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Abstract

Variational data assimilation (VAR) involves a minimisation of a cost functional
with respect to a set of variables known as control variables. Within numerical
weather prediction (NWP) VAR brings together observations and information from
numerical models representing the atmosphere in a consistent way for a forecast to
be made. It is considered desirable to define a set of control variables which separate
the balanced and unbalanced parts of the flow. The current set of control variables
used at the UK Met. Office represents the balanced control variable in terms of a

streamfunction increment. Although this method is a good appro



Both the current Met Office method and the potential-vorticity-based method are
implemented and tested numerically. The current method produces similar results
to the potential vorticity method within high Burger regimes. This is due to the
linearised potential vorticity increment approximating the vorticity in such regimes.
Unlike the current method, however, the potential vorticity method is dependent on
the Burger number and in low Burger regimes includes a substantial contribution
from the height increment. The experiments suggest that the potential-vorticity-
based method may be able to capture the balanced part of the flow better in low

Burger regimes where the height increment is the balanced variable.
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Introduction

Mankind has attempted to predict the w






much potential energy present is that the possible motions which the atmosphere
can exhibit are constrained. Large scale features are forced to move slowly with

the quantities involved being in a sense ‘balanced” with respect to eac



as a quantity summarising dynamical information that is present within a flow [28]
such as frontogenesis, cyclogenesis and key features in general circulation. It has
the distinctive property that it is conserved for inviscid, isentropic flow and as such
can be used to track parcels of air. It also uses both rotational wind and pressure
in its evaluation and describes better the balanced part of the flow in regions where
variations in pressure are important.

In Chapter 2 the shallow water equations (SWEs) are derived with corresponding
linearisations needed for an analytical examination needed of the system’s dynamic
properties. In Chapter 3 we examine the dynamical properties of the atmosphere
within the context of the shallow water equations. In particular the concept of
balance is systematically described. Within this chapter we show a number of issues
already known within the literature but which tend to be forgotten. We show that
the divergence tendency, as defined in Section 3.7, in general does not always filter
the unbalanced aspects of the flow. Additional conditions need to be enforced. We
show how a simple potential vorticity inversion model takes contributions from the
height and the rotational wind in a way dependent on the flow regime.

In Chapter 4 we systematically present and discuss the choice of variables in
which the data assimilation is performed. These variables are called control variables.
We provide a framework in which different sets of control variables are discussed.
Such a systematic appraisal of control variables is not present within the current
literature. We take the method used presently by the UK Met. Office as an example
and discuss the strength and weaknesses of the current change of control variables.
The properties of an ‘idealised’ set of control variables are considered from a dynam-

ical perspective using the dynamical background presented in the previous chapter.



We present various formulations of control variables based on potential vorticity,
discussing their respective advantages and disadvantages and how they vary in dif-
ferent regimes. We finally develop a means of approximating the balanced parts of
the unbalanced variables.

Chapter 5 gives the numerical techniques used to calculate the present choice of
control variables used at the UK Met. Office. These techniques are used in exper-
iments in Chapter 7. The chapter also presents a Fourier-based technique which is
used in Chapter 6 to develop a means of obtaining the potential vorticity-based set
of control variables. To the author’s knowledge, the coupled system of equations
has not been previously solved in this way. In both chapters validatory tests are
performed. In Chapter 7, we present various experiments to compare potential vor-
ticity based set of control variables with current method, which illustrate the theory
given in previous chapters. Finally in Chapter 8 we summarise the findings and

detail possible avenues for future work.
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Shallow Water Equations

.1 Introduction

We first derive the shallow water equations (SWEs) on a rotating sphere from New-
ton’s Second Law. This is necessary so as to give an accurate representation of
the approximations made to obtain the equations, so that the results may be com-
pared to other studies which use different approximations to the equations of mo-
tion on a rotating sphere. The discussion draws mainly on the treatments given
by Pedlosky [43] and Randall [45] and includes the derivation of the incompressible
three-dimensional Euler equations as a stepping stone to obtaining the shallow water
equations.

We then present properties of the shallow water equations on a rotating sphere,
linearised about two linearisation states: a resting state and a general time-invariant
state. The former state is useful due to its idyllic simplicity while the latter state
gives a template to derive other SWEs about more restrictive linearisations states

necessary for the development of Chapters 3 and 6.



