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Abstract

The main objective of this dissertation is to present a finite element method to compute
the price of knock-out barrier options that are depended on the price of two underlying
assets. The price evolution of the assets is assumed to follow a geometric Brownian motion
and priced by using the Black-Scholes model. The value of the option is formulated within
the framework of the Nobel Prize work of Robert C. Merton, Fischer Black and Myron
Scholes.

The partial differential equation form of the Black-Scholes model is discretized using a
P1

NC finite element method and the numerical result is presented using the finite
element mesh generator program called Gmsh.
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Notations

The following notations are used throughout the dissertation:

α - basket constant
c - scaling parameter
i - underlying asset (where i = 1,2 to denote each of the asset)
t - current time
K - strike price
V
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2. Currencies: For example the value of $100 in pound Stirling.

3. Shares in a company: The value of shares would reflect how well the company is
doing. If the company is successful, the value of its share will rise, on the other
hand if the company is not doing so well, then the value of the share will drop.

2.3 Derivative

In mathematics, the term derivative means an instantaneous change of a quantity with
respect to some variable. In finance, derivative is an instrument whose value is derived
from, or is depended on the value of some underlying asset.

As an example, suppose an investor wishes to buy 100 shares in a company in three
months time. The current price (also known as the spot price) is £1 per share. Suppose
that the price of the share will increase within the next three month. Clearly, the investor
would not wish to buy the share for a higher price then the price it was before. There are
three choices in which the investor can keep the price at £1 per share.

1. Buy the share immediately, by paying the spot price.

2. Make an agreement with the company to buy the share at a pre-agreed point in the
future for a pre-agreed price. With this agreement, the investor will be obliged to
buy the share at that date. This is called a forward contract.

3. Make an agreement with the company to have the right but not the obligation to
buy the share at a pre-agreed point in the future. This is called an option.

Choices 2 and 3 are financial derivatives because the price of each contract is depended
upon the values of the underlying assets.

2.4 Options

An option is a contract or agreement which would give the holder the right but not the
obligation to buy or sell a specified asset at a fixed price (strike price, denoted by K )
up to a fixed period of time (exercise date T ). The exercise date is the date at which the
option expires.

Since the options gives the buyer a right and the seller an obligation, the buyer
will paid an option premium V, to the seller (writer) for the privilege of purchasing and
holding the option. The premium (cost of purchasing an option) of the option is agreed
between the buyer and seller of the option. Options have become popular in the financial
world, for the following reasons:
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1. Options are cost efficient

For example, an investor may want to purchase 100 shares of a stock with spot
price at £150. In total, the investor will have to pay £15,000 for all of these shares.
Options provide the opportunity for the investor to purchase the same amount of
share exposure but at a much reduced price. The investor can use the options
market to choose an option which would mimic and recreate the situation of the
stock closely.

Suppose there is such an opportunity such that the investor can purchase a call
option for £50 with a strike price at £50 for each of the 100 shares. The investor
would only paid £5000 in total (representing 100 shares). If at the exercise date,
the investor would like to exercise their rights to buy all the share at the strike price
of £50, then the investor only needed to paid £10,000 (option price + strike price
of 100 shares) rather then the £15,000 paid for direct investment.

2. Higher Potential Gain

The potential gain in using options can be much higher then the potential gain
with the usual investment in stocks. This is known as the leverage effect. But a
consequence of the leverage effect will be the increase risk of losing all investment.
Therefore for options, risks become more important.

3. More flexibility

Options offer more variety of investment alternatives. Options can be used to recre-
ate many different situations.

4. Opportunity for hedging and speculations

Hedging is an investment technique that is use with the aim of cancelling or reduc-
ing the risk of another investment. Options allow investors to protect their position
against price fluctuation and minimised the lost caused by unwanted risks. Spec-
ulation involves the trading of any financial assets in an attempt to profit from
any price fluctuations. Options are popular with investors because it allowed the
opportunity for greater potential gain (but at the risk of magnifying the loss).

5. Systematic method for pricing options

The price of options can be computed by using the well-known Black-Scholes Model
(more details on this model later). Therefore options can be traded with some
confidence.
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The value S, of a stock is driven by supply and demand. According to Higham (2004)
and Hull (2006), the value of an option is influenced by the following five principal
factors:

1. The strike price K.

2. The price of the underlying asset Si in relation to the strike price.

3. The cumulative cost to hold a position in the security. This would include interests
and dividends.

4. The time to expiry of the option given by te.

5.
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The buyer of a call option expects the price of the underlying asset to rise by the
exercise date. The seller will received the premium, and will be oblige to sell the asset at
the strike price, should the buyer exercise the option to do so. Figure 1 shows the payoff
diagram when buying a call option, as viewed by the buyer.

