subsequent time steps

Once this result is established ats = s1 the argument can be repeated for any subsequent

time step.

5.7 Numerical Results

We now present numerical results obtained from the FEMPCM described inx5.3{x5.6,

which support the arguments made inx5.6.9. The FEMPCM was implemented based

on the steps in this chapter.

The initial condition u0(x) for the method is chosen to be the similarity solution

from (2.28),

uS(x; s) =
1

18l73a0 -43.339 Td [(57256.3 Td [(000 Td1[())-".9701 Tf 6.245 4.505 T(18l)]TJ6J/F26 7.4men)28(ts)-381(made)7(th851)]TJ/F28 10.9091 Tf 6.667 0 Td [(�)]TJ/F2� 10.9091 Tf 11.516 0 27 [(u)]TJ/F26 2-333((5.55))-33Td [(19 TdJ/F26 #10.9091 Tf 104.822 0 (18l)t)28(y/F26 2-333(Resu0.0he)/F26 + [(and)-333(hence)-33.085(19 T34)]TJ/F25 20.90� 10.90f 6.826 -1.636 4 101(s)]TJ/F15 10.9091 Tf 8.143 0 t)281Td [())-x78(=)]TJ 27.995 7.377.7in)1



5.7.1 Single Time Step

We run the implementation of the FEMPCM for a single time step in order to demon-

strate that the method possesses theS Property in the L 2 norm.

We run the method on an initially equally spaced mesh ofN = 21 nodes. We use

the similarity solution (4.20) to determine the initial approximation U 0 at the initial

time s0 = 1, such that

u0(x



Figure 5.8: Absolute error in the FEMPCM over a single time step. The top left

window contains the absolute error inU 1 (O(10� 15)), the top right window the error in

Q0 (O(10� 13)), bottom left the error in V 0 (O(10� 13)) and bottom right the error in

the mesh positions (O(10� 16)).
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Note that if we were to continue running the FEMPCM over a longer time window we

would expect this behaviour to continue. The solution pro�le would become shallower

as the boundary expands outwards, in keeping with the conservation of mass principle.

Figure 5.10: L 2 error in the solution for the quartic implementation of the FEMPCM,

plotting over the time window s 2 [1; 1:25] on a mesh of 21 Nodes. Scale of y-axis on

plot is 10� 13.

We next observe the error incurred by the method in calculating the solutionU(x; s)

shown in Figure 5.9. Figure 5.10 shows how theL 2 error in the solution evolves over the



Figure 5.11: L 2 error in Q(x; s) (top plot) and V(x; s) (bottom plot) for the quartic

implementation of the FEMPCM, plotting over the time window s 2 [1; 1:25] on a mesh

of 21 Nodes. Scale of y-axis on both plots is 10� 12.
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approximations is higher than that of U(x; s). Over the course of the time window

however, this error does not increase in the same manner as observed in Figure 5.10.

We see that the error is approximately 10� 12 throughout the time window, with the

variance decreasing as time progresses. The high oscillation observed in these errors,

along with their magnitude suggests that this error is likely numerical and not from the

method, which suggests that theS Property is approximately maintained over multiple

time steps.

5.8 The FEMPCM in Second/Sixth-Order Problems

In chapter 4 the MPCM was shown to be able to possess theS Property in the l1 norm,

not only for the fourth-order problem (2.3){(2.5) but also for the second (2.7){(2.9) and

sixth-order (2.10){(2.12) problems. It is also possible to produce an implementation of

the FEMPCM for second-order and sixth-order problems which possess theS Property

in the L 2 norm for similarity solutions as for the fourth-order problem (2.3){(2.5).

In order to try and avoid unnecessary repetition in this section, the steps used in the

implementation for each problem will be omitted as the majority of the steps are outlined

in detail in x5.6. We shall instead outline the di�erences between the implementation

given in x5.6 and those required for the second or sixth order problems. The main

di�erences occur in the choice of basis function used in each step of the method and

the matrix systems which must be solved to obtain the function approximations. As in

x5.6, all references to the time variable shall be made in terms ofs rather than t due to

the use of a scale-invariant time stepping scheme.

5.8.1 An Implementation of the FEMPCM for the Second-Order Prob-

lem for any n

The implementation for the second-order problem (2.7){(2.9) for anyn makes use of the

piecewise quadratic' i (x; s) ( i = 1 ; : : : ; ~N ) and piecewise linear� i (x; s) ( i = 1 ; : : : ; N )

basis functions given inx5.6.2 (written here in terms of s).
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The biggest di�erence between the second and fourth-order implementations is that

there is no requirement for the weak form (5.11), sinceq = u everywhere in the second

order case. We therefore do not require the �nite dimensional subspaceS1(s) in this

implementation.

We choose our function approximations to lie in the test spaces given by

S1
E (s) = spanf ' j (x; s)g; for j = 2 ; : : : ; ~N � 1;

eS1(s) = spanf ' j (x; s)g; for j = 1 ; : : : ; ~N;

bS1(s) = spanf � j (x; s)g; for j = 1 ; : : : ; N;

and expandZ (x; s), V (x; s) and U(x; s) as the following linear combinations:

Z (x; s) =
~NX

j =1

' j (x; s)Z j (s);

V (x; s) =
NX

j =1

� j (x; s)Vj (s);

U(x; s) =
~N � 1X

j =2

' (x; s)Uj (s):

Obtaining the Velocity Potential Z (x; s)

The coe�cients Z j (s) of the velocity potential Z (x; s) are obtained by solving the matrix

system

eK (U)Z = � eK (Un )Q;

where eK (U) is of dimension ~N � ~N and has entries given by (5.40). The matrix eK (Un )

has entries given by (5.40), with U replaced by Un . A constraint such as (5.24) is

required to uniquely solve the matrix system, as eK (U) is a singular matrix (see Remark

5.1).

Obtaining the Velocity V (x; s)

The coe�cients of Z (x; t ) can be obtained by solving the matrix system

M V = B Z;
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which is the same system as described inx5.6 for obtaining V from Z.

Time Stepping

Time stepping is performed using the scale-invariant time stepping scheme (5.47),

X k+1
i = X k

i +
1
�

s1=� � 1� sVk
i ; for i = 1 ; : : : ; N;

where � = ( n + 2) � 1 in the second-order problem (2.7){(2.9).

Recovery of U(x; s) on the Updated Mesh

Solution recovery for the second-order problem (2.7){(2.9) involves the construction of

modi�ed basis functions ~' i (x; s) and ~� i (x; s), both for i = 1 ; : : : ; ~N � 2. These quantities

are constructed in the same manner as the ~� i and ~� i described inx5.6.8.

The coe�cients Uj (s) for j = 2 ; : : : ; ~N � 1 are then found by solving the matrix

system

eAU = ~� ;

where eA is a mass matrix of dimension ~N � 2� ~N � 2 with time-dependent entries given

by

eA ij (sk ) =
Z b(s)

a(s)
~' i (x; s) ~' j (x; s) dx; for i; j = 1 ; : : : ; ~N � 2:

and ~� = f ~� i g, for i = 1 ; : : : ; ~N � 2.

Implications

By implementing the method described above, the method can be shown to possess the

S Property in the L 2 norm for any value of n.

5.8.2 An Implementation of the FEMPCM for the Sixth-Order Prob-

lem with n = 1

The process of producing an implementation of the FEMPCM for the sixth-order prob-

lem (2.10){(2.12) is more complex than that of the fourth-order problem (2.3){(2.5) due
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to the addition of the p(x; t ) function and the need to use higher order spaces in the

method. Many of the steps are similar to those detailed inx5.6, but using di�erent basis

functions in the various �nite element approximations.

