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Abstract

In the first half of this text we explore the interrelationships between the ab-
stract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch
and Silbermann [74] and Lindner [51]) and the concepts and results of the gen-
eralised collectively compact operator theory introduced by Chandler-Wilde and
Zhang [23]. We build up to results obtained by applying this generalised collec-
tively compact operator theory to the set of limit operators of an operator A (its
operator spectrum). In the second half of this text we study bounded linear op-
erators on the generalised sequence space `p(ZN , U), where p ∈ [1, ∞] and U is
some complex Banach space. We make what seems to be a more complete study
than hitherto of the connections between Fredholmness, invertibility, invertibility
at infinity, and invertibility or injectivity of the set of limit operators, with some
emphasis on the case when the operator A is a locally compact perturbation of the
identity. Especially, we obtain stronger results than previously known for the subtle
limiting cases of p = 1 and ∞. Our tools in this study are the results from the
first half of the text and an exploitation of the partial duality between `1 and `∞

and its implications for bounded linear operators which are also continuous with
respect to the weaker topology (the strict topology) introduced in the first half of
the text. Results in this second half of the text include a new proof that injectivity
of all limit operators (the classic Favard condition) implies invertibility for a general
class of almost periodic operators, and characterisations of invertibility at infinity
and Fredholmness for operators in the so-called Wiener algebra. In two final chap-
ters our results are illustrated by and applied to concrete examples. Firstly, we
study the spectra and essential spectra of discrete Schrödinger operators (both self-
adjoint and non-self-adjoint), including operators with almost periodic and random
potentials. In the final chapter we apply our results to integral operators on RN .

2000 Mathematics Subject Classification. Primary 47A53, 47B07; Secondary 46N20, 46E40,

47B37, 47L80.



CHAPTER 1

Introduction

1.1. Overview

This text develops an abstract theory of limit operators and a generalised col-
lectively compact operator theory which can be used separately or together to
obtain information on the location in the complex plane of the spectrum, essen-
tial spectrum, and pseudospectrum for large classes of linear operators arising in
applications. We have in mind here differential, integral, pseudo-differential, differ-
ence, and pseudo-difference operators, in particular operators of all these types on
unbounded domains. This text also illustrates this general theory by developing,
in a more complete form than hitherto, a theory of the limit operator method in
one of its most concrete forms, as it applies to bounded linear operators on spaces
of sequences, where each component of the sequence takes values in some Banach
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spectrum of A, i.e. the set of λ ∈ C for which λI − A is not invertible as a member
of the algebra L(Y ), is independent of p. One of our main results in Section 6.5
implies that also the essential spectrum of A (by which we mean the set of λ for
which λI − A is not a Fredholm operator1) is independent of p. Moreover, we prove
that the essential spectrum is determined by the behaviour of A at infinity in the
following precise sense.

Let h = (h(j))j∈N ⊂ Z be a sequence tending to infinity for which it holds
that am+h(j),n+h(j) approaches a limit ãm,n for every m, n ∈ Z. (The existence
of many such sequences is ensured by the theorem of Bolzano-Weierstrass and a
diagonal argument.) Then we call the operator Ah, with matrix [Ah] = [ãmn],
a limit operator of the operator A. Moreover, following e.g. [74], we call the set
of limit operators of A the operator spectrum of A, which we denote by σop(A).
In terms of these definitions our results imply that the essential spectrum of A
(which is independent of p ∈ [1, ∞]) is the union of the spectra of the elements Ah

of the operator spectrum of A (again, each of these spectra is independent of p).
Moreover, this is also precisely the union of the point spectra (sets of eigenvalues)
of the limit operators Ah in the case p = ∞, in symbols

(1.3) specess(A) = ∪Ah∈σop(A){λ : Ahx = λx has a bounded solution x 6= 0}.

This formula and other related results have implications for the spectrum of A. In
particular, if it happens that A ∈ σop(A) (we call A self-similar in that case), then
it holds that

(1.4) spec(A) = specess(A) = ∪Ah∈σop(A){λ : Ahx = λx has a bounded solution}.

In the case A 6∈ σop(A) we do not have such a precise characterisation, but if we
construct B ∈ L(Y ) such that A ∈ σop(B) (see e.g. [51, §3.8.2] for how to do this),
then it holds that

(1.5) spec(A) ⊂ specess(B) = ∪Bh∈σop(B){λ : Bhx = λx has a bounded solution}.

A main aim of this text is to prove results of the above type which apply
in the simple setting just outlined, but also in the more general setting where
Y = `p(ZN , U) is a space of generalised sequences x = x(m)m∈ZN , for some N ∈ N,
taking values in some Banach space U . In this general setting the definition (1.1)
makes sense if we replace Z by ZN and understand each matrix entry amn as an
element of L(U). Such results are the concern of Chapter 6, and are applied to
discrete Schrödinger operators and to integral operators on
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Then the spectral properties of an integral operator K on Lp(R), whose action is
given by

Kf(t) =
∫

R
k(s, t)f(s) ds, t ∈ R,

for some kernel function k, can be studied by considering its discretisation K :=
GKG−1. In turn K is determined by its matrix [K] = [κmn]m,n∈Z, with κmn ∈
L(Lp[0, 1]) the integral operator given by

κmng(t) =
∫ 1

0

k(m + s, n + t)g(s)ds, 0 ≤ t ≤ 1.

Let us also indicate how the results we will develop are relevant to differential
operators (and other non-zero order pseudo-differential operators). Consider the
first order linear differential operator L, which we can think of as an operator from
BC1(R) to BC(R), defined by

Ly(t) = y′(t) + a(t)y(t), t ∈ R,

for some a ∈ BC(R). (Here BC(R) ⊂ L∞(R) denotes the space of bounded
continuous functions on R and BC1(R) := {x ∈ BC(R) : x′ ∈ BC(R)}.) In
the case when a(s) ≡ 1 it is easy to see that L is invertible. Specifically, denoting
L by L1 in this case and defining C1 : BC(R) → BC1(R
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index set, a family {Ai : i ∈ I} of linear operators on a Banach space U is said to
be collectively compact if {Aix : i ∈ I, x ∈ U, ‖x‖ ≤ 1} is relatively compact in U .)
The first half of this text (Chapters 2-5) is devoted to developing an abstract theory
of limit operators, in which Y is a general Banach space and in which the role of
compactness and collective compactness ideas (in an appropriate weak sense) play
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specified at the beginning of Chapter 2, the specific translation operators Vn are
replaced by a more general discrete group of isometric isomorphisms, and then
the definitions (1.8), (1.9), and (1.10) are retained in essentially the same form.
The notion of compactness that proves important is with respect to what we term
(adapting the definition of Buck [10]) the strict topology on Y , a topology in which
s→ is the sequential convergence. Moreover, when we study operators of the form

A = I + K it is not compactness of K with respect to the strict topology that we
require (that K maps a neighbourhood of zero to a relatively compact set), but
a weaker notion, that K maps bounded sets to relatively compact sets, operators
having this property sometimes denoted Montel in the topological vector space
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and called the hull of A. A main result in [33] is the following: if

(1.14) x′(t) + Ã(t)x(t) = 0, t ∈ R,

has only the trivial solution in BC1(R), for all Ã ∈ H(A), and (1.13) has a solution
in BC1(R), then (1.13) has a solution that is almost periodic. (Since A ∈ H(A),
this is the unique solution in BC1(R).)

Certain of the ideas and concepts that we use in this text are present already
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H(A) = Lim (A), i.e. the hull of A coincides with the set of limit functions of A (cf.
Theorem 6.10). Thus this second theorem of Muhamadiev includes his result for
the case when A is almost periodic.

The first extension of results of this type to multidimensional problems is the
study of systems of partial differential equations in RN in [58]. Muhamadiev studies
differential operators elliptic in the sense of Petrovskii with bounded uniformly
Hölder continuous coefficients, specifically those operators L that are what he terms
recurrent, by which he means that σop(L) = σop(L̃), for all L̃ ∈ σop(L). Here σop(L)
is an appropriate version of the operator spectrum of L. Precisely, where Ap(t),
for t ∈ RN and for multi-indices p with |p| ≤ r, is the family of coefficients of the
operator L (here r is the order of the operator), the differential operator of the
same form L̃ with coefficients Ãp(t) is a member of σop(L) if there exists a sequence
tk → ∞ such that, for every p,

(1.15) Ap(t − tk) → Ãp(t)

uniformly on compact subsets of RN as k → ∞.

The main result he states is for the case where L is recurrent and is also, roughly
speaking, almost periodic with respect to the first N − 1 variables. His result takes
the form that if a Favard condition is satisfied (L̃x = 0 has no non-trivial bounded
solutions for all L̃ ∈ σop(L)) and if supplementary conditions are satisfied which
ensure that approximations to L with periodic coefficients have index zero as a
mapping between appropriate spaces of periodic functions, then L is invertible as
an operator between appropriate spaces of bounded Hölder continuous functions.

Muhamadiev’s results apply in particular in the case when the coefficients of the
differential operator are almost periodic (an almost periodic function is recurrent
and its set of limit functions is its hull). Shubin, as part of a review of differen-
tial (and pseudo-differential) operators with almost periodic solutions [87], gives a
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the proof of his Theorem 2.1 show moreover that if L is Fredholm then the limit
operators of L are not only invertible but the inverses are also uniformly bounded,
i.e.

sup
L̃∈σop(L)

‖L̃
−1

‖ < ∞.

Extensions of these results to give criteria for normal solvability and Fredholmness
of L as an operator on Sobolev spaces are made in [60].

In [59] Muhamadiev also, briefly, introduces what we can term a weak limit
operator. Uniform continuity of the coefficients Ap(t) is required to ensure that
every sequence tk → ∞ has a subsequence, which we denote again by tk, such that
the limits (1.15) exist uniformly on compact subsets (cf. the definition of richness
in §5.3). The set of all limit operators defined by (1.15) where the convergence is
uniform on compact sets we have denoted by σop(L). Muhamadiev notes that it
is enough to require that the coefficients Ap be bounded (and measurable) for the
same richness property to hold but with convergence uniformly on compact sets
replaced2 by weak convergence in L2(RN ). In the case when the coefficients Ap

are bounded, the set of limit operators defined by (1.15) where the convergence
is weak convergence in L2(RN ) we will term the set of weak limit operators of L.
We note that this set coincides with σop(L) in the case when each Ap is uniformly
continuous. In [60] Muhamadiev gives criteria for Fredholmness of L on certain
function spaces in terms of invertibility of each of the weak limit operators of L.

Muhamadiev’s work has been a source of inspiration for the decades that fol-
lowed. For example, similar to his main results in [59] but much more recently,
A. and V. Volpert show that, for a rather general class of scalar elliptic partial
differential operators L on rather general unbounded domains and also for systems
of such, a Favard condition is equivalent to the Φ+ property of L on appropriate
Hölder [93, 94, 95] or Sobolev [92, 94, 95] spaces.

