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Abstract

Flood events have large consequences on human society in terms of impact on
human life and economy. In the current climate change situation, increase of
heavy rain will contribute to an increase of ood events both in intensity and
frequency. Groundwater ood is a particular ood event which involves the
rising of the groundwater table to the surface due to previous in�ltration.
Numerical modelling codes based on physical laws describing the velocity
and water column change are powerful tools for ood simulating extensions
and intensity forecasts. We have developed a coupled code consisting of
a one dimensional shallow water equation approximation together with a
thin �lm equation to describe the behaviour of the groundwater ood. A
Lagrangian description is used throughout because it is particularly adapted
to the problem of both the shallow water and thin �lm equations. In addition,
high order numerical resolution of high order equation is sought using an
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De�nition Groundwater : Aquifer which is located underground. In this
case the aquifer is uncon�ned and pressure increase results in the rise of the
water column
Open channel ow : Flow of water in a channel in which the top part con-



Chapter 1

Introduction

Flooding research constitutes an important research topic driven by its ma-
jor impact on society. The damage due to ood is costly and insurance costs
to prevent ood damage are high. Worldwide, coastal, riverine and ash
oods are responsible for more than 50% of fatalities and for about 30% of
the economic losses caused by all natural disasters.

In the United Kingdom, property, land and assets to the value of $214 bil-
lion are at risk of ooding in England and Wales. The Environment Agency
spends $300 millions a year on ood defences, 43% of existing ood defences
being in a fair, poor or very poor state of repair. The damage bill from the
devastating oods of 2007 was in excess of $3 billion. A map of England ex-
posure risk to groundwater ood was published by the Environment Agency
(Figure 1.1)

These natural hazards have a certain degree of predictability and the keys



Figure 1.1: Flooding facts in the UK
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During this study, only the groundwater ood process after reaching the
surface was studied. To model this e�ect, a one dimensional depth averaged
approximation of the Navier-Stokes was used called the Saint-Venant equa-
tions.

The Navier-Stokes equations describe the motion of uid and arise from ap-
plying Newton’s second law to uid motion. The Shallow Water Equations
(SWEs) are a vertically averaged approximation of the Navier-Stokes equa-
tion. The vertical averaging is determined using the boundary conditions
and by averaging the velocity over the depth. This dissertation describes
the derivation steps of the averaged depth Shallow water equation and the
associated approximations. The depth averaged method is a standard cur-
rent technique to approximate the Navier-Stokes equations to shallow water
approximation. The one dimensional approximation of the Shallow water
equations are the Saint-Venant equations or open channel ow equations
(Olsen, 2012 [1]).

The latest numerical scheme and strategies to optimize ood depth averaged
free surface problem have been compiled by Delis et al., 2010 [2]. Further-
more, detail of the derivation of the approximation of the Shallow water
equations currently used are developed by Dawson and Mirabito, 2008, [3].
Commercial numerical codes developed since the ’60’s, include MIKE from
Danish Hydrological Institute (DHI), HEC-RAS from the American Hy-
draulic Engineering Centre, TUFLOW. Recent open source code are now
available for ood modelling purpose such as OPEN OpenCFD [4]. Those
models are used for channel, overbank ood or heavier rain ood. At present,
no model is speci�cally dedicated to groundwater ooding but there is a grow-
ing interest related to the groundwater issue.

Ouput of numerical model are used to produced ooding risk maps as il-
lustrated Figure 1.2 The Saint-Venant equations are coupled to a thin �lm
equation to model the di�usion of the water with low water uxes.

The thin �lm equation is a non-linear 4th order equation which describes
the spreading of a uid on a surface. The two equations, Saint-Venant for
linear uniform ow, and di�usion, are coupled to describe more precisely a
groundwater ood process.
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Figure 1.2: Example of ooding risk map (From Ordnance Survey Ireland, All
rights reserved. Licence number 2010/15CCMA/Galway County Council)

A recent research project called FUSE (Floodplain Underground SEnsors) [5]
uses a high-density, wireless, underground Sensor Network to quantify ood-
plain hydro-ecological interactions. It investigates the Field groundwater
table change with ood consequence. It allows monitoring of the groundwa-
ter level by geophysics, i.e. electromagnetic methods, with a high resolution.
In the long term the project will improve our understanding of groundwater
ood forecast and could possibly be used as an early alert tool for ground-
water oods.