Figure 1 - Payoff Diagram for buying a European call option (source: http://en.wikipedia.org/wiki/Call
option)

The buyer of the call option will make the most profit when the value of the underlying
asset is increasing and exceed the strike price plus the price paid for the option premium.
To illustrate the idea, a simple example is given below:

A simple example of a European call option on a stock

Suppose the price of a stock in a company is currently £40. An investor expects the
stock price to rise in the future. The investor buys a call option with the strike price set
at £40 with the exercise date 15th November 2007. For this right, the investor will paid
the company a premium of £10 for this call option. Now consider the following two
scenarios:

1. Stock price rises above the strike price (£40)

Suppose the stock price rises to £60 on the exercise date. The investor will exercise
the option to buy the stock for £40. When the stock is purchase, the investor can
either keep the stock or sell the stock on for £60. By selling the stock, the investor
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The investor can theoretically make unlimited profit. Profit is only made when Si >
K + V . This is represented by the profit line in figure 1. The lost to the investor will
be limited to the price of the premium initially paid for the call option. In the view of
the seller “writer” of the call option, he or she will expect the price of the stock to not
rise. Figure 2 shows a graphical interpretation when selling a call option, as viewed by
the writer.

Figure 2 - Payoff Diagram for writing a European call option (source:
http://en.wikipedia.org/wiki/Call option)

Now consider the following two scenarios:

1. Stock price rises above the strike price

The writer of the option will make a profit as long as the price of the stock does
not exceed the strike price plus the premium received. After that, the writer could
theoretically suffer unlimited losses.

2. Stock price stay below P717q1strike
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2.5.2 Put Option

A put option gives its holder the right (but not the obligation) to sell an agreed quantity
of a prescribed asset at the strike price at the exercise date. The writer of the option is
obliged to purchase the prescribed asset at the strike price from the holder, should the
holder decide to sell. The holder will paid the writer the option premium for the privilege
of holding the option.

The buyer of a put option expects the price of the underlying asset to fall by the time
of the exercise date. Another reason would be that the buyer wants to protect the price
of the asset (generally term a protective put strategy). Figure 3 shows the payoff diagram
when buying a put option, as viewed by the buyer.

Figure 3 - Payoff Diagram for buying a European put option (source: http://en.wikipedia.org/wiki/Put
option)

The buyer of the put option will make the most profit when the value of the underlying
asset is decreasing. Therefore a lower stock price means a higher profit. To illustrate the
idea, a simple example is given below:

A simple example of a European put option on a stock

Suppose the price of a stock in a company is currently £60. An investor expects the
stock price to drop in the future.

The investor buys a put option with the strike price set at £50 with the exercise date
15th November 2007 from a put writer. For this right, the investor will paid the put
writer a premium of £10 for this put option. Now consider the following two scenarios:

1. Stock price drops below the strike price

Suppose the stock price drops to £30 on the exercise date. The investor will
purchase the stock for £30, and then exercise the put option to sell the stock for
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£50 to the put writer. By selling the stock, the investor will have made a profit of
£20. The net profit will now be £10, when the cost of the premium of £10 is
subtracted.

2. Stock price stay on or above the strike price

Suppose the stock price never drop to £50. The investor will clearly not buy the
stock for more then £50 and sell it to the put writer for £50. Therefore the option
is not exercised and would expire worthless. In this scenario, the total loss for the
holder is limited to the cost of the option premium of £10.

For the put holder, profit is only made when Si < K + V . This is represented by the
profit line in figure 3. In view of the put writer, profit is maximised when the price of the
underlying asset exceeds the strike price. Figure 4 shows the payoff diagram when buying
a put option, as viewed by the writer.

Figure 4 - Payoff Diagram for writing a European put option (source: http://en.wikipedia.org/wiki/Put
option)

A Summary of a Put Option

Let P (Si, T ) denote the value a standard European put option, with strike price K and
exercise date T. Also let S denotes the current value of the underlying asset and t the
current time. At the expiry date T, if K > Si(T) the option holder will buy the asset at
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2.6 Exotic Options

Exotic options are alternatives to Vanilla options (see Higham 2004). Exotic options are
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worthless. After reaching the knockout barrier, any value for Si will be ignored and the
option ceases to exist.