Lange and Rabinovich [44], inspired by and building on Muhamadiev’s paper
[59], carry the idea of (semi-)Fredholm studies by means of limit operators over
to the setting of operators on the discrete domain ZN . They give sufficient and
necessary Fredholm criteria for the class BDO(Y ) of band-dominated operators
(as defined after (1.12) and studied in more detail below in §6.3) acting on Y =
`p(ZN , C) spaces. For 1 < p < ∞, they show that such an operator is Fredholm
iff all its limit operators are invertible and if their inverses are uniformly bounded.
Their proof combines the limit operator arguments of Muhamadiev [59] with ideas
of Simonenko and Kozak [39, 84, 85] for the construction of a Fredholm regulariser
of A by a clever assembly of local regularisers. Lange and Rabinovich are thereby
the first to completely characterise Fredholmness in terms of invertibility of limit
operators for the general class of band-dominated operators on `p(ZN , C). Before,
Simonenko [84, 85] was able to deal with the subclass of those operators whose
coefficients (i.e. matrix diagonals) converge along rays at infinity; later Shteinberg
[88] was able to relax this requirement to a condition of slow oscillation at infinity.
Lange and Rabinovich require nothing but boundedness of the operator coefficients.

2
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The final section of [44] studies (semi-)Fredholmness of operators in the so-
called Wiener algebra W (see our
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many nonzero entries aij is in general no longer of finite rank – not even compact.
That is why Rabinovich, Roch and Silbermann replace the ideal K(Y ) of compact
operators by another set, later on denoted by K(Y, P), which is the norm closure of
the set of all operators A with finitely many nonzero matrix entries. Also this set is
contained in BDO K
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Another important thread that should be mentioned here is the determination
not only of Fredholmness but also of the Fredholm index by means of limit oper-
ators. The key paper in this respect is [71] by Rabinovich, Roch and Roe, where
the case N = 1, p = 2, U = C has been studied using C
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[5] to show the stability in BC[0, ∞) of the finite section method for the classical
Wiener-Hopf integral equation

(1.17) y(s) = x(s) +
∫ ∞

0

κ(s − t)y(t) dt, s ≥ 0,

with κ ∈ L1(R). (The finite section method is just the approximation of (1.17) by
the equation on the finite interval

y(s) = x(s) +
∫ A

0

κ(s − t)y(t) dt, 0 ≤ s ≤ A,

and the main issue is to study stability and convergence as A → ∞.) The methods
and results of [5] are generalised in Chandler-Wilde [13] to obtain criteria in BC(R)
for both stability of the finite section method and solvability for the equation

y(s) = x(s) +
∫ ∞

−∞
κ(s − t)z(t)y(t) dt, s ∈ R,

in operator form

(1.18) y = x + Kzy,

where Kz is the integral operator with kernel κ(s − t)z(t), and it is assumed that
κ ∈ L1(R) and z ∈ L∞(R).

Limit operators do not appear explicitly in [13], or in generalisations of this
work to multidimensional cases [20, 23], to more general classes of kernels [24],
to other functions spaces (Lp(R), 1 ≤ p ≤ ∞, or weighted spaces) [6, 7], or to
general operator equations on Banach spaces [23]. Rather, as we discuss in the
paragraphs below, the results of these papers provide criteria for unique solvability
of (1.18) expressed in terms of injectivity in BC(R) (or equivalently in L∞(R)) of
the elements of a particular family of operators. The connection to limit operators,
explored in Section 5.3 below, is that this family of operators necessarily contains
both the operator I − Kz and all the weak limit operators of I − Kz. (Here weak
limit operator has the same meaning as in our discussion of the paper [59] on page
8 above; we call Kz̃ a weak limit operator of Kz if, for some unbounded sequence
(tk) ⊂ R, it holds that z(· − tk) w∗→ z̃ as k → ∞, where w∗→ is weak∗ convergence in
L∞(R).)

Collective Compactness. In the mid 1960’s Anselone and co-workers (see
[3] and the references therein) introduced the concept of collectively compact op-
erators. A family K of linear operators on a Banach space Y is called collectively
compact if, for any sequences (Km) ⊂ K and (xm) ⊂ Y with ‖xm‖ ≤ 1, there is
always a subsequence of (Kmxm) that converges in the norm of Y . It is immediate
that every collectively compact family K is bounded and that all of its members
are compact operators.

There are some important features of collectively compact sets of operators.
First, recall that if K is a compact operator on Y and a sequence Am of operators
on Y converges strongly (i.e. pointwise) to 0, then AmK converges to 0 in the
operator norm on Y . But under the same assumption, even AmKm converges to 0
in the norm for any sequence (Km) ⊂ K provided K is collectively compact. This
fact was probably the motivation for the introduction of this notion. It was used by
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Anselone for the convergence analysis of approximation methods like the Nyström
method for second kind integral equations.

Another important feature [3, Theorem 1.6] is that if {Km}∞
m=1 is collectively

compact and strongly convergent to K, then also K is compact, and the following
holds:

I − K is invertible ⇐⇒
I − Km is invertible for large m, say m > m0, and sup

m>m0

‖(I − Km)−1‖ < ∞

Since K and Km are compact, the above is equivalent to the following statement

I − K is injective ⇐⇒ ∃m0 : inf
m>m0

ν(I − Km) > 0(1.19)

where ν(A) := inf{‖Ax‖ : ‖x‖ = 1} is the so-called lower norm of an operator A.

There are many important examples where K is not compact in the norm topol-
ogy on Y but does have compactness properties in a weaker topology. To be precise,
K, while not compact (mapping a neighbourhood of zero to a relatively compact set)
has the property that, in the weaker topology, it maps bounded sets to sets that are
relatively compact (such operators are sometimes termed Montel)3. In particular,
this is generically the case when K is an integral operator on an unbounded domain
with a continuous or weakly singular kernel; these properties of the kernel make K a
‘smoothing’ operator, so that K has local compactness properties, but K fails to be
compact because the domain is not compact. Anselone and Sloan [5] were the first
to extend the arguments of collectively compact operator theory to tackle a case
of this type, namely to study the finite section method for classical Wiener-Hopf
operators on the half-axis. As mentioned already above, the arguments introduced
were developed into a methodology for establishing existence from uniqueness for
classes of second kind integral equations on unbounded domains and for analyzing
the convergence and stability of approximation methods in a series of papers by
the first author and collaborators [13, 63, 20, 24, 56, 18, 23, 6, 7]. A particular
motivation for this was the analysis of integral equation methods for problems of
scattering of acoustic, elastic and electromagnetic waves by unbounded surfaces
[14, 21, 96, 19, 22, 56, 18, 97, 61, 7, 16]. Other applications included the
study of multidimensional Wiener-Hopf operators and, related to the Schrödinger
operator, a study of Lippmann-Schwinger integral equations [20]. Related devel-
opments of the ideas of Anselone and Sloan [5] to the analysis of nonlinear integral
equations on unbounded domains are described in [1, 4, 62].

In [23] the first author and Zhang put these ideas into the setting of an ab-
stract Banach space Y , in which a key role is played by the notion of a generalised
collectively compact family K. Now the sequence (Kmxm) has a subsequence that
converges in a topology that is weaker than the norm topology on

k
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additional assumptions hold (see the end of our discussion of limit operators above
and Theorem 5.9 below), then

I − K is injective for all K ∈ K ⇐⇒ inf
K∈K

ν(I − K) > 0.(1.20)

If the family K satisfies rather strong additional constraints (see Theorem 5.9 below
for details), then also invertibility of I − K for every K ∈ K follows from injectivity
for all K ∈ K.

To give a concrete flavour of these results (this was the first concrete application
of these ideas made to boundary integral equations in wave scattering [13, 14]),
one case where they apply is to the integral equation (1.18), with the family K
defined by

K := {Kz : z ∈ L∞(R) and z(s) ∈ Q, for almost all s ∈ R},

for some Q ⊂ C which is compact and convex. That is, existence and uniform
boundedness of (I − Kz)−1 (as an operator on BC(R)) for all Kz ∈ K, can be
shown to follow from injectivity of I − Kz for all Kz ∈ K (see [13, 14
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identity on Y , satisfying conditions (i) and (ii) at the beginning of the chapter. In
the theory of limit operators developed in [74] the following notion of sequential
convergence plays a crucial role: we write that xn

s→ x if (xn) is a bounded sequence
and Pmxn → Pmx as n → ∞ for every m. In this text, as we have noted already,
we call s→ strict convergence, by analogy with the strict topology of [10]. Chapter
2 is concerned with study of a topology, which we term the strict topology, in
which s→ is the sequential convergence. We recall properties of this topology from
[23] (which derive in large part from similar results in [10]) and show further
properties, for example characterising the compact and sequentially compact sets
in the strict topology, characterising when the strict and norm topologies coincide,
and introducing many examples that we build on later.

In Chapter 3 we study a number of subspaces of L(Y ), the space of bounded
linear operators on the Banach space Y , namely those subspaces that play an
important role in the abstract theory of limit operators [74] and in the generalised
collectively compact operator theory of [23], and so play an important role in the
rest of the text. These subspaces include the classes L(Y, P) and K(Y, P) central to
the theory of limit operators [74]5, the class S(Y ) of operators that are sequentially
continuous on (Y, s) (Y equipped with the strict topology), and the class SN(Y )
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that a sequence (An) ⊂ L(Y ) satisfies An
P→ 0 if and only if (An) is bounded and

both PmAn ⇒ 0 and AnPm ⇒ 0 as n → ∞, for every m, while An
S→ 0 if and only

if (An) is bounded and PmAnx
s→ 0 as n → ∞ for every m and every x
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operator A on Y ∞ and its restriction A0 to Y 0. The main techniques here are to
isometrically embed
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The Strict Topology
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n ∈ N0,

Pnx(m) =
{

x(m), |m| ≤ n,
0, |m| > n.

Then P = (Pn) satisfies (i) and (ii) with N(m) =
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This last equation implies that the family of semi-norms, {| · |n : n ∈ N0},
is separating. We will term the metrisable topology generated by this family of
semi-norms the local topology: with this topology, Y is a separated locally convex
topological vector space (TVS). By definition, a sequence (xn) converges to x
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Example 2.10 For x ∈ `∞ and k ∈ Z let xk ∈ `∞ be defined by xk(m) =
x(m − k), m ∈ Z. Call x ∈ `∞ almost periodic (e.g. [51, Definition 3.58]) if
{xk : k ∈ Z} ⊂ `∞ is relatively compact. Let `∞

AP ⊂ `∞ denote the set of almost
periodic functions. Let Y = `∞

AP and define P as in Example 2.3, noting that
Pn(`∞

AP) ⊂ `∞
AP for every n ∈ N0. Then Ŷ = `∞ and Y0 is a strict subspace of Y .