Numerical modelling software is a key tool to address the degree of pre-
dictability of a ood event: Numerical modelling improvements will mini-
mize the damage by improving the precision of ood front location and the
height of the water wave. The present project also makes use of a Lagrangian
frame of reference, resulting in interesting and challenging numerical mod-
elling issues with maximum time steps in coupling the systems of equations:
Saint-Venant for laminar ow and thin �lm for non-linear di�usion, using a
moving mesh strategy based on velocities.
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Figure 1.3: Schematic model of the numerical problem (From Baines et al.,
2012, Unpublished)

The thin �lm equation is a di�usion problem described by a 4th non lin-
ear di�erential order equation. It describes the spreading of a thin �lm on a
surface. Several publications are related to this problem which have several
industrial applications (O’Brien and Schwartz, 2002 [6]). In our case, prob-
lem of capillary and inter-facial tension is neglected due to the dynamic of
the uid.

The coupling of the two problems is a based on theoretical assumptions which
haven’t been developed and published yet. Hence, the use of this idea will
be submitted to criticism based on this �rst project. The problem covered
by this work is illustrate by the Figure 1.3 where the two ow domains are
illustrated. The location of the groundwater source ow at the left boundary
and the moving free boundary at the right hand of the model are illustrated
as well.
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Summary The �rst chapter introduces the objectives of the project and
the limitations of the model and discusses recent advances in ood numer-
ical modelling. Chapter 2 reviews the moving mesh method and the veloc-
ity moving mesh method used for this problem. Chapter 3 describes the
Saint-Venant equations, 1D approximation of the shallow water equations
(also called the open channel ow equations). Mathematical and numerical
scheme development is described including the Lagrangian frame of reference.



Chapter 2

A moving mesh : A
velocity-based moving mesh
method

This chapter describes a method based on a moving mesh strategy. This
method uses a velocity based moving mesh method, particularly well-adapted
for Lagrangian uid movement. Moving meshes or dynamic meshes are a
numerical modelling strategy to minimize the number of grid points used for
a dynamic problem compared to a static grid while preserving the physics
of phenomena. The method chosen is based on local mass conservation for
each discretized element (Baines et al., 2011 [7]), which is consistent global
mass conservation. The method allows the con�guration of the velocity of
the mesh for each nodal point of the mesh (Bhattacharya, MSc 2004 [8]).
The local consevation is assured for each time step. The velocity is obtained



2.1 Finite Di�erence Methods

The Finite Di�erence Method (FDM) is used is this project. Finite Element
Method was used by Bhattacharya. B., 2004 [8] and Baines et al., 2005
[11] with successful results. The coupled method consists of discretizing the



gives:
(xi+1 � xi�1)hi = �i (2.4)

for
i = 2; :::; N � 1

Next, the new location of the node is computed and height of the water
column is recomputed based on equation 2.3 for each hi

2.4 Moving mesh

Knowing the velocity of the node at each node, the new location of the nodes
xn+1
i can be calculated form the previous mode location xni by the expression:

xn+1
i = xni + vi � dt (2.5)

where vi represent the velocity of each node and dt the time step used. Care
have to be taken for the chose of dt, high value of the time step could conduct
to node overlapping since the node velocity are di�erent. In the other hand,
low dt value will conduct to slow the computation code.
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Chapter 3

One-dimensional shallow water
equation approximation: The
Saint-Venant approximation

The Saint-Venant equation describes a one-dimension (1D) approximate shal-
low water ow used currently for open channel ow. It can be used for a one
dimension water ow problem as a simpli�cation of a two-dimension (2D)
problem in a 1D context. The equations which described the ow process
are derived from the mass conservation and momentum conservation.

Eulerian and Lagrangian descriptions of uid constitute two ways to describe
uid movement (Price (2006 [12]). The Eulerian approach supposes a �xed
reference and the Lagrangian approach a coordinate system moving with the
uid particles. Due to the nature of ooding, the Lagrangian description



3.1 Eulerian description of uid

There are several schemes available to solve the Saint-Venant equations. For
the Eulerian approach, we used space central di�erence method corrected by
a predicator corrector as illustrated by Olsen., 2012 [1].

