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Chapter 1

Introduction

Rossby wave theory first came about in 1939 (Rossby, 1939) and suggested the existence of

westward propagating signals originating primarily from the eastern boundaries of ocean
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mode of Rossby wave is a result of the latitudinal variation of phase speed. The phase

speed’s latitudinal dependence is a result of the β-effect, and is thus often referred to as

β-refraction, illustrated by Figure (1.1).

Figure 1.1: White lines identify a westward propagating, β-refracted Rossby wave trough



3

the interior is dominated by wind stress. Despite this, they also state from their analysis

that the effects of boundary-driven waves are clear when wind-driven variability is removed

from the observational data. This can be seen in Figure (1.2) which illustrates correlation

coefficients in the North Pacific between observed SSH anomali
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gravity-wave phase speed is constant, we will introduce an analytical function represen-

tative of a more realistic phase speed distribution. This will yield an original result and

allow us to examine the effect of a variable phase speed on ray propagation. From the ray

solutions, we can gain a visual picture of the potential location of the caustics described

in the literature. We will then attempt to locate real coastics in modelled SSH data and

compare any results with the theoretical predictions produced from the ray solutions.

1.1 Theory

1.1.1 A Note On WKB Theory
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From Equation (1.1) we can therefore write:

∂

∂t

[

−
(

k2
x + k2

y

)

Ψ −
1

R2
Ψ

]

+ βikxΨ = 0 (1.4)

⇒ iω
(

k2
x + k2

y

)

+
iω

R2
+ βikx = 0 (1.5)

⇒
[

1 + R2
(

k2
x + k2

y

)]

ω + βR2kx = 0 (1.6)
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1.1.3 Ray Equations

Although the phase speed of a Rossby wave is almost always directed purely westward, the

group velocity has no such restriction. As the energy associated with Rossby waves prop-

agates with the group velocity c
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1.1.4 Analytical Solution

For the most simple case, an analytical solution can be derived to describe the ray paths.

The most simple case relies on a few basic assumptions, that waves are propagating from

a straight, north-south orientated eastern boundary, that the gravity-wave phase speed c0

is constant, and that the phase function S is constant along the eastern boundary. We

start by rearranging the dispersion relationship into the following form:

(

kx +
β

2ω

)2

+ k2
y =

β2

4ω2
−

f2

c2
0

(1.27)

Under the assumption that the wave amplitude is slowly varying compared to variations

in the phase, it is possible to use WKB ideas. We therefore refer back to and redefine

equations (1.10) and (1.11), which under WKB theory mean that the locally defined

wavenumbers must satisfy the dispersion relationship ω:

kx =
∂S

∂x

ky =
∂S

∂y
(1.28)

From equation (1.28), an added constraint is that the wavenumbers must also satisfy the

following compatibility condition:

∂kx

∂y
=

∂ky

∂x
(1.29)

If we consider Rossby waves of a constant frequency, we need only solve equations for

the wavenumbers kx and ky and not ω. Differentiating equation (1.27) with respect to x

yields:

2kx
∂kx

∂x
+

β

ω

∂kx

∂x
+ 2ky

∂ky

∂x
= 0 (1.30)

This is equivalent to:

(

kx +
β

2ω

)

∂kx

∂x
+ ky

∂ky

∂x
= 0 (1.31)

Using the compatibility condition specified by equation (1.29), this can be written as

follows:

(

kx +
β

2ω

)

∂kx

∂x
+ ky

∂kx

∂y
= 0 (1.32)
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This equation takes on the form of a quasi-linear first order partial differential equation:

a(x, y, kx)
∂kx

∂x
+ b(x, y, kx)

∂kx

∂y
= c(x, y, kx) (1.33)

where

a = kx +
β

2ω
b = ky

c = 0 (1.34)

We define the ray trajectory for which we want to solve as the curve r (x(t), y(t), kx(t))

which must satisfy:
dr

dt
= (a, b, c) (1.35)