In particular, if y(m) = exp(2πiam), m ∈ Z, with a irrational, then y ∈ Y (see e.g.
[51, Lemma 3.64,Proposition 3.65]) but ‖Pny − y‖ = 2, for n ∈ N0, so that y 6∈ Y0

by Lemma 2.7.

We will also be interested in a third topology on Ŷ ⊃ Y , intermediate between
the local and norm topologies. Given a positive null-sequence a : N0 → (0, ∞),
define

|x|a := sup
n

a(n)|x|n.

Then {| · |a : a is a positive null sequence} is a second separating family on Ŷ and
generates another separated locally convex topology on Ŷ which, by analogy with
[10], we will term the strict topology. For (xn) ⊂ Ŷ , x ∈ Ŷ , we will write xn

s→ x
if xn converges to x in the strict topology, i.e. if |xn − x|a → 0 as n → ∞ for every
null sequence a.

The topology we have callJ/F11f
-ily on^
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To see (vi) note that if (a) holds then S is bounded in the strict topology and
so in the norm topology by (ii). Also, S is totally bounded in the (coarser) local
topology. Thus (b) holds. Conversely, if (b) holds, U is a neighbourhood of zero in
the strict topology, M := supx∈S ‖x‖, and B := {x : ‖x‖ ≤ 2M}, then, by (ii), there
exists a neighbourhood of zero in the local topology, U ′, such that U ∩ B = U ′ ∩ B.
Further, there exists a finite set {s1, ..., sN } ⊂ S such that S ⊂

⋃
1≤j≤N (sj + U ′).

It follows that

S ⊂
⋃

1≤j≤N

(sj + U ′ ∩ B) =
⋃

1≤j≤N

(sj + U ∩ B) ⊂
⋃

1≤j≤N

(sj + U).

Thus also (b) ⇒ (a).

To see that (b) and (c) are equivalent note that, as the local topology is metris-
able, S is totally bounded in the local topology iff every sequence in S has a subse-
quence that is Cauchy in the local topology. Further, by (v), a sequence is Cauchy
in the strict topology iff it is Cauchy in the local topology and norm-bounded.

Note that it follows from (ii) that the linear operators on Y that are bounded with
respect to the strict topology (map bounded sets onto bounded sets) are precisely
the members of L(Y ).

Let E denote one of Ŷ , Y and Y0. When it is necessary to make a clear distinc-
tion we will denote the TVS consisting of E (considered as a linear space) equipped
with the strict topology by (E, s) and will denote the TVS (and Banach space)
consisting of E with the norm topology as (E, ‖ · ‖).

Lemma 2.12. If Pn = I for some n, then the local, strict, and norm topologies
coincide on Ŷ . If Pn 6= I for all n, then:

(a) on Ŷ the local topology is strictly coarser than the strict topology which is
strictly coarser than the norm topology; and

(b) Ŷ , equipped with the local topology, is not complete, while Ŷ equipped with
the strict topology is complete and non-metrisable.

Proof. It is easy to see that any set open in the local topology is open in the strict
topology and that any set open in the strict topology is open in the norm topology.
If Pn = I for some n then the converse statements clearly hold, as at least one of the
semi-norms defining each topology coincides with the norm. Thus the topologies
coincide.

If Pn 6= I for any n then there exists (xn) such that ‖Qnxn‖ = 1 for all n.
For all m, PmQnxn = 0 for all sufficiently large n, by (ii). Clearly Qnxn 6→ 0,
but it follows from (2.6) that Qnxn

s→ 0 as n → ∞. Thus the strict and norm
topologies are distinct. To see that the local and strict topologies are distinct, note
that nQnxn converges to zero in the local topology but ‖nQnxn‖ = n → ∞ so
that, by (2.6), nQnxn 6 s→ 0.

If Ŷ equipped with the local topology were complete it would be a Fréchet space
and it would follow from the open mapping theorem [82] applied to the identity
operator that the local and norm topologies coincide.

Let Y ∗ denote the completion of Ŷ in the strict topology. Then Y ∗ ⊂ X,
since Ŷ ⊂ X and X is complete in the coarser local topology. Suppose Y ∗ 6= Ŷ .



24 2. THE STRICT TOPOLOGY

Then there exists x ∈ Y ∗ with |x|n → ∞ as n → ∞. Let bn := 1/2 max(1, |x|n),
an := 1/bn, and a = (a0, a1, ...). Then y ∈ Y ∗ and |x − y|a < 1 imply that
|y|n > |x|n/2 for all sufficiently large n, so that {y ∈ Ŷ : |x − y|a < 1} = ∅. This
is a contradiction, for Ŷ is dense in its completion.

By definition, Y0 is the completion of Ỹ in the norm topology and we have
seen that Qnx →





CHAPTER 3

Classes of Operators

We have introduced already L(Y ) and K(Y ), the sets of linear operators that
are, respectively, bounded and compact on (Y, ‖ · ‖). We have noted that L(Y )
coincides with the set of linear operators that are bounded on (Y, s). Let C(Y ) and
S(Y ) denote the sets of those linear operators that are, respectively, continuous and
sequentially continuous on (Y, s). Thus A ∈ S(Y ) if and only if, for every sequence
(xn) ⊂ Y and x ∈ Y ,

(3.1) xn
s→ x ⇒ Axn

s→ Ax.

Let SN(Y ) denote the set of those linear operators that are sequentially continuous
from (Y, s) to (Y, ‖ · ‖), so that A ∈ SN(Y ) iff

(3.2) xn
s→ x ⇒ Axn → Ax.

We remark that the operators in S(Y ) and SN(Y ) are precisely those termed
s−continuous and sn−continuous, respectively, in [6].

From standard properties of topological vector spaces [82, Theorems A6 and
1.30], and Lemma 2.12, it follows that C(Y ) ⊂ S(Y ) ⊂ L(Y ). In fact we have the
following stronger result.

Lemma 3.1. C(Y ) = S(Y ).

Proof. Let C(Ŷ ), S(Ŷ ) denote the sets of linear operators on Ŷ that are, respec-
tively, continuous and sequentially continuous. For n ∈ N0 let Yn denote the linear
subspace of Y ,

(3.3) Yn := {x ∈ Y : |x|n = 0} = {x ∈ Y : Pmx = 0, 0 ≤ m ≤ n}.

Note that, by (ii), for every m ∈ N0, Qn(Ŷ ) ⊂ Ym for all sufficiently large n, and,
for all x ∈ Y , ‖x − Qnx‖ = ‖Pnx‖ ≤ |x|n. Thus Assumption A′ of [23] holds and
it follows from [23, Theorem 3.7] that C(Ŷ ) = S(Ŷ ).

By Lemma 2.13, the sequential closure of Y ⊂ Ŷ in the strict topology is Ŷ .
In Lemma 3.18 we will show that every A ∈ S(Y ) has an extension Â ∈ S(Ŷ )
defined by Âx = limn→∞ APnx, where the limit exists in the strict topology. Then
Â ∈ C(Ŷ ) and A = Â|Y ∈ C(Y ).

In view of this lemma it holds that

(3.4) SN(Y ) ⊂ C(Y ) = S(Y ) ⊂ L(Y ).

As Lemmas 3.3-3.4 below clarify, in general SN(Y ) is a strict subset of S(Y ).
The following example shows that S(Y ) 6= L(Y ) in general, indeed that A may be
compact on (Y, ‖ · ‖) but not sequentially continuous on (Y, s).

26
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Example 3.2 Let Y = `∞ and Pn be as in Example 2.2. Let c+
` denote the

set of those x ∈ `∞ for which limm→+∞ x(m) exists. By the Hahn-Banach theorem
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Proof. Suppose A ∈ S(Y ) ∩ K(Y ). Take an arbitrary sequence (xn) ⊂ Y with
xn

s→ 0 as n → ∞. From A ∈ S(Y ) we conclude that Axn
s→ 0 as n → ∞. Since

{xn} is bounded and A is compact, we know that {Axn} is relatively compact, so
every subsequence of (Axn) has a norm-convergent subsequence, where the latter
has limit 0 since Axn

s→ 0 as n → ∞. Of course, this property ensures that Axn

itself norm-converges to 0.

To see when equality holds consider that, by (ii), it holds for every m that
PmQn = 0 for all sufficiently large n. Thus, by Lemma 3.3, Pm ∈ SN(Y ) for all m.
So clearly SN(Y ) 6⊂ K(Y ) if Pm is not compact for all m. If Pm is compact for all
m and A ∈ SN(Y ) then, by Lemma 3.3 again, A is the norm limit limm→∞ APm,
with APm compact, so that A is compact and SN(Y ) ⊂ K(Y ). Thus equality
holds iff Pm ∈ K(Y ) for all m.

Recall that (e.g. [3]) if K ∈ K(Y ) and An converges strongly to A then, since
pointwise convergence is uniform on compact sets, ‖(An − A)K‖ → 0. This and
Lemma 3.7 have the following implication.

Lemma 3.8. If Pn converges strongly to I then ‖Qn
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for x ∈ U , m ∈ N, and nm ≤ j ≤ nm+1, it holds that

‖AQjx‖ ≤
∞∑

i=m+1

41−i‖Pñi+1 x‖ ≤
∞∑

i=m+1

41−i/añi+1 ≤ 23−m,

since añi+1 ≥ ani+1
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In analogy to Lemma 3.7 we have the following result.

Lemma 3.13. L(Y, P)∩K(Y ) ⊆ K(Y, P)
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where the limit is understood in the strict topology. It holds that ‖Â‖ = ‖A‖,
and if A ∈ SN(Y ), L(Y, P) or K(Y, P), then Â ∈ SN(Ŷ ), L(Ŷ , P) or K(Ŷ , P),
respectively. Conversely, if Â ∈ S(Ŷ ), SN(Ŷ ), L(Ŷ , P) or K(Ŷ , P) and if Â(Y ) ⊂
Y , then A := Â|Y ∈ S(Y ), SN(Y ), L(Y, P) or K(Y, P), respectively.

Proof.
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relatively sequentially compact in the strict topology. Operators with this property
are termed sequentially compact with respect to the (Y, s) topology in [23]. The
following two lemmas are useful characterisations of M(Y ) in the case when Y is
sequentially complete (which is the case when Y = Ŷ , by Lemma 2.13).

Lemma 3.19. If Y = Ŷ then A ∈ M(Y ) iff A ∈ L(Y ) and PmA ∈ K(Y ) for
every m.

Proof. The lemma follows immediately from the equivalence of (a) and (d) in
Lemma 2.14. This implies that A ∈ M(Y ) iff A(S) is norm-bounded and PnA(S)
is relatively compact in the norm topology, for every n and every norm-bounded
set S.