Weak Forms

We shall make use of the weak forms (5.13), (5.12), (5.36), (5.41) and the weighted

conservation principle (5.6), all of which we state here for clarity:

Z b(s)

a(s)
w(x; s)p(x; s) dx =

Z b(s)

a(s)

@w
@x

@u
@x

dx; 8w 2 W;

Z b(s)

a(s)
w(x; s)q(x; s) dx =

Z b(s)

a(s)

@w
@x

@p
@x

dx; 8w 2 W;

Z b(s)

a(s)
u

@w
@x

�
@z
@x

+
@q
@x

�
dx = 0 ; 8w 2 W;

Z b(s)

a(s)
w(x; s)

�
v(x; s) �

@z
@x

�
dx = 0 ; 8w 2 W;

Z b(s)

a(s)
w(x; s)u(x; s) dx = � (w); 8w 2 W:

Finite Dimensional Subspaces

We next select the �nite dimensional subspacesS1
E (s); �S1(s); bS1(s); S1(s); eS1(s) 2 W .

The basis functions for use in this implementation will be the piecewise linear� i (x; s)

(i = 1 ; : : : ; N ), piecewise quadratic ' i (x; s) ( i = 1 ; : : : ; ~N ), piecewise quartic � i (x; s)

(i = 1 ; : : : ; bN ) and we introduce piecewise sextic i (x; s) ( i = 1 ; : : : ; �N ) functions for the

sixth-order problem (2.10){(2.12), where we have introduced �N = 6N � 5, bN = 4N � 3

and ~N = 2N � 1 for ease of notation.
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We then set

S1
E (s) = spanf  j (x; s)g; for j = 2 ; : : : ; �N � 1;

�S1(s) = spanf  j (x; s)g; for j = 1 ; : : : ; �N;

eS1(s) = spanf � j (x; s)g; for j = 1 ; : : : ; bN;

S1(s) = spanf ' j (x; s)g; for j = 2 ; : : : ; ~N � 1;

bS1(s) = spanf � j (x; s)g; for j = 1 ; : : : ; N:

Finite Element Approximations

From the weak forms above, we obtain the following �nite element approximations:

For a given U(x; s) 2 �S1(s) we seek the �nite element approximation P(x; s) in the

form: Find P 2 eS1(s) such that
Z b(s)

a(s)
w(x; s)P(x; s) dx =

Z b(s)

a(s)

@w
@x

@U
@x

dx; 8w 2 eS1(s): (5.61)

We then seek the �nite element approximation Q(x; s) for a given P(x; s) 2 eS1(s) in

the form: Find Q(x; s) 2 S 1(s) such that
Z b(s)

a(s)
w(x; s)Q(x; s) dx =

Z b(s)

a(s)

@w
@x

@P
@x

dx 8w 2 S 1(s): (5.62)

The �nite element approximation Z (x; s) for a given Q(x; s) 2 S 1(s), U(x; s) 2 �S1(s)

is: Find Z (x; s) 2 S 1(s) such that
Z b(s)

a(s)
U(x; s)

@w
@x

�
Z (x; s) +

@Q
@x

�
dx = 0 ; 8w 2 S 1(s):

The �nite element approximation V (x; s) for a given Z (x; s) 2 S 1(s) is of the form: Find

V (x; s) 2 bS1(s) such that
Z b(s)

a(s)
w(x; s)

�
V (x; s) �

@Z
@x

�
dx = 0 ; 8w 2 bS1(s):

Once the mesh points have been updated using the scale-invariant time stepping

scheme (4.13), we recoverU(x; s) on the updated mesh by seekingU 2 S 1
E (s) such that

Z b(s)

a(s)
w(x; s)U(x; s) dx = � (w) 8w 2 �S1(s):
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Obtaining P(x; s)

For a given U(x; s), we obtain the approximation P(x; s). We choose thew(x; s) in

(5.61) to be one of the� i (x; s) functions (i = 1 ; : : : ; bN ). This leads to a system of bN

equations

Z b(s)

a(s)
� 1(x; s)P(x; s) dx =

Z b(s)

a(s)
� 0

1(x; s)U0(x; s) dx; for i = 1 ;

Z b(s)

a(s)
� i (x; s)P(x; s) dx =

Z b(s)

a(s)
� 0

i (x; s)U0(x; s) dx; for i = 2 ; : : : ; bN � 1;

Z b(s)

a(s)
� bN (x; s)P(x; s) dx =

Z b(s)

a(s)
� 0

bN
(x; s)U0(x; s) dx; for i = bN:

Writing P(x; s) as the linear combination of the � j (x; s),

P(x; s) =
bNX

j =1

� j (x; s)Pj (s);

and U(x; s) as the linear combination of the  j (x; s),

U(x; s) =
�N � 1X

j =2

 j (x; s)Uj (s);

we obtain a system of equations from which the coe�cients Pj (s) can be obtained

through solving the matrix system

M P = K U ;

where M is a tridiagonal matrix of dimension bN � bN and Kis a trid5atrix of dimension K



system of ~N equations

Z b(s)

a(s)
' 1(x; s)Q(x; s) dx =

Z b(s)

a(s)
' 0

1(x; s)P0(x; s) dx; for i = 1 ;



Updating Mesh Positions

The mesh positions are then updated the new positionsX k+1 using the scale-invariant

time stepping scheme,

X k+1
i = X k

i + 7s6� sVk
i ; for i = 1 ; : : : ; N;

which di�ers from (5.47) since � = 1=7 in the sixth-order problem (2.10){(2.12) for

n = 1.

Recovery of U(x; s)

We next recover U(x; s) on the updated mesh positions using the distributed conserva-

tion of mass principle.

We introduce modi�ed basis functions ~ i (x; s) and modi�ed constants ~� i (both for

i = 1 ; : : : ; �N � 2), obtained using the same method as inx5.6.8. The coe�cients Uj (s)

may then be obtained by solving the matrix system

eAU = ~� ;

where eA is a matrix of dimension �N � 2





Chapter 6

The MPCM in the Fourth-Order

Problem with n > 1

6.1 Aims of this Chapter

In this chapter we shall examine the fourth-order problem in cases wheren > 1. In

particular we shall examine the initial and small-time behaviour of the boundary of the

domain for various initial conditions and choices of n, since there is a wide range of

behaviours which can be exhibited.

We shall investigate whether the MPCM as described in Chapters 3 and 4 is able

to model these various behaviours and in cases where it fails explore alternatives. The

presence of singularities at the boundary of the domain will be shown to have a drastic

e�ect on the success of the MPCM as described in previous chapters. We also explore

whether the di�culties relating to the implementation of the MPCM are present in the

FEMPCM.

A hybrid numerical method is then proposed, consisting of a �xed-mesh method



of expressing the velocity, in which the fourth-order PDE is not written as two second-

order equations, for use in a modi�ed version of the MPCM. This alternative velocity

avoids the need to approximate theq(x; t ) function, as this function is a major cause of

the numerical issues in the MPCM.

6.2 The 4th Order Problem with n > 1

In this chapter we shall mainly focus on the fourth-order problem with n > 1 in (2.3a),

written as two second-order equations, which we restate here for clarity. We seek a

solution u(x; t ) to the 1D fourth-order nonlinear di�usion equation with n > 1,

@u
@t

=
@

@x

 

un @q
@x

!

;

q = �
@2u
@x2

;

(6.1)

for x 2 
 T , subject to an initial condition at time t = t0 given by

u(x; t 0) = u0(x); for x 2 
( t0);

and boundary conditions

u = 0 ;

@u
@x

= 0 ;

uv + un @q
@x

= 0 ;

at the moving boundaries x = a(t) and x = b(t), for t > t 0.

