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Abstract

Variational data assimilation �VAR� involves a minimisation of a cost functional

with respect to a set of variables known as control variables� Within numerical

weather prediction �NWP� VAR brings together observations and information from

numerical models representing the atmosphere in a consistent way for a forecast to

be made� It is considered desirable to de�ne a set of control variables which separate

the balanced and unbalanced parts of the �ow� The current set of control variables

used at the UK Met� O�ce represents the balanced control variable in terms of a

streamfunction increment� Although this method is a good appro



Both the current Met O�ce method and the potential�vorticity�based method are

implemented and tested numerically� The current method produces similar results

to the potential vorticity method within high Burger regimes� This is due to the

linearised potential vorticity increment approximating the vorticity in such regimes�

Unlike the current method� however� the potential vorticity method is dependent on

the Burger number and in low Burger regimes includes a substantial contribution

from the height increment� The experiments suggest that the potential�vorticity�

based method may be able to capture the balanced part of the �ow better in low

Burger regimes where the height increment is the balanced variable�
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Chapter �

Introduction

Mankind has attempted to predict the w





much potential energy present is that the possible motions which the atmosphere

can exhibit are constrained� Large scale features are forced to move slowly with

the quantities involved being in a sense  balanced
 with respect to eac



as a quantity summarising dynamical information that is present within a �ow �	��

such as frontogenesis� cyclogenesis and key features in general circulation� It has

the distinctive property that it is conserved for inviscid� isentropic �ow and as such

can be used to track parcels of air� It also uses both rotational wind and pressure

in its evaluation and describes better the balanced part of the �ow in regions where

variations in pressure are important�

In Chapter 	 the shallow water equations �SWEs� are derived with corresponding

linearisations needed for an analytical examination needed of the system
s dynamic

properties� In Chapter � we examine the dynamical properties of the atmosphere

within the context of the shallow water equations� In particular the concept of

balance is systematically described� Within this chapter we show a number of issues

already known within the literature but which tend to be forgotten� We show that

the divergence tendency� as de�ned in Section ���� in general does not always �lter

the unbalanced aspects of the �ow� Additional conditions need to be enforced� We

show how a simple potential vorticity inversion model takes contributions from the

height and the rotational wind in a way dependent on the �ow regime�

In Chapter � we systematically present and discuss the choice of variables in

which the data assimilation is performed� These variables are called control variables�

We provide a framework in which di�erent sets of control variables are discussed�

Such a systematic appraisal of control variables is not present within the current

literature� We take the method used presently by the UK Met� O�ce as an example

and discuss the strength and weaknesses of the current change of control variables�

The properties of an  idealised
 set of control variables are considered from a dynam�

ical perspective using the dynamical background presented in the previous chapter�

�



We present various formulations of control variables based on potential vorticity�

discussing their respective advantages and disadvantages and how they vary in dif�

ferent regimes� We �nally develop a means of approximating the balanced parts of

the unbalanced variables�

Chapter � gives the numerical techniques used to calculate the present choice of

control variables used at the UK Met� O�ce� These techniques are used in exper�

iments in Chapter �� The chapter also presents a Fourier�based technique which is

used in Chapter � to develop a means of obtaining the potential vorticity�based set

of control variables� To the author
s knowledge� the coupled system of equations

has not been previously solved in this way� In both chapters validatory tests are

performed� In Chapter �� we present various experiments to compare potential vor�

ticity based set of control variables with current method� which illustrate the theory

given in previous chapters� Finally in Chapter � we summarise the �ndings and

detail possible avenues for future work�

�



Chapter �

Shallow Water Equations

��� Introduction

We �rst derive the shallow water equations �SWEs� on a rotating sphere from New�

ton
s Second Law� This is necessary so as to give an accurate representation of

the approximations made to obtain the equations� so that the results may be com�

pared to other studies which use di�erent approximations to the equations of mo�

tion on a rotating sphere� The discussion draws mainly on the treatments given

by Pedlosky ���� and Randall ���� and includes the derivation of the incompressible

three�dimensional Euler equations as a stepping stone to obtaining the shallow water

equations�

We then present properties of the shallow water equations on a rotating sphere�

linearised about two linearisation states� a resting state and a general time�invariant

state� The former state is useful due to its idyllic simplicity while the latter state

gives a template to derive other SWEs about more restrictive linearisations states

necessary for the development of Chapters � and ��

�



In addition� versions of the SWEs which approximate the spherical geometry

are introduced� These versions� such as the ��plane approximation� are useful as a

means of making analytical studies of the SWEs more tractable�

��� Derivation of Shallow Water Equations on a

Rotating Sphere from Newton�s Second Law

Newton
s Second Law of Motion states that the mass of an object multiplied by

its absolute acceleration is equal to the total actual force acting on the object in a

non�rotating co�ordinate system� When written for a �uid continuum� it is expressed

in terms of density �� a three�dimensional wind u� pressure p� the body force �r�

and non�conservative force F � In particular� � is the potential �eld with which

conservative body forces are represented and F is the frictional force� Newton
s

Second Law takes the form

�
Du

Dt
� �rp � �r� � F �u� � �	���

where

D

Dt
�

�

�t
� u � r �	�	�

is called the total material derivative with respect to time�

As stated� this law applies only on a stationary frame of reference� We wish

to consider the momentum equation �	��� for an observer in a uniformly rotating

co�ordinate frame� We let the subscript I� represent a the non�rotating co�ordinate

frame of reference and R are rotating one� We also denote the velocity under a

rotating reference frame� uR� as the relative velocity and the velocity under a non�

�





where A� B� C are generic vectors� Thus�

� � ��� r� � �� �� � r��

� �� � r���� j�j�r�

� ��rj�j
�jr�j�
	

� �rj�� r�j�
	

� �	���

since � and r� are orthogonal�

We now incorporate the centripetal acceleration with the other conservative

terms in �	��� by de�ning the apparent gravitational potential�

! � � �
j�� r�j�

	
� �	���

As the Coriolis acceleration 	��uR cannot be further simpli�ed� the momentum

equation in a rotating co�ordinate frame is given by

�
�
Du

Dt
� 	� � u

�
� �rp � �r! � F �	���

where all uR are written as u�

So far we have not been speci�c as to the three�dimensional space we are con�

sidering� We de�ne r! to de�ne the apparent vertical direction k�� which is per�

pendicular to an oblately spheroidal geopotential surface� However since the cen�

tripetal acceleration is very small compared to the constant body force r�� we let

r! � r� � gk� where k is a unit vector pointing radially away from the centre of

a sphere and g is the acceleration due to gravity� The neglection of the centripetal

acceleration allows the oblate spheroidal surface to be approximated by a spheri�

cal surface with unit vectors i� j denoting longitude and latitude directions� The

spherical latitude�longitude co�ordinate system is shown in Figure 	��� where any

�



Figure 	��� A sphere rotating at a constant angular velocity of magnitude �� The di�

agram also shows the direction of the orthonormal unit vectors �i� j�k� for a spherical

latitude �� longitude � co�ordinate system

O

�

�

i� u

k� w
j� v

�

r

Polar axis

Equator

non�polar point in the three�dimensional space is either represented by �i� �j� rk

or more simply as ��� �� r�� The three�dimensional wind in terms of its components

is given by u � �ui � vj � wk�� Although the co�ordinate system is degenerate at

the poles� it is the natural choice for problems involving a spherical geometry�

Then� ignoring the e�ects of friction� the momentum equation becomes

�
�
Du

Dt
� 	� � u

�
� �rp� �gk� �	����

For the following derivation of the SWEs we need the mass conservation equation�

This equation is written as�

��

�t
� TD
(�)Tj
/T533.99930 T�



We now simplify �	����� �	���� to get the shallow water equations on a rotating

sphere� Let us write the pressure and density as

p



Let h��� �� t� be the height at the free surface and hs��� �� represent the bottom

topography



The momentum equation for the shallow water equations is derived by looking

at the Coriolis� pressure gradient and the material derivative terms separately� Since

we are considering a material derivative term on a surface� the material derivative

term is simply Dv
Dt

� As in equations �	����� �	����� the assumption of no vertical

shear requires that there is no vertical advection to the horizontal momentum�

The pressure gradient term on the horizontal surface is obtained by integrating

the hydrostatic equation �	���� from some some arbitrary depth r within the �uid

to the free surface h� giving

p��� �� h� t�� p��� �� r� t� � �g��h� r�� �	�	��

with boundary conditions

p��� �� h� t� � pf and p��� �� r� t� � g� �h� r� � pf � �	�	��

where pf is the pressure at the free surface�

In equation �	��	� p is given in terms of a linearisation state p and perturbation

p�� Integration of the hydrostatic relation splits the pressure similarly� with

p � �g�r and p� � g�h � pf � �	�	��

giving

rp� � g�rh� �	�	��

The k independen



Figure 	�	� A diagram representing the decomposition of vector � into j and k

components�

�

�

k

j

	�sin�

	�

	�cos�

	� � u � �	� cos �j� 	� sin �k�� u

� �	�w cos � � 	�v sin �� i� �	�u sin �� j� 	�u cos �k

� fk� v � additional terms� �	�	��

The additional terms are ignored� the k term is discarded because it violates the

hydrostatic relation and does not lie on the spherical surface� The 	�w cos �i is

removed for consistent energy conservation to occur� This approximation is called

the traditional approximation �����

We now use �	�	�� write the horizontal momentum equation as

Dv

Dt
� fk� v � �grh� �	�	��

The advective part of the material derivative is not scalar invariant� The vec�

tor transformation �v � r�v � r ��v � v�
	� � �r� v� � v is used to rewrite the

momentum equation as

�v

�t
�r ��v � v� 
	� � �r� v�� v� fk� v � �grh

��



� �v

�t
�r ��v � v�
	� � ��r� v� � k�k� v� fk� v � �grh

� �v

�t
�r ��v � v�
	� � �� � f



rearranged� to give

�u

�t
�

u

a cos �

�u

��
�
v

a

�u

��
� �f �

u

a
tan��vu

acos��u

��



�v�

�t
� fu� �

g

a

�h�

��
� �� �	����

�h�

�t
� H

�
�

a cos �

�u�

��
�

�

a cos �

�

��
�cos �v��

�
� �� �	����

which are the shallow water equations linearised about a resting state and no bottom

topography� The linearisation state for the height�H� has to be a constant� for the

momentum equations to be consistent with the mass conservation equation�

We may rewrite the momentum equations in terms of vorticity and divergence�

By applying the k component of the curl to the momentum equations we obtain the

vorticity equation� It is given by

���

�t
� f�� �

	�

a
cos �v� � �� �	��	�

where the relative vorticity �� is de�ned to be

�� �
�

a cos �

�v�

��
� �

a cos �

�

��
�cos �u�� � �	����

In vector notation� the vorticity equation is written as

���

�t
�r � �fv�� � �� �	����

where the divergence operator r�� and all subsequent spatial di�erential operators�

lie on a spherical surface� The vector v� denotes the wind on this surface and is

equal to �u�� v���

Application of the divergence operator to the momentum equations gives

���

�t
� f�� � 	� cos �u� � �gr�h�� �	����

where the divergence of the wind �



The divergence equation can be written in terms of two scalar �elds called the

streamfunction �� and velocity potential 
�� which are de�ned through the rela�

tions�

r��� � k � �r� v�� � �	����

r�
� � r � v�� �	����

v� � k�r�� �r
�� �	����

and has the form

���

�t
�rf � �k�r
���r � �fr��� � �gr�h�� �	����

where

rf � �k�r
�� �
�

a� cos �

�f

��

�
�

��
� �	����

����� Potential Vorticity

We now consider the evolution of the potential vorticity q



times the linearised mass conservation equation �	����� giving

Dq�

Dt
�

�

H

�
�

�t

�
�� � f

H
h�
�

�r � �fv��� fr � v�
�

� � �	����

and

�q�

�t
� �v� � r�

H
� � �t��

f

H

�r � �f��12 1�Tf
53 -573TD
0 Tc410002 TIt -18 TD
is12 1 Tf
apparen��

�	29 Tf
Sphere1227 Tf
ab122 Tf
out 1 Tf� -8D
0 Tc
(02 TD1227 Tf
TD
[�V 1 Tf33211 121.0002 Tary