3.1.1 Mathematics equations

We de�ne the variables:
h: The height of the water column, a function of x and t
x: Position in the x direction
u: Velocity of the water in the x direction, also a function of x and t



where hnj is the height of the water column at node j and at time tn of the

domain x = [0; 1000].
Also,

@(uh)

@x
� uni

hni+1 � hni�1

2�x
+ hni

uni+1 � un�1
i

2�x
; (3.3)

leading to :

hn+1
i � hni

�t
+ uni

hni+1 � hni
2�x

+ hni
uni+1 � uni

2�x
= 0 (3.4)

Hence,

hn+1
i = hni �

�t

2�x
(uni (hni+1 � hni ) + hni (uni+1 � uni )) (3.5)

where dx is the spacial increment and dt the temporal increment. For the
equation the explicit form is given by: Which lead to:

un+1
i � uni

�t
= uni

uni+1 � uni
�x

+ g
hni+1 � hni

�x

un+1
i = uni �

�t

�x
(uni (uni+1 � uni ) + g(hni+1 � hni )) (3.6)

The semi-implicit form is de�ned by:

un+1
i = uni �

�t

�x
(uni (uni+1 � uni ) + g(hn+1

i+1 � hn+1
i )) (3.7)



Figure 3.1: Figure for control volume approach to discretization of continuity
equation [1]

where u is de�ned as:

u =
uni + un+1

i

2

An illustration of the of the approach related to the Equation 3.8 is illustrated
Figure 3.1. i� 1; i; i + 1 represent three cross sections, j � 1; j two surfaces
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Figure 3.2: 1D Saint-Venant ow at t = 100 s (Computation FORTRAN,
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Figure 3.3: 1D Saint-Venant ow at t = 200 s (Computation FORTRAN,
visualization MATLAB)
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3.2 Semi-Lagrangian description of uid move-

ment or trajectory-based method

The Semi-Lagrangian description of uid ow is used to simplify the problem.
For the Saint-Venant approximation, two steps are needed for the method.
First, the height of the water column has to be computed based on the
velocity by the continuity equation. In the next step, the new velocity is
determined by the momentum conservation equation. We used the de�nition
of Lagrangian uid movement:

Dh

Dt
=
@h

@t
+ u

@h

@x
(3.9)

3.2.1 Mathematical equations

We have the following equations:
Continuity equation:

@h

@t
+
@(uh)

@x
= 0, Dh

Dt
+ h

@u

@x
= 0 (3.10)

Momentum equation:

@u

@t
+ u

@u

@x
+ g

@h

@x
= 0, Du

Dt
+ g

@h

@x
= 0 (3.11)

3.2.2 Finite di�erence discretization

We express the previous equation using a Lagrangian derivative, expressing
the new height, new velocity and new position of the water wave: Continuity
equation:

Dh

Dt
+ h

@u

@x
= 0

, hn+1
i � hn�

�t
+ hni

uni+1 � uni�1

2�x
= 0
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, hn+1
i � hn�

�t
= �hni

uni+1 � uni�1

2�x

, hn+1
i = hn� � hni � (uni+1 � uni�1)� �t

2�x
Momentum conservation equation:

Du

Dt
+ g

@h

@x
= 0

, un+1
i � uni

�t
+ g

hni+1 � hni�1

2�x

, un+1
i = uni � g

�t

2�x
� (hni+1 � hni�1)

3.2.3 Boundaries conditions

Left boundary condition

The Left boundary condition is set as constant ux boundary of water. It
represents a local punctual groundwater ood inux.

Right boundary condition

The right boundary xN is constrained by the length location of the last point.
Flux at the end point is computed using velocity and height at this location.

Visualization

The results of the Saint-Venant numerical model in Lagrangian reference are
illustrated Figure 3.4 and Figure 3.5 at time t = 10 s, t = 70 s. The space
time step was dx = 50m, with N = 21 nodes and dt = 0:01s.

3.3 Fully Lagrangian uid dynamic descrip-

tion: The Verlet scheme

A fully Lagrangian description needs x(t; �) independent of dx, where � is
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develop a full Lagrangian description of the uid particle.