Barriers are usually observed at some discrete barrier observation dates. For example
the barrier can be applied for one day every week.

Barrier Shape

According to Pooley et al (2000), for problems with one underlying asset, barriers are
typically ’points’. For problems with two underlying assets, the barriers can be any shape
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2.7.1 Portfolio

The term portfolio is usually used to describe a collection of investments held by a financial
organisation or a private individual. Portfolio may consist of the following combinations:

• assets

• options

• cash invested in a bank

2.7.2 Volatility

Volatility is a measure of the risk and uncertainty of future price movements of an asset.
For example, the volatility of a stock price is a measurement of the risk and fluctuation
concerning future stock price movements. An asset with a high volatility will be more
likely to increase or decrease its value, then an asset with a low volatility. Large volatility
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arbitrage market is where the market offers no opportunities for arbitrage. Arbitrage will
occur in practice, but will not remain in existence for very long as many arbitrageurs will
make use of computer systems to take advantage of any arbitrage opportunities that may
arise. Due to more buying pressures, this will push up the lower price and due to selling
pressure, will lead to a reduction of the higher price. Therefore any price differences will
be soon be eliminated.

2.7.4 Correlation

In the financial world, correlation is used to show how two assets moves in relation to



Chapter 3

Black-Scholes Equation

An important model use for pricing European call and put options on stocks is the Black-
Scholes Model. In this chapter the background, the derivation and the key ideas of the
Black-Scholes model are explained in more details. Many of the descriptions in this
chapter are taken from the books by Chriss (1996) and Hull (2006).

3.1 Black-Scholes Model

The Black-Scholes model is a well-known and popular model use to calculate the value
of a European option. Ever since its development in 1973 by Fischer Black and Myron
Scholes, the model still remains one of the most preferred models and provides the basis
of options theory. To compute the value of an option, the model requires the following
information for the problem in consideration:

1. The strike price of the option, K

2. The price of the underlying assets, Si

Sii
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• There are no transaction costs in trading

• Underlying asset can be traded continuously

• There are no dividends during the life of the derivative

• Arbitrage free market, therefore no arbitrage opportunities

• Short selling of the asset is permitted

The Black Scholes model can be derived from the Black-Scholes partial differential
equation (PDE). The PDE provides the framework to compute a fair price for options.

3.2 Deriving the PDE form of the Black-Scholes Model

In order to value an option, a mathematical description of how the underlying asset
behaves must be developed. The price of the asset is assumed to follow a stochastic
process. This means that the price of the asset will change randomly over time. An
example of a stochastic process is the Markov Process. In this process the past history
of the asset will be ignored and consider irrelevant. Therefore predictions for the future
price will be unaffected by any past price of the asset, as the behaviour of the asset over
a short period of time depends only on the current value of the asset.

The asset price is usually assumed to follow a Wiener process, which is a more specific
type of Markov process. The Wiener process is a stochastic process where the change in a
variable over a short period of time ∆t has a normal distribution with zero mean and unit
variance. An Itō process is a generalised form of the Wiener process where the random
fluctuation is following a normal distribution. For further theory and results regarding
Markov, Wiener and Itō processes, we refer to the book by Hall (2006).

The Wiener process is also called Brownian motion. The geometric Brownian model
originated in the study of a physical model for the motion of heavy particles suspended
in a medium of lighter particles. In Brownian motion, the faster lighter particles will
randomly collide with the heavier larger particles, with each collision observed to be
random and independent. According to Chriss (1996), for a longer period of time, the
particle displacement will be normally distributed, where the mean and standard deviation
depends only on the amount of time that has passed. The geometric Brownian motion
model can be used to describe the probability distribution of the future value of the
stock. In his work, Osborne (1964) showed that the movement of stock prices shared
many similar characteristics with the movement of molecules in the Brownian motion
model. The derivation of the PDE form of the Black-Scholes Model for one underlying
asset is shown in the next section. The same idea is use to derive the PDE form for two
underlying assets.
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3.3 Deriving for one underlying asset

Using the assumption that the price of the underlying asset follows a geometric Brownian
motion, will give the expression

dS

S
= µdt+ σdW

dS = Sµdt+ SσdW (3.1)

where S denotes the underlying asset, µ is the drift term (the average rate of increase
per unit time of the asset), σ is the volatility of the stock, and dW is a random term with
a Wiener process distribution (dW has zero mean and unit variance). The drift term
causes the underlying assets to move in a certain direction (see Pooley et al (2000)).