Remark 3.20 In the case Y = Lp(RN ) of Example 2.4 (in which case Y = Ŷ ),
an operator which satisfies PmA ∈ K(Y ) and also APm ∈ K(Y ) for each m is
termed locally compact in [16, 51, 70, 74]. In the case Y = BC(RN ) of Example
2.5 (in which again Y = Ŷ ) an operator A ∈ L(Y ) is termed locally compact in [38]
if it holds merely that PmA ∈ K(Y ) for every m, i.e. by Lemma 3.19, if A ∈ M(Y ).

Lemma 3.21. If A ∈ M(Y ) then APn ∈ KS(Y ) for every n. Conversely, if
Y = Ŷ , A ∈ S(Y ) and APn ∈ M(Y ) for every n, then A ∈ M(Y ).

Proof. By Lemma 3.3, Pn ∈ SN(Y ), and so, by Lemma 3.9, maps some neighbour-
hood in (Y, s) to a bounded set in (Y, ‖ · ‖). (In fact every neighbourhood in (Y, s)
is mapped to a bounded set.) Thus APn ∈ KS(Y ) if A ∈ M(Y ).

If APn ∈ M(Y ) for every n then, by Lemma 3.19, PmAPn ∈ K(Y ) for every m
and n. If also A ∈ S(Y ) then, by Corollary 3.5, ‖PmA − PmAPn‖ → 0 as n → ∞,
so that PmA ∈ K(Y ) for every m. Thus A ∈ M(Y ) by Lemma 3.19.

Many of the arguments we make in this text will deal with families of operators
that have the following collective compactness property.

Definition 3.22. [23] We say that a set K of linear operators on Y is uni-
formly Montel on (Y, s) or is collectively sequentially compact on (Y, s) if, for every
bounded set B, ∪K∈KK(B) is relatively compact in the strict topology.

Remark 3.23 Note that, by Lemma 2.14, ∪K∈KK(B) is relatively compact
in the strict topology iff ∪K∈KK(B) is relatively sequentially compact in the strict
topology, i.e. iff, for every sequence (Kn) ⊂ K and (xn) ⊂ B, (Knxn) has a strictly
convergent subsequence.

That being Montel on (Y, s) is significantly weaker than being compact is very
clear in the case when Pn is compact for all n. The next two results follow from
Corollary 2.17 (the first is also a corollary of Lemma 3.19).

Corollary 3.24. If Y = Ŷ and Pn ∈ K(Y ) for every n then M(Y ) = L(Y ).

Corollary 3.25. If Y = Ŷ and Pn ∈ K(Y ) for every n then a set K of linear
operators on Y is uniformly Montel on (Y, s) iff K is uniformly bounded.

Remark 3.26 Some of our subsequent results will only apply to operators A
of the form A = I + K with K ∈ S(Y ) ∩ M(Y ). It follows from Corollary 3.24
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that, if Y = Ŷ and Pn ∈ K(Y ) for each n, then A − I ∈ S(Y ) ∩ M(Y ) whenever
A ∈ S(Y ), so that every A ∈ S(Y ) can be written in this form.

M(Y ) is the set of operators which map bounded sets to relatively compact
sets in (Y, s), and we have seen in Lemma 3.9 that SN(Y ) is precisely the set of
those operators that map some neighbourhood in (Y, s) to a bounded set. On the
other hand, KS(Y ) is the set of those operators that map some neighbourhood to
a relatively compact set. Clear94 -11.955 Td[(a)-330(relati)1(v)2883539 0955i2S-0Y ) can b (Y
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Then K = KPn for all n > 1, so that K ∈ KS(Y ) by Lemma 3.21. But K 6∈ K(Y )
as, defining xn(s) = exp(−ins), s ∈ R, (Kxn) has no norm-convergent subsequence
since Kxn(s) → 0 as s → ∞ for every n but Kxn(n) = 1 for each n.

3.2. Algebraic Properties

We will find the algebraic properties collected in the following lemma useful.
These are immediate from the definitions and Lemmas 3.9, 3.21 and 3.27.

Lemma 3.31. Let A and B



36 3. CLASSES OF OPERATORS

We will say that A ∈ L(Y ) is invertible if it is invertible in the algebra of linear
operators on Y , i.e. if it is bijective. Automatically, by the open mapping theorem,
it follows that A−1 ∈ L(Y ). An interesting question is whether S(Y ) = C(Y ) is
inverse closed, i.e. whether, if A ∈ S(Y ) is invertible, it necessarily holds that
A−1 ∈ S(Y ). Since (Y, s) is not barrelled [23], this question is not settled by
standard generalisations of the open mapping theorem to non-metrisable TVS’s
[77]. Indeed, it is not clear to us whether S(Y ) is inverse closed without further
assumptions on Y . But we do have the following result which implies that S(Y ) is
inverse closed in the case when Y = Ŷ and Pn ∈ K(Y ) for each n.

Lemma 3.33. Suppose A, B ∈ S(Y ) are invertible and that A−1 ∈ S(Y ) and
A − B ∈ M(Y ). Then B−1 ∈ S(Y ).

Proof. We have that B−1 = D−1A−1, where D = I + C and C = A−1(B − A). By
Lemma 3.31, C ∈ S(Y ) ∩ M(Y ). To show that B−1 ∈ S(Y ) we need only to show
that D−1 ∈ S(Y ).

Suppose that (xn) ⊂ Y , x ∈ Y , and xn
s→ x. Let yn := D−1xn. By (2.6), and

since D−1 = B−1A ∈ L(Y ), (xn) and (yn) are bounded. For each n,

(3.10) yn + Cyn = xn.

Since C ∈ M(Y ) there exists a subsequence (ynm
) and y ∈ Y such that xnm

−
Cynm

s→ y. From (3.10) it follows that ynm

s→ y. Since C ∈ S(Y ), it follows
that xnm − Cynm

s→ x − Cy. Thus y = x − Cy, i.e. y = D−1x. We have shown
that yn = D−1xn has a subsequence strictly converging to y = D−1x. By the
same argument, every subsequence of yn has a subsequence strictly converging to
y. Thus D−1xn

s→ D−1x. So D−1 ∈ S(Y ).

Corollary 3.34. If Y = Ŷ and Pn ∈ K(Y ) for all n then S(Y ) is inverse
closed.

Proof. If Y = Ŷ and Pn ∈ K(Y ) for all n, and A ∈ S(Y ) is invertible, then
I − A ∈ M(Y ) by Corollary 3.24, so that A−1 ∈ S(Y ) by the above lemma.



CHAPTER 4

Notions of Operator Convergence

A component in the arguments to be developed is that one needs some notion
of the convergence of a sequence of operators. For (An) ⊂
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for each m, then, for every x ∈ Y , (Anx) is bounded and Pm(Anx − Ax) → 0 for
each m, so that Anx

s→ Ax by (2.6).

Example 4.6 Let Y , Pn and the multiplication operator Mb be defined as in
Example 4.3, and suppose that (bn) ⊂ `∞(ZN , L(U)). Then, extending the results
of Example 4.3, we see that

Mbn ⇒ 0 ⇔ ‖bn‖ = sup
m∈ZN

‖bn(m)‖ → 0,

Mbn

P→ 0 ⇔ sup
n

‖bn‖ < ∞ and ‖bn(m)‖ → 0, ∀m ∈ ZN ,

Mbn

s→ 0 ⇔ Mbn

S→ 0

⇔ sup
n

‖bn‖ < ∞ and ‖bn(m)x(m)‖ → 0, ∀m ∈ ZN , x ∈ Y.

Thus Mbn

P→ 0 requires that each component of bn converges to zero in norm, while
Mbn

s→ 0 requires that each component of bn converges strongly to zero. We have
(cf. Corollary 4.14 below) that

Mbn
⇒ 0 ⇒ Mbn

P→ 0 ⇒ Mbn

s→ 0 ⇔ Mbn

S→ 0 ⇐ Mbn
→ 0.

If U is finite-dimensional, then P→, S→ and s→ all coincide. If p = ∞, then → is
equivalent to ⇒. If 1 < p < ∞ and U is finite-dimensional, then → coincides with
P→, S→ and s→.

Lemma 4.7. Suppose (An) ⊂ L(Y ) is bounded, A ∈ S(Y ), and

||Pm(An − A)|| → 0 as n → ∞

for each m. Then An
s→ A.

Proof. If the conditions of the lemma hold and xn
s→ x then Axn

s→ Ax and, by
(2.6), supn ||xn|| < ∞, so that (Anxn) is bounded, and, for each m,

||Pm(Anxn − Ax)|| ≤ ||Pm(An − A)xn|| + ||PmA(xn − x)|| → 0
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(Anm
) such that Anm

S→ A. Then Lemma 4.9 and other observations made above
imply the following corollary.

Corollary 4.10. Suppose A ⊂ L(Y ). Then A is s-sequentially compact iff
A ⊂ S(Y ) and A is s-sequentially equicontinuous and sequentially compact in the
strong operator topology on (Y, s).

In the case that the strict and norm topologies coincide, in which case C(Y ) =
S(Y ) = L(Y ), it follows from Lemma 4.5, i.e. from the uniform boundedness the-
orem in Banach spaces, that if (An) ⊂ L(Y ) and An

S→ A then {An : n ∈ N} is
s-sequentially equicontinuous. In the case when these topologies do not coincide, in
which case, by Lemma 2.12, (Y, S
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Corollary 4.14. Suppose that Assumption A holds and that (An) ⊂ S(Y ),
A ∈ S(Y ). Then

An
P→ A ⇒ An

s→ A ⇔ An
S→ A ⇐ An → A.



CHAPTER 5

Key Concepts and Results

This chapter introduces the key concepts and develops the key results of the
text. We first recall the concepts of invertibility at infinity and Fredholmness and
start to explore their inter-relation. Next, we summarise some main results from
the abstract generalised collectively compact operator theory developed in [23] and
from the abstract theory of limit operators [72, 74, 51]. It then turns out that
the collection of all limit operators of an operator A ∈ S(Y ) is subject to the
constraints made in the operator theory of [23
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Recall that A ∈ L(Y ) is called semi-Fredholm if it has a closed range, A(Y ),
and if one of the numbers

(5.3) α(A) := dim(ker A) and β(A) := dim(Y/A(Y ))

is finite, and that A is called Fredholm if both α(A) and β(A) are finite (in which
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P− lim
n→∞

V−h(n)AVh(n) = Mb

where b := χ{−∞,...,−4} (see Figure 5.1). The operator A is rich; this can be seen
directly or by applying Lemma 6.21 below.

