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Abstract

The Ensemble Kalman Filter (EnKF) is a data assimilation method de-

signed to provide estimates of the state of a system by blending information

from a model of the system with observations. It maintains an ensemble of

state estimates from which a single best state estimate and an assessment

of estimation error may be calculated. Compared to more established meth-

ods it offers advantages of reduced computational cost, better handling of

nonlinearity, and greater ease of implementation.

This dissertation starts by reviewing different formulations of the EnKF,

covering stochastic and semi-deterministic variants. Two formulations are

selected for implementation, and the adaptation of their algorithms for bet-

ter numerical behaviour is described. Next, as a subject for experiments, a

simple mechanical system is described that is of interest to meteorologists

as an illustration of the problem of initialisation. Experimental results are

presented that show some unexpected features of the implemented filters,

including ensemble statistics that are inconsistent with the actual error. Ex-

planations of these features are provided and point to a potential flaw in

the general framework for semi-deterministic formulations of the EnKF, af-

fecting some but not all such formulations. This flaw appears to have been

overlooked in the literature.
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9



List of Abbreviations

EAKF Ensemble Adjustment Kalman Filter

EKF Extended Kalman Filter

EnKF Ensemble Kalman Filter

ETKF Ensemble Transform Kalman Filter

KF Kalman Filter

NWP Numerical Weather Prediction

SVD Singular Value Decomposition

10



Chapter 1

Introduction

1.1 Background

Data assimilation addresses the problem of incorporating observations into a

model of some system. For example, the system could be the atmosphere of

the Earth, the model could be a weather forecasting model, and the observa-

tions could be measurements made by surface stations, radiosondes, weather

radars, and satellites. In this case the problem is to combine the state of

the atmosphere as predicted by an earlier forecast with recent observational

data to produce an updated estimate of the state of the atmosphere (known

as the analysis) that can be used as the starting point for a new forecast.

For a detailed overview of data assimilation in a meteorological context see

Kalnay [15] or Swinbank et al [22].

The data assimilation techniques of 3D-Var and 4D-Var are currently pop-

ular at national meteorology centres. These are variational techniques that

use numerical methods to minimise a cost function that is a weighted measure

of the distances from the analysis to the forecast and the observations. The

weightings in the cost function are intended to reflect the relative uncertain-

ties in different components of the forecast and observations. The resulting

analysis thus represents a combination of the twin information sources of

forecast and observation, with greater weight being given to more certain in-

formation. The difference between 3D-Var and 4D-Var is that 3D-Var treats
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so small that it is statistically unrepresentative, then the extra work needed

to maintain an ensemble of state estimates is more that offset by the work

saved through not maintaining a separate covariance matrix. The EnKF also

does not use tangent linear operators, which eases implementation and may

lead to a better handling of nonlinearity.

The EnKF was originally presented in Evensen [7]. An important sub-

sequent development was the recognition by Burgers et al [4] (and indepen-

dently by Houtekamer and Mitchell [11]) of the need to use an ensemble of

pseudo-random observation perturbations to obtain the right statistics from

the analysis ensemble. Deterministic methods for forming an analysis ensem-

ble with the right statistics have also been presented. The former approach

to the EnKF is comprehensively reviewed in Evensen [8], whilst variants of

the latter approach are placed in a uniform framework by Tippett et al [23].

These variants include the Ensemble Transform Kalman Filter (ETKF) of

Bishop et al [3] and the Ensemble Adjustment Kalman Filter (EAKF) of

Anderson [2].

1.2 Goals

The goals of this dissertation are: to review the principal formulations of

the EnKF; to select one or more formulations for implementation and to

implement them; to perform experiments with the implemented filters using

a simple mechanical system (see below) as a test case and searching for

interesting phenomena; and to interpret the experimental results and draw

any important conclusions.

The mechanical system to be used as a test case in the experiments is

the two-dimensional swinging spring. This simple system is of interest to

meteorologists because it possesses interacting motions with two distinct

timescales, analogous to the Rossby and gravity waves of the atmosphere.

It may be used as an illustration of the problem of initialisation (see Chap-

ter 4).
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1.3 Principal Results

The ETKF and EAKF are selected for implementation in Chapter 3. It

is found to be advantageous to reformulate the raw algorithms reviewed in

Chapter 2 to give algorithms that are analytically equivalent but numerically

better behaved.

Experiments with the ETKF and the swinging spring in Chapter 5 show

a collapse in the number of distinct ensemble members after assimilating

each observation. This collapse is explained in Section 6.2 and points to

a limited usefulness of the ETKF for low-dimensional systems such as the

swinging spring, although the high-dimensional systems typical of NWP are

unaffected.