It is clear that equation (1.35) represents a system of differential equations that describes

the path of group velocity and variations in the zonal and meridional wavenumbers of the

Rossby waves:

dx

dt
= kx +

β

2ω
(1.36)

dy

dt
= ky (1.37)

dkx

dt
= 0 (1.38)

dky

dt
= −

βf

c2
0

(1.39)

The equation for the ray trajectory is therefore given by:

dy

dx
=

ky

kx + β/(2ω)
(1.40)

As we have assumed a constant frequency, ω = ω0 and clearly from equation (1.38), kx

= kx0 remains constant along each ray. The remaining solutions to the ray equations, as

derived by Grimshaw and Allen (1983), are given as follows:

x = x0 +

(

kx +
β

2ω

)

t (1.41)

y = y0cos

(

βt

c0

)

(1.42)
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ky = −
βy0

c0
sin

(

βt

c0

)

(1.43)

where x0 and y0 are the coordinates of the starting point of the ray trajectory. Using the

equations for x and y, a constant gravity-wave phase speed of c0 = 3ms−1 and specifying

ω such that it corresponds to semi-annual frequency Rossby waves, we can immediately

reproduce the solution derived by Schopf et al. (1981) propagating from a straight north-

south orientated boundary. This is illustrated by Figure (1
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latitude, where for example y = 1000km or y = −1000km represents a position 1000km

north or south of the equator respectively. Under the β-approximation, we make the

assumption that the β-parameter is constant, and thus that the Coriolis parameter f =

βy varies linearly with latitude. We approximate β with:

β ≈
2Ω

a
≈ 2.288 × 10
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The autonomous system is derived as follows. We know from equ
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in which case we take as a boundary condition that the phase, S is constant along the

boundary. In this case it can be shown that:

∂S

∂y
= ky = 0 (2.15)

The meridional wavenumber ky will therefore have a zero initial value for each ray trajec-

tory. This assumption is valid only while the coastline is straight and has a north-south

orientation, but not in the more general case of a variable coastline. The initial value

of x
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solutions is known as the caustic line which we will discuss in more detail later. Important

to note is the symmetry of the solution about the equator.
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yc =
c0

2ω
(2.24)
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10250km from the eastern boundary, a result consistent with the graphical representation

given in Figure (2.3). The location of this energy focus is expected to be an area of very

intense Rossby wave activity.

2.1.6 Realistic Coastlines

Thus far we have only considered wave propagation from a straight, north-south bound-
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introducing a variable meridional wavenumber along the boundary is that the ray paths

are now initially orientated slightly towards the south as they leave the coastline. In

addition, the angle of the boundary means that the caustic in
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c0 (x, y) = A + Bcos

(

2y

a

)

+ Ccos

(

6y

a
+ Dπ

)

+
Ex

a
; (2.39)

where the additional parameter E
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distribution of c0
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dφ

dt
= cgφ =

∂ω

∂kφ

=
2βR4acos3φkλkφ

[

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

)]2 (2.47)

dkλ

dt
= −

∂ω

∂λ
= 0 (2.48)

dkφ

dt
= −

∂ω

∂φ
= −

2βR2akλ

(

R2sin2φk2
λ + a2cos4φ

)

sinφ
[

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

)]2 (2.49)

It can once more be shown from equation (2.46) that in order for the group velocity to be

negative in the λ-direction, the following condition must be satisfiJΩ/R13 10.9091 3542211.8413(o)28.0953(w)0.342408(i)-97.97011 TfΩ-0.341797 -7.28086 TdΩ[N94(v)27.81(e)-333.544(i)-0unditi
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Thus our autonomous system of differential equations is given as:

dφ

dλ
=

−2R2kλkφ
[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)] (2.56)

dkλ

dλ
= 0 (2.57)

dkφ

dλ
=

2kλ

(

R2sin2φk2
λ + a2cos4φ

)

sinφcos3φ
[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)] (2.58)