Equation (3.1) also follows the Itō process. This process was name after the discoverer,
Kiyoshi Itō. An important result from the Itō process is the Itō’s Lemma. This lemma
is used to find the differential of a function that follows a stochastic process and plays
a very important role in the pricing of derivative. The informal proof of this lemma is
shown in Hull (2006). Itō’s Lemma is stated as follows:

Suppose a variable x follows the Itō process. Then dx is given by

dx = a(x, t)dt+ b(x, t)dW (3.2)

Now consider a function G(x,t), which is some function that is at least two times differ-
entiable. Then the function G(x(t),t) would also follow the Itō’s process. Therefore for a
function G(x(t),t) we have

dG(x(t), t) =

(
∂G

∂t
+ a(x, t)

∂G

∂x
+

1

2
b(x, t)2∂

2G

∂x2

)
dt+ b(x, t)

∂G

∂x
dW (3.3)

The equation given by (3.3) is the specialisation of Itō’s Lemma. Now the stock price
follows the process given by (3.1). This is similar to equation (3.2), with a(S,t) = Sµ
and b(S,t) = Sσ respectively.

Now let V(S,t) denote the value of some particular option with asset of price S and for
some time t, where t ≤ T (expiration date of the option). Applying the Itō’s Lemma to
V(S,t), will gave

dV (S(t), t) =

(
∂V

∂t
+ a(S, t)

∂V

∂S
+

1

2
b(S, t)2∂

2V

∂S2

)
dt+ b(S, t)

∂V

∂S
dW (3.4)
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Now applying a(S, t) = Sµ and b(S, t) = Sσ from equation (3.1) to equation (3.4)
gives

dV (S(t), t) =

(
∂V

∂t
+ (Sµ)

∂V

∂S
+

1

2
(Sσ)2∂

2V

∂S2

)
dt+ (Sσ)

∂V

∂S
dW (3.5)

Now consider a portfolio Π composing of a long option and a short portion of the
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where r is the risk-free interest rate.

Now by substituting (3.6) and (3.9) into (3.10), we have(
∂V

∂t
+

1

2
(Sσ)2∂

2V

∂S2

)
dt = r

(
V − ∂V

∂S
S

)
dt (3.11)

Dividing both sides of (3.11) by dt, and rearranging gives

∂V

∂t
+

1

2
(Sσ)2∂

2V

∂S2
+ r

∂V

∂S
S − rV = 0 (3.12)

The equation given by (3.12) is the Black-Scholes partial differential equation (PDE) for
the option price V for one underlying asset. This equation can be used to compute the
price of a European option with one underlying asset. For a European option, only the
final price of the option at expiration is known. This implies that the Black-Scholes
PDE must be solved backward in time to find the initial price of the option. In order to
achieve this, it would be necessary to replace the time t by τ using the expression

τ = T− t (3.13)

where τ denotes the backward time point of the option.

3.4 Black-Scholes Model PDE for Two Asset Barrier

Option

The PDE form of the Black-Scholes PDE for a European option for two underlying assets
S1,S2 with a knock-out barrier can be expresses as

∂V

∂τ
− r

2∑
k=1

Sk
∂V

∂Sk

=
2∑

kl=1

Dkl(t, S1, S2)
SkSl

2

∂2V

∂Sk∂Sl

− λ1I×(<2\Ωb)V − rV (3.14)

where V denotes the price of the option, r the risk free interest rate, and λ is some
given (large) constant used to set the option price to zero when the barrier is applied.

Equation (3.14) is a two (largG14.026(price)-n Tf 5(of)-7(o)rgfree intereh 11freepu44
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[
σ2

11(t, S1, S2) ρσ11(t, S1, S2)σ22(t, S1, S2)
ρσ11(t, S1, S2)σ22(t, S1, S2) σ2

22(t, S1, S2)

]
(3.15)

This matrix depends on the volatilities of the two assets, σ11 , σ22 and their correlation ρ.

The term λ1I×(<2\Ωb)V in equation (3.14) represents the barrier of the option which is
applied at some discrete time intervals. Inside the barrier λ is equal to zero, and outside
the barrier the value of λ is equal to 1.