In addition, versions of the SWEs which approximate the spherical geometry
are introduced. These versions, such as the -plane approximation, are useful as a

means of making analytical studies of the SWEs more tractable.

. Derivation of Shallow ater Equations on a

Rotating Sphere from Newton’s Second Law

Newton’s Second Law of Motion states that the mass of an object multiplied by
its absolute acceleration is equal to the total actual force acting on the object in a
non-rotating co-ordinate system. When written for a fluid continuum, it is expressed
in terms of density p, a three-dimensional wind u, pressure p, the body force pVo
and non-conservative force F. In particular, ¢ is the potential field with which
conservative body forces are represented and F is the frictional force. Newton’s

Second Law takes the form

D
por =~V oo+ F (u), (2.1)
where
D 0

is called the total material derivative with respect to time.

As stated, this law applies only on a stationary frame of reference. We wish
to consider the momentum equation (2.1) for an observer in a uniformly rotating
co-ordinate frame. We let the subscript I, represent a the non-rotating co-ordinate
frame of reference and R are rotating one. We also denote the velocity under a

rotating reference frame, up, as the relative velocity and the velocity under a non-






where A, B, C are generic vectors. Thus,

Ax(Axr) = x(Qxry)

= (QI'J_)Q_ |Q|2I'J_

Qe [?
B va il B ki
2

= 0

(2.7)

since () and r, are orthogonal.
We now incorporate the centripetal acceleration with the other conservative
terms in (2.1) by defining the apparent gravitational potential,

|Q X I'J_|2

0 =0+ —

(2.8)

As the Coriolis acceleration 2€) x up cannot be further simplified, the momentum

equation in a rotating co-ordinate frame is given by

D
p(D—ltl—l—Q(qu) =—-Vp+pVO+ F (2.9)

where all up are written as u.

So far we have not been specific as to the three-dimensional space we are con-
sidering. We define VO to define the apparent vertical direction k*, which is per-
pendicular to an oblately spheroidal geopotential surface. However since the cen-
tripetal acceleration is very small compared to the constant body force Vo, we let
VO = V¢ = gk, where k is a unit vector pointing radially away from the centre of
a sphere and ¢ is the acceleration due to gravity. The neglection of the centripetal
acceleration allows the oblate spheroidal surface to be approximated by a spheri-
cal surface with unit vectors i,j denoting longitude and latitude directions. The

spherical latitude/longitude co-ordinate system is shown in Figure 2.1, where any



Figure 2.1: A sphere rotating at a constant angular velocity of magnitude €. The di-

agram also shows the direction of the orthonormal unit vectors (i, j, k) for a spherical

latitude 6, longitude A co-ordinate system

Q

Polar axis ] °2

- ) @ =

44

non-polar point in the three-dimensional space is either represented by Ai + 0j + rk

or more simply as (A, 8,7). The three-dimensional wind in terms of its components

is given by u = (ui + vj + wk). Although the co-ordinate system is degenerate at

the poles, it is the natural choice for problems involving a spherical geometry.

Then, ignoring the effects of friction, the momentum equation becomes

D
p(—u—l—Zﬂxu):

Dt

—Vp — pgk. (2.10)

For the following derivation of the SWEs we need the mass conservation equation.

This equation is written as:

dp

ot

+TDN("THT T+



We now simplify (2.10), (2.11) to get the shallow water equations on a rotating

sphere. Let us write the pressure and density as



Let h(A,0,t) be the height at the free surface and hs(A, #) represent the bottom

topography



The momentum equation for the shallow water equations is derived by looking
at the Coriolis, pressure gradient and the material derivative terms separately. Since

we are considering a material derivative term on a surface, the material derivative

Dv
Dt~

term is simply As in equations (2.17), (2.18), the assumption of no vertical
shear requires that there is no vertical advection to the horizontal momentum.
The pressure gradient term on the horizontal surface is obtained by integrating

the hydrostatic equation (2.13) from some some arbitrary depth r within the fluid

to the free surface h, giving

p(AN 0, h,t) —p(A,0,rt)=—gp(h —r), (2.23)

with boundary conditions

p(A, 0, h,t) = ps and  p(A, 0,1 t) =gp(h—1r)+ py, (2.24)

where p; is the pressure at the free surface.
In equation (2.12) p is given in terms of a linearisation state p and perturbation
p~. Integration of the hydrostatic relation splits the pressure similarly, with
p = —gpr and p” = gph + py, (2.25)
giving
Vp" = gpVh. (2.26)