The following theorem summarises and extends known results on the operator
spectrum σop(A) and on the relationship between A and its operator spectrum.
Statements (i) and (ii) are from [72], (iii) and (iv) are from [74] and statements
(v)-(vii) go back to [49, Section 3.3] and can also be found in [74, Section 1.2].
(Note that the proofs of (iii)-(vii) given in [49, 74] work for all A ∈ L(Y ), although
the results state a requirement for A ∈ L(Y, P) or make a particular choice of Y ,
and note also that (iv) is immediate from (ii) and (iii) and that (vii) is immediate
from (ii), (v) and (vi), see [17
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Taking the limit first as n → ∞ and then as m → ∞, noting (2.2), we get that
ν(A)||B−1x|| ≤ ||x||. We have shown that ν(A)||y|| ≤ ||By||, for all y ∈ Y , as
required.

Within the subspace L(Y, P) of L(Y ), for every fixed sequence h tending to
infinity, the mapping A 7→ Ah is compatible with all of addition, composition,
scalar multiplication and passing to norm-limits [72]. That is, the equations

(A + B)h = Ah + Bh, (AB)h = AhBh,

(λA)h = λAh,
(

lim
m→∞

A(m)
)

h
= lim

m→∞
A

(m)
h(5.13)

hold, in each case provided the limit operators on the right hand side exist. By
definition, L(Y, P) is a subalgebra of L(Y ). By Lemma 3.10, (5.10) implies that
V ⊂ L(Y, P). Thus, if A ∈ L(Y, P) then T (A) ⊂ L(Y, P), so that σop(A) ⊂ L(Y, P)
by Lemma 4.4. Similarly, since by Lemma 3.32, S(Y ) ⊃ L(Y, P) is a subalgebra of
L(Y ), if A ∈ S(Y ) then V−kAVk ∈ S(Y ) for 01 1.495 Td[(AV)]TJ/F1002k
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One case in which the connection between the properties (5.14) is evident is
the case in which A is self-similar. Here, following [17] call A ∈ L(Y ) self-similar if
A ∈ σop(A) and, generalising [58], call A ∈ L(Y ) recurrent if, for every B ∈ σop(A),
it holds that σop(B) = σop(A). It is immediate from these definitions and Theorem
5.12 (iv) that if A is recurrent then all limit operators of A are self-similar and
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for each k ∈ N, so that (Kn − V−h(n)KnVh(n))xn
s→ 0 by (2.6). Thus Knxn has

a strictly convergent subsequence, so that, by Remark 3.23, σop(K) is uniformly
Montel.

Conversely, suppose that K is rich and σop(K) is uniformly Montel. Take an
arbitrary sequence h = (h(n))∞

n=1 ⊂ ZN which tends to infinity and an arbitrary
bounded sequence (xn) ⊂ Y . Since K is rich, (h(n)) and (xn) have subsequences,
denoted again by (h(n)) and (xn), such that V−h(n)KVh(n)

P→ Kh ∈ σop(K). Thus

Pk(V−h(n)KVh(n) − Kh)xn → 0, n → ∞,

for each k ∈ N, so that (V−h(n)KVh(n) − Kh)xn
s→ 0. On the other hand, Khxn has

a strictly convergent subsequence since Kh is Montel. Thus V−h(n)KVh(n)xn has a
strictly convergent subsequence.

Remark 5.18 Note that, clearly, (V−kKVk)k∈ZN is asymptotically Montel iff
(V−kK)k∈ZN is asymptotically Montel since V = {Vk}k∈ZN ⊂ iso(Y ).

An extension of Theorem 5.16 can be derived by applying Theorem 5.9 to

K := σop(K) ∪ T (K),

with T (K) defined by (5.11), so that I − K = σop(A) ∪ T (A). Properties (ii) and
(iii) of Theorem 5.9 can be checked in a similar way as before. Property (i) of
Theorem 5.9, that K is uniformly Montel on (Y, s), is equivalently characterised by
any of the properties (i)-(iii) of Lemma 6.23 below, which are equivalent even for
arbitrary K ∈ L(Y ). Note that, for a rich operator K, by Lemma 5.17, any of these
properties is moreover equivalent to σop(K) being uniformly Montel on (Y, s) and
K ∈ M(Y ). Then we get the following slightly enhanced version of the first part of
Theorem 5.16, which in addition allows to conclude from A being injective to the
closedness of the range of A.

Theorem 5.19. Suppose Y = Ŷ , A = I − K ∈ S(Y ) is rich, V is sufficient, K
is subject to any of (i)-(iii) of Lemma 6.23, and A as well as all its limit operators
are injective. Then A is bounded below and σop(A) is uniformly bounded below.

Note that Theorems 5.16 and 5.19 are applications of Theorem 5.9 which was
just a special case of Theorem 5.8. We will now apply Theorem 5.8 directly.

Theorem 5.20. Suppose that Y = Ŷ , V is sufficient, A = I − K ∈ L(Y ),
An = I . Y 2 L(Y ) 2
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Proof. Let Kn := T (Kn), n ∈ N, and set K := I − B, S := V. Then (c) and (d)
imply that conditions (i)–(iv) of Theorem 5.8 are satisfied, and (a) and (b) imply
that the condition in Theorem 5.8 b) is satisfied. Thus, applying Theorem 5.8, the
result follows.

Later on, in Chapter 6, this result will be used to derive Theorem 6.37 on the
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Remark 5.23 We note, by Remark 5.21, that, necessarily, A ∈ B and σop(A) ⊂
B.

More concrete statements than Theorems 5.16, 5.19 and 5.20 can be given when
we pass to a more concrete class of spaces Y . This is what we do in Chapter 6.



CHAPTER 6

Operators on `p(ZN , U)

In this chapter we focus on the case, introduced already briefly in Example 4.3,
when Y = `p(ZN , U), where 1 ≤ p ≤ ∞, N ∈ N and U is an arbitrary complex
Banach space. The elements of Y are of the form x = (x(m))m∈ZN with x(m) ∈ U
for every m = (m1, ..., mN ) ∈ ZN . We equip Y with the usual `p norm of the
scalar sequence (‖x(m)‖U ). We also consider the case when Y = c0(ZN , U), the
Banach subspace of `∞(ZN , U) consisting of the elements that vanish at infinity,
i.e. ‖x(m)‖U → 0 as m → ∞.

Since the parameter N ∈ N is of no big importance in almost all of what
follows, we will use the abbreviations Y 0(U) := c0(ZN , U) and Y p(U) := `p(ZN , U)
for 1 ≤ p ≤ ∞. If there is no danger of confusion about what U is, we will even
write Y 0 and Y p. Some of our following statements hold for all the spaces under
consideration. In this case we will simply write Y , which then can be replaced by
any of Y 0 and Y p with 1 ≤ p ≤ ∞.

In terms of dual spaces, we have (Y 0(U))∗ ∼= Y 1(U∗), (Y 1(U))∗ ∼= Y ∞(U∗),
and (Y p(U))∗ ∼= Y q(U∗) for 1 < p < ∞ and 1/p + 1/q = 1 (see e.g. [81]).
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L(Y ) (this is precisely the definition of an almost periodic operator in Kurbatov
[42]). Call A ∈ L(Y ) absolutely rich or periodic if every sequence in T (A) has a
constant subsequence, i.e. iff T (A) is a finite set. It is easy to establish the following
characterisation.

Lemma 6.5. An operator A ∈ L(Y ) is absolutely rich/periodic iff there exist
m1, ..., mN ∈ N such that

V A = AV for all V ∈ ṼA := {Vmje(j)}N
j=1

with e(1), ..., e(N) denoting the standard unit vectors in RN , i.e. e(j)(i) = 1 if i =



58 6. OPERATORS ON `p(ZN , U)

Then, clearly, for each n, P̃nQj = 0 for all sufficiently large j, so that P̃n ∈ SN(Y ∞)
by Lemma 3.3. (Note however that P̃n 6∈ L(Y ∞, P).)

The last part of the following result and its proof can be seen as a generalisation
of Theorem 2.10 in [20]

Theorem 6.7. If A ∈ L(Y ∞) is absolutely rich/periodic then A(Y ∞
n ) ⊂ Y ∞

n

for each n, and

(6.6) σop(A) = {V−iAVi : i ∈ ZN } = {V−iAVi : i ∈ C1}.

If also A = I +K with K ∈ S(Y ∞)∩M(Y ∞) and A is injective then A is invertible.

Proof. If x ∈ Y ∞
n then Ax ∈ Y ∞

n since V2
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Lemma 6.9. Ln$(Y ) is an inverse closed Banach subalgebra of L(Y ).

Proof. Let A, B ∈ Ln$(Y ) and take an arbitrary sequence h = (h(1), h(2), ...) ⊂ ZN .
Pick a subsequence g of h such that both V−g(n)AVg(n) and V−g(n)BVg(n) converge
in norm. Then, clearly, also V−g(n)(A + B)Vg(n) and

V−g(n)(AB)Vg(n) = (V−g(n)AVg(n))(V−g(n)BVg(n))

converge in norm. To see that Ln$(Y ) is closed in the operator norm take A1, A2, ... ∈
Ln$(Y ) with Ak ⇒ A ∈ L(Y ) and an arbitrary sequence h = (h(n))∞

n=1 ⊂ ZN . Pick
subsequences · · · ⊂ h(2) ⊂ h(1) ⊂ h such that, for every k ∈ N,

(6.7) ‖V−h(k)(m)AkVh(k)(m) − V−h(k)(n)AkVh(k)(n)‖ < 1/k, m, n > k,

and put g(n) := h(n)(n) for all n ∈ N. Then, for all k ∈ N and all m, n > k, noting
that g(n) = h(k)(n′) for some n′ ≥ n > k,

‖V−g(m)AVg(m) − V−g(n)AVg(n)‖ ≤ ‖V−g(m)AkVg(m) − V−g(n)AkVg(n)‖
+ 2‖Ak − A‖

≤ 1/k + 2‖Ak − A‖ → 0

as k → ∞. This shows that the sequence (V−g(n)AVg(n)) is Cauchy and therefore
convergent in L(Y ). Since g ⊂ h, we get that A ∈ Ln$(Y ).

To see the inverse closedness suppose A ∈ Ln$(Y ) is invertible in L(Y ) and
take an arbitrary sequence h = (h(1), h(2), ...) ⊂ ZN . Since A ∈ Ln$(Y ), there is a
subsequence g of h such that An := V−g(n)AVg(n) ⇒ B for some B ∈ L(Y ). Since
‖A−1

n ‖ = ‖V−g(n)A−1Vg(n)‖ = ‖A−1‖ is bounded independently of n, it follows from
a basic result on Banach algebras (see, e.g. Lemma 1.3 of [51]) that B is invertible
and

A−1
n = V−g(n)A−1Vg(n) ⇒ B−1,

showing that A−1 ∈ Ln$(Y ).

Theorem 6.10. For A ∈ Ln$(Y ), the following holds.

(i) If, for some sequence h = (h(1), h(2), ...) ⊂ ZN and B ∈ L(Y ),

V−h(n)AVh(n)
P→ B holds, then V−h(n)AVh(n) ⇒ B.