The most important result of the dissertation is that there is a poten-

tial flaw in the general framework for semi-deterministic formulations of the

EnKF as presented in Tippett et al [23]. This flaw may lead some formu-



In Chapter 4, as a subject for experiments, the two-dimensional swinging

spring is introduced. This simple mechanical system is of interest to me-

teorologists as an illustration of the problem of initialisation. The chapter

discusses the concept of initialisation and its importance for NWP.

Chapter 5 presents the results of experiments using the filter implemen-

tations described in Chapter 3 and the swinging spring system of Chapter 4.

The experiments reveal some unexpected features in the ETKF, including

ensemble statistics that are inconsistent with the actual error.

Chapter 6 provides explanations of the features observed in Chapter 5.

The explanation of the inconsistent statistics points to a potential flaw in the

general framework for semi-deterministic formulations of the EnKF, affect-

ing some but not all such formulations. The ETKF is affected (at least in

some circumstances), but the EAKF is not. This flaw appears to have been

overlooked in the literature.

The dissertation concludes in Chapter 7 with a review of the preceding

chapters and some suggestions for further work.
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We shall denote the dimension of the state space of the system by n and

vectors in this space by x, usually with various arguments, subscripts, and

superscripts. In particular the true state of the system at time tk will be

denoted by xt(tk) and the forecast and analysis at this time by xf (tk) and

xa(tk) respectively. We shall denote the dimension of observation space by

m and the observation vector at time tk by y



to prominence in aerospace applications and are popular for uses such as

tracking airborne objects with radar. For these applicatio



error covariance matrix at time tk−1 forward to time tk using the equations

xf (tk) = Mxa(tk−1) (2.3)

Pf(tk) = MPa(tk−1)M
T + Q. (2.4)

The analysis step at time tk starts by calculating the Kalman gain matrix

K(tk) = Pf(tk)HT (HPf(tk)HT + R)−1. (2.5)

The observation y(tk) is then assimilated using

xa(tk) = xf (tk) + K(tk)(y(tk) − Hxf (tk)) (2.6)

Pa(tk) = (I − K(tk)H)Pf(tk). (2.7)

Good points about the Kalman Filter include that the state update equa-

tions (2.3) and (2.6) preserve unbiasedness; that the error covariance update

equations (2.4) and (2.7) are exact; and that the filter is optimal in the sense

that the analysis defined by (2.6) minimises the cost function

J (x) = (x



to become comparable with the number of state variables, which will make

matters worse.

2.2.2 The Extended Kalman Filter

The Extended Kalman Filter (EKF) is an attempt to extend the Kalman

Filter to nonlinear dynamical systems and nonlinear observations. The linear

models of dynamics (2.1) and observations (2.2) are replaced by the nonlinear

variants

xt(tk) = M(xt(tk−1)) + η(tk−1) (2.9)

y(tk) = H(xt(tk)) + ε(tk) (2.10)

where the matrices M and H have been replaced by potentially nonlinear

functions M and H . Note the convention of using bold upright type for linear

operators and standard italic type for corresponding nonlinear operators.



(2.8) (with Hx replaced by H(x)). The EKF also does nothing to address

the problem of huge covariance matrices. In addition it is labour-intensive

to implement because of the need to derive and implement tangent linear

models of the dynamics and observations.

2.3 The Ensemble Kalman Filter

The EKF represents nonlinearity using derivatives that only take into ac-

count behaviour in an infinitesimal neighbourhood of a point. The Ensemble

Kalman Filter (EnKF) is an attempt to represent nonlinearity by using some-

thing more spread out. The details of this approach will be discussed in the

following sections, but the key ideas are to use an ensemble (statistical sam-

ple) of state estimates instead of a single state estimate; to calculate the

error covariance matrix from this ensemble instead of maintaining a separate

covariance matrix; and to use this calculated covariance matrix to calculate

a common Kalman gain that is used to update each ensemble member in the

analysis step. The hope is that the use of an ensemble will provide a better

representation of nonlinearity than is achieved by the EKF.



of a large organisation at their disposal.



The ensemble covariance matrix may then be expressed as

Pe = X′X′T . (2.13)

2.3.2 The Forecast Step

At its simplest the EnKF assumes the same underlying nonlinear stochastic



ance matrix may be crude, Evensen [8, Section 4.1] recommends integrating

the initial ensemble over a time interval containing a few characteristic time



which implies that the ensemble covariance updates as

Pa
e = (I − KeH)Pf

e (I − KeH)T .

Compared to the KF covariance update (2.7) this is too small by a factor of

(I − KeH)T .