The k independen



Figure 2.2: A diagram representing the decomposition of vector € into j and k

components.
202
J
k
2cos 2Qsinb
0
0

2@ xu = (2Qcosfj + 2Qsin 0k) x u
= (2Qwcosf — 2Qusin )1 + (2Qusin ) j + 2Qu cos Ok

= fk x v + additional terms. (2.27)

The additional terms are ignored; the k term is discarded because it violates the
hydrostatic relation and does not lie on the spherical surface. The 20w cos 1 is
removed for consistent energy conservation to occur. This approximation is called
the traditional approximation [17].

We now use (2.26) write the horizontal momentum equation as

D
D—: + fk xv=—gVh. (2.28)

The advective part of the material derivative is not scalar invariant. The vec-
tor transformation (v-V)v = V[(v-v) /2] + (V x v) X v is used to rewrite the

momentum equation as

aa_‘tf+v[(v.v)/2]+(vxv)><v—|—fk><v = —gVh

14



:>a—V—I—V[(V-V)/Q]—I—((Vxv)-k)kxv—l—kav = —gVh

ot
:»aa—:+V[(v-v)/2]+(C+f



rearranged, to give

Qu  _u Ou wlu oty g
8t+acosea)\+aa(9_( +aan Jou




a;t Fre 40 g, (2.40)

a 00
Joh* 1 ou* 1 9 »
ot +4 (acos@ o\ + acos@%(cos bv )) =0 (2.41)

which are the shallow water equations linearised about a resting state and no bottom
topography. The linearisation state for the height, H, has to be a constant, for the
momentum equations to be consistent with the mass conservation equation.

We may rewrite the momentum equations in terms of vorticity and divergence.
By applying the k component of the curl to the momentum equations we obtain the
vorticity equation. It is given by

ac
i

20
+ fC" 4+ —cosbv™ =0, (2.42)
a

where the relative vorticity ¢* is defined to be

1 Jv* 1 g
acosf O\ acoseae(

*

cos fu™). (2.43)

In vector notation, the vorticity equation is written as

ac
i

+V - (fv) =0, (2.44)

where the divergence operator V-, and all subsequent spatial differential operators,
lie on a spherical surface. The vector v* denotes the wind on this surface and is
equal to (u*,v*).

Application of the divergence operator to the momentum equations gives

06*
ot

— fC* 4 2Qcos Ou™ = —gV2h*, (2.45)

where the divergence of the wind ¢



The divergence equation can be written in terms of two scalar fields called the

stream function * and velocity potential x*, which are defined through the rela-

tions:

Vi = k- (V x v,
v?X* — V'V*,

v = kx Vi 4+ VY7,

and has the form

06*

otV (k x Vx*) = V- (fVY*) = —gV?h",

where

1 8_f8x*
acosf 00 IX

Vf-(kxVy7) =

2.3.1 Potential Vorticity

We now consider the evolution of the potential vorticity ¢

(2.47)
(2.48)

(2.49)

(2.50)

(2.51)



times the linearised mass conservation equation (2.41), giving

Dge 1 ol 1, * o
DtH(ﬁaéth)—l—V-(fv)fV-v)O (2.54)

v ( f)\X5Tf!‘TD!‘Tc‘TIf"TD!is“Tf!apparenﬁ

and
aq*
ol

+(v*-V)



tracting the linearisation state relations (2.57) and ignoring the quadratic perturbed

terms. We obtain

aa‘; +(VV)VH(VV)V+ fkx vt = —gVh* (2.58)
oh* - o

2.4.1 Vorticity and Divergence Equations

The vorticity equation and divergence equations are just generalisations of (2.42)

and (2.46). The vorticity equation is

ac
i

+V-((C+ ) v +Cv) = 0, (2.60)

while the divergence equation is

(



The potential vorticity increment ¢* associated with this linearisation state is

q*_ (" _E *\2 p* * )2
o =+ O((h)*, 17V < v, (V % v7)°). (2.64)

where (*, ( are defined b







06* 06* vt  ou* O h*  O*h*
ot (fo+ﬁy)( v u)+ﬂu*+g( ¥ ) — 02.69)

ot dr oz dy 0x? 0y?

oh* LOh” du*  OJv*
H = 0(2.70
ot T 8:1;+ (8x+8y> 02.70)

These equations in streamfunction and velocity potential formulation are
d L0 9 9 ov*  dx*

— — - - 2.71
(at+u ax>v¢ + o+ By) VX" + 5 o T oy ) 0, (2.71)

(8



.6 hy Shallow ater Equations?