(�	24 TD.1iLn)-1600Tj
/T1226n)-.1iStTje�



tracting the linearisation state relations �	���� and ignoring the quadratic perturbed

terms� We obtain

�v�

�t
� �v�r�v� � �v��r�v� fk� v� � �grh� �	����

�h�

�t
�r �

�
hv� � h�v

�
� �� �	����

����� Vorticity and Divergence Equations

The vorticity equation and divergence equations are just generalisations of �	��	�

and �	����� The vorticity equation is

���

�t
�r �

��
� � f

�
v� � ��v

�
� �� �	����

while the divergence equation is�

� � f
�
v� � ��v

�



The potential vorticity increment q� associated with this linearisation state is

q�

q
�
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� � f
� h�

h
�O��h���� h�r� v�� �r� v����� �	����

where ��� � are de�ned b
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These equations in streamfunction and velocity potential formulation are
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��
 Why Shallow Water Equations�



As shown in the derivation in Section 	�	� the SWEs assume there is no vertical

shear and that the implied vertical velocity is given by equation �	����� Such an

approximation assumes that the �uid is shallow with the range of heights considered

being small compared to wavelengths in the horizontal direction� It also expects the

�uid to have weak vertical motion� The lack of vertical shear is the most serious

limitation of the SWEs as an atmospheric model�

The SWEs are not a viable atmospheric model as it has far too many limitations

to its behaviour� Even so� the SWEs on a rotating sphere have many dynamical

mechanisms which are revelent to the more general problem� The spherical geometry

has in itself made interesting features with quite specialised boundary conditions�

The e�ects of a rotating sphere are considered by a variable Coriolis term f � The

SWEs exhibit non�trivial solutions due their nonlinearity in the advective term and

have slow and fast aspects to the �ow which behave very di�erently from each

other� These properties are examined in the following chapter� where the concepts

of balance and geostrophic adjustment are introduced�

	�



Chapter �

Dynamical Behaviour of the SWEs

��� Introduction

In Chapter 	 we derived the SWEs� We now present the dynamical heart of the

SWEs� In particular we present the concepts of characteristic scales and regimes in

Section ��	� wave solutions� balance in Section ��� and geostrophic adjustment in

Section ���� We show that divergence tendency� as de�ned in Section ���� in general

does not always �lter the  noise
 aspects of the �ow� additional conditions also

need to be established� We present an example of a wave  in balance
 � the Rossby�

Haurwitz wave in Section ���� We examine the departure from linear balance and the

divergence and show that dynamically� for a simpli�ed problem� they are propagated

by a linear combination of the eigenmodes of the dynamical system� We then �nally

look at in Section ��� the behaviour of perturbations satisfying a linear balance

relationship and linearised potential vorticity under di�erent Burger regimes�

	�



��� Characteristic Scales� Regimes
 Rossby and

Burger numbers

Atmospheric dynamics typically involve an interaction of waves with various wave�

lengths and amplitudes� A technique to identify the relative importance of one term

in a set of equations over another is to non�dimensionalise the problem and assume

that the �ow is characterised by a typical velocity U and typical height H� We

assume that the height and winds are harmonic and the �ow is identi�ed by a single

typical wavelength �� The characteristic horizontal length scale L is then equal to

L � �
�		� ����� The corresponding time�scale for the height and wind �elds is set

to L
U �

Using the scaling de�ned above the non�dimensional quantities� denoted by "�

are

v � U
v�

h � H"h�

��� �� t� �
�
L"��L"��

L

U
"t
�

�����

where h� v are the height and wind �elds on the spherical surface� de�ned at the end

of Section 	�	� The latitude� longitude co�ordinates are given by �� � and t denotes

the time�

Introducing equations ����� into the momentum equation part of the full non�

linear SWE on the rotating sphere �	�	�� gives

U�

L

�
�
v

�"t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�
� fUk � 
v � �gH

L
r"h� ���	�

where� for this section� the vector operators are applied to scaled
�
"�� "�� "t

�
�

	�



Dividing equation ���	� by fU gives

U

fL

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�

�k� 
v � � gH

fUL
r"h�

� U

fL

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�

�k� 
v � �
�
gH

f�L�

��
fL

U

�
r"h� �����

which by setting the non�dimensional numbers

Ro �
U

fL
� � U

gHR
o � R



magnitude than the velocity 
v� The consequences of this are examined in Sections

��� and ����

The three�dimensional atmosphere tends to have large horizontal length scales

and relatively small vertical length scales and can be approximated by being consid�

ered as a number of layers of �uid on top of each other� A �uid with this property

is said to be stably strati�ed� The Burger number describes the relative importance

of the e�ects of strati�cation and rotation� When this number is larger than one the

layers are stable with respect to changes in the interfaces between them � for Burger

number much smaller than one the rotation dominates the �ow�

The Burger number is described in numerous ways dependent on the source� Ped�

losky ���� de�nes for two�dimensional horizontal �ow the non�dimensional number

as gH
�f�L��� the square of the quantity described here� Haltiner et al� �	�� de�

�nes the Burger number as the ratio between the the Rossby radius of deformation�

de�ned as

Lr �

p
gH

f
�����

and the characteristic length scale L� which is identical to the de�nition given in

equation ������

As described in Chapter 	� the SWEs are de�ned on a two�dimensional surface

and consist of a single layer of �uid� A non�trivial interface is considered whe8.9999t1497 
1 Tc
000(w)igpe00(�uid�)]TEraph71.99915[(y)-15000(rre)-1i16000.1(the699cluded�9.9(of)-23In)-17999.95th170999.9(o)-0.1lleritu





obtain
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h� � ��������

We assume that the height perturbations have a harmonic structure

h� � #hei	k�x�k�y��t
 ����	�

where #h is a complex coe�cient associated with the both wavenumbers� k� and k��

and the angular frequency �� The symbol i denotes the imaginary number satisfying

i� � ��� Introducing ����	� into ������� produces a cubic polynomial in �

�
f��K

� � n�
�
�K� � u�k�K

� � �k�
��� ��i� � u�ik�

�
�gH

�
i�K� � u�ik�K

� � �ik�
�
K� � �

�
�
f��K

� � n�
�
�K� � u�k�K

� � �k�
��� �

� � u�k�
�

�gH
�
�K� � u�k�K

� � k
��

k



� A dispersion relation for the ��plane can be obtained by retaining the � terms in

������� and solving the resulting cubic using Vieta
s subsitution ����� We leave such

details as they serve as a distraction to the discussion given��

The smallest root is approximated by setting the tracer n� to zero� In this

situation� the cubic polynomial ������ reduces to a linear equation in �� where

� � k�u
� � gH�k�

gHK� � f��
� k�u

� � �k�

K� �
f�
�

gH

� ������

The dispersion relation ������ de�nes the angular frequency of what is identi�ed as

a Rossby wave�

Setting the tracer n� to zero is equivalent to setting the total material time deriva�

tive term and � ��
�x

of the divergence equation �	���� to zero� As observed in �����

the condition that is necessary and su�cient for the elimination of inertio�gravity

waves of the form ������ requires ��K� � u�k�K
� � �k��

�
� �� However it is nec�

essary for the existence of solutions of the type ������ that ��K� � u�k�K
� � �k��

does not vanish� justifying the need to set the tracer to zero� This is called the

generalised filtering approximation� The remaining part of the divergence equa�

tion is given by the linear balance equation�

r � f�r� � gr�h� ������

The main balance relation used in this thesis resembles ������� However� we generally

consider a spherical domain and allow the Coriolis parameter f to vary with latitude�

The resulting equation ������ is described in Section ��� and in Chapter ��

When the inertio�gravity waves are no longer present� the �uid is considered to be

in balance� This occurs when the dispersion relations related to the two largest roots

of the cubic equation ������ are not exhibited by the �ow in question� the motion

�	



of the �uid only is described by the dispersion relation de�ned by the smallest root

of the frequency equation� Models which propagate only Rossby waves are called

balanced models� There are a number of techniques to approximate balance and

produce balanced models� obtained from using semi�geostrophic or quasi�geostrophic

theories �	��� They all share the property that provided we consider linearised SWEs

with constant coe�cients� the dispersion relation de�ned by the smallest root of the

SWEs cubic frequency equation is equivalent to the linear dispersion relation of the

respective balanced model�

Typically� in a mid�latitude region the characteristic height H is approximately

equal to �� km with the inertio�gravity waves and Rossby waves having speeds

around ���ms�� and ��ms��� respectively� This shows the large separation in

timescales between the two types within the mid�latitudes� Pairs of inertio�gravity

waves with same angular frequency and amplitude move in opposite directions to

each other� The Rossby wave propagates westwards which is in the direction per�

pendicular to the potential vorticity gradient relative to the mean �ow�

Given the low angular frequency of the Rossby wave� the wave phase speed is

expected to be slow� This is true for linearised equations� However� when the nonlin�

ear advective term �v � r�v is present� slow Rossby waves interact with each other

to give waves that are slower or faster� Instead of there being a clear distinction

between the timescales of fast inertio�gravity waves and slow Rossby waves� the non�

linear interactions produce Rossby waves with a wide range of angular frequencies�

The amplitude and energy present within these waves diminish with increased angu�

lar frequency� However in a non�linear description of balanced �ow all Rossby waves

need to be considered� Potential vorticity is a good variable to choose in this respect

��





compared to the magnitude of the height �eld H itself� We now present a derivation

of a Rossby�Haurwitz wave� similar to the treatment given by Dutton �����

If the waves are assumed to propagate only in the x direction� we can let the

solutions take the form

u � #ue	k�x��t
i� ���	��

v � #ve	k�x��t
i� ���	��

h � #he	k�x��t
i� ���		�

and substitute ���	������		� into �������������� to obtain

i
�
�� � k�u

�
�

#u� �f� � �y�#v � igk�#h � � ���	��

i
�
�� � k�u

�
�

#v � �f� � �y�#u� g
�#h



where C�� C� are constants which are �xed by appropriate boundary conditions� If

the boundary conditions are such that the domain considered is a channel of width

D for which j#vj is at a maximum at y � � and zeros at y � �D
	� then

C� � ��
�

u� � �
k�

� k��

� �

� D

	
�

	l

	
for l � ������ � � � � ���	��

The dispersion relation is obtained by rearranging ���	�� into

� � k�u
� � �k�

k�� �
�
l�
D

�� � ������

The relationship between the Rossby wave within the SWEs and the Rossby�

Haurwitz wave under two�dimensional Euler equations are readily seen by letting

H � 	 in ������ and D � 	



Solving this Monge�Ampere equation provides the appropriate balanced height� It

is important to note that the Rossby�Haurwitz wave in SWEs context does not

produce a balanced �ow that stays balanced when propagated in time� At best�

under a high Burger regime� the Rossby�Haurwitz wave produces SWEs solutions

over �	 hours with relatively little divergence ��� which are close to the balanced

�ow given by the two�dimensional Euler equations� As such� it is used as an initial

solution which produces solutions over a �	hrs � 	�hrs timescale that is close to

balance�

����� The Rossby�Haurwitz wave on a Sphere

In practice� throughout this thesis the initial height and wind �eld relating to a

Rossby�Haurwitz wave is de�ned over a sphere ����� This wave is characterised by

parameters a� g� �� R� h



where the variables A���� B���� C��� are given by

A��� �
�

	
�	� � �� cos� � �

�

�
K� cos�R ���R � �� cos� �

��	R� �R � 	�� 	R� cos�� ���

B��� �
	�� � ��K

�R � ���R � 	�
cosR ���R� � 	R � 	�

��R � ��� cos� ���

C��� �
�

�
K� cos�R ���R � �� cos� � � �R � 	��� ������

��	 Linear Balance Equation

In Section ��� we derived the linear balance equation �LBE� by applying the general