To obtain the desired statistics from the analysis ensemble we define an

observation ensemble

yi = y + εi (2.14)

where εi is pseudo-random noise drawn from a population with mean zero

and covariance



which implies

P



We now note that if we constrain the random vectors εi in the way dis-

cussed above so that X′fY′T = 0, then it follows (on multiplying by H) that

Y′fY′T = 0 and hence that the matrix we must invert can be written as

Y′f(Y′f)T + Y′Y′T = (Y′f + Y′)(Y′f + Y′)T . (2.18)

We can make this substitution in the formula for the Ke even if we are

not constraining the εi, justifying it on the grounds that as long as the

εi are independent of the forecast observation perturbations y
f
i − yf , the

product Y′fY′T tends to zero as the ensemble size increases and hence the

new formula for Ke is as good an approximation to the true Kalman gain K

as the old one. Now we take the singular value decomposition (SVD) of the

m × N matrix that is multiplied by its transpose on the right hand side of

(2.18):

Y′f + Y′ = UΣVT

where Σ is the p × p diagonal matrix of nonzero singular values (p being the

rank of the matrix) and U and



With the inverse in the calculation of Ke taken care of, we consider how

the analysis step may be completed without having to compute and store

excessively large matrices. We confine ourselves to systems sized as in the

NWP example in which p ≤ N � m ≤ n. We assume that the ensemble

and ensemble perturbation matrices have been computed and stored for the



operation counts are not the whole story, especially with modern computer

architectures. Memory access may be the main bottleneck, which is why the

size of matrices stored is important. On parallel machines the minimisation

of communication between processors will be the dominant consideration.

2.3.4 Nonlinear Observation Operators

Evensen [8, Section 4.5] presents the following technique for extending the

preceding formulation of the analysis step to nonlinear observation operators

of the type in (2.10). We augment the state vector with a diagnostic variable

that is the predicted observation vector:

x̂ =


 x

H(x)




and define a linear observation operator on augmented state space by

Ĥ


 x

y


 = y.

We then carry out the analysis step in augmented state space using x̂



is

y
f
i = Ĥ



observation. This stochastic element exposes the method to sampling errors.



go back to using the population version of the observation error covariance

matrix R instead of the ensemble version Re = Y′Y′T . Thus we take

Ke = X′f(Y′f)T (Y′f(Y′f)T + R)−1.

The matrix inverted in this expression is the ensemble version of the in-

novations covariance matrix. It appears frequently in what follows, so we

introduce a special notation for it:

S = Y′f(Y′f)T + R. (2.25)

We now consider the update of the ensemble perturbations. In the case of

a linear observation operator we would like the ensemble covariance matrix

to update like the KF covariance update (2.7). Thus in this case we require

X′a(X′a)T = Pa
e

= (I − KeH)Pf
e

= (I − X′f(Y′f)TS−1H)X′f(X′f )T

= X′f(I − (Y′f)TS−1Y′f)(X′f)T .

The first and last terms in this chain of equations make no mention of the

linear operator H, so we impose their equality as a condition in the case of





time instead of all at once. This is a standard technique of Kalman filtering

and has the advantage that it reduces the inversion of a large matrix to the

inversion of a sequence of scalars. The procedure is justified because it is

in effect a sequence of standard assimilation cycles with zero-length forecast

steps. What is not obvious is that the result is the same as processing all

observations at once. For a proof in the context of the standard KF see

Dance [5, Appendix A].

The assumption of uncorrelated observation error components is the basis

of the serial method of Tippett et al



the future effect on error covariance of alternative strategies for deploying

observational resources. The ETKF exploits the identity

I − (Y′f)TS−



Section 2.3.4. The first stage in finding A is to compute the eigenvalue

decomposition

Pf
e = FG2FT (2.33)