As we are investigating the fourth-order problem with n > 1 and with no explicit

similarity solutions available, we shall focus on the qualitative behaviour of the approx-

imate solutions generated by the MPCM. In chapter 3 we observed that in the case

where n = 1 and the initial condition corresponds to a similarity solution, the velocity

v(x; t ) is a linear function in x given by

v(x; t ) =
�x
t

;
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6.4 Initial Boundary Velocities

In this section we shall focus on the initial time t = t0 and examine the initial boundary

velocity for n > 1. We consider a particular family of initial conditions and determine

under what circumstances the limit (6.3) exists.

We shall consider initial conditions of the form

u0(x) = c1(! 2 � x2) � ; (6.4)

for some constant� > 0, wherec1 and ! are arbitrary constants. In this case the initial

boundary positions are located at the pointsx = � ! , so a(t0) = � ! and b(t0) = ! ,

giving (together with the symmetry of the PDE (6.1)) symmetric solutions about the

point x = 0.

We wish to consider the di�erent possible asymptotic behaviours of the moving

boundaries for di�erent choices of� in (6.4) and n in (6.1), as outlined in King (2001) and

Blowey et al. (2007). From this point on we shall focus our discussion on the asymptotic

behaviour at the right-hand boundary at x = ! , although the same arguments apply for

the left-hand boundary with a little adjustment.

For x � ! we have, from (6.4),

u0(x) � c1(2! ) � (! � x) � : (6.5)

Using (6.4) and (6.2) we can calculate the initial velocity v0(x) to be

v0(x) = 12cn
1 � (� � 1)x(! 2 � x2)n� � 2 � 8cn

1 � (� � 1)(� � 2)x3(! 2 � x2)n� � 3;

� c2� (� � 1)(! � x)n� � 2 � c3� (� � 1)(rf 9c[(u)]52r 10.9091 Tf 10.909 0 Td [(1)()]TJ/F25 10.9091 Tf 13.939 0 Td [(!)]TJ/F28 10.mh10.9091 Tf 4.732 1.637 Td [(�)]TJ/F Td [7.5774n6[(()]TJ/F25 10.90ough the same arguments apply for38.2125 10.9091 Tf 4.732 -4.505 Td [())]TJ/F26 7.9701 Tf Tf 136.598 0 Td368[())]TJ/F15 10.9091 Tf 5.766 0 Td1.2135 10.9091 Tf 4.732 -4.505 Td [(� Td [(x)]TJ/F15 10. Tf 136.598 0 Td369[())]TJ/F11 Tf 4.243 4.504 Td [(-18[(352 0 Td [(!)]0.9091 Tf 5.937 -4.504 Td [(;)]TJ/F15 050)]TJ/F25 10.9091 Tf 762(6.4))88(argu)1(1)-1(en)28(ts)-287(apply)-285 10.9091 Tf 6.235 0 Tf 6.1(2)]TJ/F15 10.9091 Tf 4.732 -4.505 Td [())]TJ/F26 7.9701 Tf 4.242 4.505 Td [(n�)]TJ/F29 7.9701 Tf 60.578 0 Td [0)]TJ/F25 10.9091 Tf 4.242 0 Td [(x)]15 10.9091 Tf 4.732 -4.504 Td [(()]TJ/F25 10.9091 Tf 4.241d [(()]TJ/F25 10.9091 Tf 4.243 0 Td [(0)]TJ/F25 10.9091 Tf 4.242 0 Td [(!)]TJ/F23 7.9701 Tf 7.182 4.505 Td [(2)]TJ/F28 20.9091 Tf 7.157 -4.505 Td [(�)]TJ/F25-2167]0.9091 Tf 5.937 -4.531.388 [(;)]TJ/F15 350



6.4.1 n� = 3

If n and � are such that n� = 3, then the limit on the right-hand side of (6.8) is �nite,

with the limiting velocity

v0
b = � c3� (� � 1)(� � 2):

Hence the limiting boundary velocity (using c3 from (6.7) at x = ! ) is

v0
b = � cn

1 (2! )n� � (� � 1)(� � 2); (6.9)

which is non-zero if � 6= 1 ; 2. The direction of motion of the moving boundary is then

dependent on the sign ofc1 and the value of � . For example, if c1 > 0 in (6.4) then from

(6.9) we have a positive velocity for 1< � < 2 and a negative velocity for� < 1, � > 2.

It is worth noting that the values � = 1 and � = 2 correspond to points at which

the �nite velocity (6.9) changes sign from positive to negative or vice versa.

6.4.2 n� > 3

In the case wheren and � are such that n� > 3, the limit on the right-hand side of (6.8)

(and therefore vb) is zero asx ! ! . In this case the boundary is initially stationary.

6.4.3 n� < 3

In this case the limit on the right-hand side of (6.8) does not exist. In this instance

the boundary will move with an initially unbounded velocity. It is known however, that

the velocity is only unbounded instantaneously at the initial time, after which the �nite

speed of propagation property possessed by the PDE results in a �nite velocity (see

Bernis (1996b) and Bernis (1996a)).





6.5.2 Evolution of the Solution Close to the Boundary

Once the initial behaviour has occurred, the local behaviour of the solution fort > t 0 is

dependent upon the value ofn and is discussed in King (2001). Whenn� � 3 the local

behaviour of the solution asx ! ! (see also (2.6)) takes the form

u �

 
n3_b

3(3 � n)(2n � 3)
(b(t) � x)3

! 1
n

; for
3
2

< n < 3;

u �
�

3
4

_b(b(t) � x)3 ln
�

1
(b(t) � x)

�� 2
3

; for n =
3
2

;

u � B (t)(b(t) � x)2; for n <
3
2

;

(6.10)

where _b denotes the velocity of the boundaryb(t) and B (t) must be determined as part

of the solution. Here b(t) is the position of the moving boundary, so at time t = t0 we

have b(t0) = ! .

If n� > 3 the solution only takes the form (6.10) once any waiting-time has ceased.

In some cases the waiting-time ceases due to a shock forming as the gradient of the

solution becomes unbounded close to the boundary. The solution may also decrease

such that

u �
�

n3(! � x)4

8(4 � n)(2 � n)(n + 4) t

� 1=n

; as x ! !; t 0 < t < t w ;

experiencing various types of decay based uponn and � (see Blowey et al. (2007) for

more details).

In the regime 3 < n� < 4, with n > 3=2 the boundary velocity tends to zero as

t ! t0, with the boundary waiting. We anticipate that between t0 and the end of the

waiting-time, � decreases from the initial value (greater than 3=n) until such time as

it becomes equal to 3=n. At this point the solution will take the form (6.10) and the

boundary begins to move.

6.6 Initial Boundary Velocities using the MPCM

From the results in x6.4 we expect the MPCM to be able to track the boundaries of the

domain only in cases wheren� � 3, since the velocity in these cases is �nite or zero.
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The case where the boundary velocity is initially unbounded needs special consideration

(and is therefore not considered further in this section).

6.6.1 Numerical Veri�cation of Boundary Velocity Issues

We shall now perform experiments using the implementation of the MPCM from Chapter

4 to verify that the issues described in the previous section will occur.

We shall calculate the initial velocity V 0 using (3.24) (seex3.3.4 for more details)

using the MPCM described in Chapter 4 on meshes of an increasing number of nodes.

We use the initial condition

u0(x) =
1
10

�
1 � x2� �

; (6.11)

for various � in order to estimate the correct boundary velocities for the �nite advance,

�nite retreat and waiting-time cases described in x6.4.

We perform experiments on meshes ofN = 21; 41; 81; : : : ; 1281 nodes, using the

following choices ofn in (6.1) and � in (6.11):

Finite Advance

For the �nite advance case we choosen = 8=5, � = 15=8, giving n� = 3 with 1 < � < 2.