2.2.4 Fixed ω Solution
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From this we can calculate the maximum frequency for which Rossby waves can propagate
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use a conversion ratio of 112km per degree, then the critical latitude for the cartesian

coordinate solution in degrees is approximately 58.3◦. It is therefore clear that converting
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2.2.7 Variable Meridional Wavenumber
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2.2.8 Variable c0

The last step to achieve the final result in spherical polar coordinates is to remove the as-

sumption that the gravity-wave phase speed is constant. Rather than using c0 = 2.6ms−1,

we will once more use the phase speed function specified by equation (2.37). In spherical

polar coordinates this is equivalent to:

c0 (φ) = A + Bcos (2φ + Cπ) + Dcos (6φ + π) ; (2.74)

since φ = y/a. Re-deriving the ray equations becomes a little more tedious due to the

additional φ dependent terms, but the general autonomous form of the equation for kφ

can be written:
dkφ

dλ
=

1

cgλ

[

∂ω

∂R2

∂R2

∂φ
+

∂ω

∂β

∂β

∂φ
+

∂ω

∂kx

∂kx

∂φ

]

(2.75)

where R = c0(φ)/2Ω sin φ and kx = kλ/a) =
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2.3 Caustics

In comparing the final results in cartesian coordinates and spherical polar coordinates

(shown by Figures (2.14) and (2.18) respectively), it can be seen that there is very little
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in red. In addition we include the western coastlines to give a better overall picture.

Figure 2.19: Caustics in the Atlantic Ocean

Figure 2.20: Caustics in the Pacific Ocean
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For the Atlantic Ocean, the model solution suggests that the critical latitude in the North-

ern Hemisphere is at approximately φc ≈ 40◦N on the eastern coastline. In the Southern

Hemisphere the critical latitude is at the southern tip of Africa at φc ≈ 35◦S where the

coastline comes to an end. The poleward extent of the caustic decreases almost lin-

early westwards (towards the equator) in both hemispheres, until the western coastline

is reached. The focus of rays that we have seen in solutions with the western coastline

hidden does not occur in the Atlantic because the ocean basin is not wide enough. The

caustics instead meet the western coastline at 13◦



Chapter 3

Analysis of Model Output

Many recent studies have used either satellite altimeter da
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example of an unfiltered and filtered time series is given by Figure (3.1), below. Finally,
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Computational restraints meant that in the current study, w
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Chapter 4

Conclusions and Further Work

4.1 Summary

During this project we have modelled ray propagation in the Atlantic and Pacific ocean

basins both in cartesian and spherical polar coordinates. We began by considering a

straight eastern boundary, both north-south orientated and orientated at some angle α.

We then extended the ideas to account for variable coastline geometry and introduced

eastern boundaries representative of the Atlantic and Pacific coastlines.

Introducing a variable coastline required us to introduce a new boundary condition de-

pendent on the angle of the coastline α. The boundary condition was used to determine

the initial values of the zonal and meridional wavenumbers. Having introduced the new

boundary condition, it was found that trapped waves in regions equatorwards of the crit-

ical latitude φc were unable to propagate freely as Rossby waves if α is sufficiently large.

This indicates that Rossby waves are not able to propagate from all regions equatorwards

of φc. Variable coastal geometry also creates differences in the initial tilting of the rays as

they propagate away from the boundary, and this leads to the divergence and convergence

of rays in some regions. The shape of the coastline therefore has significant impacts on

the energy distribution of the boundary-driven waves throughout the ocean basin. This

observation may be related to the pattern of correlation coefficients shown in Figure (1.2)

from Fu and Qiu (2002) and as discussed in Chapter (2.3).
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also determines whether Rossby waves can propagate freely from regions equatorwards of

φc if α is also significant. As the Rossby radius of deformation R is dependent on c0 and we

determined that the latitudinal variation in R was significant for shaping the ray envelope,

we deduced that c0 is also an important variable in determining the location of the caustics.