(ii) A ∈ σop(A) (i.e. A is self-similar).
(iii) σop(A) = closL(Y )T (A) is a compact subset of Ln$(Y ).
(iv) A is invertible iff any one of its limit operators is invertible.
(v) ν(A) = ν(B) for all B ∈ σop(A), so that A is bounded below iff σop(A) is

uniformly bounded below.
(vi) If x is almost periodic, then Ax is almost periodic.
(vii) If A is invertible on Y ∞, then it is invertible on Y ∞

AP .

Proof. (i) Since A ∈ Ln$(Y
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as n → ∞, showing that A = Af ∈ σop(A) with f(n) = g(n + 1) − g(n) → ∞.

(iii) The inclusion σop(A) ⊂ closL(Y )T (A) follows from (i). The reverse in-
clusion follows from (ii), from Theorem 5.12 (ii) and the closedness of σop(A) (see
Theorem 5.12 (iii) above or [51
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Proof. If the conditions of the lemma are satisfied then, by (6.11), there exists c > 0
such that ‖Cz‖ ≥ c infy∈ker C ‖z −y‖, z ∈ Z. But, since Z0 ⊂ Z and ker C = ker C0,
this implies that ‖C0z‖ ≥ c infy∈ker C0 ‖z − y‖, z ∈ Z0, so that the range of C0 is
closed.

Corollary 6.14. If A ∈ S(Y )∩L0(Y ) and A0 is semi-Fredholm with α(A0) <
∞, then A is semi-Fredholm and ker A = ker A0.

Proof. If the conditions of the lemma are satisfied then, from standard results on
Fredholm operators (e.g. [38]), we have that A∗

0 and A∗∗
0
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Lemma 6.16. If A ∈ S(Y ) ∩ L0(Y ), then A∗(Y̌1) ⊂ Y̌1 and Ǎ∗
0 = A∗|Y̌1

, so that
ker Ǎ∗

0 ⊂ ker A∗.

Proof. For x ∈ Y̌1, y ∈ Y , where z = J
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characterisation of BO(Y ) is the following [51]: that
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Proof. It is clear from the definitions that (i)⇒(ii), (ii)⇒(iii) and that (iv)⇒(v).
By Lemma 5.17, (ii) implies (i).

Suppose now that (iii) holds and that h = (h(n))∞
n=1 ⊂ ZN and that (xn) ⊂ Y

is bounded. If h does not have a subsequence that tends to infinity, then h is
bounded, and hence it has a subsequence that is constant. In the case that h has
a subsequence that tends to infinity, (V−h(n)KVh(n)xn) has a strictly convergent
subsequence since (V−kKVk) is asymptotically Montel. In the case that h has
a constant subsequence, (V−h(n)KVh(n)xn) has a strictly convergent s051
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The purpose of the following two lemmas is to prove that, for every A ∈
L(Y 1(U)), the operator spectra σop(A) ⊂ L(Y 1(U)) and σop(A∗) ⊂ L((Y 1(U))∗) =
L(Y ∞(U∗)) correspond elementwise in terms of adjoints.

Lemma 6.25. If A ∈ L(Y 1(U)), then

σop(A∗) = {B∗ : B ∈ σop(A)}.

Proof. It is a standard result that B = Ah ∈ σop(A) implies B∗ = (Ah)∗ = (A∗)h ∈
σop(A∗) (see, e.g. [51, Proposition 3.4 e]).

For the reverse implication, suppose C ∈ σop(A∗) ⊂ L(Y ∞(U∗)). Then

(V−h(m)AVh(m))∗ = V−h(m)A∗Vh(m)
P→ C

as m → ∞



6.3. BAND-DOMINATED OPERATORS 69

by (6.19), (6.18) and (6.20). Consequently, (Bmx) is a Cauchy sequence in Y 1(U).
Let us denote its limit in Y 1(U) by Bx, thereby defining an operator B ∈ L(Y 1(U)).
Passing to the strong limit as r → ∞ in (6.19), we get

(6.21) BPk = Bk, k ∈ N.

Summing up, we have AmPk ⇒ Bk = BPk, and hence (Am −B)Pk ⇒ 0 as m → ∞,
for all k ∈ N. Passing to adjoints in the latter gives Pk(A∗

m−B∗) ⇒ 0 in L(Y ∞(U∗))
as m → ∞. If we subtract this from (6.17) we get Pk(B∗ − C) = 0 for all k ∈ N,
and consequently C =
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(i) If A is Fredholm and p 6= ∞ then A is invertible at infinity;
(ii) If A is invertible at infinity and either U is finite-dimensional or A =

C + K with C ∈ BDO(Y ) invertible and K ∈ M(Y ) then A is Fredholm;
(iii) A is invertible at infinity if and only if all limit operators of A are invert-

ible and their inverses are uniformly bounded;
(iv) The condition on uniform boundedness in (iii) is redundant if p ∈ {0, 1, ∞};
(v) It holds that spec(B) ⊂ spec(A) for all B ∈ σop(A), indeed spec(B) ⊂

specess(A), for p 6= ∞;
(vi) It holds that specε(B) ⊂ specε(A), for all B ∈ σop(A) and ε > 0.

b) In the case p = ∞ if, in addition, it holds that U has a predual U/, and A
has a preadjoint, A/ ∈ L(Y /), where Y / = Y 1(U/), then (i) and (v) also apply
for p = ∞; that is, A being Fredholm implies A being invertible at infinity, so that
spec(B) ⊂ specess(A) ⊂ spec(A) for all B ∈ σop(A).
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consequence of this and Lemma 6.25. Indeed, if all B ∈ σop(A) are invertible on
Y 1(U) then also all their adjoints C = B∗ are invertible on Y ∞(U∗), which, by
Lemma 6.25, are all elements of σop(A∗). Since A∗ ∈ BDO(Y ∞(U∗)) is rich as
well, we know from the results about p = ∞ that

sup
B∈σop(A)

‖B−1‖ = sup
B∈σop(A)

‖(B−1)∗‖ = sup
B∈σop(A)

‖(B∗)−1‖

= sup
C=B∗∈σop(A∗)

‖C−1‖ < ∞

since B ∈ σop(A) iff C = B∗ ∈ σop(A∗
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(b) all limit operators of A are injective (α(Ah) = 0 for all Ah ∈ σop(A))
and there is an S−dense subset, σ, of σop(A) such that α(A/

h) = 0 for all
Ah ∈ σ;

(c) A is invertible at infinity;
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Proof. Note first that, since K ∈ σop(K) if K is norm rich (Theorem 6.10 (ii)),
that σop(K) uniformly Montel implies K ∈ M(Y ∞).

We shall establish the theorem by proving, by induction, that, for r = 0, 1, . . . , N ,

if A satisfies the conditions of the theorem and,
additionally, A is r-partially periodic, then A is invertible.(6.30)

Statement (6.30) for r = 0 is precisely the theorem that we wish to prove.

That (6.30) holds for r = N follows from Theorem 6.7. Now suppose that
(6.30) holds for r = s, for some s ∈ {1, . . . , N}, and that A satisfies the conditions
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the sth component of `). Then V` = Vˆ̀V˜̀ and, for j ∈ N
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Defining
K̂ :=

∑
k∈D

Mb̂k
Vk,

we have that εj → 0 as j → ∞ for each k ∈ D, so that

V−ˇ̀(j)KVˇ̀(jjX

k∈D8]TJ/F11 9.963 Tf 8.389 11.983 Td[(M)]TJ/F7 6.974 TTf 5.369 0 T9[(k5d[(j)]TJ/F14 6.974 T2 4.649 3.006705Td[.043)]TJ/F7 6.974 T6 4.649 3.079249 1.314`31496 [.043 K6D

k∈D

Mb̂k
Vk6D66 [.K
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Since also I + Kn ⇒ I + K = A, we get, by [51, Lemma 1.3], that A is invertible.
From Theorem 6.10 (iv) and (v) it now follows that each limit operator Ah of A is
invertible and

‖(Ah)−1‖ =
1
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Theorem 6.40. If A ∈ W is rich then the following statements are equivalent.

(i) A is invertible at infinity on one of the spaces Y .
(ii) A is invertible at infinity on all the spaces Y .
(iii) All limit operators of A are invertible on one of the spaces Y .
(iv) All limit operators of A are invertible on all the spaces Y and

(6.34) sup
p∈{0}∪[1,∞]

sup
Ah∈σop(A)

‖A−1
h ‖L(Y p) < ∞.

Remark 6.41 This theorem is a significant strengthening and simplification
of Theorem 2.5.7 in [74]. Theorem 2.5.7 requires that U is reflexive, and, in the
case that U is reflexive, it implies only a reduced version of our Theorem 6.40 with
the value of Y restricted to Y p, p ∈ {0} ∪ (1, ∞), in (i)–(iii).

Proof of Theorem 6.40. (i)⇒(iii) follows from Theorem 6.28 (iii).

(iii)⇒(iv): Suppose (iii) holds. We have observed already that σop(A) ⊂ W is
independent of the space Y by Lemma 6.39 (ii). Applying Lemma 6.39 (i) to the
limit operators of A, it follows that these limit operators are invertible on all the
spaces Y . By Theorem 6.28 (iv),

sp := sup
Ah∈σop(A)

‖A−1
h ‖L(Y p)

is finite for p ∈ {0, 1, ∞}. Now, by Riesz-Thorin interpolation (as demonstrated
in the proof of [74, Theorem 2.5.7]), we get that sp ≤ s

1/p
1 s

1−1/p
∞ < ∞ for all

p ∈ (1, ∞), which proves (iv).

(iv)⇒(ii) follows from Theorem 6.28 (iii).

Finally, (ii)⇒(i) is evident.

From the above result and the relationship between invertibility at infinity and
Fredholmness, (see Remark 6.2 and Theorem 6.28 a)(i)+(ii) and b)), we can deduce
Corollary 6.43 below, which relates Fredholmness to invertibility of limit operators.
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(d) A is Fredholm on all the spaces Y .

In the case that U has a predual U/ and A, considered as an operator on Y ∞(U),
has a preadjoint A/ ∈ Y 1(U/), then (a)–(d) are equivalent to

(e) A is Fredholm on one of the spaces Y .

Proof. For the clarity of our argument we introduce two more statements:

(f) All limit operators of A are invertible on Y ∞;
(g) A is invertible at infinity on Y 2.

Each of these will turn out to be equivalent to (a)–(d).

By Theorem 6.3, statement (a) is equivalent to (f), which, by Theorem 6.40, is
equivalent to each of (b), (c) and (g).

Since K ∈ M(Y ), the implication (b)⇒(d) follows from Theorem 6.28 (ii)
(applied with C = −I).

Since, obviously, (d) implies Fredholmness of A on Y 2, it also implies (g), by
Theorem 6.28 (i). Another obvious consequence of (d) is (e).