As shown in the derivation in Section 2.2, the SWEs assume there is no vertical
shear and that the implied vertical velocity is given by equation (2.17). Such an
approximation assumes that the fluid is shallow with the range of heights considered
being small compared to wavelengths in the horizontal direction. It also expects the
fluid to have weak vertical motion. The lack of vertical shear is the most serious
limitation of the SWEs as an atmospheric model.

The SWEs are not a viable atmospheric model as it has far too many limitations
to its behaviour. Even so, the SWEs on a rotating sphere have many dynamical
mechanisms which are revelent to the more general problem. The spherical geometry
has in itself made interesting features with quite specialised boundary conditions.
The effects of a rotating sphere are considered by a variable Coriolis term f. The
SWEs exhibit non-trivial solutions due their nonlinearity in the advective term and
have slow and fast aspects to the flow which behave very differently from each
other. These properties are examined in the following chapter, where the concepts

of balance and geostrophic adjustment are introduced.
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hapter 3

Dynamical ehaviour of the SWEs

3.1 Introduction

In Chapter 2 we derived the SWEs. We now present the dynamical heart of the
SWEs. In particular we present the concepts of characteristic scales and regimes in
Section 3.2, wave solutions, balance in Section 3.3 and geostrophic adjustment in
Section 3.6. We show that divergence tendency, as defined in Section 3.7, in general
does not always filter the ‘noise’ aspects of the flow: additional conditions also
need to be established. We present an example of a wave ‘in balance’ - the Rossby—
Haurwitz wave in Section 3.4. We examine the departure from linear balance and the
divergence and show that dynamically, for a simplified problem, they are propagated
by a linear combination of the eigenmodes of the dynamical system. We then finally
look at in Section 3.9 the behaviour of perturbations satisfying a linear balance

relationship and linearised potential vorticity under different Burger regimes.
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3. Characteristic Scales, Regimes: Rossby and

Burger numbers

Atmospheric dynamics typically involve an interaction of waves with various wave-
lengths and amplitudes. A technique to identify the relative importance of one term
in a set of equations over another is to non-dimensionalise the problem and assume
that the flow is characterised by a typical velocity U and typical height H. We
assume that the height and winds are harmonic and the flow is identified by a single
typical wavelength A\. The characteristic horizontal length scale L is then equal to
L = )X/(2x) [16]. The corresponding time-scale for the height and wind fields is set
to L/U.

Using the scaling defined above the non-dimensional quantities, denoted by ~,

are

v = Uv,
h = Hh,
(A0,1) = (LX,L@“%{) (3.1)

where h, v are the height and wind fields on the spherical surface, defined at the end
of Section 2.2. The latitude, longitude co-ordinates are given by A, 8 and ¢ denotes
the time.

Introducing equations (3.1) into the momentum equation part of the full non-

linear SWE on the rotating sphere (2.29) gives

2 s
Uf(aa;+v[(v.v)/2]+(vxv)xi’f)+ka><i’f = —%Vh- (3.2)

where, for this section, the vector operators are applied to scaled (5\, é, tv)

27



Dividing equation (3.2) by fU gives

U (o
FL\ ot

—I-V[(i“f-i“f)/Q]—l—(in’f)xi“f)
+k xv = —fU—LVh,

:_(—+V[(v-v)/2]+(vw)w)

tkxv = - (];(]2[[{/2) (%L) Vh, (3.3)

which by setting the non-dimensional numbers




magnitude than the velocity ¥. The consequences of this are examined in Sections
3.6 and 3.9.