�ltering approximation to SWEs de�ned on a Cartesian mid�latitude ��plane �	�����

�	���� and �	����� More generally LBE is de�ned over the sphere� where

gr�h�r � fr� � � ������

and �� the streamfunction is de�ned by �	����� In subsequent chapters this balance

relation is compared with another which conserves potential vorticity� Consequently�

the properties of this balance condition need to be described�

The LBE is viewed in more than one way� Burger ��� considers the LBE as

a simple generalisation of geostrophic balance over the whole sphere for waves of

planetary length scale L � a � By applying scaling arguments with this length scale

to the divergence equation �	���� about mid�latitudes� the terms in ������ are found

to be ten times larger than the other terms in the divergence equation�

It is also a linear non�divergent mass�wind law that naturally takes into account

the latitudinal variation of the Coriolis parameter and is useful when length scales

��



L � ���m are considered ��	�� However� balanced divergent parts to a wind do

exist for the SWEs on a sphere ���� and are  invisible
 to this balance condition�

This is seen when appropriate equations are added to LBE to produce a closed

energically�consistent dynamical system ����� This requires not only a modi�ed

vorticity equation but also a thermodynamic equation� The kinetic energy of this

particular dynamical system comes from only the rotational part of the �ow and no

divergent contribution exists�

Two problems need to be considered� the calculation of a balanced height �eld

from the streamfunction

gr�h � r � fr� ������

and the backward relation

r � fr� � gr�h ������

where the streamfunction is determined by the height�

The calculation of a balanced height �eld from the streamfunction is straight�

forward� the existence� uniqueness and boundary conditions are the same as those

needed to invert a Poisson equation on a sphere and are given in Section ����

The reverse transformation� the transformation from height �eld to a stream�

function� is a little more complex� The majority of the attempts to solve ������ set

the problem in terms of spherical harmonics ����� ���� Daley ���� shows that solutions

to the reverse transformation can become singular about the equator� The problem

is worsened by the sensitivity of the solution to the height �eld localised about the

equator� small errors in the heigh







��� Divergence Tendency

A justi�cation for using the Charney balance condition to derive a balanced height

�eld as an initial condition for the SWEs is due to the observation that introducing

a purely rotational wind into the divergence equation sets the local change in the

divergent wind� the divergence tendency �r�

�t� to be zero ����

Let us consider SWEs linearised about a resting state on an f �plane� The setting

of the divergence tendency to zero reduces the cubic frequency equation to a linear

one and gives the dispersion relationship for the balanced �elds� In this situation the

inertio�gravity waves are fully �ltered out of the system� The divergence equation

reduces to ������� However when the SWEs are linearised about a constant velocity

u� and a ��plane approximation is used� setting the divergence tendency to zero

only reduces the cubic frequency equation to a quadratic� the di�erent linearisation

state gives a set of perturbed equations which no longer have the symmetry that

exists in the f �plane case and the inertio�gravity waves are no longer fully �ltered�

We can see this again� by considering an f �plane model of the SWEs� linearised

about a resting state

��

�t
� f�� � � ������

��

�t
� f�� � �gr�h ������

�h

�t
� H� � � ������

������

where f� and H are constant values� Setting the partial time derivative ��
�t

to zero�

enforces the divergence � to be constant� If we take the remaining terms of the

�	



divergence equation and apply the partial time derivative operator we get

f�
��

�t
� g

�r�h

�t
� � ������

� gHr�� � f�� � � �� ������

substituting the partial time derivative for the divergence using the vorticity and

continuit

�



We apply the spatial Fourier decomposition

�X �

�BBBBBBBB	

#uk� 	k��t�

#vk�	k��t�

#hk� 	k��t�


CCCCCCCCA
�
Z y��

y���

Z x��

x���

�BBBBBBBB	

u��x� y� t�

v��x� y� t�

h��x� y� t�


CCCCCCCCA
e�i	k�x�k�y
 dxdy� ������

in the xy plane to transform the coupled system of PDE
s into a coupled system of

ODE
s which for each k�� k� is represented by

�X t � L �X � �� ����	�

with

L �

�BBBBBBBB	

� �f� igk�

f� � igk�

iHk� iHk� �


CCCCCCCCA
� ������

We now calculate the eigenvalues and eigenvectors of the system� The determi�

nant of the characteristic equation is given by

det jL� i��Ij � i��
�
��� � ��

�
� ������

where �� � �O���� ���� � �f�� � gHK�
w�

�

� and K�
w � k�� � k��� The eigenvalues i$

and eigenvectors E � �e��e��e�� are related by

LE � iE$ ������

with

E � �e� e� e�� �

�BBBBBBBB	

igk� �igk� � gk�f
�

gk�f
�

igk� �igk� � gk�f
�

�igk� � gk�f
�

f i
�
� � f�

�

�
�i
�
� � f�

�

�


CCCCCCCCA
������

��



and

$ �

�BBBBBBBB	

� � �

� �� �

� � �


CCCCCCCCA
� ������

The inverse of the matrix of eigenvectors� E��� is given by

E�� �

�BBBBBBBB	

f �

f �

f �


CCCCCCCCA
�

g

	i�g�K�
w

�BBBBBBBB	

��gHk�K
�
w

�
�gHk�K

�
w

�
�igfK�

w

�

�k�� � ik�f �k�� � ik�f gKw

�k�� � ik�f �k�� � ik�f �gKw


CCCCCCCCA
������

and is calculated by taking the complex conjugate of the matrix of co�factors of E�

divided by the determinant of E�

Now we are in a position to apply a similarity transformation to uncouple the

system Tj
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are given by

#y	�
k�	k�
�t� � #y	�
k�	k�

����

#y	�
k�	k�
�t� � e�i�t#y	�
k� 	k�

����

#y	�
k�	k�
�t� � ei�t#y	�
k�	k�

���� ������

Since �Z � BP �Y



��� Relative Contributions to Scaled Potential Vor�

ticity Perturbations

We now consider properties of height� vorticity and potential vorticity perturbations

that satisfy both the linearised potential vorticity relationship ������ and the linear

balance equation ������ when the Coriolis term f� is constant� It is valid to con�

sider relative vorticity perturbations ��rel since the linear balance equation ������ for

constant f� is equal to

f��
�

rel � gr�h�� ������

We describe how the ratio between scaled perturbations in height and absolute

vorticity changes with the Burger number� The change in this ratio is equivalent

to a change in the relative contribution of these terms as needed to produce scaled

potential vorticity peturbations� This is because the scaled potential vorticity per�

turbation is de�ned to be the sum of the scaled perturbations in height and absolute

vorticity� To show this mathematically� we de�ne perturbations of any quantity� as

in Chapter 	� to be the di�erence between the true value and its respective lineari�

sation state� By letting perturbations satisfy both the linearised potential vorticity

equation and the linear balance equation ������� an equation is found that shows

how the potential and absolute vorticity perturbations are inextricably linked to

the Burger number� Next� we present an equation that links the potential vorticity

perturbation to both the height perturbation and the Burger number�

Let us �rst consider the velocity and height to be on a two dimension Cartesian

grid with standard axes �x� y�� Suppose that both the linearisation states and the

perturbations in the velocity and height are known� The relative vorticity linearisa�

��



tion state �rel and the relative vorticity ��rel perturbation are calculated using

�rel �
�v

�x
� �u

�y
� ��rel �

�v�

�x
� �u�

�y
� ������

The full nonlinear potential vorticity q and linearisation state q are de�ned as

q �
�

h

�
�v

�x
� �u

�y
� f�

�

 �rel � f�

h
����	�

q �
�

h

�
�v

�x
� �u

�y
� f�

�

 �rel � f�

h
� ������

where ������ is the Cartesian f �plane form of �	����� By linearising the nonlinear

potential vorticity equation ����	�� the perturbations in potential vorticity q�� height

h� and absolute vorticity ��rel are connected by the equation

q�

q
�

��rel
�rel � f�

� h�

h
� ������

We use the relationship ������ between the perturbation in absolute vorticity and

the height to derive a relationship between the potential vorticity perturbation and

the height� We consider perturbations in the height and the velocity that take the

form h� � #hei	k�x�k�y��t
� u� � #uei	k�x�k�y��t
� v� � #vei	k�x�k�y��t




can be determined� one de�nes scaled perturbations in potential vorticity in terms of

scaled perturbations in height� the other shows how perturbations in scaled relative

vorticity perturbations are related to scaled perturbations in potential vorticity�

These relationships are given by

q�

q
� �Nh�

h

�
� � �

N

�
q�

q
�

��rel
�rel � f�

������

with

N � � �
f� B

�
u

�rel � f�
� ������

As the Burger number is always greater than zero� for any given perturbation� N is

always greater than �� For a �xed q�
q and N �� �� h�
h will not contribute much

to the scaled potential vorticity perturbations� the potential vorticity perturbations

are sensitive to the absolute vorticity perturbations with q�
q � ��rel
��rel � f���

Moreover� the greater the value of N � the more sensitive q�
q will be to ��rel
��rel�f���

The equation ������ shows that a number of conditions can make N large� One

possible way� assuming ��rel � f�� to be constant� is to produce a large Burger

number� A large Burger number will be obtained when h is large or when f� is small�

In summary� it is expected that for large Burger number q�
q will be dominated by

changes in ��rel
��rel � f��� The equations ������ and ������ can also be written as

�
� � �

P

�
q�

q
� �h

�

h

q�

q
� P

��rel
�rel � f�

������

with

P � � �
�rel � f�
f�B�

u

� ������

It is clear that for a small Burger number� P �� � with q�
q �� ��rel
��rel �

f�� and q�
q � h�
h� In this situation it is the scaled height perturbations h�
h

��



which will dominate q�
q� Small Burger number regimes will occur where f� is

not small as in the mid�latitudes and where h is small� It is in these regions that

the height perturbations will most resemble the potential vorticity perturbations�

The linearisation of potential vorticity may not be legitimate� Nonlinear features

of the potential vorticity may suppress the relationships suggested above� Thus

an important question which this study wishes to examine is whether this analysis

transfers to the full non�linear potential vorticity transformation on the sphere�

��



Chapter �

Change in control variables�

Theoretical Aspects

��� Introduction

As mentioned in Chapter�� data assimilation brings together observations and in�

formation from a forecast model in some consistent manner� The current means of

achieving this at the UK Met� O�ce involves a formulation of the problem called

incremental �D Variational Data Assimilation ��DVAR�� In this chapter we wish to

make precise the description of a change of  control variables
 for this formulation of

the data assimilation problem� T



control variables in relation to what an  idealised
 set of control variables should be

like�

In Section ���� we discuss the advantages and disadvantages of choosing potential

vorticity as the balanced control variable with the departure from linear balance and

divergence as the two other unbalanced variables� We describe a method to evaluate

control variables with a description of the boundary conditions needed� The method

readily presents �ve variables of which three are needed as control variables� We

discuss the various choices for the three variables�

In Section ���� using the ideas in McIntyre and Norton
s paper on balanced

models that conserve potential vorticity ����� we can evaluate a higher order ap�

proximation to the balanced part of the �ow at a given time� From this higher order

approximation we can �nd an estimate of the balanced parts of the unbalanced vari�

ables� We adapt this theory and propose a method to evaluate balanced corrections

for various sets of control variables� identifying the associated divergence tendency

of each set� This allows a comparision to be made in Chapter � between the present

set of control variables and the new potential vorticity�based set�

As shown in Section ���� the height and wind �elds behave di�erently under

various Burger regimes� This is also true with control variables� In Section ��� we

identify how the potential vorticity control transform behaves under various regimes

and show that the solution given by the current control variable set and the new

control variable sets are the same in high Burger regimes and vary in low Burger

regimes�

��



��� Data Assimilation

The majority of linear data assimilation methods can be considered in terms of

a prototype data assimilation problem� using least squares estimation� We spec�

ify this problem by showing how it relates to the �DVAR formulation� We then

present incremental �DVAR as a tec



the covariances B and O are too large to calculate explicitly and data assimilation

methods are needed to curtail this di�culty� The Optimal Interpolation method

assumes that only a few observations are important in calculating each analysis

increment� and so only considers observations in local proximity to model variables�

A typical variational method avoids the calculation of K� This is written as�

Minimise J with respect to x� where

J � �x� xb�
TB���x� xb� � �y �Hx�TO���y �Hx�� �����

� Jb�x� � Jo�x��



the UK Met� O�ce� applies a low resolution correction to a high resolution back�

ground� The low resolution incremental problem is a inner loop of the minimisation

procedure and is solved for each update of the full high resolution problem ��	�� The

method is described by minimising the objective functional J�w�� where

J �w� � wTB��w � �d �Hw�TO���d �Hw� �����

and

� the variable increment is w � x� xb�

� d � y � H�xb� are the observation increments� y are the full observation

values� The nonlinear function H is being used to interpolate the background

�eld to the position of the data points� The linearisation of H�x� gives H�x� �

H�xb� �Hw�

The variables in which the objective function ����� is minimised are called control

variables�



this control transform a new objective function is minimised�

J �� � � � TB��

 � � �d�H�U� ��TO��


 �d �H�U� ��� �����

with d � y �H�xb� and B��

 � UTBU �

The error covariance matrices� B �B� �




di�erent time�scales� shows that the balanced and unbalanced parts of the �ow are

uncorrelated with one another� We attempt to �nd a set of control variables which

distinguishes between balanced and unbalanced parts more e�ciently� In order to

do this we establish in the next section a general framework for describing changes

between sets of control variables�

��� A General Framework to Examine the Change

in Control Variables

Consider the transform T as a series of matrix operations T�� T�� � � �Tm� which when

applied to the original variables stored in a vector x� of size n�� � produces a vector

y� of size n� � which contains the control variables� This is given by

y� � Tm � � �T�T�x�� �����

We denote the reverse transformation U by a series of operations U�� U�� � � �Um

from y� to x�� with

x� � Um � � �U�U�y
�� �����

Unlike the full transforms U and T � the matrix operations need not be non�singular

and are allowed to project or restrict the variables concerned�

We can consider each operation in turn setting

xi � Tix
i���

yi � Uiy
i��� for i � �� � � � �m� ������

with

y� � xm�

��



x� � ym� ������

Thus we can relate any xi with any vector yj by

xi �

�
l�iY
l��

Tl

��	 k�mY
k�j��

Uk


Ayj� ����	�

for i � �� � � � �m and j � �� � � � �m� ��

In particular

x� � T�x
� � T�Umy

m��� ������

and if x� � ym����ym�� � then T� is the inverse of Um�

We now formalise our de�nitions T�� Um in a way similar to a treatment of control

variables given by unpublished work of Tim Payne ��	�� His description is in terms

of general in�nite dimensional operators� We present the change between control

variables as a �nite dimensional problem� Thus the linear di�erential operators

presented in the control variable transforms in Sections ������ ���� ���� are �nite

dimensional approximations to the true analytic di�erential operators�

Let us denote the model variable increments as

x� �

�BBBBBBBB	

u�

v�

h�


CCCCCCCCA
� ������

with the new set of control variables denoted as

x� � ym�� �

�BBBBBBBB	

y��

y��

y��


CCCCCCCCA
� ������

Each of the model variables� u�� v�� h�� and control variables y��� y
�

�� y
�

� are considered

to be discrete and represented by vectors of size s� ��

��



We set three projections from the control v





denoted by hbase� ubase� We subtract the same linearisation state from both sets of

full �elds to give the respective perturbed �elds u�p� h
�

p� u�base� h
�

base where

u�p � u � u�

h�p � h � h�

u�base � u � u�

h�base � hbase � hbase� ���	��

The height and wind increments are de�ned by the di�erence between base height

and wind perturbations h�base� u�base� and the full height and wind perturbations hp�

up� They are given by

u� � u�p � u�base�

h� � h�p � h�base� ���	��

The properties of these linearisation states is given in Section 	�� while the means

in which they are calcluated is left to Section ����	�

The change in control variables transforms the height and wind increments into

the streamfunction ��� velocity potential 
� and unbalanced height h�ub� The full

streamfunction increment is considered balanced� The unbalanced height is the

di�erence between the full height increment and the balanced height increment�

obtained from the streamfunction using the linear balance equation�

We set u� � u�i � v�j with i� j being orthonormal vectors on the surface of the

sphere and k being a unit vector pointing radially away from the centre of the sphere�

We write

T �
� � �� � r�� �k � r� u�� � ���		�

�	



T �
� � h�ub � h� � �

g
r��r � fr��



evaluation of the balanced height h�� is dependent purely on the rotational part of

the �ow with the unbalanced height h�� holding the rest of the height� Thus h�� is

zero� we assume that the velocity potential increment does not contribute to the

unbalanced height�

The choice of control variables which are constrained by � are not unique� we

could be perverse and choose y� � hb� by calculating the streamfunction and then

applying the linear balance equation� Thus�

T �
� � h�b �

�

g
r��r � frr�� �k � r � u�� ���	��

and

U�
m � �u��� h�� �

�
k�r

�
�r � fr���r�g hb

�
� hb

�
� ���	��

with the other variables and operators the same as before�

There are two reasons why this is not used� In data assimilation the U transform

is applied every time during the minimisation procedure� The procedure to calculate

the winds from the balanced height is computationally more costly taking more

cpu time to evaluate� Also� as noted in Section ���� it is noticeably less accurate

compared to using just the streamfunction because we need to use the reverse linear

balance equation�

There are additional issues to consider when using LBE in a data assimilation

context� The dynamical behaviour of the winds in the tropics is not captured by

the LBE� Thus observations in the tropics are going to be inconsistent with the

dynamical behaviour of LBE� The observations for the winds are also comprehensive

on horizontal surfaces� while their vertical structure is less well known� Meanwhile�

��





need an additional balance constraint� We choose this to be the LBE� This potential

vorticity inversion is a somewhat cruder version of McIntyre and Norton
s ���� �rst�

order direct inversion� which uses a Charney balance condition instead of the LBE�

The LBE is used in the inversion� because this allows a direct comparison to be

made between using the rotational wind to de�ne the balance and using potential

vorticity� We do this by solving the equations representing the linear balance and

linear potential vorticity increments simultaneously for �b and hb� as

r � fr�b � gr�hb � �� ���	��

r��b � qhb � k � �r� u��� qh�� ���	��

The height increment and wind increments and the potential vorticity linearisa�

tion state are known before application of this potential vorticity inversion� The

height and winds increments� h�� u�� are de�ned in equation ���	�� and the potential

vorticity linearisation state q is given by �	�����

From this coupled system we obtain a  balanced
 height hb and a  balanced
 wind�

de�ned by ub � k � r�b � The  balanced
 wind increment is non�divergent� and

approximates the full rotational wind increment for high Burger number regimes�

The rest of the rotational wind is described as having no potential vorticity increment

and conserving a departure from linear balance� This can be obtained in one of two

ways� either by subtracting the balanced wind and height from the full rotational

wind and height� or by explicitly solving the simultaneous system

r � fr�ub � gr�hub � r � fr�� �r�h� ������

r��ub � qhub � �� ������

where the unbalanced rotational wind is de�ned to be urub � k � r�ub and the

��



unbalanced height is denoted by hub� The equivalence of the two methods to calculate

the unbalanced height and unbalanced rotational wind is readily seen by adding

equation ���	�� to ������ and ���	�� to ������� to give

r � fr ��b � �ub�� gr� �hb � hub� � r � fr�� �r�h� ����	�

r� ��b � �ub�� q �hb � hub� � k � �r� u��� qh�� ������

The third variable contains the remaining information� namely the divergent part

of the wind and is stored in the velocity potential�

The above description produces �ve di�erent variables� ��b� �
�

ub� 

�� h�b� h

�

ub� which

together give the original height and wind �elds� From these �ve variables we choose

three control variables� from which the ignored part of the height and wind �elds is

easily recovered� To mimic the dynamic behaviour of the shallow water equations we

choose the control variables so that one is balanced and two others are unbalanced�

There are four possible choices to obtain such a control set� Each method we

now discuss�

����� Method �� ��

b	 �
�

ub	 �
�

T �
� � ��b �

�
r � fr�



and substituting gr�hb from ���	�� with r � fr�b� Likewise T �
� is given by substi�

tuting into ������ �
q
r��





A di�culty lies in the calculation of the balanced height� Within equations ���	���

���	�� not only the second order derivatives in �b need to be substituted but also

the �rst order derivatives as well� We present an approach to alleviate this problem�

We calculate the balanced streamfunction and then use the linear balance relation

to obtain the balanced height�

T �
� � h�b �

�

g
r��r � fr��b ������

where ��b is given by either �������

Similarly� we may obtain hub from �ub� using the fact that the linearised potential

vorticity increment conserved by these two variables is zero� giving

h�ub �
�

q
r���ub ������

where ��ub is given by �������

The associated U�
m transformation uses reverse linear balance to derive the bal�

anced part of the rotational wind�

U�
m � �u�T� � h�� � �k�r �r � fr���r�gh�b� h

�

b��y ���d.0001 Tc
(tTc
(t�)Tj
/T8i����)T93o bal��t�Tb �h �� � ��

h
37Tj
/T1
1-47



The two remaining methods are the control variables sets h�b� �
�

ub� 

� and ��b� h

�

ub�


�� The equations relating to these control variables are given above�

In a shallow water context on a doubly periodic f �plane we showed in Section

��� that the slow mode relating to the zero eigenvalue is in geostrophic balance and

is described by a linearised potential vorticity increment� The other two variables�

the divergence and departure from geostrophic balance� are linear combinations of

the unbalanced eigenvalues of the system� On this f �plane the balanced variable

is independent from the unbalanced part� Ideally� we would wish the unbalanced

components to represent the eigenvalues of the unbalanced part� Unfortunately this

in not the case�

In summary� the changes in control variable described in this section do have cer�

tain di�culties� namely the problem with the linearisation of the potential vorticity

going to zero at the equator and the problem of constraining the control transforms

������ by k � r � fr�b � � and ����	� by k � r � fr�ub � �� Balanced and un�

balanced � variables seem better than the corresponding balanced and unbalanced

height� due to the need to solve the reverse LBE equation in the corresponding U

transform� For these reasons we solve for the balanced variables in their original

formulation given in ���	��� ���	���

����� Conditions for Solving the Potential Vorticity
based

Change in Control Variables

The boundary conditions for solving the simultaneous system ���	��� ���	�� comes

from the consideration of the solution of the linear balance equation and the existence

��



and uniqueness conditions� necessary for the solution of a Poisson equation on a

sphere� We are considering solutions over the hemisphere� This is done by solving

over the sphere and making the right�hand side of ���	�� anti�symmetric about the

equator� This enforces �b to be antisymmetric and hb to be symmetric about the

equator� This is equivalent to setting

�hb
��

��� �



tendencies that are small�

Let us �rst consider control variable increments with linearisation states u � �

and h � H� where H is constant� If we consider the linearisation of the shallow

water equations about such states and introduce only the balanced variables� from

whatever method� into the respective divergence equation �	����� we get a divergence

tendency of zero� This is due to the divergence of advective term in the SWEs mo�

mentum equation �	���� being comprised of squared perturbations� If we� however�

consider the linearised divergence equation linearised about a time�varying state and

apply the balanced variables� the divergence of advective terms of �	���� remains�

The divergence tendency of the balanced control variable is then given by

��r
�t

� �r� ��vr
� � v��� � k � r �

�
�vr

� � � �v
�
� LB method ������

��p
�t

� �r� ��vpv
� � v��� � k � r �

�
�vpv

� � � �v
�

PV method ������

where the LB method is the standard change in control variables described by ���		�

and the PV method is the name we give to the change in control variables based of

potential vorticity inversion described by ���	��� ���	�� in Section ���� vr is the rota�

tional wind and vpv is the balanced rotational wind derivv



by de�nition sets both the divergence tendency of the nonlinear divergence equation

and the second order partial time derivative of the divergence to zero� By using a

similar concept we derive in the next subsection a correction to the balanced wind

and heights given by the LB and PV methods which sets the divergence tendency

of the divergence equation linearised about a time�varying state to be zero� This

method has the added bene�t that the correction identi�es balanced parts in unbal�

anced variables�

����� Approximation of Divergence Tendencies of Balanced

Corrections to Unbalanced Variables

In the direct second�order potential vorticity inversion model in McIntyre and Nor�

ton
s paper ����� one of the equations which close their dynamical system enforces

the second partial time derivative of the divergence to be set to zero� We derive a

similar equation which uses a balanced correction to �nd the divergent wind� This

is done by �rst applying the local partial time operator to the divergence equation

�	���� linearised about time�varying linearisation states h�v� � as de�ned in Section

	��� giving

����

��t
� k � r �

�	�� � f
� �v�
�t

�
�
�
� � f

�
�t

v� �
�� �

�t
v� � �

�v

�t


A
�r�

�
g
�h�

�t
�
�v�

�t
� v �

�v

�t
� v�

�
� �� ������

where

�v�

�t
� �r �v � v���

�
� � f

�
k� v� � � �k� v � grh�� ������

�� �

�t
� �r �

��
� � f

�
v� � � �v

�
� ������

��



�h�

�t
� �v � rh� � v� � rh� h�r � v � hr � v�� ������

�v

�t
� �r

�
v � v

	

�
�
�
� � f

�
k� v� grh� ������

��

�t
� �r �

��
� � f

�
v
�
� ������

�h

�t
� �v � rh� hr � v� ������

Incorporating ������ � ������ into ������ and setting the second partial time

derivative of the divergence to zero leaves on simplifying

k � r �
��
� � f

�
�r �v � v���

�
�
�
� � f

��r � v� �r �
� � f

�� � v�
�k � r�

h�
� � f

�
�� �k� v�

i
� gk � r�

h�
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increments involving divergence and are rewritten as
�
� � f

��
��� gr�

�
h��
�

� We

wish to make the divergence increment the variable to be solved for� so we keep

those two terms on the left and place the rest on the right hand side�

This gives a modi�ed Helmholtz equation to be solved of the form

r�
�
gh�b

�
� �

�
gh�b

�
� � ������

where � is given by

� �
�� � f��

gh
������

and �



Table ���� The scaling of various terms in equation ����	� �with the characteristic

length scales L � ���m� the characteristic height linearisation state H � ���m�

the characteristic velocity linearisation state U � ���ms��� the height increments

H � ���m� the wind increments U � ���ms�� � f � ����s�� and g � ��

Terms considered Dimensional scaling Size of term

�
� � f

��r � v�� r �
� � f

�� � v� f�U
L

�����

gr�
�
v� � rh

�
� gr�

�
hr � v�

�
gHU
L�

�����

k � r �
h�
� � f

�
�grh��

i
gfH



part of the �ow lies in the departure from linear balance� Suppose we consider the

divergence equation� linearised about a time�varying linearisation state �	����� We

presume that the total balanced parts of the �ow satis�es this equation and has a

divergence tendency of zero�

Since we are considering a linearisation of the divergence equation� it is possible

to separate the balanced part of the divergence equation that we know� from those

parts that we do not� Thus the balanced contribution to the divergence equation is

given by

�k � r �
��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� � k � r�

��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� ������

where v�� h� is the balanced velocity and height contribution the variable describing

a departure from linear balance� The wind v� is de�ned as

v� � vpv � vbd� h� � hpv ������

or

v� � vlb � vbd� h� � hlb� ������

where vbd is the balanced divergent  0  T D 
 ( e r g e n ) T j 
 1 1 3  0  T o j 
 / . 9 9 9 9  9  9 n 
 ( ) 1 3 n g



in the kernel of the linearised potential vorticity increment� as we assumed in the

control variables that unbalanced �ow contained no linearised potential vorticity�



bene�t of increased accuracy in the balanced variable� For this reason the above

procedure is used only for comparisons between the PV and LB methods�

��� Control Variables and Burger Regimes

The PV method approximates the LB method under high Burger regimes since the

majority of the linearised potential vorticity is held in the rotational wind in such

regimes� For very small Burger number regimes for which the linearised potential

vorticity is predominantly composed of a weighted height increment� qh�� the PV

method approximates the control variables set in which the height increment is

considered to be the balanced variable� This is written as

T �
� � h� � h��

T �
� � ��ub � r�� �k � �r� u���� �r � �fr���r�gh��

T �
� � 
� � r�� �r � u�� � ������

The inverse transform Um is

U�
m � �u�T� � h�� � �r � �fr���r�gh�� h��

U�
m � �u�T� � h�� � �k�r�ub� ��

U�
m � �u�T� � h�� � �r
�� �� ������

The above change in control variables involves solving the reverse LBE which we have

already mentioned as being problematic� Though the PV method is approximating

this change in control variables� it may not have the same problems around the

equator� This is because around the equator� due to f � �� the Burger number gets

��



increasingly large and the PV method is going to approximate the LB method in

these regions�

We need to examine the performance of LB and PV methods for a wide range

of Burger numbers� Though it seems that there should be better results using the

PV method� compared to the LB method for low Burger number� it is unclear as

to the cuto� value in the Burger number when these improvements are noticable�

The cuto� value should be close to �� but this is to be checked in the experiments

in Chapter ��

��� Conclusion

In this chapter we have de�ned a change in control variables in terms of the data

assimilation problem� A framework is proposed in which control variables can be

examined� It is used to view the current change in control variables at the UK

Met� O�ce when applied to SWEs on a sphere� A change in control variables is

de�ned which conserves a potential vorticity increment� The dynamical properties

of an ideal set of control variables are discussed� We then consider the relationship

between control variables and divergence tendency and present a means to establish

the respective performance� by �nding a way to evaluate the divergence tendency in

the unbalanced variables� The chapter concludes with an examination of how the

control variables from the PV method vary in behaviour with Burger number�

��



Chapter �

Numerical Background

	�� Introduction

In this chapter we present the numerical details of the algorithms used in Chapter

�� The �rst part of this chapter relates to the shallow water equations� Section ��	

gives some of the numerical details of the UK Met� O�ce
s shallow water equation

model on a sphere� In Section ��� we describe two di�erent initial conditions� one

described by the Rossby�Haurwitz wave on the sphere ������ � � ����� and the other

representing a realistic atmospheric situation�

Throughout Chapters 	� � we use linearisation states h� u� q� In Section ��� the

experimental details of various types of linearisation states are presented that are

used in the experiments in Chapter �� The third part of this chapter considers the

Poisson equation� Understanding the numerical properties of the Poisson equation

not only gives the tools to solve the linear balance equation �LBE� and obtain the

streamfunction and velocity potential from the vorticity and divergence � it also

presents a method of solution which we use later in Chapter � to solve a control

�	



Figure ���� Arakawa C grid

hi	j ui	j hi	j��

vi	j vi	j��

hi��	j ui��	j hi��	j��

variable transform based on conserving potential vorticity ���	��� The numerical

evaluation of the Poisson equation is discussed in Section ��� while in Section �����

we consider the question of existence and uniqueness of solutions to this problem�

In the last two Sections� various �nite di�erence approximations are presented�

for which we give validatory evidence of their correct evaluation�

	�� Shallow Water Equations
 General Experi�

mental Details

The numerical model approximating the shallow water equations calculates the

height and wind �elds on a staggered mesh called an Arakawa C grid� The rel�

ative positions of h� u� v are given in Figure ����

The code which solves the SWEs is that used within the UK
s Met� O�ce

numerical weather prediction model �Uni�ed Model�� It is a semi�Lagrangian� semi�

implicit� predictor�corrector scheme� The wind �eld is predicted for the next time

��



step and the di�erence between the present time step and the next is calculated and



Provided we consider a high Burger regime� the unbalanced parts remain small

compared to the balanced parts�

Since Philips ����� investigators have been using this wave to provide initial

conditions for the SWEs� Throughout this thesis we choose the wavenumber to be

equal to �� as we want the �eld to be stable� Following Hoskins �	��� Rossby�Haurwitz

waves with zonal wavenumbers less than or equal to � are commonly considered to

be stable while those greater than � are considered unstable� Recently in papers ����

����� the stability of the Rossby�Haurwitz wave for zonal wavenumber R � � has

been put into question� due to signi�cant di�erences between between various ��day

model simulations using di�erent numerical models� Also certain numerical models

provide solutions which disrupt both the basic symmetry of the U � H �elds about the

equator and also the antisymmetry of the V �eld� The numerical techniques we use

to evaluate the change in control variables rely on these symmetries� Fortunately�

the Met O�ce Semi�Lagrangian SWE model which we use preserves the symmetries

needed�

����� Real initial conditions

Case �c was used originally b



V DG�����cdf found in ftp � ��ftp�cgd�ucar�edu�pub�jet�shallow�nminit� with mean

depth ���





h��� � hl �����

v � �� �����

Since hq� � r��� � qh� to order O��h���� h�r����� the linearised potential vor�

ticity perturbation is only accurate provided hq� �� O�q�h���
h� h�r����� When h

is small� as for low Burger regimes� there is a greater opportunity for this criterion

to be violated� especially when q�� h� and �� involve relatively large departures from

respective linearisation states� This is why a latitudinally�varying linearisation state

is considered� as the departures from the linearisation states are going to be much

smaller compared to when u � �� v � � and h � H�

The e�ect of choosing latitudinally varying states that satisfy the PV method

gives linearisation states that are in geostrophic balance� A linearisation state that

satis�es a balance condition is necessary in Section ��� to identify correctly the

divergence tendency in the unbalanced variables�

	�	 Poisson Equation

The Poisson equation on the sphere is given by

�

a� cos� �

���

���
�

�

a� cos �

�

��

�
cos �

��

��



� F ��� ��� �����

where a is the radius of the sphere� � and � are the longitude and latitude� � is the

solution and F is a known forcing term�

The solution of the Poisson equation over a sphere is required for the calculation

of the streamfunction� velocity potential and the calculation of balanced height from

the streamfunction using the Linear Balance equation� The �rst step to solving

��



the Poisson equation is to apply discrete fast Fourier transforms �DFFTs� in the

longitudinal direction� This provides second order ordinary di�erential equations

�ODEs� for each zonal wavenumber� These ODEs are discretised using a �nite

volume approach that is equivalent to a 	nd order centered �nite di�erence method�

They are solved by applying a standard tri�diagonal solver� The solution to the

Poisson equation is obtained by applying an inverse fast Fourier transform at every

value of latitude considered� As the method of solution is similar to that given

by Moorthi ���� we present only the key implementational details and leave the

de�nition of the DFFT and its inverse to that paper�

Consider a regular latitude�longitude grid over a sphere� with the grid spacing

in the latitude and longitude denoted respectively by

%� �
	

N � �
and %� �

		