In this case we should observe a positive boundary velocity, corresponding to a �nite

advance of the boundary. The exact value of the initial boundary velocity in this case

is equal to

v0
b =

105
64

�
1
10





N n = 8=5, � = 15=8 n = 2, � = 3=2

21 0.0994 -0.0025

41 0.0930 -0.0036

81 0.0971 -0.0039

161 0.0999 -0.0041

321 0.1015 -0.0042

641 0.1023 -0.0042

1281 0.1027 -0.0042

v0
b � 0:04 0.03



N n = 5=2, � = 5=2 n = 2, � = 2

21 -0.0076 -0.0076

41 -0.0012 -0.0012

81 � 1:63� 10� 4 � 1:63� 10� 4

161 � 2:15� 10� 5 � 2:15� 10� 5

321 � 2:75� 10� 6 � 2:75� 10� 6

641 � 3:48� 10� 7 � 3:47� 10� 7

1281 � 4:36� 10� 8 � 4:37� 10� 8

v0
b 0 0

Table 6.3: Initial boundary velocities for the waiting-time experiments in x6.6.1. The

expected boundary velocity is given in the �nal row for each case.

cases we have no conclusive evidence of convergence and we cannot be con�dent that

the method is producing satisfactory results.

The �nite retreat cases (Table 6.2) do have the correct sign, but there appears little

evidence that the velocity is converging towards the expected value at an acceptable

rate as N increases. In both cases the calculated boundary velocity is larger than the

expected value for all values ofN .

Of the three cases investigated the waiting-time case (Table 6.3) is most encouraging,

as the computed velocity does appear to be decreasing towards zero asN increases. Since

the MPCM is a numerical method we would not expect the velocity to be exactly zero,

but a decrease of one order of magnitude asN is doubled suggests that it will eventually

reach rounding error. The values shown in Table 6.3 are much higher than rounding

error however, so the number of nodes required for the velocity to approach rounding

error is likely to be prohibitively high.

In an attempt to understand why the initial velocities are not as expected, we in-

vestigate the computed boundary velocity for one of the experiments. Choosing the

n = 6=5, � = 5=2 �nite retreat case, we plot the computed initial velocity for the �nal

20 mesh points of the mesh. This computed velocity is given in Figure 6.1.
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Figure 6.1: The computed velocity V 0
i plotted over the �nal 20 mesh points for the

n = 6=5, � = 5=2 �nite retreat case.

We see that oscillations have appeared at points close to the boundary, which then

cause the quadratic extrapolation (used in the evaluation of the boundary velocity) to be

performed inaccurately. Examining the velocity for the other cases (not shown), we also

observe the appearance of oscillations close to the boundary which cause the computed

boundary velocity to be di�erent than the expected value.

In an attempt to explain these inaccurate boundary velocities, we must examine

more than the product of terms in (6.8). The restriction on the values of n and � is

not the only consideration that must be made when considering the limit in (6.8). The

function q(x; t ) in (6.1) and its derivative @q
@x may also be problematic, which we shall

examine next.

6.6.2 Initial Boundary Values of q(x; t )

The implementation of the MPCM described in Chapters 3 and 4 involves an approxi-

mation of the q(x; t ) function as well as the velocity v(x; t ) (which from (6.2) consists of
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a pointwise multiplication of un� 1 and @q



From (6.4), we can calculate the initial approximation to @q
@xasymptotically at points

close to the boundary. Using (6.4),

@q0

@x
= 8c1� (� � 1)(� � 2)x3(! 2 � x2) � � 3 � 12c1� (� � 1)x(! 2 � x2) � � 2;

which, for x � ! is given by

@q0

@x
� 2� c1� (� � 1)(� � 2)! � (! � x) � � 3 � 3(2� )c1� (� � 1)! � � 1(! � x) � � 2: (6.13)

It is clear from (6.13) that for � < 3, @q0
@x becomes unbounded asx ! ! . We cannot

therefore expect the MPCM to be able to accurately approximate @q
@x at the boundary

points using extrapolation (or indeed any numerical method) for values of� < 3.

This information provides further insight into the possible boundary behaviours from

(6.8). For � < 3 we have that @q0
@x is unbounded at the boundary of the domain and

hence the limit (6.3) (if it exists) will involve a multiplication of the form \0 � 1 " for

values ofn > 1 (and may therefore be indet4 4.504 rminat.504 ).



weak forms and resulting �nite element approximations are integral forms and it can

be argued that the FEMPCM will be able to calculate the velocity at points close to

the boundary without the issues previously experienced due to the singularity present

at the boundary.

In this section we explore the initial behaviour and convergence of the piecewise linear

implementation of the FEMPCM, described in x5.5 (which includes the calculation of

the approximation Q(x; t )). We shall use this implementation, as opposed to the higher

order implementation which possesses theS Property described in x5.6, as the higher

order implementation is only appropriate for the n = 1 case.

We conduct numerical experiments in which we hope to observe the various be-

haviours of the boundaries (�nite advance, �nite retreat and waiting-time) outlined in

x6.4 for values ofn and � such that n� � 3. It is hoped that since the functions are ap-

proximated throughout the domain (using L 2 projections) rather than just point-wise at

the mesh points, the velocity will be non-oscillatory close to the boundary and therefore

produce convergent boundary trajectories.

The implementation used involves the calculation ofQ(x; t ), which we have shown

to be problematic in the implementation of the MPCM for point-wise approximations.

It is hoped that the integral forms of the �nite element implementation will alleviate

the issues associated withQ(x; t ) and V(x; t ) close to the boundary.

6.7.1 Finite Advance

We set n = 2 in (6.1), and use the initial condition

u0(x) =
1
10

(1 � x2)3=2;

in the �nite element implementation, giving a value of n� = 3 in which n = 2, � = 3=2

so that 1 < � < 2. We therefore expect the right-hand boundary of the domain to move

outwards with a �nite velocity. In this experiment a time window of t 2 [1; 1:25] is used

in order to provide information on the behaviour of the boundary for times beyond the

initial time.
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Figure 6.2: Boundary trajectories for the �nite advance experiment. Shown here are

trajectories for meshes ofN = 21 (blue solid line), 41 (green dashed line), 81 (red dotted

line) and 161 (cyan dash-dotted line) nodes.

Figure 6.2 details the boundary trajectories for the �nite advance experiment. We

see that the boundary has moved further for theN = 21 case than all others, with the

maximum distance moved by the boundary decreasing each timeN is increased. There

is no conclusive evidence of convergence of the boundary trajectories.

We next examine the nodal values of the solution at the end of the time window on

mesh points which we would expect to coincide over all of the meshes used. We test

values at the central point of the mesh x = 0, the right-hand boundary X N and an

`Interior Point' lying between the central point and the right hand boundary.

If we use theN = 161 solution as a reference solution (Uref , say), we can determine

the absolute di�erence between the solution values and mesh locations for the other

meshes. The absolute di�erences are given in Table 6.4, with the solution values at

the boundary omitted due to the zero boundary conditions making such calculations

redundant. We also omit the di�erence in mesh position at the central point as the

symmetric initial conditions cause the central point to remain �xed at x = 0 throughout
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the time window.

Central Point Interior Point Boundary Point

N jUref � Uj jUref � Uj jX ref � X j jX ref � X j

21 3:49� 10� 5 3:59� 10� 6 2:07� 10� 4 0.0158

41 3:55� 10� 6 1:05� 10� 5 6:23� 10� 5 0.0086

81 8:09� 10� 8 4:22� 10� 6 1:46� 10� 5 0.0034

Table 6.4: Absolute di�erence of mesh points and solution values for the �nite advance

experiment at coinciding points

Table 6.4 shows some evidence of slow convergence between the solution values of

various meshes. The rate at which this convergence is being achieved is not very quick

however, indicating a possible need to increase the number of mesh points further. Some

evidence of convergence has been observed for the interior and boundary mesh points,

but the results are unconvincing.