where G is the p × p diagonal matrix of positive square roots of nonzero

eigenvalues and F is an n × p column-orthogonal matrix. We next perform

the eigenvalue decomposition

(HFG)TR−1HFG = ŨΛ̃ŨT

where Λ̃ is p × p diagonal and Ũ is p × p orthogonal. We then define

A = FGŨ(I + Λ̃)−
1

2G−1FT .e =
: ( : HFG

U

T R− 1 R−

FF8144e.282.269(3)-2.2(d)1.95228(e)3.565526 0 Td
[(i)0[(1)4.9(o26]TJ
/R17 11.95523(e)3.56659]TJ
/R17 11.93352 Tf
84 0 Td
[(F)4.54826 43qh)1.(3�)4()-2.26064(o)-2.26266(l)-2.2586(r)-026269(l)-430.637(m)2.92434826 3430269(3)-2.278.231[(U)11.9482(18(s)h15615(e)62.26269(l)0.974098(5(o)4.7482(a)-2p2.26064(.)-872.288(T643272(t)-0-357.782(n)1.95228(e)3.56552(m)2.915(4685y34(a)-2..69395]TJ
/R60 7.9701913.68 
7.L
T*[(e[(1)4.28236]TJ
/R17 11.9552 Tf
4.68 -4.92002 Td
[(H)-3.67176(F)34056(o)-2.26269(n)1.95024]TJ
120.36 -32.7601 Td
[(()-0.645315]TJ
/R17 11.9552 Tf
4.55999 0 Td
[(H)-3.67176(F)34.6612(G)0.955719]TJ
/R13 11.9552 Tf
26 66599159 Td
[d
[(F)4.54783]T7 11.9552 Tf
-96)0.9766599159 Td
[)-3.96991]TJ
/R13 11.9552 Tf
8.8.
28.6799 0
[(()-0.645315]TJ
/R17 11.9552 Tf
4.R34 7.97011 Tf)-3.6766599159 Td
[1(G)0.955719]TJ
/R60 7.97011 Tf
1866599159 Td
[)4.28236]TJ
/R17 11.9552 Tf
4.80066599159 Td
[d
[(F)4.54783]T76 7.97011 Tf
4.56066599159 Td
[
[(()-0.6J
/R17 11.9552 Tf
-0.2356 66599159 Td
[d
[(F)4.54783]T7 11.9552 Tf
--7840017614(3)-2.26)-3.96991]TJ
/R13 11.9552 Tf
8.8.
28.6799 0
[(()-0.6426064(n)1.9482]TJ
/R17 11.9552.9.6 -4.92 Td
[



which is precisely the property of Y′f that was used to establish (2.31).

Therefore we may apply this identity to HFG to obtain

Pa
e = FG(I



This framework encompasses the direct method (Section 2.4.2, not as pre-

cisely defined as the other methods), the serial method (Section 2.4.3, lim-

ited to uncorrelated observations), the ETKF (Section 2.4.4), and the EAKF

(Section 2.4.5). It was pointed out that there is a potential flaw in some of

these methods; this is a major topic of Chapters 5 and 6.

The next chapter discusses the selection of an EnKF algorithm for im-

plementation. It also describes the problems encountered in implementing

the raw algorithms as presented in this chapter and how they may be refor-

mulated to give algorithms that are analytically equivalent but numerically

better behaved.
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Chapter 3

Implementing an Ensemble

Kalman Filter

This chapter is about the implementation of an EnKF. It describes some

problems that were encountered, the solutions that were adopted, and some

further improvements to the algorithms of Chapter 2. The EnKF is intended

for experiments with the low-dimensional mechanical system described in

Chapter 4, although it is capable of being used with other systems as well.

Of the formulations of the EnKF in Chapter 2, it was initially decided to im-

plement the ETKF. A deterministic formulation of the analysis step has the

advantage over a stochastic formulation of eliminating one source of sampling

error. Compared to the other deterministic formulations in Section 2.4, the

ETKF has the advantage over the direct method of a more clearly defined

algorithm, the advantage over the serial method of not requiring uncorre-



3.1 Implementing the ETKF

The initial implementation of the ETKF closely followed the algorithm of

Section 2.4.4. This created a problem with the eigenvalue decomposition

(Y′f)TR−1Y′f = UΛUT (3.1)

which produced eigenvalues and eigenvectors having significant imaginary

parts. The reason for this is the lack of associativity in machine multipli-

cation, leading to the ostensibly symmetric matrix (Y′f)TR−1Y′f becoming

asymmetric when evaluated as ((Y′f)TR−1)Y′f . This may be avoided by

introducing the scaled forecast observation ensemble perturbation matrix

Ŷf = R− 1

2 Y′f (3.2)

and writing

(Y′f)TR−1Y′f = (Ŷf)T Ŷf . (3.3)

As long as machine multiplication is commutative this way of evaluating

(Y′f)TR−1Y′f leads to a symmetric matrix with real eigenvalues and eigen-

vectors. Note that finding R− 1

2 is easy in the common case of diagonal R.

Indeed, it is often R
1

2 (the diagonal matrix of observation error standard

deviations) that is the primary given quantity rather than R, which makes

evaluating R− 1

2 easier still.

Regardless of the matter of symmetry, it is in any case advantageous

to scale observation space quantities such as Y′f by R− 1

2 before processing

them further. Such scaling has the effect of normalising observations that

are possibly of disparate physical quantities with different error standard

deviations so that they are dimensionless with standard deviation one. This

is useful because it prevents information becoming lost due (say) to rounding

errors. The advisability of such a scaling in the context of the stochastic

formulation of the EnKF is mentioned in Evensen [8, Section 4.3.2]. A scaled

observation operator is also part of the original presentation of the ETKF

in Bishop et al [3] (although there it is not explicitly exploited to ensure

40



symmetry as above).