Finally, suppose U/ and A/ exist and (e) holds for Y = Y p. If p = ∞, then (c)
follows by Theorem 6.28 b), and otherwise, if p < ∞, then (c) follows by Theorem
6.28 (i).

The above corollary implies, for rich operators in the Wiener algebra which are
of the form A = I − K ∈ W with K ∈ UM(Y ), i.e. K is subject to the (equivalent)
properties (i)-(v) in Lemma 6.23, and which possess a preadjoint, that Fredholmness
on one of the spaces Y implies Fredholmness on all spaces Y . The argument to
show this is indirect: it depends on the connection between Fredholmness and
invertibility at infinity and on the equivalence of (i) and (ii) in Theorem 6.40.

Recently, Lindner [52] has studied directly the invariance of the Fredholm prop-
erty across the spaces Y for general operators in the Wiener algebra, but with a
slight restriction on the Banach space U , that it is either finite-dimensional or
possesses the hyperplane property, meaning that it is isomorphic to a subspace of
U of co-dimension 1. An equivalent characterisation of the hyperplane property
[52] is that there exists a B ∈ L(U) which is Fredholm of index 1. This char-
acterisation suggests that infinite-dimensional Banach spaces which do not have
the hyperplane property are unusual. In [53] Lindner lists many sets of conditions
on U which ensure that U has the hyperplane property, and recalls that it was
a long-standing open problem due to Banach – the so-called hyperplane problem
– whether there exist any infinite-dimensional Banach spaces which do not have
the hyperplane property. An example was finally constructed by Gowers in [35],
for which work, and the resolution of other long-standing open questions posed by
Banach, he received the Fields medal in 1998.

The main result proved by Lindner [52] is the following:

Theorem 6.44. Suppose that U is finite-dimensional or has the hyperplane
property and that A ∈ W(U). Then:

(a) If A is Fredholm on one of the spaces Y p, with p ∈ {0} ∪ [1, ∞), then A
is Fredholm on all spaces Y .
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b) For simplicity, [78, Lemma 2.1] was only stated for band operators but its
proof actually applies to all operators A ∈ W. We make use of this fact in the proof
of our Corollary 6.46.

c) Also, for simplicity, [78, Lemma 2.1] was only stated for operators on Y p(C)
instead of Y p(U) with n := dim U < ∞. This is not a loss of generality since
these two spaces are isomorphic and the discussed operator properties are preserved
under this isomorphism. Indeed, fix a basis in U and let ϕ : U → Cn refer to the
isomorphism that maps u ∈ U to its coordinate vector ϕ(u) =: (ϕ1(u), ..., ϕn(u)) ∈
Cn with respect to this basis. Then Φ : Y p(U) → Y p(C) with

(Φx)(n · m1 + k, m2, ... , mN ) = ϕk

(
x(m1, ..., mN )

)
∈ C,

k ∈ {1, ..., n}, m1, ..., mN ∈ Z
for every x ∈ Y p(U) is an isomorphism. On the operator side, roughly speaking,
the matrix representation of an operator on Y p(U) is an infinite matrix the entries
of which are n × n matrices (operators on U ∼= Cn, via ϕ). Via Φ this matrix is
identified, in a natural way, with an infinite matrix with scalar entries, and this is
the setting in which [78, Lemma 2.1] applies. Note that this identification preserves
membership of the Wiener algebra, Fredholmness, and the index of the operator.

Finally, we note that in the one-dimensional case N = 1 we have the following
refinement of Corollaries 6.43, 6.45 and 6.46, as a consequence of Theorem 6.31.

Corollary 6.48. Suppose N = 1 and that A = I − K ∈ W is rich and
K ∈ UM(Y ). Then the following statements are equivalent:

(a) All limit operators of A are injective on Y ∞;
(b) All limit operators of A are invertible on one of the spaces Y ;
(c) All limit operators of A are invertible on all the spaces Y and (6.34) holds;
(d) A is invertible at infinity on all the spaces Y ;
(e) A is invertible at infinity on one of the spaces Y ;
(f) A is Fredholm on all the spaces Y .

In the case that U has a predual U/ and A, considered as an operator on
Y ∞(U) = `∞(Z, U), has a preadjoint A/ on Y 1(U/) = `1(Z, U/), then (a)–(f)
are equivalent to

(g) A is Fredholm on one of the spaces Y ;

and on every space Y it holds that

(6.36) specess(A) =
⋃

B∈σop(A)

spec(B) =
⋃

B∈σop(A)

spec∞
point(B).

Here we denote by spec∞
point(B) the point spectrum (set of eigenvalues) of B,

considered as an operator on Y ∞.

Corollary 6.49. Suppose N = 1, A ∈ W and U is finite-dimensional. Then



CHAPTER 7

Discrete Schrödinger Operators

In this chapter we illustrate the results of Chapter 6, in particular the results
of Section 6.5, in the relatively simple but practically relevant setting of Y =
Y p = Y p(U) = `p(ZN , U) with p ∈ {0} ∪ [1, ∞] and a finite-dimensional space U .
For applications to a class of operators on Y p(U) with U infinite-dimensional, see
Chapter 8.

In this chapter we suppose that our operator A is a discrete Schrödinger oper-
ator on Y in the sense e.g. of [27]. By this we mean that A is of the form

A = L + Mb

with a translation invariant operator L, i.e. V−αLVα = L for all α ∈ ZN , and with
a multiplication operator Mb, given by (4.4), with b ∈ Y ∞(L(U)). A translation in-
variant operator L on Y is often referred to as a Laurent operator , and the sequence
b is typically called the potential of A. The matrix representation of L is a Laurent
matrix [L] = [λi−j ]i,j∈ZN with λk ∈ L(U) for all k ∈ ZN . To be able to apply the
results of the previous subsections we will suppose that A = L + Mb ∈ L(Y p), for
1 ≤ p ≤ ∞, which is the case if L ∈ W, i.e. if

‖L‖W =
∑

k∈ZN

‖λk‖ < ∞.

Discrete (or lattice) Schrödinger operators are widely studied in mathematical
physics (see e.g. [76, §matrix
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We will say that A is symmetric if A = A′. For example, this is the case when L is
the classical operator (7.1).

For b ∈ Y ∞(L(U)) let Lim (b) denote the set of limit functions of b, by which
we mean the set of all functions bh ∈ Y ∞(L(U)) for which there exists a sequence
h : N → ZN tending to infinity such that

(7.2) bh(m) = lim
n→∞

b(m + h(n)), m ∈ ZN .

It follows from (4.5) that

σop(A) = {L + Mc : c ∈ Lim (b)}.

Noting that Corollary 6.46 applies to A = L + Mb, we have the following result.
In this result, for an operator B ∈ W we denote by specp(B), specp

ess(B), and
specp

point(B
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Remark 7.2 We note that main parts of the above result, namely equality
(7.3) and that the spectrum and essential spectrum do not depend on p ∈ [1, ∞],
are well known (see e.g. [74, Theorem 5.8.1]). The characterisation of the essential
spectrum by (7.4) appears to be new.

Clearly, equations (7.3) – (7.6) simplify when L is symmetric, for example
if L is given by (7.1), since we then have that spec1

point(A′) = spec1
point(A) and

spec1
point(L′ + Mc) ⊂ spec∞

point(L + Mc) for all c ∈ Lim (b). Simplifications also
occur when the potential b is almost periodic, b ∈ Y ∞

AP(L(U)), in which case Lim (b)
is precisely what is often called the hull of b, the set closY ∞(L(U)){Vkb : k ∈ ZN },
the closure of the set of translates of b.

Theorem 7.3. If b is almost periodic then, for all p and all b̃ ∈ Lim (b),

(7.7) specp
ess(A) = specp(A) = specp(L + Mb̃) =

⋃
c∈Lim (b)

spec∞
point(L + Mc).

Proof. L is absolutely rich/periodic and so norm rich. Since b is almost periodic, Mb

is norm rich by Lemma 6.35. Thus A is norm rich. Further, σop(A−I) is uniformly
bounded by Theorem 5.12 (i) and so uniformly Montel on Y ∞ by Corollary 3.25,
since dim U < ∞. The result thus follows from Theorem 6.38, Theorem 6.10 (iv),
and the equivalence of statements (b) and (d) in Theorem 7.1.

Remark 7.4 That specp
ess(A) = specp(A) = specp(L + Mb̃) for all b̃ ∈ Lim (b),

the hull of b, is a classical result, see e.g. [83, 89, 74]. The result that specp(A) =⋃
c∈Lim (b) spec∞

point(L + Mc) appears to be new in this discrete setting, although
analogous results for uniformly elliptic differential operators on RN with almost
periodic coefficients date back to Shubin [87].

Moreover, note that this result is well-known, as a part of Floquet-Bloch theory
[40, 41, 28], in the case when b is periodic; in fact one has the stronger result in
that case, at least when L is given by (7.1), that λ is in the spectrum of A iff there
exists a solution x ∈ Y ∞(U) of λx = Ax which is quasi-periodic in the sense of [40].
The latter means that x(m) = exp(ik · m)y(m) for all m ∈ ZN , where y ∈ Y ∞(U)
is periodic and k ∈ RN is fixed, so that if x is quasi-periodic then it is certainly
almost periodic. Thus, if b is periodic then λ is in the spectrum of A iff there exists
a solution x ∈ Y ∞(U) of λx = Ax which is almost periodic.

Natural questions are whether this statement still holds for the case when b
is almost periodic, at least for L given by (7.1), or whether the weaker statement
holds that λ is in the spectrum of A iff, for some c ∈ Lim (b), there exists a solution
x ∈ Y ∞(U) of λx = (L + Mc)x which is almost periodic. The answer is ‘no’ on
both counts. In particular, in the case N = 1 and L given by (7.1), see [26, 65]
and [64, p. 454], there exist almost periodic potentials b for which the spectrum
of A as an operator on Y 2(U) has the property that every solution x ∈ Y ∞(U) of
λx = (L + Mc)x, for some c ∈ Lim (b) decays exponentially at infinity.

To illustrate the application of the above theorem in the 1D case (N = 1)
we consider a widely studied class of almost periodic operators obtained by the
following construction. For some d ∈ N let B : Rd → L(U) be a continuous
function satisfying

B(s + m) = B(s), s ∈ Rd, m ∈ Zd.
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Let α = (α1, . . . , αd) ∈ Rd and, for s ∈ Rd let bs : Z → L(U) be given by

(7.8) bs(n) = B(αn + s), n ∈ Z.

If α1, . . . , αd are all rational, then bs is periodic. Whatever the choice of α1, . . . , αd,
bs is almost periodic (bs ∈ Y ∞

AP(L(U))).