6.7.2 Finite Retreat

In the �nite retreat experiment we set n = 1 :2 in (6.1) and use the initial condition

u0(x) =
1
10

�
1 � x2� 5=2

;

in the �nite element implementation. For these choices ofn and � we therefore expect

an initially retreating right-hand boundary with a �nite velocity. We run the method

over the time window t 2 [1; 1:025].



Figure 6.3: Boundary trajectories for the �nite retreat experiment. Shown here are

trajectories for meshes ofN = 21 (blue solid line), 41 (green dashed line), 81 (red

dotted line) and 161 (cyan dash-dotted line) nodes.

mesh further, we might expect the trajectories to become closer together. As discussed

in the �nite di�erence case however, the rate of convergence is not quick enough to

propose that a reference trajectory has been reached.

If we use theN = 161 solution as a reference solution (Uref , say), we can determine

the absolute di�erence between the solution values and mesh locations for the other

meshes. The absolute di�erences are given in Table 6.5.

Table 6.5 shows that there is some evidence of convergence between the various

meshes. The rate of convergence is slow however, indicating a possible need to increase

the number of mesh points further.

6.7.3 Waiting-Time

The waiting-time experiment uses value ofn = 2 and � = 2, giving an initial condition

u0(x) =
1
10

(1 � x2)2
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Central Point Interior Point Boundary Point

N jUref � Uj jUref � Uj jX ref � X j jX ref � X j

21 8:70� 10� 6 8:59� 10� 6 1:99� 10� 4 0.0043

41 2:62� 10� 6 1:85� 10� 6 5:06� 10� 5 0.0013

81 5:45� 10� 7 3:85� 10� 7 9:89� 10� 6 2:76� 10� 4

Table 6.5: Absolute di�erence of mesh points and solution values for the �nite retreat

experiment at coinciding points

and an initial boundary velocity of zero. The time window used in this experiment is

t 2 [1; 1:025], as in the �nite retreat case.

Figure 6.4 shows the boundary trajectories for the various meshes, which we would

expect to remain within rounding error of x = 1 if the boundary is experiencing waiting-

time behaviour. We see that the N = 21 trajectory has moved outwards more than



Figure 6.4: Boundary trajectories for the waiting-time experiment. Shown here are

trajectories for meshes ofN = 21 (blue solid line), 41 (green dashed line), 81 (red

dotted line) and 161 (cyan dash-dotted line) nodes.

Central Point Interior Point Boundary Point

N jUref � Uj jUref � Uj jX ref � X j jX ref � X j

21 5:03� 10� 7 7:22� 10� 6 3:21� 10� 5 1:25� 10� 4

41 7:83� 10� 8 1:64� 10� 6 7:92� 10� 5 2:95� 10� 5

81 1:38� 10� 8 3:29� 10� 7 1:59� 10� 6 5:87� 10� 6

Table 6.6: Absolute di�erence of mesh points and solution values for the waiting-time

experiment at coinciding points
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x6.7.1{x6.7.3 for values ofN = 21 to N = 1281, with Remark 6.1 about v0
b from x6.6.1

valid here.

N Advance Retreat Wait

21 0.2597 -1.1248 0.0054

41 0.2629 -1.3433 0.0014

81 0.2643 -1.4534 3:39� 10� 4

161 0.2650 -1.5085 8:46� 10� 5

321 0.2653 -1.5362 2:12� 10� 5

641 0.2655 -1.5500 5:29� 10� 6

1281 0.2655 -1.5569 1:33� 10� 6

v0
b 0.03 � � 0:95 0

Table 6.7: Initial Boundary Velocities for the experiments in x6.7.1{6.7.3. The expected



Figure 6.5: Computed velocity in the �rst time step for the �nite advance experiment

with N = 81, at points near the right-hand boundary.

close to the boundary, which has caused the boundary velocity to be larger than the

expected value.

6.7.5 Critique of the FEMPCM with n > 1

Since the oscillations are observable in both the MPCM (seex6.6.1) and the FEMPCM

(x6.7) , the issue with convergence that we are observing at the boundaries of the domain

is not restricted to the implementation being used.

The need to calculate an approximation to the q(x; t ) function and its �rst deriva-

tive, even in weak form, appears to be the main cause of issues when considering the

implementation of the FEMPCM (as discussed inx6.6.2{x6.6.3 for the MPCM). When

considering initial conditions of the form (6.4), the range of � for which either q(x; t ) or
@q
@x becomes unbounded at the boundary is restrictively large.

Despite the integral forms present in the FEMPCM, allowing for a weak form rep-

resentation present throughout the whole domain (as opposed to point-wise values in
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the �nite di�erence implementation), the implementation appears to be unable to ade-

quately model the velocities expected for the various values of� tested in this section.

6.8 Mesh Point Distribution

In the discussion of the numerical results for the MPCM and FEMPCM presented in

this thesis, the distribution of the mesh points has thus far been overlooked. In this

section we shall explore the initial distribution of the mesh points and their evolution

at later times, with a view to how the MPCM and FEMPCM could bene�t from careful

selection of the initial mesh.

6.8.1 Uniform Initial Mesh

All the numerical results presented in this thesis so far have been generated using a

mesh which was chosen to be initially equally spaced. In the cases where the MPCM

or FEMPCM possesses theS Property (i.e. the results given in Chapters 4 and 5), this

uniform initial mesh remains uniform over time due to the linear velocity present in

these cases (see equations (3.14) and (3.31) forn = 1).

As an example, Figure 6.6 illustrates the mesh evolution for the multiple time step

results given in x4.3.6. In this case the initial mesh spacing was taken to be �X = 0 :2,

which has increased to � X = 0 :5 at time s = 2 :5.

For the examples presented in this chapter, an initially uniform mesh (driven by

a velocity which is not necessarily linear in terms ofx) may not remain uniform. A

uniform mesh may also not provide adequate resolution at points of interest (such as

near the boundary for the types of problems studied in this chapter).

To demonstrate this we examine the cases explored inx6.6.1, for the various choices

of n and � used. In the results presented only the initial boundary velocity was discussed.

Here we run the MPCM for the various n; � values over 10,000 time steps and plot the

evolution of the �nal 11 mesh points from a mesh ofN = 81 points. These plots are

given in Figure 6.7.
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We see that the most interesting behaviour is taking place in the �nite retreat cases

(n = 6=5; � = 5=2 and n = 15=11; � = 11=5), with the points closest to the boundary

being of particular interest. Here the mesh spacing decreases as the boundary retreats,





interfaces.

6.9.1 The Fixed-Mesh Method

The use of a �xed-mesh method requires us to recast the original fourth-order problem.

We shall seek a solutionu(x; t ) to the fourth-order PDE

@u
@t

=
@

@x

 

un @q
@x

!

; in 
 � (t0; T)

q = �
@2u
@x2

; in 
 � (t0; T)

for x 2 
, where 
 is a �nite-space interval ( X a; X b) and no longer time-dependent.

We seek solutions subject to an initial condition

u(x; t 0) = u0(x); at t = t0;

and boundary conditions
@u
@x

= 0 ;

uv + un @q
@x

= 0 ;

at the moving interfaces x = a(t) and x = b(t), for t > t 0.