With Ŷf available, further improvements to the ETKF algorithm become

possible. There is no need to perform the multiplication in (3.3) with conse-

quent loss of accuracy and then perform the eigenvalue decomposition (3.1).

Instead, we may start with the SVD

(Ŷf)T = UΣVT (3.4)

where U is N × N , Σ is N × m, and V is m × m. The matrix U is the same

as the matrix of eigenvectors in (3.1). The eigenvalues may be found from

Λ = ΣΣT .

The ensemble perturbation matrix is then updated by

X′a = X′fT

= X′fU(I + Λ)−
1

2 . (3.5)

We shall see shortly that it is advantageous not to evaluate T, but instead

to evaluate X′a by building up the product (3.5) from left to right.

The SVD (3.4) may also be exploited in the update of the ensemble mean.

The ensemble Kalman gain may be written as

Ke = X′f(Y′f)T (Y′f(Y′f)T + R)−1

= X′f(Ŷf)T (Ŷf(Ŷf)T + I)−1R− 1

2

= X′fUΣ(ΣTΣ + I)−1VTR− 1

2 .

Note that the expensive inversion of Y′f(Y′f)T + R has been reduced to the

inversion of the diagonal matrix ΣTΣ+I. Instead of computing Ke and then

computing the ensemble mean update using

xa = xf + Ke(y − yf)

41



it is better to first build up the product

z = Σ(ΣTΣ + I)−



However, if we compute the EAKF analysis ensemble perturbation matrix as

X′a = FGŨ(I + Λ̃)−
1

2 WT (3.7)

then there is no need to evaluate A. It may be verified that X′a so calculated

is unchanged if we allow G to include zero singular values whilst remaining

square, in which case p is an upper bound for the rank of X′f instead of

being equal to it as before. In implementing the EAKF we use the SVD

in preference to the eigenvalue decomposition to avoid the potential loss of

accuracy in forming Pf
e , and we allow the diagonal elements of G to be zero.

A benefit of the latter relaxation is that if we have an SVD routine that is

not guaranteed to eliminate all zero singular values from G, then we may

still use it in the EAKF if the consequent ease of implementation is judged

to be sufficient trade-off for the loss of computational efficiency that comes

from not keeping matrices as small as possible.

Turning now to the application of the techniques of Section 3.1 to the

EAKF, the analogue of the observation space scaling (3.2) is the m × p

matrix

Ỹf = R− 1

2 HFG.



For the update of the ensemble mean we may write the ensemble Kalman

gain as

Ke = Pf
eH

T (HPf
eH

T + R)−1

= FG2FTHT (HFG2FT HT + R)−1

= FG(Ỹf)T (Ỹf(Ỹf)T + I)−1R− 1

2

= FGŨΣ̃(Σ̃T Σ̃ + I)−1ṼTR− 1

2

where the inverted matrix is again diagonal. As in the ETKF we do not store

Ke. Instead we first build up the product

z = Σ̃(Σ̃T Σ̃ + I)−1ṼTR− 1

2 (y − yf)

from right to left. Once )IfU=U



Chapter 4

The Swinging Spring and

Initialisation

Chapter 5 presents the results of experiments that illustra
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�
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Figure 4.1: Coordinates and forces for the swinging spring. Coordinates are
radius r and angle θ. Bob has mass m. Gravitational force is mg; elastic
force is k(r − `0) where k is spring elasticity and `0 its unstretched length.

4.2 The Swinging Spring

Consider a heavy bob of mass m suspended from a fixed point in a uniform

gravitational field of acceleration g by a light spring of unstretched length `0

and elasticity k. The bob is constrained to move in a vertical plane. The

spring may stretch along its length but is unable to bend. (See Figure 4.1.)

We locate the bob using polar coordinates (r, θ) where r is measured from

the point of suspension and θ is measured from the downward vertical. The

corresponding generalised momenta are the radial momentum pr = mṙ and

the angular momentum pθ = mr2θ̇. The Hamiltonian of the system is the

sum of the kinetic and potential energies:

H =
1

2m

(
p2

r +
p2

θ

r2

)
+

1

2
k(r − `0)

2 − mgr cos θ.

From this we may derive the equations of motion

θ̇ =
pθ

mr2
(4.1)

ṗθ = −mgr sin θ (4.2)

ṙ =
pr

m
(4.3)
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analysed. It is always possible that the discrete system may not have the





tion between the variables leads to the motion in the slow variables exciting

high frequency oscillations in the fast variables as shown in Figure 4.4. Nev-

ertheless, there is an improvement compared to Figure 4.2: the amplitude

of the high frequency oscillations is much reduced and an underlying slow

oscillation in r of frequency f = 1 = 2fθ is clearly emerging.

