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Abstract

A simple numerical model was developed to solve a forced version of the two-dimensional

barotropic vorticity equation, on a β-plane stretched around the Earth. The model is

designed to produce a turbulent flow and a crude representation of the Northern Hemi-

sphere storm track. The probability distributions of vorticity produced were analysed,

with a particular focus on the extreme values attained.

Two different experiments have been performed with the model - firstly without differential

rotation (β = 0), and secondly with a mid-latitude value of β (‘geostrophic turbulence’).

These experiments produced qualitatively similar turbulence to previous numerical mod-

elling studies - coherent, isolated vortices for β = 0 and stretched vortices confined to a

latitude band for β > 0, more representative of the real atmosphere.

Through analysis of the statistical moments of the time dist
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Symbols, Constants and Acronyms

Symbols units

Relative vorticity ξ s−1

Absolute vorticity ζ s−1

Coriolis parameter f s−1

Latitude φ rad
Horizontal co-ordinates (x, y)
Gradient of Coriolis parameter β = ∂f/∂y m−1 s−1

Reynolds number Re
Eddy diffusion parameter κ m2 s−1

Horizontal wind vector u = (u, v) m s−1

Streamfunction ψ m2 s−1

Geopotential height Φ km
Forcing F s−2

P



Chapter 1

Introduction

1.1 Numerical modelling of weather

The science of numerical weather forecasting was started in the early 20th century by

Norwegian Vilhelm Bjerknes, and the Bergen Group in Norway. They formulated the

basic mathematical equations governing the thermodynamics and hydrodynamics of the

atmosphere (Bjerknes 1904), but lacked the technology to solve these equations practically.

The first numerical weather experiment was performed by Richardson (1922), who com-

pleted all the calculations by hand. It took over two years to complete - and it was very

wrong! Charney et al. (1950) were among the first authors to successfully use a com-

puterised numerical model of the atmosphere. Due to the very limited computing power

available they used primitive equations, and just 270 grid points over North America. A

24-hour forecast was produced, with mixed success, but long after the event itself. The

results were better than a subjective analysis and demonstrated that this approach was

feasible.

Numerical modelling has provided much insight into the physical processes governing the

atmosphere by attempting to match the computer simulations with real observed features.

As computers became more powerful it was soon possible to incorporate more and more
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the Boscastle floods of 2004.

The motivation for this project was to understand how extremes occur in a simple numer-

ical model. In this context it is ideal to study vorticity, which is a fundamental property

of fluid motion.

1.2 Vorticity - definitions and interpretations

1.2.1 Definitions

Vorticity is a measure of local rotation or ‘spin density’ of a fluid e.g. air, water, and is

defined as the circulation per unit area, hence

vorticity = lim
A→0

∮

v.dl

A
= lim

A→0

∫∫

∇× v dA

A
,

by Stokes’ theorem, where v is a velocity, and A is an area. Meteorologists therefore define

a quantity called relative vorticity, ξ (Holton 1992), as,

ξ = ∇× u,

where u is the horizontal wind vector (u, v). This quantity, as its name suggests, is relative

to the rotation of the Earth, and this extra rotation adds vorticity. As the velocity of

rotation depends on latitude, φ, it is natural to define another quantity which includes

this extra vorticity. Thus, the absolute vorticity, ζ, is defined as,

ζ = ξ + f,

where f is known as the Coriolis parameter,

f = 2Ω sinφ,

and Ω is the angular rotation rate of the Earth. It is obvious that f is not a constant on a
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Figure 1.1: Geostrophic balance: The Coriolis Force (CF) balances the Pressure Gradient
Force (PGF) causing motion to be anti-clockwise around a low pressure system (L) in the
northern hemisphere. Circles are isobars (lines of equal pressure) and u is the geostrophic
wind vector.

In the absence of surface friction effects, the atmosphere is often considered to be in

‘geostrophic balance’, where the Coriolis Force (CF) balances the Pressure Gradient Force

(PGF). The CF is a force due to the Earth’s rotation and acts to the right of the velocity of

a moving particle in the northern hemisphere, and the PGF is due to the air attempting

to return to a equilibrium state of pressure. This causes the air to circulate around a
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Chapter 2

Literature Review

2.1 Importance of vorticity

As well as vorticity being a fundamental property of the atmosphere, it is also important

as it can be considered a conserved quantity in certain cases. Numerical modelling studies

of the atmosphere, like those that are described below, often use conserved quantities to

examine the properties of the flow. This is because any changes in the flow are not due

to any external change, but are solely due to internal processes moving the quantity. This

then provides information on the dynamics and underlying physical principles.