3.3.1 Mathematical formulation



3.4.1 Discretization and algorithm implementation

We start from the momentum equation in a Lagrangian domain:

Du

Dt
= �gh�h

�x
(3.13)

To compute the mesh location, we use the Velocity Verlet formulation (Dum-
mer et al., 2012 [13]).
First step :

x
n+ 1

2
i � xni

�t
2

= uni (3.14)

Second step : hn+ 1
2 is computed by the relation

hn+ 1
2 �xn+ 1

2 = �c (3.15)

un+1
i � uni

�t
= �gh

n+ 1
2 �h

�c
(3.16)

un+1
i = uni �

ghn+ 1
2 �hn+ 1

2dt

�c
(3.17)

Third step :
xn+1
i � xni

�t
=

1

2
(uni + un+1

i ) (3.18)

3.4.2 Numerical Results of Saint-Venant equations us-
ing the Verlet scheme

Initial conditions

The initial conditions are not known for this equation because no exact so-
lution is available for this problem. We tested three di�erent height initial
conditions for:

1. h0 = a �
�

1 �
�
x2

4

�2�
with a = 0:01; 1:::10 and x = [0; 2] The result

obtained are illustrated Figure 3.6. The displacement of the water
wave, it location and height is illustrated. After the �rst time step, the
height of the water column at the left boundary drop to it real dynamic
height maintain by the inow.
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Figure 3.7: Results of the computation of the Saint-Venant equations using
the Verlet scheme, N = 11 nodes and initial condition h0 = a� (1� tanh(x))
(Computation and visualization tool MATLAB).

2. h0 = a � (1 � tanh(x) with a = 0:01; 1:::10 and x = [0; 2] The result
of the computation of the Lagrange Saint-Venant equations using the
Verlet scheme is illustrated Figure 3.7. It shows the evolution of the
water height column over time.

3. h0 = 1 for x = [0; 50] and h0 =
�

1 �
�
x2

4

�2�
for x = [50; 100], ,

dt = 0:00001s, dx = 1m. The result of the computation of the La-
grange Saint-Venant equations formulation using the Verlet scheme is
illustrated Figure 3.8 and zoom on the wave front illustrated Figure 3.9
and the left boundary Figure 3.10 and the oscillation on the front Fig-
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ure 3.11. It shows the evolution of the water height column over time.
Oscillation due to the sharp initial condition and the explicit method
(Figure 3.11). The Figures 3.8 and 3.11 illustrates the instability of
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Chapter 4

Non linear di�usion: Thin �lm
equation

The thin �lm equation, a non linear di�usion equation, also called the lubri-
cation approximation, is used to model the front wave of the groundwater
ood. The thin �lm equation is a 4th order in space 1st order in time, partial
di�erential equation. It is used to compute the height versus spreading of a
thin �lm of liquid on a surface over time. The equation is de�ned as :

@h

@t
=

@

@x

�
hn
@h

@x

�
(4.1)

where n = 3. The solution of the self similar problem when n = 1 has
been study before with Finite Element (Bhattacharya, MSc 2004 [8]) and
Finite Di�erence (Baines et al., 2011 [7]) and Bird, 2012 [14]). The analytical
solution for the case of n = 3 haven’t been discovered yet, no initial condition
can be surely used for that case.

4.1 Mathematical formulation

The algorithm to model the thin �lm equation is again based on local mass
conservation.

1. Advance x the position of the �lm and h the height of the water using

dx

dt
= h3hxxx
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2. Advance h using local mass conservation

h�x = �c

We use the interface boundary conditions: continuity of h; u; hx and the free
boundary conditions: h = h



points x2 until xN can be determined using an explicit Euler method. We
used forward Euler to compute the new nodes location

xn+1
i = xni + undt

The height is determined using the local mass. From the initial condition
using central di�erences, we have

�i = (x0
i+1 � x0

i�1)h0
i

for i = 2; :::; N � 1 Here, x0 is a vector containing the initial mesh location

and h0 is the vector containing the initial water column height.