The technique of nonlinear normal mode initialisation sets the initial rates

of change of the fast variables to zero, the hope being that this will prevent

large amplitude high frequency oscillations from developing. In the case of

the swinging spring we must adjust the initial conditions so that ṙ(0) = 0

and ṗr(0) = 0. To achieve the first of these we simply use (4.3) and set

pr(0) = 0. To achieve ṗr(0) = 0 we calculate θ̇



0







Experiment θ pθ r pr

ETKF, perfect observations, N = 10 0.31 0.32 0.32 0.29
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Coordinate Standard deviation
θ 0.1
pθ 3
r 0.06
pr 1.5

Table 5.3: Standard deviations used to generate the initial ensemble in ex-
periments with imperfect observations.

Like the inconsistent ensemble statistics for N = 10 this is a feature requiring

explanation.

In the experiments presented so far, the observations have been specialised

in that they have been noise-free, frequent, and made of all four coordinates of

the system. We now relax these assumptions to see what effect this has on the

ensemble statistics and number of distinct ensemble members. For the next

experiments the interval between observations is increased to 0.37. As well as

being larger than the previous interval of 0.1, this interval is chosen because

it is not a submultiple of the natural oscillation periods Tθ = 2 and Tr = 0.2

of the system (thus removing another specialising assumption of previous

experiments). Instead of observing all coordinates, only θ is observed. As

before, the observation error standard deviation passed to the filter for θ

is 0.1, but now random errors of this magnitude really are added to the

observations. The initial ensemble is generated using a diagonal covariance

matrix corresponding to the standard deviations listed in Table 5.3. The

standard deviation for θ is the same as that used for observations. The

standard deviations for the other coordinates are approximately equal to the

amplitudes of the uninitialised oscillations in Figure 4.2. The intention is

that the initial ensemble represents almost complete ignorance about these

coordinates. The initial ensemble is generated using pseudo-random vectors

as in the experiments with perfect observations except that there is no final

translation to make the ensemble mean coincide exactly with the true initial

state.

The result of an experiment with imperfect observations and an ensemble

size N = 10 is shown in Figures 5.5 and 5.6. Statistics from 100 runs are

shown in the third row of Table 5.2. These runs use different random obser-
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vation errors as well as different random initial ensembles. The fraction of

analyses with the ensemble mean within one standard deviation of the truth

is 0.56 for θ and pθ, which is short of the expected 0.68 but an improve-

ment on the just over 0.30 in the perfect observation case. For r and pr the

fractions are unexpectedly large at 0.94. A possible explanation is that this

is due to ignorance on the part of the filter rather the accuracy. It can be

seen from the lower two graphs in Figure 5.6 that there is no decrease in the

general level of the ensemble standard deviation in r and pr from its initial

value representing complete ignorance of the values of these coordinates, so

it is not surprising that the ensemble mean should agree with the truth to

within this large margin of error. That observations of θ



0 1 2 3 4 5 6
−2

−1

0

1
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of 0.68. The numbers for r and pr are both 1.00, quite possibly for the reason

given above in the case N = 10: the ensemble standard deviation for these

two coordinates does not decrease from its initial value representing complete

ignorance (see the bottom two graphs of Figure 5.8).

The graph of θ in Figure 5.7 shows the same collapse-and-fan structure

noted above in the case N = 10. There is now also sign of an outlier in the

graph of pθ, presumably due to the influence of the outlier in θ through the

equation of motion (4.2). There may be some sign of this in Figure 5.5 too,

but it is clearer in this case.

This ends the experiments with the ETKF. There is a summary of the

results in Section 5.3 at the end of the chapter.



0





5.3 Summary

The experiments in this chapter have revealed two features of the ETKF

that require further investigation. The first is that the filter may produce

analysis ensembles with statistics that are inconsistent with the actual error,

either the mean being biased or the standard deviations of the coordinates

being too small or both. This statistical inconsistency seems to decrease with

increasing ensemble size. It may also be masked or reduced by increased filter

uncertainty due to uncertain initial conditions, less frequent observations, or

fewer observed coordinates.

The second feature is that each assimilation of an observation by the

ETKF produces a collapse in the number of distinct values of the observed

coordinates in the ensemble. It may be conjectured from the results presented

that when m coordinates are observed, there is a collapse in the number of

distinct values of each observed coordinate to m + 1 following assimilation.

It may be further conjectured from the results that m of these values are

occupied by single ensemble members whilst the remaining N − m members

occupy the remaining value. Note that such a collapse will only have an effect

on ensembles with N > m + 1. Thus a collapse is likely to be apparent with

low-dimensional systems such as the swinging spring, but not with NWP-

type systems that have N � m.