Chapter 4

Discretization and solving the
Black-Scholes Equation

In general, the Black-Scholes PDE cannot be solved analytically for exotic options (e.g.
Barrier Options). Therefore numerical methods are use to compute the numerical solu-
tions to the PDE equation given by (3.14). This dissertation will use a finite element
method to compute the numerical solution to the Black-Scholes PDE (3.14).

4.1 Introduction to Finite Element Method

What is the finite element method (FEM)?

The finite element method is a numerical method that is generally used to numerically
solve for the solution of partial differential equations.

Advantages of using FEM for pricing options

When pricing options, the FEM has several advantages over other numerical methods, for
example finite difference (FD) methods.

1. Irregular and complex shapes caused by barriers can be more accurately represented
by unstructured mesh used by FEM. For structured mesh, it is harder to set the
grid points to deal with the complex shapes.

2. FD requires a higher resolution across the domain, and therefore will take longer to
compute the numerical solutions. FEM only have high resolution in the domain of
interest, such as near the barrier. Away from the barrier, a lower resolution is used.

3. It is harder to incorporate the boundary conditions using FD than by using FEM
(see Topper (2000)). Neumann boundary conditions can be naturally incorporated
in the FEM formulation.

22
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By integrating by parts both the advection and the diffusion terms, we obtain∑
e

∫
Ωe
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The Galerkin formulation is obtained by replacing V by V h and V̂ by ψi in equation
(4.6). ∑

e

∫
Ωe

∂V h

∂t
ψidΩ +

∑
e

∫
∂Ωe

a · nV hψidΓ−
∑

e

∫
Ωe

V h∇ · (aψi)dΩ

=
∑

e

∫
∂Ωe

Dψi∇V h · ndΓ−
∑

e

∫
Ωe

D∇V h · ∇ψidΩ (4.8)

where
∑

e

∫
∂Ωe

a ·nV hψidΓ is the advective flux and
∑

e

∫
∂Ωe

D∇·nV hψidΓ is the diffusive
flux. When the P1

NC scheme is used, then the diffusion flux is equal to zero (Hanert et
al (2004)). The advective flux is computed in an upwind fashion.

For time integration, a 3rd order Adams-Bashforth scheme is used to solve the
Black-Scholes PDE (3.14). The Adams-Bashforth scheme of order 3 can be written as

V n+1 = V n + ∆t

(
23

12
F n − 16

12
F n−1 +

5

12
F n−2

)
(4.9)

where ∂V
∂t

= F (V, t)

4.2.2 Barrier Shape

The shape of the barrier is determined by the problem in consideration. For problems
with two underlying asset, the barrier can be represented by any shape in the 2D plane
according to Pooley et al (2000). The movements of the asset prices would be affected by
diffusion. Diffusion itself is caused by the volatilities of assets S1 and S2. If σ11 = σ22 then
the diffusion would have an annular shape. The annular barrier use in this dissertation is
given by

Ω =
{
K1 <

√
σ1

2 + σ2
2 < K2

}
(4.10)

which represents an annular barrier with inner and outer radii equal to the strike price
of the assets given by K1 and K2 respectively. An annular barrier is used because the
volatilities are identical for S1 and S2, as seen later in chapter 5. This barrier is shown in
the figure below.
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The length of the major and the minor axis is determined by major = cσ11 and minor
= cσ22 where c is some scaling parameter. In this dissertation, the elliptical barrier is
horizontal, with the centre located when the price of the assets are both £100. The shape
of the barrier is shown in the figure below:

Figure 4.4 - Elliptical barrier shape applied on the basket call option

Inside the barrier (shown in black), the price of the options may have some positive
values. But when the asset prices are outside the elliptical barrier (shown in white), then
the option would be knock out and immediately ceases to exist. Therefore outside the
barrier, the value of the option would be zero.

4.2.3 Mesh

As mentioned earlier, one of the most attractive features of using FEM is its capability
to deal with irregular and complex shapes caused by the barrier with high accuracy. This
can be done by using a two dimensional unstructured mesh. Options price exhibits a
discontinuity near the barrier edge. Therefore a high resolution is required to ”capture”
this discontinuity. This is done by placing extra nodes closer to the barrier and fewer
nodes away from the barrier, where the option value is zero. For an annular barrier, an
example of an unstructured mesh that is used to discretized the domain to solve equation
(3.14) is shown in the figure 4.5.
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In figure 4.6, the unstructured mesh uses 10638 elements, with maximum resolution of
£0.279404 and minimum resolution of £11.8018. The mesh has high resolution near the
boundary edge to capture the discontinuity of the solutions. As can be clearly seen in the
figure above, the barrier option requires fine mesh spacing near and on the barrier to ensure
more accurate solutions. Fine mesh spacing is required to capture the discontinuities
introduced at each barrier observation dates. Therefore extra nodes are placed closer and
inside the barriers to ensure higher resolution inside the domain. Outside the barrier the
option price would be zero everywhere, because when the asset price crosses outside the
barrier, the option would immediately cease to exist. Therefore fewer nodes would be
required outside the barrier.