The solutions derived in cartesian coordinates and spherical coordinates were found to be

very similar, indicating that the shape of the ray envelope is not strongly dependent on

the sphericity of the Earth.

Having produced some graphical representation of the ray propagation patterns across

each ocean basin, we briefly discussed the presence of the caustics. The caustics are the-

oretical lines that meet the eastern boundary at the critical latitude and North of which

we expect waves at the boundary to remain trapped as coastally-trapped Kelvin waves.

Equatorwards of the critical latitude, provided that the coastline angle is not sufficiently

large, waves can propagate freely from the coast as Rossby waves. In the interior ocean,

the caustics define the western extent of the region where we expect to find a significant

amount of variability associated with boundary driven waves. Westward of the caustic,

variability associated with the boundary driven waves is expected to decay exponentially.

The pattern of real ray solutions within the caustic region indicated that rays propagating

from the eastern boundary turned and headed equatorwards. As a ray trajectory repre-

sents the group velocity vector, and energy associated with boundary driven Rossby waves

propagates with the group velocity, the theory therefore indicates that energy from the

mid-latitudes propagates equatorwards via dispersion, as opposed to the western part of



54 CHAPTER 4. CONCLUSIONS AND FURTHER WORK

the contours and the modelled caustic. This is a good early indicator that dispersion is
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The next step to improve the model is therefore to include some steps to compute the

point at which each ray trajectory first crosses with another. The line that passes through

each of these points is the caustic.

We previously stated that a caustic appears when two neighbo
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Figure 4.1: Challenor et al. (2001)

As we have seen, westward propagating signals in ocean data can best be illustrated by ar-

ranging data into a Hovmöller diagram. Zonally-propagating features subsequently appear

as slanted propagation patterns where the angle at which the feature slants is determined

by its phase speed. Having applied the Radon Transform to a Hovmöller diagram, we

would therefore expect a maxima to occur in θ when x′ is perpendicular to the sloping

features that represent the westward propagating signals. By determining the maxima and

minima associated with certain angles within the time-longitude plot, we can thus iden-

tify signals that are purely westward propagating. Then by applying a Gaussian filter,
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Appendix 1

5.1 Variabl
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r3 =
4ABcosφ2

d1
(5.9)

r4 =
12ADsinφ1

d2
(5.10)

r5 =
4ADcosφ1

d1
(5.11)

r6 =
4B2cosφ2sinφ2

d2
(5.12)

r7 =
2B2cos2φ2

d1
(5.13)

r8 =
4BDcosφ2cosφ1

d2
(5.14)/
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(f2)φ = 8Ω2cosφsinφ (5.23)

The following equations are the terms of the resulting derivative of R2:

q1 =
A2(f2)φ

f4
(5.24)

q2 =
4ABsinφ2

f2
(5.25)

q3 =
2ABcosφ2(f2)φ

f4
(5.26)

q4 =
12ADsinφ1

f2
(5.27)

q5 =
2ADcosφ1(f2)φ

f4
(5.28)

q6 =
12BDsinφ1cosφ2

f2
(5.29)

q7 =
4BDcosφ1sinφ2

f2
(5.30)

q8 =
2BDcosφ1cosφ2(f2)φ

f4
(5.31)

q9 =
8B2cosφ2sinφ2

f2
(5.32)

q10 =
B2cos2φ2(f2)φ

f4
(5.33)

q11 =
12D2cosφ1sinφ1

f2
(5.34)

q12 =
D2cos2φ1(f2)φ

f4
(5.35)

Therefore the derivative of R2 is:

(R2)φ =
12

∑

i=1

qi (5.36)

The equation for kφ becomes:

dkφ

dλ
=

(

(R2)φa2cos3φ − 2R4sinφk2
λ

)

kλ

R4cos3φ
[

a2 + R2
(

k2
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