For s ∈ Rd let [s] denote the coset [s] = s + Zd in Rd/Zd. An interesting
case is that in which 1, α1, α2, . . . , αd are rationally independent, in which case
{[αm] : m ∈ Z} is dense in Rd/Zd. Then it is a straightforward calculation to see
that

(7.9) Lim (bs) = {bt : t ∈ Rd}.

Thus, for this case, (7.7) reads as

(7.10) specp
ess(L + Mbs

) = specp(L + Mbs
) =

⋃
t∈Rd

spec∞
point(L + Mbt

).

As a particular instance, this formula holds in the case when U = C, d = 1,
and B(s) = λ cos(2πs), s ∈ R, for some λ ∈ C. Then

(7.11) bs(n) = λ cos(2π(αn + s)), n ∈ Z,

and (7.10) holds if α is irrational, in which case bs is the so-called almost Mathieu
potential.

We next modify the above example to illustrate the application of Theorem 7.1
in a particular 1D (N = 1) case.

Example 7.5 Define bs ∈ Y ∞
AP(L(U)) by (7.8) and suppose that 1, α1, α2, . . . , αd

are rationally independent. Suppose that f : Z → Rd satisfies

lim
|n|→∞

|f(n + 1) − f(n)| → 0.

Define b ∈ Y ∞(L(U)) by

b(n) = B(αn + f(n)), n ∈ Z.

Then it is straightforward to see that Lim (b) ⊂ {bs : s ∈ Rd}. Since [51, Corollary
3.97], bs ∈ Lim (b) implies that Lim (bs) ⊂ Lim (b), we have, by (7.9), that

Lim (b) = {bs : s ∈ Rd}.

Thus, applying Theorem 7.1 and (7.10), we see that, for every s ∈ Rd and every
p ∈ {0} ∪ [1, ∞],
(7.12)
specp

ess(L + Mb) = specp
ess(L + Mbs

) = specp(L + Mbs
) =

⋃
t∈Rd

spec∞
point(L + Mbt

).

We note that, in the special case that L is given by (7.1) (with N = 1), U = C,
and B is real-valued, the statement that

spec2
ess(L + Mb) = spec2(L + Mbs)

for all s ∈ Rd is Theorem 5.2 of Last and Simon [47] (established by limit operator
type arguments). As a specific instance where (7.12) holds, let us take U = C,
d = 1, and B(s) = λ cos(2πs), s ∈ R, for some λ ∈ C. Then bs is given by (7.11)
and, taking (as one possible choice), f(n) = |n|1/2, one has

b(n) = λ cos(2π(αn + |n|1/2))
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(cf. [47, Theorem 1.3]).

As a further example we consider the case when b is pseudo-ergodic in the sense
of Davies [27]. Following [27], we call the function b ∈ Y ∞(ZN , U) pseudo-ergodic,
if, for every ε > 0, every finite set S ⊂ ZN and every function f : S → Σ :=
closU b(ZN ), there is a z ∈ ZN such that

‖f(s) − b(z + s)‖U < ε, s ∈ S.

One can show [51, Corollary 3.70] that b is pseudo-ergodic iff Lim (b) is the set ΣZN

of all functions c : ZN → Σ. In particular, b ∈ Lim (b) if b is pseudo-ergodic.

Theorem 7.6. If b is pseudo-ergodic then, for all p,

specp
ess(A) = specp(A) =

⋃
c∈ΣZN

specp(L + Mc) =
⋃

c∈ΣZN

spec∞
point(L + Mc).

Proof. The first two ‘=’ signs follow from (7.3) and the fact that b ∈ Lim (b) = ΣZN

.
For the proof of the remaining equality, we refer to the following s-dense subset of
Lim (b) = ΣZN

: Let m1 = m2 = ... = mN = 1, and let ς stand for the set of all
periodic functions x : ZN → Σ, that is

ς :=
⋃

n∈N
Y ∞

n (Σ)

with Y ∞
n (Σ) defined as in (6.4) (with the slight abuse of notation by writing Y ∞(Σ)

for ΣZN

, i.e. the set of all functions x : ZN → Σ). Then ς is s-dense in ΣZN

as every
x ∈ ΣZN

can be strictly approximated by the sequence (P̃nx) ⊂ ς with P̃n as defined
in (6.5). If λ ∈ C and all limit operators λI − (L + Mc) of λI − A = λI − (L + Mb),
including those with c ∈ ς, are injective, then, by Theorem 6.7, we have that
λI − (L + Mc) is surjective for every c ∈ ς. By the equivalence between (a) and (d)
in Theorem 7.1, this shows that λI − A = λI − (L + Mb) is Fredholm.

Remark 7.7 It is shown that

spec2
ess(A) = spec2(A) =

⋃
c∈ΣZN

spec2(L + Mc)

in [27]. The result that specp(A) =
⋃

c∈ΣZN spec∞
point(L + Mc) appears to be new.

The above theorems show that, in each of the cases L symmetric, b almost
periodic, and b pseudo-ergodic, it holds that

(7.13) specp
ess(A) =

⋃
c∈Lim (c)

spec∞
point(L + Mc).

We conjecture that, in fact, this equation holds for all c ∈ Y ∞(L(U)). For N = 1
this is no longer a conjecture, as we showed in Corollary 6.49 (which follows from
our more general results in [17], also see Theorem 6.31 above). For N ≥ 2 however,
this is an open problem.

We finish this chapter with an example demonstrating how Theorem 7.6 can
be used to compute spectra of Schrödinger operators with random potential b.

Example 7.8 Let N = 1, p ∈ [1, ∞], U = C and take a compact set Σ in
the complex plane. We compute the spectrum of A = L + Mb as an operator on



7. DISCRETE SCHRÖDINGER OPERATORS 89

Y = Y p(U) = `p(Z) where L = V−1 is the backward shift and the function values
b(k), k ∈ Z, of the random potential b are chosen independently of each other from
the set Σ. We assume that, for every σ ∈ Σ and ε > 0, P(|b(k) − σ| < ε) > 0. Then
it is easy to see (the argument is sometimes called ‘the Infinite Monkey Theorem’
and it follows from the Second Borel Cantelli Lemma, see [12, Theorem 8.16] or
[25, Theorem 4.2.4]) that, with probability 1, b is pseudo-ergodic.

For the calculation of the point spectra in Theorem 7.6, let c ∈ ΣZ and take
λ ∈ C. If x : Z → C is a nontrivial solution of (L + Mc)x = λx then x(n0) 6= 0 for
some n0 ∈ Z and x(k + 1) = (λ − c(k)) x(k) for all k ∈ Z. Note that λ 6= c(k) for
all k < n0 since otherwise x(n0) = 0 and, w.l.o.g., suppose that x(n0) = 1. As a
consequence we get that

(7.14) x(n) =


n−1∏

k=n0

(λ − c(k)), n ≥ n0,

n0−1∏
k=n

(λ − c(k))−1, n < n0

for every n ∈ Z. Now put, for r > 0,

Σr
∪ :=

⋃
σ∈Σ

(σ + rD) and Σr
∩ :=

⋂
σ∈Σ

(σ + rD)

with D denoting the open unit disk in C and D its closure.

Clearly, if λ 6∈ Σ1
∪ then |λ − σ| > 1 for all σ ∈ Σ and hence25.428 6 Tf 41.567 0 Td[(ITf 8.817 0 Td[(2))]TJ/F8 9.963 Tf 10.516 0 Td[(an)1(d)]TJ
ET
1 0 0 1 325.428 434.946 cm
q
[]0e

0,�x0)x
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Figure 7.1. The left image shows, as a gray shaded area, specpA when Σ
is the black straight line of length 1.5. In the right image, one more point (the

centre of the lower circle) has been added to Σ which results in Σ1
∩ = ∅.
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L on Y , where every entry λk of [L] = [λi−j ]i,j∈ZN is the operator of
convolution by κ(· + k) on U . By Young’s inequality, we get that

‖λk‖ ≤ ‖κ|k+[−1,1]N ‖1

for every k ∈ ZN , and by κ ∈ L1(RN ) it follows that L ∈ W = W(U).

We denote by Ao the smallest algebra in L(Lp,q) containing all operators of
these two types; that is the set of all finite sum-products of operators of the form
Mb and Cκ with b ∈ L∞

$ and κ ∈ L1. From the above considerations it follows
that every operator A ∈ Ao, if identified with an operator on Y , is contained in
the Wiener algebra W. By A we denote the closure of Ao in the norm ‖.‖W . Note
that, by (6.33), the closure of a set S ⊂ W in the W-norm is always contained in
the closure of S in the usual operator norm.

Lemma 8.1. The predual space U/ exists and, if p = ∞, then every A ∈ A has
a preadjoint operator A/ on L1,q′

with 1/q + 1/q′ = 1.

Proof. By the choice q ∈ (1, ∞], it is clear that the predual space U/ of U =
Lq([0, 1]N ) exists and can be identified with Lq′

([0, 1]N ), where 1/q + 1/q′ = 1,
including the case q
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Proof. If A ∈ A is invertible at infinity and b from its representation (8.2) is invert-
ible in L∞, then A is Fredholm by Theorem 6.28 (ii) and Lemma 8.2. Conversely,
let A ∈ A be Fredholm. By Theorem 6.28 (i) and b), together with Lemma 8.1, we
get that A is invertible at infinity. It remains to show that b from (8.2) is invertible
in L∞. To see this, take B ∈ L(Lp,q) and S, T ∈ K(Lp,q) such that AB = I + S
and BA = I + T . Then, for every kT







CHAPTER 9

Some Open Problems

We conclude with a small list of open problems the solutions of which, we
believe, could be crucial in extending the picture that we have tried to draw in this
text. We would like to see this list as both a future agenda for ourselves as well as
an invitation for the interested reader.

1. Is a version of the limit operator theory possible with L(Y, P) and K(Y, P)
replaced by S(Y ) and SN(Y )? We know from Lemma 3.3, Corollary 3.5, (3.5)
and Lemma 3.10 that S(Y ) and SN(Y ) are “one-sided versions” of L(Y, P) and
K(Y, P). Moreover, SN(Y ) is a closed two-sided ideal in S(Y ) – just like K(Y, P)
is in L(Y, P). The ideal K(Y, P) shapes the theory presented here in two ways:
It defines the notion of invertibility at infinity (see Definition 5.1) and that of P-
convergence (see Definition 4.1). How do these properties change if one works with
the ideal SN(Y ) instead and what is the connection between the new notions of
‘invertibility at infinity’ and ‘limit operator’?

2. A related but rather different question is the follow396(of54g:Tf 3.874 0 Td[(Y)-e5l)1(i)-e5li 9.963 Tfnew
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6.43, 6.45 and 6.48? Recall that we use the existence of predual and preadjoint to
conclude Fredholmness of A0 = A|Y0 from that of A on Y ∞, including preservation
of the index.

5. Is the hyperplane condition redundant in Theorem 6.44?
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