Chapter 6 will compare the numerical solutions produced using the unstructured mesh
shown in figure 4.6 with the numerical solutions produced using the structured mesh shown
in figure 4.7 below:

Figure 4.7 - Structured mesh use to discretized the Black-Scholes PDE with elliptical barrier imposed
on the option (generated with Gmsh (http://www.geuz.org/gmsh/)

In figure 4.7, the structured mesh uses 10658 elements, with resolution of £2.739. There-
fore the mesh has the same resolution all over the domain.
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4.3 Computing the solutions of the Black-Scholes PDE

equation

A program has been written in C++ which is used to compute the solution for pricing
barrier option given by equation (3.14). This program computes the numerical value of
the option at the exercise date of the option (when t = T ) and then solves backward the
Black-Scholes PDE (3.14) to compute the price of the option at the initial time (when t
= 0). The program Gmsh is used to display the graphical output of the solutions for each
type of options. The numerical solutions of pricing options are shown in chapter 5 for an
annular barrier and in chapter 6 for an elliptical barrier.



Chapter 5

Numerical Solutions of Pricing
Options
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5.1 Neumann Boundary Condition

In the first section the options are computed using the homogeneous Neumann boundary
condition given by ∇V · n = 0 . All figures shown in this section is produced using the
program Gmsh (source: http://www.geuz.org/gmsh/). The numerical solutions for each
type of option are shown below.

5.1.1 Max Put Option

The figure at time t = 0 in figure 5.1 shows the numerical solution for the max put option
at the start of the lifetime of the option. This is when the barrier is first applied to the
max put option. As expected for a put option, the option is not exercised when the asset
price for both of the asset S1 and S2 is more then the strike price of K = £25). This
means that the option expires worthless and have the value of zero in this region. This
can be clearly seen in the larger blue space. It can also be observe that when the value
for both of the assets crosses the lower barrier level of £20, then the option immediately
expires worthless. This is because the knock-out barrier causes the option to immediately
expire worthless as soon as the value of the underlying asset crosses the barrier. The
effect of the barrier can be clearly seen in the lower left corner of the figure. It can also
be observed that the cost of the max put option is highest when the price of both the two
underlying asset is between £17.50 and £20. This occurs very close to the lower limit of
the barrier. The peak value of the option at this time is £7.21. This occurs when the
values of both assets are between £15 and £17.50.

The figure at time t = T
3

in figure 5.1 shows the max put option at a third (at time
t = T

3
) of its lifetime. It can be seen that the peak value for the price for the option has

slightly increased from £7.21 at the start of the option to the value of £7.87, at t

3
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Figure 5.1: Max Put Option
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are as close as possible to the lowest limit of the barrier.

5.1.2 Min Put Option

The figure at time t = 0 in figure 5.2 shows the numerical solution for the min put option
at the start of the lifetime of the option. This is when the barrier is first applied to the
min put option. The min put option is greatly affected by the barrier because when the
values for the assets are below the lower limit of the barrier (£20) or above the upper
limit of the barrier (£35) the option is knock out by the barrier and immediately ceases
to exist. It can also be observed that the cost of the min put option is highest when the
price of one of the asset is between £25 and £27.50 and the other asset is between £1
and £5. This is concentrated near the lower barrier limit as expected for a put option.
The peak value of the option at this time is £23.70.

The figure at time t = T
3

in figure 5.2 shows the min put option at a third (at time
t = T

3
) of its lifetime. It can be seen that the peak value for the price of the option has

slightly increased from £23.70 at the start of the option to the value of £24.30, at t = T
3
.

The location for higher values of the option remains located where the price of one of the
asset is between £25 and £27.50 and the other asset has the value between £1 and £2.50.