4.3 Boundary conditions

4.3.1 Left boundary, velocity of nodal point 0

The left boundary is a ux boundary. A amount of water �lled the �rst grid
block at each time step. The mass of the local block c0 is de�ned as:

c0(t+ 1) = c0(t) + dt� q(t) (4.4)

In our case, a constant ux is used for simpli�cation and q(t) = 1m3:s�1. The
left boundary is computed using symmetry principle or mirror point along
the y axis de�ned by the equation:

hn0 =
cn0

2� xn0
(4.5)

with c0 = cst computed at the time t = 0 at initial condition.

4.3.2 Right boundary, velocity of nodal point N: Thin
�lm precursor

The right boundary is de�ned by the moving node boundary xN+1, at that
location the local mass is considered as cN = 0 and in theory, the height
of the water column is hN = 0. Considering that height and the fact that
h is used to compute the velocity of the node, velocity will be 0. A thin
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�lm precursor has to be used. A thin �lm precursor has to be added to
the numerical model. O’Brien [6] described the precursor thin �lm as a thin
layer to allow the liquid to move. On a numerical point of view, the thin
�lm precursor is computed trough the height given at the node xN(t). If
hN(t) = 0, we have vN(t) = 0 and the node N doesn’t move as illustrated by
the equation 4.6:

vN(t) = �hN(t)2 � (qN(t)� qN�1(t))

(xN(t)� xN�1(t)
(4.6)

4.4 Numerical Results of the thin �lm equa-

tion

The Figure 4.1 illustrates a half domain time stepping method evolution of
the thin �lm equation including a precursor �lm at the front of hN(t) =
0:05m. The line shows the shape of a droplet spreading over a surface at
time t = [0s; 2s; 4s; 6s; 8s; 10s; 12s; 14s; 16s; 18s; 20s]. The time step dt =
0:000001s for a space step of dx = 0:2m over 2 metres long. The high of
the water column is �x at a maximum of h0(0) = 0:1m. To optimize the
computation velocity, the number of nodes have been chosen to N = 11
including a �x node at x0(t) = 0 and a free boundary at the node xN(t).
For higher time or space step, the solution blows up. The result shows the
free moving boundary node moving on the right as expected by previous
author publication. The curvature of the droplet contact between water
and air is getting atter as expected to assure mass conservation. The left
boundary present trend dh

dx
= 0. The dynamic angle as illustrated by O’Brien

[6] decreases. The Figure 4.2 resumes the main features of the half thin �lm
equation problem.
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Figure 4.1: Results of the computation of the thin �lm equation for N = 11
nodes.(Computation and visualization tool MATLAB)
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Figure 4.2: Illustration of the main features of the thin �lm script (Compu-
tation and visualization tool MATLAB).
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Chapter 5

Coupling model for ood
modelling

The coupling of the two numerical schemes needs careful examination of
both ow domains. Time step are di�erent and the interfaces point has to
be identi�ed. At the interface of the two ows domains, there is continuity
of the water column height, velocity of the uid, the water ow, slope of the
continuity of the water column height.

We introduce xI , the left boundary point which is at a constant location
xI = 0. xC(t), the moving boundary point between the two domains and
xF (t), the right boundary point at the front of the water wave. The moving
mesh strategy is used for both domains through the Lagrangian frames of
reference used. The Figure 5.1 resumes and illustrates the numerical prob-
lem with the main features associated. We have a 4th order equation; we
need 4 boundaries conditions with 2 moving boundaries, we need also 2 more
boundary conditions.

5.1 Mathematical formulation

We de�ne the condtion at the node 0; C and N . At xC(t), we have:

vSW = vTF

hSW = hTF
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and
@h

@x

����
SW

=
@h

@x

����
TF

The boundary conditions at
xF (t)

are
hTF = 0

@h

@x

����
TF

= 0

The condition hN = 0 gives a zero ux condition on the right boundary.
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Figure 5.2: Numerical result of the coupled model at time t = 0 s, t = 20 s
and t = 40 s

5.3 Numerical modelling results

Result obtained by the coupled model is illustrated Figure 5.2 and Figure
5.3. The two domains of ow are visualized on the model as well as there
evolution over time. The number of node was �xed to N = 41, the time step
to dt = 0:00005s and the space discretization to dx = 2:5m. The solution
shows a problem of continuity of the left border due to the ow boundary
and the change of the high due to the change of velocity. Another issue
came at the point xC where the continuity seems to be assured. Oscillation
on the left border arises after t = 200s and cause a solution blow up later.
The solution proposes is on it draft level and will need further testing and
improvement to propose a better solution even if the moving mesh of the two
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Figure 5.3: Numerical result of the coupled model at time t = 0 s, t = 20 s,
t = 40 s, t = 60 s, t = 80 s, t = 100 s