Compared with the MPCM, the �xed-mesh part of the hybrid numerical method

operates on a static mesh of points, with a �xed distance � x between points. Since the

mesh is now �xed, the domain 
 will include points outside of the support of u(x; t ), to

allow the interfaces of the support to potentially expand over time. For all points in 


outside of the interfaces atx = a(t), x = b(t) we have that u = 0. We shall choose the

two points X a, X b far enough away from the support ofu(x; t ) that the interfaces will

not reach these points by the end of the time window.

By including mesh points outside of the support of the solution we are able to use a

numerical scheme in the approximation ofu(x; t ) which has an e�ect on the movement

of the free boundary over a given time-step. This feature of the numerical scheme

will allow the hybrid method to be able to model the case where the boundary moves

instantaneously with an unbounded velocity, which was not previously possible in the

MPCM.
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Given a discretisation of the domain 
 � x 2 [X a; X b] � R in the form of a mesh

of N nodes, we can approximate the functionu(x; t ) by nodal values Ui (i = 1 ; : : : ; N )

using a �nite di�erence scheme.

Due to the presence of theun factor in (6.1) we choose the semi-implicit �nite

di�erence scheme

Uk+1
i = Uk

i +
� t

� x2

 

(Uk
i +1 =2)n

(
(� Uk+1

i +2 + 2Uk+1
i +1 � Uk+1

i )

� x2 �
(� Uk+1

i +1 + 2Uk+1
i � Uk+1

i � 1 )

� x2

)

+( Uk
i � 1=2)n

(
(� Uk+1

i +1 + 2Uk+1
i � Uk+1

i � 1 )

� x2 �
(� Uk+1

i + 2Uk+1
i � 1 � Uk+1

i � 2 )

� x2

)!

;

(6.14)

for i = 2 ; : : : ; N � 2.

The valuesUk
i +1 =2 and Uk

i � 1=2 in (6.14) are obtained by the midpoint approximations

Uk
i +1 =2 =

Uk
i +1 + Uk

i

2
; Uk

i � 1=2 =
Uk

i + Uk
i � 1

2
; (6.15)

for i = 1 ; : : : ; N � 1.

We enforce boundary conditions by settingUk
0 = Uk

1 = Uk
N � 1 = Uk

N = 0 for all

values ofk, as we have chosen the boundaries of the domain 
 such that the numerical

free boundary does not reach the boundary of 
 over the course of the time window.

Hence we do not expect the solution at the nodes outside the support to take any value

other than zero.

We can rearrange (6.14) and the boundary conditions in order to obtain a linear

system ofN equations of the form

AU k+1 = F k ;

for the solution vector U k+1 = f Uk+1
i g, where A is a N � N pentadiagonal matrix and

F k is a vector of length N .

The �rst two rows and last two rows of A have non-zero entries only on the main

diagonal, with entries A0;0 = A1;1 = AN � 1;N � 1 = AN;N = 1. The remaining rows have
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the following form:

A i;i � 2 = � [(Uk
i � 1=2)n ];

A i;i � 1 = � � [(Uk
i +1 =2)n + 3( Uk

i � 1=2)n ];

A i;i = 1 + 3 � [(Uk
i � 1=2)n + ( Uk

i +1 =2)n ];

A i;i +1 = � � [3(Uk
i +1 =2)n + ( Uk

i � 1=2)n ];

A i;i +2 = � [(Uk
i +1 =2)n ];

where � = � t=(� x)4, for i = 2 ; : : : ; N � 2. The vector F k has entries

F k = (0 ; 0; Uk
2 ; Uk

3 ; : : : ; Uk
N � 3; Uk

N � 2; 0; 0)T :

6.9.2 De�ning the Numerical Interface

Since the approximate solutionUk
i is only de�ned at discrete points and the position of

the moving interface (at which u(x; t ) = 0) may lie between two mesh points we need

a method of de�ning an approximation to the position of the moving interface at the

end of the time window t 2 [t0; T0], since the position of the interfaces will need to be

passed to the MPCM.

From (6.14) and (6.15), we can see that for points outside of the support ofu(x; t )

we have

Uk
i � 1 = Uk

i = Uk
i +1 = 0 ) Uk+1

i = 0 ; (6.17)

and as a result the free boundary can advance by at most one mesh point over a single

time step. A consequence of (6.17) is that the time step size �t must be chosen such

that � t = O(� x2) (Barrett et al. (1998)).

Given this feature of the numerical scheme, it is possible to introduce a means of

determining the position of the numerical boundary. Since the solution is expected to

remain nonnegative if the initial condition is nonnegative (Bernis and Friedman (1990)),

we may de�ne the position of the numerical interface to coincide with the �rst mesh

point at which the solution is zero outside of the support of the approximate solution.

This approach is awed if oscillations appear in the solutions as a result of the numerical
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scheme however, which makes determining such a point extremely problematic. A non-

negativity preserving scheme (such as that found in Blowey et al. (2007)) should ensure

that the interface can be obtained in this manner, but this has not been included in the

implementation presented here.



6.9.4 Use of the MPCM

Once the solution obtained by the �xed-mesh method described inx6.9.1 has been shown

to converge, the mesh is reduced to only mesh points containing the support ofU, with

at most one zero-valued mesh point at each interface.

From the �xed mesh solution, we select a representation of mesh points throughout

the support of U, using the selected points as the initial approximationU 0 in the MPCM.

The MPCM is much more computationally expensive to run when the number of nodes

in the mesh is high, which is likely to be the case when the �xed-mesh method has

converged, hence the need to reduce the number of points used in this part of the hybrid

method.

This solution is then used as the initial condition in the MPCM, at time t = T0.

The MPCM method is then run over the time window t 2 [T0; T ], where T is the �nal

time the method is run to, as described in Chapters 3 or 4.

6.9.5 Critique of the Hybrid Method

The hybrid method described in this section has the potential to be able to model

the case where the initial velocity of the boundary of the domain is instantaneously

unbounded, as well as modelling the other expected behaviours discussed inx6.4. How-

ever, there are a number of factors to consider in order to enable the method to work

correctly, which have so far prevented the method being implemented satisfactorily:

� The value of T0 is important, since we are interested in using the MPCM part of



� In the �xed-mesh portion of the hybrid method there is a further potential issue

which may arise if the moving interface lies on or close to a mesh point, in cases

where q(x; t ) or @q
@x are unbounded at the interface. In this instance we may not

produce accurate results as the �nite di�erence scheme used would not be able to

approximate these unbounded quantities.

� Early simulations of the hybrid numerical method have shown that the �xed-mesh

portion may develop unwanted oscillations at points close to the boundary, which

makes estimation of the position of the numerical interface problematic. Although

much e�ort was made in attempting to reduce these oscillations or improve the

means of estimating the interface position, the outcome was unsatisfactory.

6.10 An Alternative Expression for the Velocity

In this section we shall consider the fourth-order problem written as a single fourth-

order PDE rather than two second-order equations (and therefore without reference to

the q(x; t ) function). Setting m = 1 in (2.1), we therefore seek solutionsu(x; t ) to

@u
@t

= �
@

@x

�
un @3u

@x3

�
; in 
 T ;

subject to the initial condition at time t = t0 given by

u(x; t 0) = u0(x); for x 2 
( t0);

and the boundary conditions

u = 0 ; at x = a(t); x = b(t); t > t 0;

@u
@x

= 0 ; at x = a(t); x = b(t); t > t 0;

uv � un @3u
@x3

= 0 ; at x = a(t); x = b(t); t > t 0:

Through conservation of mass the velocity at points in the interior of the domain is

v = un� 1 @3u
@x3

; (6.19)
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avoiding any reference toq(x; t ).

We now introduce an identity which allows us to rewrite (6.19) as

v = un� 1 @3u
@x3

�
1
n

@3(un )
@x3

�
6(n � 1)

n2

@
@x

0

@

"
@(un=2)

@x

#2
1

A

+
27(n � 1)(n � 2)

2n3

 
@(un=3)

@x

! 3

;

(6.20)

the proof of which is as follows.