The figure at time t = 2T
3

in figure 5.2 shows the min put option at a two-third (at
time t = 2T

3
) of its lifetime. As comparison, it can be seen that the peak value for the

price for the option price has increased from £24.30. at the third of the lifetime of the
option to the value of £24.60, at two-third of the lifetime of the option. This is a slight
increase in the price of the option. The highest values for the min call option occur when
one of the assets has values between is between £22.50 and £30 and the other asset has
the value between £1 and £2.50.

The figure at time t = T in figure 5.2 shows the numerical solution for the min put
option on the exercise date of the option. The option price has increased from £24.60,
at two-third of the lifetime of the option to the peak option price of £24.70. This is the
highest price for the option in its whole duration of its lifetime. This value is located
when the value of one asset is between £20 and £35, with the value of the other asset
between £1 and £5. When S1 , S2 > £25 the price for the min put option is zero because
both of the assets prices S1, S2 > K, therefore nothing will be gained from exercising the
option. Because the option is not exercised, the option expires worthless.

5.1.3 Basket Put Option

The figure at time t = 0 in figure 5.3 shows the numerical solution for the basket put
option at the start of the lifetime of the option. This is when the barrier is first applied
to the basket put option. The basket put option is greatly affected by the barrier because
the option is exercised from £0 to £45. The location for the highest values of the basket
put option occurs when the price of one of the asset is close to £25 with the other asset



5.1. NEUMANN BOUNDARY CONDITION 35

Figure 5.2: Min Put Option



36 CHAPTER 5. NUMERICAL SOLUTIONS OF PRICING OPTIONS

Figure 5.3: Basket Put Option
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close to zero. This is concentrated closer to the lower limit of the barrier. The peak value
of the option at this time is £11.30.

The figure at time t = T
3

in figure 5.3 shows the basket put option at a third (at time
t = T

3
) of its lifetime. Comparing the results, it can be seen that the peak value for the

price of the option has slightly increased from £11.30 at the start of the option to the
value of £11.90, at t = T

3
. The location for higher values of the option remains located

when the price of one of the asset is close to £25 with the other asset close to zero.

The figure at time t = 2T
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Figure 5.4: Max Put Option
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boundaries is found to have no impact on the numerical values for the option during
the option lifetime. As a result, the peak value for the option price is the same as the
peak value produced using Neumann boundary conditions (see figure 5.1). Therefore for
the max put option, there is no effect when imposing Dirichlet or Neumann boundary
conditions

5.2.2 Min Put Option

The numerical results computed using Dirichlet boundary conditions shown in figure 5.5
has many similarities with the numerical results computed using Neumann boundary
conditions shown in figure 5.2. For example, the highest values for the option price are
located near both the S1 and S2 axis.

The option price on the boundary is £25 at time t = T . This value is imposed on
the boundary for all time. But imposing Dirichlet boundary conditions on the min put
option is not realistic because it implies that the option peak price remains at £25 for all
time. As a result the peak option is higher then the peak option obtain using Neumann
boundary conditions (see figure 5.2).

5.2.3 Basket Put Option

The numerical results computed using Dirichlet boundary conditions shown in figure 5.6
has many similarities with the numerical results computed using Neumann boundary
conditions shown in figure 5.3. For example, the peak value for each figure is the same.
The option price on the boundary at time t = T is imposed on the boundary for all time.
The effect of imposing Dirichlet boundary conditions has no impact on the numerical
solutions of the basket put option. The peak option value for t = 0, t = T

3
, t = 2T

3
and

t = T are £11.30, £11.90, £12.60 and £14.20 respectively.
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Figure 5.5: Min Put Option
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Figure 5.6: Basket Put Option
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5.3 Summary

It is clearly shown that the peak option price is lowest at the start of every option. This
is because there would be a higher risk that the price of the assets will be more likely
to change by the time of the exercise date. Due to this increased risk, an investor would
have little information on the future unknown path that each asset would take until the
exercise date. Therefore with little information, a buyer would be less likely to buy the
option. Therefore the writer of the option will charge a lower option price to try to entice
an investor to buy the option. As the time to expiration is reduced, the option price
gets higher. Therefore at the end of the option, the price of the option would be at its
highest value in its lifetime. The price of the asset is not likely to change much just
before the exercise date, therefore an investor will be confident in buying the option at
this time. As a consequence, the price of the option will be at its highest in its lifetime.
This is one of the reasons for the use of barriers. Barriers help to reduce the cost of
purchasing the option, especially at the start of the option. The annular barrier is not
suited for computing call options. Since call options is only exercised S > K, then this
occur outside the upper limit of the barrier (£35). Therefore for call options, the barrier
would knock out the options. As a consequence, call options will have the values of zero
everywhere. This is the reason for the omission of computing call options in this chapter.