The three-dimensional atmosphere tends to have large horizontal length scales
and relatively small vertical length scales and can be approximated by being consid-
ered as a number of layers of fluid on top of each other. A fluid with this property
is said to be stably stratified. The Burger number describes the relative importance
of the effects of stratification and rotation. When this number is larger than one the
layers are stable with respect to changes in the interfaces between them ; for Burger
number much smaller than one the rotation dominates the flow.

The Burger number is described in numerous ways dependent on the source. Ped-
losky [43] defines for two-dimensional horizontal flow the non-dimensional number
as gH/(f*L?), the square of the quantity described here. Haltiner et al. [23] de-
fines the Burger number as the ratio between the the Rossby radius of deformation,
defined as

1, =Y (3.9)

and the characteristic length scale L, which is identical to the definition given in
equation (3.5).
As described in Chapter 2, the SWEs are defined on a two-dimensional surface

and consist of a single layer of fluid. A non-trivial interface is considered whet‘!"T'c!Uw”igpeWfl






obtain

Dr e lr s 0V s o) (e ?
[(”1 (8tv Y —I_ﬂ@x) IR AT TR

Oor v 9oy 59\ gu| e _
—gH(atV +ut =V +ﬁa$>v h* = 0.(3.11)

We assume that the height perturbations have a harmonic structure
L = ilei(klw+k2y—at) (312)

where & is a complex coefficient associated with the both wavenumbers, & and ks,
and the angular frequency o. The symbol ¢ denotes the imaginary number satisfying

i* = —1. Introducing (3.12) into (3.11), produces a cubic polynomial in o

[ng‘* g (K2 =t K2 4 ﬁkl)z] (—io +utik)
—gH (i0K* — utik, K* + Biky) K* = 0
N [ng4 — oy (oK =t K2 + ﬁkl)Q] (0 = uth)

+gH (0K* — uthy K

11



[ A dispersion relation for the -plane can be obtained by retaining the 3 terms in
(3.13), and solving the resulting cubic using Vieta’s subsitution [57]. We leave such
details as they serve as a distraction to the discussion given.]

The smallest root is approximated by setting the tracer ny to zero. In this

situation, the cubic polynomial (3.13) reduces to a linear equation in o, where

g3k Bk

77 72. 3.15
gHK? + f§ K+ L (319)

o= kut—

The dispersion relation (3.15) defines the angular frequency of what is identified as
a Rossby wave.

Setting the tracer ny to zero is equivalent to setting the total material time deriva-
tive term and ﬂg—;f of the divergence equation (2.76) to zero. As observed in [55],
the condition that is necessary and sufficient for the elimination of inertio-gravity
waves of the form (3.14) requires (0 K? — uT ki K* + ﬂkl)Q = 0. However it is nec-
essary for the existence of solutions of the type (3.15) that (0 K? — ut ki K? + Bk )
does not vanish, justifying the need to set the tracer to zero. This is called the
generalised filtering approrimation. The remaining part of the divergence equa-

tion is given by the linear balance equation,
V- foVip = gV2h. (3.16)

The main balance relation used in this thesis resembles (3.16). However, we generally
consider a spherical domain and allow the Coriolis parameter f to vary with latitude.
The resulting equation (3.37) is described in Section 3.5 and in Chapter 4.

When the inertio-gravity waves are no longer present, the fluid is considered to be
in balance. This occurs when the dispersion relations related to the two largest roots
of the cubic equation (3.13) are not exhibited by the flow in question; the motion

32



of the fluid only is described by the dispersion relation defined by the smallest root
of the frequency equation. Models which propagate only Rossby waves are called
balanced models. There are a number of techniques to approximate balance and
produce balanced models, obtained from using semi-geostrophic or quasi-geostrophic
theories [21]. They all share the property that provided we consider linearised SWEs
with constant coefficients, the dispersion relation defined by the smallest root of the
SWESs cubic frequency equation is equivalent to the linear dispersion relation of the
respective balanced model.

Typically, in a mid-latitude region the characteristic height H is approximately
equal to 10 km with the inertio-gravity waves and Rossby waves having speeds

around 300ms™! and 10ms™!

, respectively. This shows the large separation in
timescales between the two types within the mid-latitudes. Pairs of inertio-gravity
waves with same angular frequency and amplitude move in opposite directions to
each other. The Rossby wave propagates westwards which is in the direction per-
pendicular to the potential vorticity gradient relative to the mean flow.