Proof. We shall being by making use of the identity

@3

@x3
(un ) � n

@2

@x2

�
un� 1 @u

@x

�
; (6.21)

from which we may write

n
@2

@x2

�
un� 1 @u

@x

�
� nun� 1 @3u

@x3
+ 2n

@(un� 1)
@x

@2u
@x2

+ n
@u
@x

@2

@x2
(un� 1);

� nun� 1 @3u
@x3

+ 3n(n � 1)un� 2 @u
@x

@2u
@x2

+ n(n � 1)(n � 2)un� 3
�

@u
@x

� 3

:

(6.22)

Dividing (6.22) through by n



which we may rearrange to obtain

(n � 1)un� 2 @u
@x

@2u
@x2

�
1
2

@
@x

�
@(un� 1)

@x

�
�

1
2

(n � 1)(n � 2)un� 3
�

@u
@x

� 3

;

�
1
2

(n � 1)
@

@x

"

un� 2
�

@u
@x

� 2
#

�
1
2

(n � 1)(n � 2)un� 3
�

@u
@x

� 3

:

(6.25)

Substituting (6.25) into (6.23),

un� 1 @3u
@x3

�
1
n

@3u
@x3

�
3
2

(n � 1)
@

@x

"

un� 2
�

@u
@x

� 2
#

�
1
2

(n � 1)(n � 2)un� 3
�

@u
@x

� 3

; (6.26)

which is almost in the required form.

We may write (6.26) in the required form using the identities

un� 2
�

@u
@x

� 2

�
�

un=2� 1 @u
@x

� 2

�
4
n2

 
@(un=2)

@x

! 2

;

and

un� 3
�

@u
@x

� 3

�
�

un=3� 1 @u
@x

� 3

�
27
n3

 
@(un=3)

@x

! 3

;

which results in

un� 1 @3u
@x3

�
1
n

@3u
@x3

�
6(n � 1)

n2

 
@(un=2)

@x

! 2

+
27
2n3 (n � 1)(n � 2)

 
@(un=3)

@x

! 3

;

as required.

Remark. A corresponding identity holds for the second-order problem and in principle

exists for the sixth-order problem when the sixth-order PDE is considered as a single

equation as opposed to three second-order equations. The details of these corresponding

identities are omitted here as the focus is on the fourth-order problem.

In a similar manner to that discussed in x6.4, we can examine the behaviour of the

initial alternative velocity at the boundary at points x � ! , when the initial condition

is of the form (6.4). For points close tox = ! , we have that u0(x) is of the form (6.5)

and using this we can examine the various terms in (6.20).
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The �rst term on the RHS of (6.20) is given by

1
n

@3(un )
@x3

= 12cn
1 � (n� � 1)x(! 2 � x2)n� � 2 � 8cn

1 � (n� � 1)(n� � 2)x3(! 2 � x2)n� � 3;

which, for x � ! ,

1
n

@3(un )
@x3

� cn
1 � (n� � 1)

�
3(2n� ! n� � 1(! � x)n� � 2 � (n� � 2)(2! )n� (! � x)n� � 3

�
:

Similarly, the second term is given by

6(n � 1)
n2

@
@x

0

@

"
@(un=2)

@x

#2
1

A = 12cn
1 (n� 1)� 2

�
x(! 2� x2)n� � 2� (n� � 2)x3(! 2� x2)n� � 3

�
;

which for x � ! has the form

6(n � 1)
n2

@
@x

0

@

"
@(un=2)

@x

#2
1

A

� cn
1 (n � 1)� 2

�
3(2n� )! n� � 1(! � x)n� � 2 �

3
2

(n� � 2)(2! )n� (! � x)n� � 3
�

:

Finally, the third term is given by

27(n � 1)(n � 2)
2n3

 
@(un=3)

@x

! 3

= �
8
2

cn
1 � 3(n � 1)(n � 2)x3(! 2 � x2)n� � 3;

which for x � ! ,

27(n � 1)(n � 2)
2n3

 
@(un=3)

@x

! 3

� �
1
2

cn
1 � 3(n � 1)(n � 2)(2! )n� (! � x)n� � 3:

The velocity (6.20) at points x � ! is therefore

v � 3cn
1 (2n� )! n� � 1

�
� (n� � 1) � (n � 1)� 2

�
(! � x)n� � 2

� (c1)n (2! )n�
�
� (n� � 1)(n� � 2) �

3
2

� 2(n � 1)(n� � 2)

+
1
2

� 3(n � 1)(n � 2)
�

(! � x)n� � 3:

(6.27)

Examining (6.27), we see that the velocity consists entirely of terms which are smooth

for choices ofn� � 3, indicating that they should possess a limit at the boundary in

these cases. For cases wheren� < 3 the velocity becomes unbounded asx ! ! as

expected.
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6.10.1 Approximating the Alternative Velocity

We can readily approximate the terms in (6.20) using �nite di�erences to obtain an





N n = 8=5, � = 15=8 n = 2, � = 3=2

21 0.0502 0.0289

41 0.0445 0.0311

81 0.0460 0.0321

161 0.0468 0.0324

321 0.0470 0.0325

641 0.0471 0.0325

1281 0.0471 0.0325

v0
b � 0:04 0.03

Table 6.8: Initial boundary velocities for the �nite advance experiments using the al-

ternative velocity. The expected boundary velocity is given in the �nal row for each

case.

N n = 6=5, � = 5=2 n = 15=11, � = 11=5

21 -0.7990 -0.1323

41 -0.9314 -0.1755

81 -0.9397 -0.1762

161 -0.9386 -0.1750

321 -0.9380 -0.1746

641 -0.9378 -0.1745

1281 -0.9377 -0.1744

v0
b � � 0:95 � � 0:18

Table 6.9: Initial boundary velocities for the �nite retreat experiments using the al-

ternative velocity. The expected boundary velocity is given in the �nal row for each

case.
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N n = 5=2, � = 5=2 n = 2, � = 2

21 -0.0207 -0.0079

41 5:53� 10� 4 6:75� 10� 5

81 1:84� 10� 4 9:22� 10� 4

161 7:77� 10� 6 3:96� 10� 4

321 � 7:12� 10� 7 1:23� 10� 4

641 � 1:87� 10� 7 3:41� 10� 5

1281 � 2:65� 10� 8 8:94� 10� 6

v0
b 0 0

Table 6.10: Initial boundary velocities for the waiting-time experiments using the al-

ternative velocity. The expected boundary velocity is given in the �nal row for each

case.

In an attempt to understand this di�erence, we investigate the computed boundary

velocity for one of the experiments to determine whether oscillations are still appearing

close to the boundary. As in x6.6.1, we select the �nite retreat case (with n = 6=5,

� = 15=8 and n� = 3) and plot the computed initial velocity for the �nal �ve mesh

points in the N = 81 case and the �nal 20 mesh points of the mesh in theN = 1281

case. These computed velocities are given in Figure 6.8, along with the exactv0(x)

calculated using (6.20).

From Figure 6.8 it is clear that there are still oscillations forming close to the bound-

ary, which a�ects the �nal computed boundary velocity. These oscillations are much

smaller in magnitude than those seen in Figure 6.1 however, which explains why the

computed velocities are much closer to the expected values. We also observe that the

oscillations are larger for the N = 1281 mesh, which can explain why the computed

boundary velocity is slowly moving away from the expected values.