The annular barrier is suited for computing put options. For put options, the options
is exercised only when S < K. Therefore all the put options are affected by the barrier.
As seen earlier, when the values for the underlying assets is below the lower barrier limit
(£20), or higher then the upper barrier limit (



Chapter 6

Investigation into the effects of
barriers in pricing options

In chapter 5, the numerical solutions for max, min and basket types of put options are pro-
duced using a annular barrier with inner and outer radii equal to K1K
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• barrier applied daily

• basket constant: α = 0.5

6.2 Numerical Results

All figures shown in this section is produced using the program Gmsh
(source: http://www.geuz.org/gmsh/). The numerical solutions for the basket call are
shown in figure 6.1.

6.2.1 Numerical Results using unstructured mesh

An unstructured mesh (see figure 4.6) is used to compute the numerical solution for the
basket call option in this section.

The figure at time t = 0 in figure 6.1 shows the numerical solution for the basket call
option at the start of the lifetime of the option. The basket constant α is taken to be
0.5. This is when the barrier is first applied to the basket call option. The peak value of
the option is £0.14 which is located where the price of assets S
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Figure 6.1 - Basket Call Option using unstructured mesh
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Also the figure shows that when both of the assets have values less than £100, the
option price has the value of zero. A reason for this price would be that when the barrier
is lifted, the basket call option is not exercised in this region, therefore the option expires
worthless.

Summary

The maximum option price is located at the centre of the elliptical barrier during most
of the option lifetime because at the centre, the price of the assets S1 and S2 are both
furthest away from the edge of the barrier, therefore it is less likely to be knock out by
the barrier. The peak option price of the basket call option is lowest at the start of its
lifetime. As before, this is because there would be a higher risk that the price of the
assets will be more likely to change by the time of the exercise date. As a consequence
of this risk, the writer of the option will charge a lower option price to try to entice an
investor to buy the option. Otherwise the buyer would be less likely to buy the option.
As the time to expiration is decreasing, the option price gets higher, since the risk of the
assets changing its values is decreasing. Therefore at the end of the option, the price of
the option would be at its highest value in its lifetime. The price of the asset is not likely
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When comparing the result produced in figure 6.2, with the results produced in figure
6.1, the two results shares similar characteristics.

• Both results shows the option would be knocked out if the values of the underlying
asset crosses the barrier

• The peak option values for both results are both concentrated near the centre of
the barrier

• There is a similar pattern in the distribution for the price for the options. Ap-
proaching the centre of the barrier from the barrier edge would lead to an increase
in the option price.
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Chapter 7

Conclusion

Barriers introduced discontinuities in the solution at each discrete barrier observation
dates. FEM allows the use of an unstructured mesh to accurately compute the solutions
by adding extra nodes with smaller spacing near the barrier limits, to capture the
discontinuities. Adding extra nodes will improve the accuracy of the solutions in the
regions of interest.

This dissertation looked at the results computed by imposing two different types of
barrier shapes on the options. It is found that put options are more suited to the annular
barrier imposed on the options. The put options are computed using both Neumann and
Dirichlet boundary conditions. Imposing Dirichlet boundary condition on the boundary
of the S1 and S2 axis can affect the peak option price of the Min Put option during its
lifetime. But there are minimal impact on the numerical values produced by the Max Put
and the Basket Put options.

Results for the basket call option computed by Pooley et al (2000), was successfully
reproduced using the P1

NC finite element method and applying an elliptical barrier. When
the barrier shape is reduced, more area of the option would have a higher chance of
breaching the barrier. Therefore it can be expected that there would be a decrease in the
option prices, due to this higher risk. Also if the barrier is rotated, there could also be a
higher chance of breaching the barrier. This can lead to a reduction in the prices of the
options. Conversely, the option prices would increases if there is a lower risk of breaching
the barrier.

Also this dissertation looked at the accuracy of the option price by comparing the
numerical solutions produced using structured and unstructured meshes. It is found that
using a structured meshes will gave higher values for the option price, when compared
with the option price computed on an unstructured mesh.

For further research, I could look the effects of changing the size and rotation of the
barrier in more detail.
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