M
� ������

where N is the number of points in the co�latitudinal direction� indexed as i� going

from the north pole to the south pole� Similarly� M is the number of grid points in

the longitudinal direction� The longitudinal dimension to the grid points� denoted

by index j� are numbered positively in an anti�clockwise direction around the north

pole� We stipulate that M � 	n�n where m� n are integers� This choice makes the

Fourier transform and its inverse e�cient to use� We also set N to be odd� This

allows grid values with index i � N��
� to lie on the zero latitude�

We are solving the discrete problem on a sphere where � � ���
� �

�
� �� � � ��� 		�

and �� � are the latitude and the longitude� Periodic boundary conditions are

assumed for the longitude� The problem is scaled onto the surface 1i6Ne a sphere of



problem is known� the rescaling back onto a spherical Earth is performed� Thus�

for the following discussion� we consider the Poisson equation on a sphere of unit

radius�

Application of the DFFT gives a tridiagonal system to be solved for each wavenum�

ber considered� For i � 	� � � � � N � � and generic wavenumber k� the tridiagonal

system takes the form

�k�	� &�i
cos��i�

� ������

cos��i������&�i�� � &�i� � cos��i������&�i�� � &�i�

%��
� cos��i� &fi�

where &�i� &fi are the complex coe�cients of the solution and right�hand side for

latitude circle i� The grid and half grid values of the latitude are de�ned as�

�i �
	

	
� �i� ��%�� for i � �� � � � � N�

�i���� �
	

	
� �i� �

	
�%�� for i � �� � � � � N � �� ����	�

To complete the description of the tridiagonal system� we need equations for the

polar values� The equation at each pole is derived using the integral� �nite volume

approach as presented by Barros �	�� The equation is derived as follows�

Z ��

�

Z �

�

�

�
�
��

�

r�� cos �d�d� �
MX
l��

Z l
�

	l��

�

Z �

�

�

�
�
��

�

r�� cos �d�d�

�
MX
l��

Z l
�

	l��

�
�r��

�-7

�3Tj
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(�)Tj
ET
q
9.84 0 0 -0.48 384.936420 -36411cm
/Im1 Do
Q
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/T18 1 Tf
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������ where F is the scaled right�hand side value at the north pole PN with the

associated surface area VN � The surface area VN is the surface area of the spherical

cap above latitude � � �	 �%��
	�

We observe that in ������� a longitudinal mean is taken for both the grid points

at the north pole and for i � 	� Since &�� and &�� represent longitudinal means when

k � �� equation ������ can be rewritten as

� �

%��
&�� �

�

%��
&�� � &f����� ������

For non�zero values of k we stipulate Dirichlet boundary conditions e�� � ��

e�N � � and solve over the whole sphere� These boundary conditions enforce single

values at the poles and give tridiagonal systems of full rank�

When k � � additional conditions are needed for a unique solution� We consider

the problem when the right hand side is either symmetric or anti�symmetric about

the equator� When the right hand side is anti�symmetric about the equator there

is no di�culty in obtaining a solution� We solve over the upper hemisphere setting

a zero Dirichlet boundary condition at the equator� The solution is copied onto the

other hemisphere and a sign change is applied�

When k � � and the right hand side is symmetric about the equator a uniqueness

condition needs to be satis�ed� Such a problem occurs in this thesis veo



where Vi is given by

V� � 		a�
%�

	
cos � �

�
�

Vi � �	a�%� cos �i for i � 	� � � � �
N � �

	
�

VN��

�

� 		a�%� ������

The solution to the tri�diagonal sytem is then copied to the other hemisphere before

IDFFT
s are used to get the solution to the Poisson equation�

A few additional notes have to be made� The computational procedure for the

numerical solution of the Poisson equation is written in the Matlab language� It uses

subroutines from the FFTW library ������	�� that are well known and reliable� The

right hand side of the Poisson equation has to satisfy the compatibilit

el(f)6(edurey)- 2 0 0 0 0 0 . 1(solution1 3 0 0 0(of)- 1 3 5 6 0 0 0(get)- 1on�)]Txiste
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fi� �




 � a�� cos� � � a�K cosR � cosR� ������

and the vorticity and streamfunction are given by

� � 	� sin � �K sin � cosR �
�
R� � �R � 	

�
cosR�� ������

� � �	�
�
cos� � � 	 sin� �

�
�K cosR�� �

�
�R� �R cos� � � R� sin� �

�
cosR�� ������

The right hand side of LBE is

r � fr� � �	�R�K cosR�� � sin� � cosR�

�	�
h
	� sin� � � � cos� �

�K cosR�
�
R� cosR�� � sin� � � ��R � 	� cosR � sin� �

� cosR�� �
�i
� ������

We use a normalised L� vector norm to get estimates of the error between the

numerical approximations and the true analytic solutions� The error estimate � is

of the form

� �

�PN
i��

PM
j��

�
�ti	j � �ai	j

��� �

�

�PN
i��

PM
j��

�
�ti	j

��� �

�

������

for a generic true �eld �t and generic approximation �a�

The third and fourth columns of Table ��� show the L� error in �� � between

the analytic solutions ������� ������ and the the numerical approximations ���	���

���	�� applied to the analytic winds ������� ������ � The far right column of Table

��� shows the L� error between analytically de�ned r � fr� given by ������ and

the numerical approximated value given by the numerical discretisation ������ using

values de�ned by ������� In all three cases� a doubling of the resolution results in

��



Table ���� L� error between numerically and analytically de�ned �� � and r � fr�

using equation ������

M N L� error L� error L� error

in � in � in r � fr�

�� �� ������ ������ ������

�� �� ����	� ����	� ������

��	 �	�





where �ur� ud� is the rotational part of the wind and �vr� vd� is the divergent part�

Second order centered �nite di�erence approximations are used� where the �

and 
 �elds coincident with the height positions of the Arakawa C grid� giving wind

�elds consistent with the considered staggered grid�

ur�i� j� � ��

a

�i��	j � �i��	j � �i��	j�� � �i��	j��

�%�

vr�i� j� �
�

a cos �i� �

�

�i	j�� � �i	j�� � �i��	j�� � �i��	j��

�%�

ud�i� j� �
�

a cos �i


i	j�� � 
i	j
%�

vd�i� j� �
�

a


i	j � 
i��	j
%�

������

for i � �� � � � � N and j � �� � � � �M with ghost points �i� j� indexed as

�i� �� � �i�M�� �i�M � �� � �i� �� for i � �� � � � � N�

due to periodicity in longitudinal direction� In addition� for i � �� N � the stencil of

the discretisation goes over the pole such that ghosts point are�

��� j� � ��� j � M
	� if j �M
	� ��� j �M
	� if j � M
	�

�N � �� j� � �N� j � M
	� if j �M
	� �N� j �M
	� if j � M
	�

remembering that M is chosen to be an even integer� Since the spherical co�ordinate

system is degenerate at the poles the values of the u �eld at such points are set to

zero�

Table ��� shows the di�erence in the error between the original and the numeri�

cally approximated wind �elds using grid�points that do not reside at the pole� The

relative error decreases as the resolution is increased consistent with an accuracy

���







Chapter �

A potential vorticity control

variable transform


�� Introduction

In Chapter �� we derive balanced height and balanced rotational wind increments

from a potential vorticity increment� We show how these height and wind di�erences

are consistent with the process of geostrophic adjustment� In this chapter we present

the n





The assumption that the potential vorticity linearisation state is a function of

latitude only is a reasonable assumption when the data is coming from a global

shallow water model� Except for around the equator� the major contributor to the

absolute vorticity is the Coriolis parameter� which is a function of the latitude only�

Also the change in height �eld at any given latitude seems to vary between � ' and

	� ' of its average value�

This method has a number of advantages� Since the ODE
s to be solved for each

wavenumber are independent of each other� they can be solved in parallel� making

this method quite e�cient� Memory requirements are relatively low� Obtaining

correct boundary conditions at the poles is well documented in the literature �	��

The equation should be less sensitive to error as we are solving coupled systems of

ODEs� instead of a highly sensitive fourth order PDE�

Let us assume that the �elds hb� �b� hq� can be described by a discrete inverse

fast Fourier transform �DIFFT� in the longitudinal direction� such that

Q���� �� �
�

I

k�I��X
k��I��

eQ�k���eik�� �����

hb��� �� �
�

I

k�I��X
k��I��

ehk���eik��
�b��� �� �

�

I

k�I��X
k��I��

e�k���eik��

where I is an integer setting a truncation limit to the Fourier approximation� k is

the wavenumber� i is equal to i �
p�� and

Q� � hq� ���	�

eQ� � g
hq� � Q�r � iQ�i�

���



eh � hr � ihi�

e� � �r � i�i�

with hr� hi� �r� �i� Q�r� Q�i being real� Subsitution of ����� into ���	�� and ���	���

produces a coupled system of second order ODE
s in � to be solved for variables eh�

e�� The system for a generic value of k is given by

� k�

a� cos� �
��geh � f e�� �

�

a� cos �

�

��
�� cos �

�geh
��

� f cos �
� e�
��

� � � �����

� k�

a� cos� �
� e�� �

�

a� cos �

�

��
�cos �

� e�
��

�� qeh � eQ�� �����

To solve this system we obtain fQ� using a discrete fast Fourier transform �DFFT��

Once the system ����������� is solved� we use DIFFTs to recover the required �elds

hb� �b�

To solve ����� we need boundary conditions� As with the Poisson equation� the

coe�cients eh and e� are set to zero at the poles for all non�zero wavenumbers in

order to enforce single�values at these points�

For k � � we solve ����� over the sphere and enforce a zero value at the equator

for the anti�symmetric balanced streamfunction increment� A global uniqueness

condition is used of the form�

Z ���

�

����

�

eh��� cos �d� � �� �����

The global uniqueness condition applied to e��

Z ���

�

����

�

e���� cos �d� � �� �����

is automatically satis�ed due to the imposed anti�symmetric nature of the right

hand side�

���





the control volume approach is used� both equations are multiplied by the surface

area of the segment Vi



where Qi � 	%��Qi
g and Ri � 	�a�%� cos �i eQ



The systems of ODE
s for wavenumbers k



which �x the ( and H �elds to the addition of a constant� Additional boundary

conditions are applied to both ( and H� The value of ( must be zero at the equator

as the balanced streamfunction is anti�symmetric about this value and is assumed

to be a continuous smooth function� This additional piece of information is achieved

by removing the e(N��

�

from the system considered� by extracting the N � �th row

and column of the system� A consequence of doing this� is that it removes one of

the equations that need to be satis�ed at the equator� speci�cally

��(

��� i�N��

�

� �� ���	��

and is resolved by adding the coupled equations at the equator together to give

��
�H
��� i�N��

�

�
�(

�� i�N��

�

�
��(

��� i�N��

�

� �� ���		�

The simplicity of the equations ���	��� ���		� is due to q � q� � � at this value

of latitude and that the spherical scaling in the equations approximate those on a

Cartesian co�ordinate system�

As stated previously� an antisymmetric solution in �b enforces a symmetric so�

lution in hb and there is no need to enforce �hb



The coupled system is solved using 	nd order centered di�erences and �th order

centered di�erences for the equation at the equator� If 	nd order di�erences are used

throughout� spurious linear solutions are obtained about the equator� The coupled

system is described by

S�	�x� � S�	�x� � b��

for i � 	



At the south pole

SN	N �

�



a 	nd order di�erence approximation of H term in equation ���		�� In contrast� the

��� 	� entries contain coe�cients of a fourth order centred discretisation of the (

terms for equation ���		��

The boundary condition ( � � is enforced by the submatrices A� where

AN��

�
	N��

�

�

�BBB	
cos �N��

�
��
�


�
�

� �


CCCA AN��

�
	N��

�

�

�BBB	
cos �N��

�
�
�
�


�
�

� �


CCCA � ������


�	 Overall Procedure to obtain balanced � un�



at grid position i� j for the dth dataset� Since the Arawaka C grid is staggered� the

position of vi will be %�
	 away from hi and ui



state is subtracted from the perturbations de�ned by the other datasets to give

increments and are denoted using a dash�

The change in control variables needs Q� and q in order to formulate the ap�

propriate right hand side and variable coe�cient needed to solve ����	�� ������� We

apply the DFFT to Q� to produce the complex coe�cients eQ�� We rescale the right

hand side and q to give 	�a�cos�i%� eQ�� Q and solve the second order ODE for all

wavenumbers using the discretisation presented in Section ���� We apply the DIFFT

algorithm to e(i and fHi and rescale to give hb and �b�

Three control variables are either chosen from or derived from �b� �ub� hb� hub

and the velocity potential 
� The calculation of the velocity potential of the wind

increments �u�� v�� is described comprehensively in Section ��� and Section ����	�

The unbalanced height hub is de�ned as the di�erence between h� and hb�


�
 Validation Tests

We �rst apply a � dimensional problem to test this coupled system� The base states

are chosen to be

h �
�

g

� � �

q � 	g� sin � ������

with the scaled potential vorticity increment being�

q� � �	g� sin �

a�
� g��� sin �

�
cos 	� � �

�

�
������

���



so that the analytic balanced streamfunction �b and balanced height are given by

�b � g sin �

hb � �� cos 	�

	
�
�

�
� ������

This is a good problem which examines the longitudinally independent part of a

general solution to the 	 dimensional problem� for the Fourier coe�cents relating to

k � ��

In Figure ��� we show the error pro�le between the analytic solutions and the

experimental results� when �N � ��� ��� �	�� across latitudes� The error in the

balanced height is slightly larger at the equator than elsewhere� This is expected

due to the need to solve equation ���		� with �nite di�erencing ������� In contrast�

the error in the streamfunction is the most at the poles� The decrease in error with

increasing resolution moves to 	nd order accuracy as the resolution is increased� as

shown in Tables ���� ��	� Table ��� shows the decrease in error in the balanced

height and streamfunction� where the error for each M considered� is taken as the

L� vector norm of the error at each latitudinal point� divided by M � The order of

accuracy is given in Table ��	�

The  coupled system
 method is tested using full height and wind �elds� h�v�

which satisfy a Rossby Haurwitz wave ������� ������ with parameters R � �� K �

� � ����� � ����s�� and h� � ����m� The linearisation states are de�ned to be

about a resting state v � � and a constant height �eld h � ����m� The base

state perturbation is also de�ned to be stationary with a constant height �eld hbase

chosen such that the surface integral of this quantity is equal to the surface integral

of h�h� Thus the full increment is de�ned by R � �� K � � � ����������s�� and

���



Figure ���� Error in balanced streamfunction and height across various latitudes

and resolutions
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Figure ��	� Full height increment �left� and full streamfunction increment �right� in

a Rossby Haurwitz increment K � ����� � ����s��� h� � �hbase and R � � with

linearisation and base states h � ���� m� u � �� v � �

0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5



Figure ���� F



Figure ���� Error between balanced height increments derived from LBE using �b

from Figure ��� and from the coupled system for M��� and N���
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Table ���� �top�L� error in hb� divided by M�N �	��	� under di�erent resolutions�

�bottom� order of convergence of hb under di�erent resolutions

N M L� di�erence in

balanced height using

coupled system

�� �� 	��� � ����

�� �� ��	� � ����

�	� ��	 ��	� � ����

N M

�� � �� �� � �� ����

�	� � �� ��	 � �� 	���

and the di�erence between this �eld and Q� obtained by applying a second order

discrete Laplacian operator to �b and subtracting qhb� We see that at this resolution

the computed error is approximately a hundredth of the value of the original �eld�

Table ��� shows a similar decrease in the di�erence of these �elds with increasing

grid resolution� In this table� the discrete integral L� norm is used� whose form is

given by

Q�

err �
q

�
i�NX
i��

j�MX
j��

�
ViQ�

diff i	j

M

��

� ����	�

where Vi is de�ned in equation ������ Q�

diff is the di�erence between the the full

increment and balanced increment evaluations of Q� at grid position i� j�

�	�



Figure ���� �left� Q� as calculated from the full increments� �right� error in Q��

derived from full increments and from balanced increments




�� The inverse transform

In this section we describe the opposite transformation from old and new control

variables to the associated wind and height �elds� In Chapter �� various changes

into and out of control variables are discussed� The changes out of control variables

into height and wind �elds use at some point variants of a simple Helmholtz de�

composition ������� The numerical details of the decomposition are already giv





Table ���� Discrete L� integral error in U and V under di�erent resolutions

N M L� error in U L� error in V

�� �� 	��� � ���� ���	 � ����

�� �� ���� � ���� ���� � ����

�	� ��	 ���� � ���� ���� � ����

N M Order accuracy in U Order accuracy in V

�� � �� �� � �� 	��� 	���

�	� � �� ��	 � �� 	��� 	���

�	�





for both LB and PV methods� We use divergence tendency as an indicator as to

how  balanced
 the balanced control variables are� A small value indicates good

performance� Two experiments are performed� one with the balanced Rossby Hau�

rwitz wave and the other with unbalanced increments� The experiment with the

Rossby�Haurwitz wave shows slightly worse results in the low Burger number� The

experiment using unbalanced increments shows that the PV method produces the

lowest divergence tendency when applied to the original Burger regime from which

the increments originate� In this regime it is doing better than the LB method�

However the PV method is performing slightly worse in low Burger regimes� This

may be due to the method trying to approximate full unbalanced height increments�

��� Experiment �� Relative Contribution of Height

and Absolute Vorticity to Potential Vorticity

We want to show the linearised potential vorticity perturbation captures the dy�

namical �ow over di�erent regimes�

In Section ��� we show that the scaled height

� � �
h�

h
�����

and scaled vorticity

� �
��

�
���	�

contribute to the scaled potential vorticity

� �
q�

q
�����

�	�



in such a way that is dependent on the Burger number ����� � for a high Burger

regime� � contributes most towards �� while for low Burger regimes the � is the

dominant part of �� Since the theory is carried out on an f �plane� it is prudent to

perform an experiment to see whether the theory is satis�ed in practice within a

more general setting where the Coriolis parameter that varies with latitude�



The full velocit



Burger number is larger than � for all latitudes considered� Thus we identify� the

wave with parameters h� � ��m� K � � � ����� � ���� s�� as representing a low

Burger regime� the wave with parameters h� � ���� m� K � � � ����� � ���� s��

representing a high Burger regime� and the rest in between representing a mixture

of high and low Burger regimes dependent on latitude�



Figure ���� Burger values at di�erent latitudes and h� when K � ����� � ���� s��

�left�� K � ����� � ���� s�� �right�
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contribution � is similar in size to the scaled potential vorticity perturbation ��

Conversely



Example �� h� � ���� m
 � � K � ����� � ���� s�� �Figure 
���

In this high Burger regime the height �eld for the most part keeps the shape

of its initial condition� the whole wav



����� � ���� s���



perturbations� Experiment � also concurs with this �nding� In Experiment 	 we

have shown that for small Burger numbers� the height �elds contribute more strongly

to the potential vorticity� For Burger numbers larger than �� the greater contribution

to the potential vorticity comes from the absolute vorticity� an example of which

occurs when h� � ���� m� In this region the potential vorticity mirrors the absolute

vorticity �eld� However there is a loss in detail in these regions� When vortices

are produced in the mid�latitudes� they involve sharp changes in velocity and a

substantial decrease in the characteristic length scale� The smaller characteristic

length scale results in the formation of a high Burger number regime� Again� the

absolute vorticity resembles the potential vorticity more accurately than the height�

However� the potential vorticity �eld is less detailed than the absolute vorticity�

Hence the theory developed in Section ��� for the f �plane appears to hold on the

sphere�

��� Comparsion of balanced with full �elds at high

and low Burger number

In order to investigate whether the coupled system of equations provides a bet�

ter representation of balanced and unbalanced control variables it is necessary to



Figure ���� Relative contributions of the absolute vorticity � and height � to the

potential vorticity � for K � ����� � ���� s�� with di�erent latitudes and h��

Sensitivity is de�ned by the magnitude of the scaled perturbation in question
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Figure ���� Potential vorticity� Absolute vorticity and height �elds when K � ������

����s�� and h� � �� m after 	 days



height perturbations contribute more to the potential vorticity perturbations� If

the coupled system is behaving properly� then in high Burger regimes the stream�

function � should be similar to the balanced streamfunction �b� Similarly� at

low Burger regimes the balanced height should resemble the full height �eld� A

Rossby Haurwitz wave ������� ������� ������ �RH wave� is used as an initial con�

dition to a global SWE �	����� �	���� model� The de�ning parameters are R � ��

K � � � �����e��s��� h� � ����m� Such values produce a high Burger regime

across the whole globe� with the Burger number� Bu � ���� at ����� Bu � ���� at

���� and Bu � ���� at ����� The global SWE model was run for 	� hrs� with a

timestep of ��� hr at medium spatial resolution with grid spacing !� � 	
��� and

!� � 	
�� � The coupled balanced method was used to produce balanced height

and streamfunction by applying the procedure detailed in Section ��� and excluding

the �nal calculation of increments� Figure ��� compares the balanced streamfunction

to the respective full �eld over the area ��� � �	
	��	
	��� �� � ��� 	
	����

Figure ���� Balanced � �left� and full � �right� for RH wave propagated � day at

high Burger number� for �� � �	
	��	
	����� � ��� 	
	�� �scale denotes grid points�





Figure ����� Balanced height �left� and full height �right� for RH wave propagated

� day at low Burger number� with �� � �	
	��	
	��� �� � ��� 	
	�� �scale denotes

grid points�
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vary between ���m and ��m� It is also clear from the �gure that there is great

variability in the �ow with waves of both short and long wavelengths present�

If the initialisation is perfect then the increments consist of just the unbalanced

�ow� A perfect set of control variables would apportion the �ow into the t



Figure ����� �Top� U and V wind increments produced using test case INI�C�

�bottom right� height increment using test case INI�C� �bottom left� U �eld lin�

earisation state

���



somewhat surprising� The balanced winds from the two methods are dissimilar�

The balanced winds from the PV method are much smaller� This is because the

scaled potential vorticity incrementhq� does not resemble the full vorticity increment

� �� There is cancellation between � � and qh as they are of the small magnitude

throughout the �elds� This makes the scaled linearised potential vorticity increments

hq� a factor of ten smaller than the vorticity increment � �� This also shows that the

PV method is performing better than the LB method at producing balanced �elds�

To check that the balanced wind produced by the PV method moves towards the

balanced wind from the LB method when Burger number is increased� we choose a

mean height of ���km� We see that in Figure ���� the balanced winds from the two

methods are quantitively similar� the U component of the balanced wind is positive

about the pole and swaps direction in the mid�latitudes� In the low Burger regime

the balanced wind increments produced by the PV method are more pronounced

due to the balanced height increment approaching the full height increment� This

is readily seen in Figures ���� and �����

The theory presented in Sections ���� ��� concur with these �ndings� However

they presume that for low Burger regimes the full height increments represents the

balance in the system and that the vorticity is the key balanced variable when the

Burger number is large� However in this experiment both the full height and wind

increments are unbalanced� When the PV method is at very high Burger number�

the scaled potential vorticity increment represents the full unbalanced vorticity in�

crement� Conversely� at low Burger regimes the scaled potential vorticity increment

resembles the full unbalanced height increment�

It is interesting to note that around the equator� the LB and PV methods are

���



not producing similar results even though a high Burger regime is always present



Similar �ndings are found in the balanced correction to the departure from linear

balance� The L� vector norm is also used to compare the di�erent increments� We

describe this correction in terms of a streamfunction and see that the LB method

gives a value of ��� � ��� m�s�� � Again the PV method has a smaller value of

	��� ��	 m�s�� at high Burger number� In contrast� at low Burger number the PV

method produces a larger value of ���� ��� m�s���

This section supports much of the theory given in Sections ���� ���� The experi�

ments with RH wave have shown that the balanced height and wind produced by the

PV method vary with Burger number as expected� The application of unbalanced

increments to both methods shows the importance in how increments are generated�

The PV method at low Burger number produces  balanced
 increments that are sim�

ilar to the full increments� even when the full increments are  unbalanced
� We have

shown that at high Burger number the PV method is performing better than the LB

method� with there being far less balanced �ow found in the control variables� At

low Burger number the balanced divergence obtained from the PV and LB method

are of the same order of magnitude�

��	 Divergence Tendency

The divergence tendency is a good measure with which to compare di�erent sets of

control variables� Ideally� we wish the divergence tendency of a set of variables to

be small� The �rst series of experiments we present considers only the divergence

tendency of the balanced



in magnitude to the present version�

We choose extreme examples of the RH wave at high and low Burger regimes

to provide the full �elds� The high Burger regime is determined by choosing the

de�ning parameters to be �h� � ���� m� K � � � ����� � ���� s��� and giving

a Burger number of approximately ���� at � � ���� The low Burger regime uses

�h� � � m� K � � � ���������� s��� and has Bu � ���� at � � ���� The RH wave

is by de�nition in Charney balance and has a divergence tendency of zero� When

the LB and PV methods are applied to the RH wave� the divergence tendency from

the balanced variables is no longer zero but given by ������� ������� As the winds of

the RH wave are rotational the LB method considers the full wind perturbation as

balanced� The divergence tendency in this case is just equal to minus the divergence

of the advective term of the shallow water momentum equations�

We apply the PV method to calculate perturbations about a resting state and

a constant height H using the full height and winds from the high Burger regime

which we describe in Section ��� and equations ���	�� ������ The corresponding low