It is likely that the oscillations observed here may arise from the numerical approxi-

mation of the terms in (6.20) as opposed to the presence of the singularity in the original

experiments in (x6.6.1). The �nite di�erence approximation of the derivatives for mesh
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Figure 6.8: The computed alternative velocity V 0
i for the n = 6=5, � = 15=8 �nite

retreat case. The left plot shows the �nal �ve mesh points for the N = 81 mesh, while

the right plot shows the N = 1281 mesh plotted over the �nal 20 mesh points. The

green line in each plot is the exactv0(x) calculated from (6.20)
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term. It may be possible to modify the scheme used to approximate this term such that

the MPCMb possesses theS Property over a single time step (if scale-invariant time



original MPCM.

In the �nal chapter we shall provide a summary of the thesis, including conclusions

drawn throughout. We shall also provide a discussion on potential future directions of

the work.
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Chapter 7

Conclusions and Further Work

In this �nal chapter we shall summarise the work in this thesis and present conclusions

that can be drawn from the progress made. We then provide an outline of future

directions in which the subject can be taken, either related directly to the work covered

in the thesis or natural extensions to the work which have not been previously covered.

7.1 Summary

In Chapter 1 we outlined the main aims of the thesis. These were to:

� Extend the �nite di�erence work of Parker (2010) for a particular second-order

problem to higher orders (fourth and sixth) as well as to more general second-order

problems using a �nite di�erence implementation of the velocity-based conserva-

tion method. These implementations, which use a scale-invariant time stepping

scheme, are theoretically able to propagate similarity solutions forward in time to

essentially within rounding error of the exact solution over a single time step. We

term this property of the numerical method the S Property.

� Produce an implementation of the BHJ method using higher order basis functions

and scale-invariant time stepping in order to propagate similarity solutions forward

in time to within rounding error. In principle, this �nite element implementation
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The majority of Chapter 3 focused on introducing the MPCM for the various orders

of problem considered. The conservation method uses local mass conservation in order

to establish the velocities of interior mesh points (with extrapolation used to obtain the

velocity at the boundary points), which is then used to move the mesh in time using a

suitable time stepping method. The local mass conservation is then used to recover the

solution algebraically on the updated mesh at the next time step. The chapter �nishes

with a de�nition of the S Property, which we demonstrate in later chapters that the

MPCM possesses in certain circumstances.

In Chapter 4 the MPCM was modi�ed for the fourth order problem (2.3){(2.5) with

n = 1 in order to demonstrate that the method possesses theS Property when the initial

condition coincides with a similarity solution and a scale-invariant time stepping scheme

is used. By modifying the schemes used, the truncation error of each step of the method

was shown to be equal to zero over a single time step. This property was veri�ed by

numerical results, although multiple time steps highlighted a build up of rounding error

incurred by the time stepping method. This build up of error was investigated and

bounded.

Chapter 4 also provided insight into how the MPCM possesses theS Property for

the second-order problem (2.7){(2.9) for any choice ofn. For the sixth-order problem

(2.10){(2.12) with n = 1, the required modi�cations to the schemes in the MPCM are

presented. Numerical veri�cation is not provided for the sixth-order problem due to a

lack of a working program code.

A departure from �nite di�erence implementations took place in Chapter 5, with

the description of the FEMPCM. This required the introduction of weak forms of the

various equations in the di�erent problems considered. We described the BHJ method

(from which the FEMPCM originated) with a few minor alterations for the fourth-

order problem (2.3){(2.5), using piecewise linear basis functions throughout. We then

demonstrated that by choosing the basis functions in the FEMPCM to be of the same

order as the exact solution, the method for the fourth-order problem (2.3){(2.5) with

n = 1 could be shown to possess theS Property. Numerical results were presented which
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verify the possession of theS Property, with a build up of rounding error present as in

the MPCM.

We then described the steps required to modify the FEMPCM for the second-order

problem (2.7){(2.9) with any



For problems in which the method would be expected to possess theS Property, this

uniform mesh is suitable for producing results of the required accuracy. In the case of

the problems examined in Chapter 6, the initial mesh may bene�t from being focused

closer to the boundary (with alternative means of initially distributing the mesh points

are discussed).

A possible means of alleviating the issue of modelling an initially unbounded bound-

ary velocity was proposed in the form of a hybrid numerical method, combining a �xed-

mesh method with the MPCM. At present this method is unveri�ed, but a description

of how this could be implemented is given inx6.9, along with a critique of the issues to

be addressed in the implementation.

Finally, a formulation with an alternative expression for the velocity was proposed

which, when implemented numerically, alleviates the issues experienced with approxi-

mating the q(x; t ) function (for n� � 3). This alternative velocity does not contain any

of the products of terms which were shown to be problematic in the previous implemen-

tation. Numerical results show that this alternative velocity produces much improved

initial boundary velocities and is therefore a potential solution to the problems experi-

enced previously.

7.2 Conclusions

In conclusion, we have demonstrated both advantages and disadvantages in the use

of the MPCM for solving the type of nonlinear di�usion problems discussed in this

thesis. The ability of the MPCM to propagate similarity solutions forward in time to

the accuracy demonstrated in Chapter 4 is noteworthy and the manner in which it can

apply to di�erent orders of problem is also of interest. The problems highlighted in



forward in time to within rounding error if a scale-invariant time stepping scheme

is used) for problems of various orders (second/fourth/sixth) when the numerical

schemes are carefully modi�ed.

In chapter 4 the numerical schemes of the MPCM were modi�ed from the schemes

originally described in Chapter 3. These modi�ed schemes were shown to have

zero local truncation error over a single time step when a similarity solution is

used as an initial condition and through the use of a scale-invariant time stepping

scheme. In practice we observed a build up of rounding error which was shown to

be due to the time stepping part of the method and this error was bounded. This

level of accuracy is present even in a small number of nodes, which reduces the

computational cost of the method.

� The FEMPCM can be implemented through careful choice of approximation spaces

so that it can also possess theS Property, producing a solution valid over the whole

of the domain at an increased computational cost (when compared to the MPCM

which is only valid at the mesh points).

Chapter 5 demonstrated that an implementation of the FEMPCM can also be

constructed which possesses theS Property for the same problems as previously

mentioned. As in the MPCM, a build up of rounding error is observed in the

numerical results, which is attributable to the time stepping method.

� There are a range of situations in which the MPCM (and FEMPCM) is unable to

accurately model the behaviour of the moving boundary of the fourth-order problem

(2.3){ (2.5), either due to theq(x; t ) function or its derivative becoming unbounded

at the boundary or due to the boundary being expected to move with an initially

unbounded velocity.

In Chapter 6 we explored the applications of the MPCM to the fourth-order prob-

lem (2.3){(2.5) for more general cases, since the ability of the method to produce

solutions for generaln and for more general initial conditions is of interest to the

wider community. It was noted that for initial conditions of the form (6.4) there
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are choices of initial condition in which either the velocity or the functions



The second alternative involves avoiding the approximation of theq(x; t ) function



Implementation of the hybrid numerical method is also a possible future research

avenue, as discussed inx6.9. The main issue with the method is the time point at

which the method switches from a �xed-mesh to a moving-mesh method, as this is

not obvious a-priori . This value may also be dependent upon the value ofn and the

initial condition used, since it is intended that the �xed-mesh part of the method be run

until the boundary velocity is able to be approximated accurately by the moving-mesh

portion.

There is also more work to be achieved on the current implementations of the MPCM

and FEMPCM, particularly with regard to the sixth-order problem (2.10){(2.12). Nu-

merical results were omitted from this thesis for the MPCM as a working program code

was not available. The method as described in Chapter 4 is expected to possess theS

Property, but currently the program code is unable to approximate the quartic p(x; s)

function to the required accuracy.

Finally, a natural extension to the work in this thesis is to move into higher spatial

dimensions. A logical extension into two spatial dimensions would be an implemen-
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