Given the low angular frequency of the Rossby wave, the wave phase speed is
expected to be slow. This is true for linearised equations. However, when the nonlin-
ear advective term (v - V) v is present, slow Rossby waves interact with each other
to give waves that are slower or faster. Instead of there being a clear distinction
between the timescales of fast inertio-gravity waves and slow Rossby waves, the non-
linear interactions produce Rossby waves with a wide range of angular frequencies.
The amplitude and energy present within these waves diminish with increased angu-

lar frequency. However in a non-linear description of balanced flow all Rossby waves

need to be considered. Potential vorticity is a good variable to choose in this respect
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compared to the magnitude of the height field H itself. We now present a derivation
of a Rossby-Haurwitz wave, similar to the treatment given by Dutton [16].
It the waves are assumed to propagate only in the = direction, we can let the

solutions take the form

u = gehr=oti (3.20)
v o= pelhirmoi (3.21)
h = helhe=odi (3.22)
and substitute (3.20)-(3.22) into (3.17)-(3.19), to obtain
i (=0 + kout) i — (fo+ By)o +ighh = 0 (3.23)

. . . 0h
i (=0 + k) o+ (fo+ By)i+ g—



where (', (' are constants which are fixed by appropriate boundary conditions. If
the boundary conditions are such that the domain considered is a channel of width

D for which || is at a maximum at y = 0 and zeros at y = +D/2, then

CQ — 0
(ﬁ . —kf) g = %Z for 1=41,43,... . (3.29)
ut — =
kl Lo

The dispersion relation is obtained by rearranging (3.29) into
Bk
5
7 5
The relationship between the Rossby wave within the SWEs and the Rossby—

o= kut—

(3.30)

Haurwitz wave under two-dimensional Euler equations are readily seen by letting

H — oo in (3.15) and D — o0



Solving this Monge-Ampere equation provides the appropriate balanced height. It
is important to note that the Rossby—Haurwitz wave in SWEs context does not
produce a balanced flow that stays balanced when propagated in time. At best,
under a high Burger regime, the Rossby-Haurwitz wave produces SWEs solutions
over 12 hours with relatively little divergence [6] which are close to the balanced
flow given by the two-dimensional Euler equations. As such, it is used as an initial
solution which produces solutions over a 12hrs — 24hrs timescale that is close to

balance.

3.4.1 The Rossby—Haurwitz wave on a Sphere

In practice, throughout this thesis the initial height and wind field relating to a
Rossby-Haurwitz wave is defined over a sphere [44]. This wave is characterised by

parameters a, g, , R, h



where the variables A(6), B(6), C(8) are given by

1
AG) = %(QQ + w) cos® f + 1[&'2 cos?O[(R + 1) cos® 0

—I—(QR2 —R-2)— 2R? cos™? 9],

B 20+ w)K R 5
B(#) = R+ 0(R12) cos O[(R°+ 2R + 2)

—(R+ 1)2 cos? 9],

C) = i[s’? cos’TO[(R 4 1) cos® 0 — (R 4 2)]. (3.36)

3.5 Linear Balance Equation

In Section 3.3 we derived the linear balance equation (LBE) by applying the general
filtering approximation to SWEs defined on a Cartesian mid-latitude 3-plane (2.73),

(2.75) and (2.76). More generally LBE is defined over the sphere, where
gV*h =V - fV =0 (3.37)

and 1, the streamfunction is defined by (2.47). In subsequent chapters this balance
relation is compared with another which conserves potential vorticity. Consequently,
the properties of this balance condition need to be described.

The LBE is viewed in more than one way. Burger [7] considers the LBE as
a simple generalisation of geostrophic balance over the whole sphere for waves of
planetary length scale I ~ a . By applying scaling arguments with this length scale
to the divergence equation (2.61) about mid-latitudes, the terms in (3.37) are found
to be ten times larger than the other terms in the divergence equation.

It is also a linear non-divergent mass-wind law that naturally takes into account
the latitudinal variation of the Coriolis parameter and is useful when length scales
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L =~ 10°m are considered [12]. However, balanced divergent parts to a wind do
exist for the SWEs on a sphere [49] and are ‘invisible’ to