Burger regime is produced by only changing the value of the constant height H�

The height and wind perturbations are kept the same as in the high Burger regime�

The value of H in the low Burger regime is chosen such that the sum of the height

perturbation and H gives a value of zero about the poles� This is done so that

the full height �eld is non�negative� Also keeping the perturbations and the other

linearisation states the same allows comparisons to be made easily�

In the high Burger regime the balanced wind perturbations from the PV method

approximate the full perturbations� Since the divergence tendency is determined

solely from the balanced winds� we expect the divergence tendencies to be similar�

���



This is clearly seen in Figure ���� where the L� norm of the divergence tendencies

about each latitude ring is given� The results from the LB and PV methods at high

Burger number are denoted by circles and crosses� respectively�

In the low Burger regime the divergence tendency from the LB method remains

unchanged as the rotational wind perturbation is not varied with Burger number�

The results from the PV method do change� The norm of the divergence tenden�

cies of the PV method are noticably worse around the equator in between � � ��

and � � ���� This may be due to a possible inconsistency between the linearised

potential vorticity perturbation and its associated balance condition� This could be

recti�ed by using a balance condition which is more applicable to the tropics� In the

mid�latitudes the results from the PV method are mixed� There are regions within

the mid�latitudes in which the PV method is performing better� Likewise there are

regions where LB method is superior� Overall the PV method may be perform�

ing slightly worse than the LB method� However the di�erences between the two

methods are small with the div



So far we have considered only the divergence tendency of balanced variables

from LB and PV methods when the initial �eld �eld is in Charney balance� We wish

to consider increments derived from subtracting the uninitialised �elds in data set

V DG�����cdf from the respective initialised �elds and calculate overall divergence

tendencies for high and low Burger number� In particular we present the L� norm

of the linearised divergence tendency increments for not only the balanced control

variables but also the balanced corrections to the control variables� The linearised

divergence tendencies are as de�ned in equations �������������� ������� ����	�� They

are approximated using second order centered �nite di�erences� The remaining

experimental details are the same as in Section ����

Table ��� shows the L� vector norm of the linearised divergence tendencies in�

crement of the balanced control variable increments and balanced corrections to

unbalanced control variables� We see that the PV method at high Burger number

performs the best for balanced control variable increments and balanced corrections

to unbalanced control variables� If the PV method is set at even higher Burger

numbers� the divergence tendencies would move to those given by the LB method�

For low Burger number the PV method gives the divergence tendencies that are

signi�cantly worse� This is due to the method approximating the full unbalanced

height increments�

In conclusion� we see that a regime dependent set of control variables given by

the PV method gives overall results that are promising� Sections ��	� ��	�� show the

relationship between scaled potential vorticity� height and absolute vorticity pertur�

bations at di�erent Burger regimes for a Rossby�Haurwitz wave� Section ��� has

shown that the PV method behaves as expected



Table ���� L� v



used� in high Burger regimes it is approximating the solution given by using the LB

method and at low Burger number the balanced height is determined by the height

perturbation� When unbalanced increments are used in a high Burger regime the

PV method performs better than the LB method� We then perform two experiments

considering the divergence tendencies of the control variables� The experiment with

the RH wave shows slightly worse results in the low Burger number� The experi�

ment using unbalanced increments� shows that the PV method produces the lowest

divergence tendency when applied to the original Burger regime from which the

increments originate� The PV method is better in this situation at capturing the

unbalanced part of the �ow� However the PV method works slightly worse than

expected when the same increments are introduced into di�erent regime� However

it still remains to be seen whether the PV method will perform better with height

and wind increments that are mainly balanced and also have a small unbalanced

part�

��	



Figure ���	� H �eld linearisation states for low Burger regime �left� and high Burger

regime �right�

���



Figure ����� �Top left� Height increment produced using test case INI�C � �Top

right� balanced height increment produced by LB method� �Bottom left� Balanced

height increment using PV method at low Bu� �Bottom right� Balanced height

increment using PV method at high Bu

���



Figure ����� Balanced wind increments produced by using the LB and PV methods

at high Bu �mean height H � ��km�

���



Figure ����� Balanced wind increments produced by using the LB and PV methods



Figure ����� Balanced wind increments produced by using the LB and PV methods

at very hi Bu �mean height H � ���km�� � latitudinally varying linearisation states�



Figure ����� L� norm of divergence tendencies RH waves at high and low Bu using

PV and LB methods
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Chapter �

Conclusion

Throughout this thesis we have considered the use of potential vorticity as a control

variable� To this end in Chapter � we have given a clear mathematical description

of balance� A number of issues have come to light that tend to get forgotten�

Setting the divergence tendency to zero eliminates the unbalanced inertio�gravity

waves only when we consider the f �plane SWEs linearised about a resting state�

F





method will approximate a height constrained set of control variables described by

������ and �������

The experimen



��� Further Work

More experiments need to be performed in order to be certain that the potential

vorticity�based set of control variables is better than the current method� One way

would be to apply the method to height and wind increments generated using the

NMC method ������� ��	��� from a multi�layered barotropic model approximating

the atmosphere� As the full increments should be predominantly balanced� the

PV method should produce smaller divergence tendencies in the balanced control

variable than the LB method�

Obtaining the balanced control variable of the PV method is essentially a  poor

man
s
 version of the �st order direct potential vorticity inverter described by McIn�

tyre ����� Instead of using a Charney balance condition� the LBE is used instead� It

would be interesting to use the Charney balance condition instead and compare the

results� This should be not di�cult to achieve as it would need minor changes to

be applied to the code used to produce balanced corrections to the departure from

linear balance� A linearisation of the Charney balance equation about latitudinally

varying states would be used� The coupled system to be solved on a hemisphere is

�r �
�
f � �

�
r�b � k � r �

�
r��bv

�
�gr�hb �r� �v � �k�r�b�� � ��

r��b � qhb � r��� � qh�� �����

where the boundary conditions are the same as those used in the PV method�

So far we have considered the control variable transformations on a hemisphere�

To consider the control variable transformations in a more realistic context we need

to generalise the work for �ows whose variables are neither symmetric nor antisym�

��	



metric about the equator� If we use the same technique as before� we would need

four equations and four variables� In addition to solving for only symmetric height

and an antisymmetric streamfunction we would need to evaluate an antisymmetric

height �eld and a symmetric streamfunction� In principle this can be achieved by

solving the system

r � fr�a � gr�hs � � ���	�

r��a � qahs � qsha � r���a � qah
�

s � qsh
�

a �����

r � fr�s � gr�ha � � �����

�qahs �r��s � qsha � r���s � qsh
�

s � qah
�

a �����

simultaneously� where �a and ha are the balanced height and streamfunction parts

which are antisymmetric about the equator� �s





divergence tendency and the second order partial time derivative of the balanced

divergence to zero� This method gives a time invariant balanced divergence� In the

third order direct inversion the second and third order partial time derivatives of

the balanced divergence are set to zero� This would allow a time varying balanced

divergence to be obtained� The use of this third order inversion would accurately

represent key dynamical features present in the tropics� It would also be the limit

in which potential vorticity inversion is useful �����

���



References

��� F� Baer� The spectral balance equation� Tellus� 	���������� �����

�	� S�R�M� Barros� Multigrid methods for two� and three�dimensional Poisson�type

equations on the sphere� J� Comput� Phys�� �	��������� �����

��� J�R� Bates� Y� Li� A� Brandt� S�F� McCormick� and Ruge� A global shallow�

water numerical model based on the semi�lagrangian adv



��� J� Charney� The use of the primitive equations of motion in numerical predic�



	����

���� M� Frigo and S�G� Johnson� FFTW �http���www��tw�org��

�	�� M� Frigo and S�G� Johnson� FFTW� An adaptive software architecture for the

FFT� Proceedings of the International Conference on Acoustic� Speech� and

Signal Processing� ������������ �����

�	�� P�R� Gent� Balanced models in isentropic coordinates and the shallow water

equations� TellusA� ��A��������� �����

�		� A� E� Gill� Atmosphere�Ocean Press� Academic Press� ���	�

�	�� Haltiner and Williams� Numerical Prediction and Dynamical Meteorology� Wi�

ley� 	 edition� �����

�	�� Haurwitz� Compendium of Meteorology� chapter The Perturbation Equations

of the Atmosphere� pages �������� AMS� �����

�	�� R� Heikes and D�A�Randall� The shallow water equations on a spherical

geodesic grid� Technical Report �	�� Department of Atmospheric Science� �����

�	�� J�R Holton� An Introduction to Dynamic Meteorology� Academic Press Inc��

second edition� �����

�	�� B�J� Hoskins� Stability of the Rossby�Haurwitz wave� Quart� J� R� Met� Soc��

����	������ �����



�	�� N�B� Ingleby� The statistical structure of forecast errors and its representation

in The Met� O�ce Global Variational Data Assimilation Scheme� Quart� J� R�

Met� Soc�� ���A�	���			� 	����

���� R� Jacob� J� Hack� and D� Williamson� Solutions to the shallow water test set

using the spectral transform method� Technical report� NCAR� �����

���� A�C� Lorenc� Analysis methods for numerical weather predition� Quart� J� R�

Met� Soc�� �������������� �����

��	� A�C� Lorenc� S�B� Ballard� R�S� Bell� N�B� Ingleby� P�L� Andrews� D�M� Barker�



���� P



���� C G Rossby and collaborators� Relation between variations in the intensity

of the zonal circulation of the atmosphere and the displacements of the semi�

permanent centers of action� Journal of Marine Research� 	������� �����

���� I� Roulstone and M�J� Sewell� The mathematical structure of theories of semi�

geostrophic type� Phil� Trans� R� Soc� Lond�� A����	����	���� �����

���� A�L� Schoenstadt� The e�ect of spatial discretisation on the steady state and

transient behaviour of a dispersive wave equation� J� Comp� Physics� pages

�������� �����

���� J�G� Smith and A�J�Duncan� Elementary Statistics and Applications� Funda�

mentals of the theory of statistics� McGraw�Hill� �����

��	� P�N� Swarztrauber� The direct solution of the discrete Poisson equation on the

surface of a sphere� J� Comp� Phys�� �����

���� C� Temperton� Implicit normal mode initialisation� Mon� Wea� Rev�� ���������



���� Eric W� Weisstein� CRC Concise Encyclopedia of Mathematics� CRC Press�

�����

���� A� White� A view of the equations of meteorological dynamics and various

approximations� Technical report� The Met� O�ce� 	����

���� D�L� Williamson and J�B� Drake� A standard test set for numerical approxi�

mations to the shallow water equations in spherical geometry� J� Comp� Phys��

��	�	���		�� ���	�

���� A� Winn�Nielsen� On geostrophic adjustment on the sphere� Beit� Phys� At�

mos�� ���	���	��� �����

��	