The EAKF appears not to possess either of these features. An explanation

for their presence in the ETKF is given in Chapter 6.

72



Chapter 6



Then the analysis ensemble perturbation matrix is calculated using

X′a = X′fT (6.2)

where T is an N × N matrix satisfying

TTT = I − (Y′f)TS−1Y′f . (6.3)

The analysis ensemble members are formed by adding xa to the columns of√
N − 1X′a in accordance with the definition (2.12) of an ensemble pertur-

bation matrix.

It is tacitly assumed in Tippett et al [23] that (6.2) yields a valid analysis

ensemble perturbation matrix for any choice of T satisfying (6.3). However,

definition (2.12) implies that the mean of the columns of an ensemble per-

turbation matrix must be zero, and this does not necessarily follow from

(6.2) and (6.3). To see this, let T be a particular solution of (6.3). Then a

general solution is TU where U is an arbitrary N × N orthogonal matrix.

The corresponding general analysis ensemble perturbation matrix is

X′a = X′fTU.

Now let Z denote the mean of the column vectors of the matrix Z; that is, if

Z =
(

z1 z2 . . . zN

)

where the zi are column vectors, then

Z =
1

N

N∑

i=1

zi.

Note that Z1Z2 = Z1Z2. It follows that

X′a = X′fTU. (6.4)

Thus X′a = 0 if and only if U lies in the null space of X′fT. The vector U has
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length 1/
√

N and can be made to point in any direction by an appropriate

choice of U. Therefore, unless X′fT = 0 (in which case the analysis ensemble

collapses to a point), there will be at least some choices of U that give X′a 6= 0

and hence an invalid analysis ensemble perturbation matrix. We shall see

that the individual methods discussed in Section 2.4 differ as to whether they

yield X′a = 0 unconditionally.

At first glance the length 1/
√

N of U in (6.4) appears to offer hope

of proving that X′a is a valid analysis ensemble perturbation matrix in the

limit of large ensembles. This hope is reinforced by the observation that X′fT

should be bounded in some sense as N → ∞ on account that



matrix of the ensemble xi is

Pe =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T

=
1

N − 1

N∑

i=1

(x′a
i − x′a)(x′a

i − x′a)T

=
1

N − 1

(
N∑

i=1

x′a
i (x′a

i )T − Nx′a x′aT

)

= Pa
e − N

N − 1
x′a x′aT

. (6.5)

Thus Pe





= R
1

2 ŶfU(I + Λ)−
1

2



not affected.
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Chapter 7

Conclusions

7.1 Summary and Discussion

Chapter 2 introduced the EnKF and gave several alternative formulations of

the algorithm. These alternatives may be classified as stochastic (reviewed

in Evensen [8]) or semi-deterministic (reviewed in Tippett et al [23]). The

difference between the formulations is in the analysis step; all share the same

stochastic forecast step. The deterministic formulations of the analysis step

all fit into the general framework described in Section 2.4.1.

In Chapter 3 two algorithms were selected for implementation: the ETKF

(originally presented in Bishop et al



such eigenvalue decompositions with an SVD of Z. There is then no need

to form ZZT with the consequent loss of accuracy. Chapter 3 also showed

how to order the computations in the ETKF and EAKF so as to minimise

storage requirements and maximise reuse of intermediate results.

Chapter 4 introduced the two-dimensional swinging spring. As moti-

vation for its study the chapter also briefly introduced the concept of ini-

tialisation that is of importance in NWP. It used the swinging spring to

illustrate the techniques of linear and nonlinear normal mode initialisation.

The method used to numerically integrate the equations of motion was de-

scribed and approximately analysed to find method parameter values that

give acceptable truncation error and guard against instability.

The results of experiments using an ETKF and an EAKF with observa-



in the size of the error estimate provided by the filter’s covariance matrix.

Users of the output would then be aware of the increased error, although

they would remain unaware that part of the error is systematic rather than

random. However, here we have a decrease in the size of the error estimate

rather than an increase, and indeed equation (6.5) shows that the worse the

bias, the worse the overconfidence of the error estimate.

A biased and overconfident analysis has the potential to create problems

at later times in any Kalman-type filter. Such an analysis is likely to lead to a

biased and overconfident forecast. The filter will then give more weight than

it should to the forecast in the next analysis step and less to the observation.