45



ow domain is assured.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

During this project, the Saint-Venant and thin �lm equations have been used.
Several schemes were tested to optimize the resolution of the Partial Di�eren-
tial Equations. To solve the Saint-Venant set of equations, explicit Eulerian
and Lagrangian methods were used. The central space di�erence was used
for the Eulerian method, the scheme show some instability at it left bound-
ary. Furthermore, a volume corrector is used to recalculate the height of the
wave at the location of the node based on ux di�erence between the next
and the previous node. Semi-Lagrangian and fully Lagrangian method were
used as well. The semi-Lagrangian o�ers an intermediate method more ac-
curate than the Eulerian with the simple formulation of a transformed Euler
formulation. The fully Lagrangian formulation was solve using the "Verlet
method" based on two half location time step computation with a height
computation between the two half time step. It o�ers a strong stability of
the scheme. The "Verlet method" is a moving mesh method; the method we
used is a velocity based method. The importance of Lagrangian method is
highlighted by the results. Nevertheless, the initial condition plays a strong
role in the scheme stability. Even if Saint-Venant equations have analytical
solution in certain situation, it doesn’t apply to all con�gurations. We de-
signed the initial condition based on supposition like a 1� tanh(x) function.
Eulerian methods are very popular because of it visualization. Lagrangian
methods are more accurate but need some practice to be familiar with. The
left boundary considered as a ux boundary represents the inow of the ood
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in the model. The amount of ux was �xed based on the volume of water
already set by the initial condition. The ux boundary was handled by two
methods, the �lling of the �rst node by the ux and a distribution of the ux
over the whole water domain using partial local mass coe�cient.
The thin �lm equation using dynamic mesh introduces to interesting applied
numerical modelling problem, it resolution is a well known problem. Method,
time step and mesh discretization size as well as initial condition have strong
consequence on the stability of the solution and the rise of oscillations.

Due to the high instability of some methods, some schemes have to be pre-
ferred or corrector applied like the volume corrector for the central space
di�erence method or FTCS method (Forward Time Central Space). Nev-
ertheless, the results obtains are similar to current publication in term of
expected results. Some problem arises at the left ow boundary due to the
calculation of the water high based on local mass conservation issue.

The result obtained for the coupled model need further work to improve
the model and constitute only a promising draft test to model groundwater
ood in a more accurate manner than actual model.

The use of a thin �lm to describe a ood could be seen as "strange". But
coupled with Saint-Venant set of equations and for low water level between 0
and 0.1 metres, it could improve the description of the front wave in a more
accurate manner for groundwater ood event.

The slope of the area was not considered as well as the roughness of the
area. Those parameters will increase or decrease the velocity, the travel time
and the height of the water wave. Measuring the roughness of area based on
satellite image is a research subject.

6.2 Results

Results obtained during this thesis project gives direction to the development
of improve ood model based on coupled physical ow model. The �rst draft
coupled model is under development and the result constitutes only a �rst
draft result. Limitation of the method and gap in the ow continuity are
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evident. The use of coupled ow domain approach to model a groundwater
ow is original for multidisciplinary research purpose on hydraulic, ground-
water model and advance numerical modeling. The ideas developped during
this thesis will need further validation, implementation and development.

6.3 Further Work

Several direction have to be considered for further work:

1. A �rst improvement will be to develop the model with implicit method
which o�ers better result in term of scheme stability and accuracy. Nev-
ertheless, computation time will be considerably increased. In the case
of the thin �lm equation which need small time step the computation
time could became a problem.

2. A second direction will concerned the two dimensional (2D) version of
the models which will have an interesting ouput on the visualization of
the wave.

3. A third direction will concerned the develpment of a complex topog-
raphy solving method which take in count the altitude change of the
area.

4. A last direction will concern the source point spread origin of groundwa-
ter ood source: Our simple 1D model only considered a single water
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