This will prevent the observation from properly correcting the bias in the

forecast and the next analysis will be biased and overconfident as well. In

extreme cases the filter may become increasingly overconfident until it is in

effect a free-running forecast model diverging from the truth and taking no

notice of observations.



of the observed coordinates in the ensemble to m+ 1. Of these values, m are

occupied by single ensemble members and the remaining value is occupied

by the remaining N −m members. Unlike the first feature this is not really a

flaw in the ETKF, but rather a limitation on the dimension of the systems to

which it may be usefully applied. In particular, it is now seen not to be well-

suited to experiments with low-dimensional systems such as the swinging

spring.

7.2 Further Work

Three areas may be identified for further investigation: the numerical method

used to integrate the swinging spring equations, initialisation techniques

for the EnKF, and the inconsistent analysis ensemble statistics from semi-

deterministic formulations of the EnKF.

7.2.1 Numerical Integration of the Swinging Spring

Equations

It must be admitted that the stability analysis of Section 4.3 was rather crude.

A more careful treatment would at least investigate the discrete system that

results from applying the Runge-Kutta method to the full nonlinear system of

ODEs rather than to the linearised system. Better knowledge of the stability



interested in solutions in which the fast motions are suppressed, it could

be argued that we should be using a solver designed for stiff systems; and

indeed it is the fast motion timescale Tr that determined the size of MaxStep

in Section 4.3 rather than the ten-times larger Tθ. However, this is not the

whole story, especially if we are conducting experiments with ensembles in

which some members have significant fast motion.

7.2.2 Initialisation and the Ensemble Kalman Filter

The original plan for this dissertation involved using the swinging spring

system to investigate initialisation techniques for the EnKF. Unfortunately,

investigation of the issues arising from the implementation and testing of

the filters themselves did not leave time to pursue this line of enquiry. A

recent study where it is pursued is Neef et al [21], which uses a different

four-dimensional dynamical system (the extended Lorenz model) to inves-

tigate initialisation properties of a stochastic EnKF in comparison with a

conventional EKF. It would be an interesting exercise to repeat the study

using the swinging spring to see whether the same conclusions are reached.



results of Section 5.1 suggest that the inconsistency decreases with increasing

ensemble size, and an analytic proof of this conjecture is the first priority,

either in the general case or in the specific case of the ETKF. S



that may be tested in a given time will be maximised.
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Appendix A

Additional Operation Counts

This appendix is a supplement to Section 2.3.3. The following operation

counts are based on O(a3) to invert an a×a matrix and O(abc) to multiply an

a×b matrix by a b×c matrix. Recall that we are considering an NWP system

with N � m ≤ n. Recall also that we are assuming that multiplication by

H is cheap.

A.1 Analysis Step of KF

• O(m3) to form inverse of HPfHT + R in formula (2.5) for K.

• O(m2n) to form K as product of this inverse and PfHT .

• O(n3) to form Pa = (I − KH)Pf .

• State update is negligible.

• Total O(m3 + m2n + n3) = O(n3).

A.2 Naive Implementation of Analysis Step

of Stochastic EnKF

• O(n2N) for multiplication Pf
e = X′f(X′f)T .
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• O(m3) to form inverse of HPf
eH

T + Re in formula (2.15) for



Appendix B

The EAKF and the General

Deterministic Framework

This appendix is a supplement to Section 2.4.5. It is shown there that the

EAKF may be written in the post-multiplier form (2.26) with

T = WŨ(I + Λ̃)−
1

2 WT .

This is one half of the general framework discussed in Section 2.4.1; the other

half is the square root condition (2.27). For T defined as above it can be

shown that

TTT = WWT − (Y′f)TS−1Y′f .

Thus to conclude that (2.27) holds we must show that

WWT = I. (B.1)

But W
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Appendix D

Example of an Invalid X′a from

the ETKF



are mutually orthogonal and

(I − 1N )zi = zi.

Define zN to be the column N -vector with 1 in every row. Then zN is

orthogonal to the other zi and

(I − 1N )zN = 0.

If we let U be the orthogonal matrix with columns equal to normalised

versions of zi (i = 1, . . . , N) then we have the eigenvalue decomposition

I − 1N = UΛUT

where

Λ =


 IN−1 0

0 0




IN−1 being the (N − 1) × (N − 1) identity matrix. Let UN−1 denote the

N × (N − 1) matrix consisting of the first N − 1 columns of U. Then the

ETKF update equation is

X′a = X′fU(I + Λ)−
1

2

=


 I − 1N

0


U




1√
2
IN−1 0

0 1




=


 UN−1 0

0 0






1√
2
IN−1 0

0 1




=




1√
2
UN−1 0

0 0


 .

Since the columns of UN−1 are N − 1 orthonormal vectors, it follows that

the length of X′a is
√

N − 1/
√

2N . Therefore X′a 6= 0 and X′a is an invalid

analysis ensemble perturbation matrix.
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