Charney (1971) found a quantity which he called ‘pseudo-potential vorticity’ (PV) which

is conserved with the flow in a model atmosphere. In the model that we will use in this

study (see Chapter 3 for the details), the absolute vorticity, ζ, is equivalent to Charney’s

quantity for a layer of fixed depth (see Section 3.4), and so can be treated as a conserved

variable, with the benefits just described.

2.2 Highs and Lows

As already shown (Section 1.2.2) vorticity manifests itself in the atmosphere through the

pressure systems that are the dominant cause of the surface weather. Venn (1887) was

the first to note that the distribution of pressures in time at a single point is not normally

(Gaussian) distributed. He found pressure to be negatively skewed (Fig. 2.1), with low

pressure systems observed to depart further from the mean th
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Figure 2.1: Venn’s original figure showing the frequency distribution of atmospheric pres-
sures. Pressure increases towards the left. [Reproduced in ‘Significance’ (June 2005) by
permission of the Master and Fellows of Gonville & Caius College, Cambridge.]

Burt (2004) lists the most extreme weather events ever measured, including the record high

and low atmospheric pressures. The most extreme high pressure observed was 1086 mb

in Mongolia in 2001, and the lowest (non-tornado) pressure was 870 mb in the Western

Pacific in 1979. As the mean sea-level pressure is 1013 mb, the record low pressure is twice

as far (143 mb) from the mean than the record high (73 mb). Venn (1887) found his similar
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A possible outcome for this experiment would be to detect a different set of statistical

properties in the positive and negative vorticity extremes. As the centrifugal force is

neglected in our model approximation we might not expect to see any differences, if the

‘gradient wind balance’ is the dominant factor in the atmosphere.

2.3 Numerical simulations of turbulence

2.3.1 Two-dimensional turbulence

Rossby (1939) first noted that the atmosphere behaved approximately two-dimensionally

when describing what became known as Rossby waves. The main reason why the approx-

imation is a reasonable one is that the atmosphere is a very thin layer (depth ∼ 10 km) of

fluid on a large planet (radius ∼ 6400 km). Also, the vertical motions (∼ cm s−1) in the

atmosphere are generally far less than the horizontal motions (∼m s−1). Finally, rotation

of a layer of fluid also tends to lock the fluid into two-dimensional motion, independent
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Figure 2.3: Snapshot of Potential Vorticity on the 315 K isentropic (constant temperature)
surface for the Northern Hemisphere. Source: Department of Meteorology website.

On a completely different scale, similar equations and numerical modelling techniques have

been used to study the turbulence in the giant gaseous planets in the outer solar system

- Saturn and Jupiter (e.g. Williams 1978) - especially Jupit
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vortices. They found significantly increased values of kurtosis whenever coherent vortices

are formed when averaging over the spatial domain. As β is increased the kurtosis decreases

towards that of a normal (Gaussian) distribution, as the flow becomes more anisotropic

and there are fewer coherent vortices.



17

2.4.1 Skewness

White (1980) used twelve years (1965 – 1976) of data from the National Meteorological

Center analyses to calculate the statistics of the distribution of geopotential height - the

altitude of a particular isobar - over the Northern Hemisphe
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itively skewed north of the storm track, and negatively skewed southwards. They also

noted that “extreme events” (which they defined as outside 3 standard deviations of the

mean) accounted for about half of the negative skewness at lower latitudes, whereas “large

events” (defined as between 2 − 3 standard deviations from the mean) are responsible for

the other half of the skewness at low latitudes, and nearly all the skewness at high latitudes.

All of White (1980), Swanson (2001) and Nakamura and Wallace (1991) therefore observed

an increase in skewness with latitude of the atmospheric quantity under test. The crossover

between positive and negative skewness occurred between 30 - 45◦N.

2.4.2 Kurtosis
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2.5 Summary

In this Chapter some of the literature relevant to this study has been considered. It has

been shown that the atmosphere acts like a turbulent flow, and it has been discussed

how numerical models of two-dimensional and geostrophic turbulence have been used to

simulate features of the atmospheric system. The statistical results of these simulations,

such as the large values of kurtosis found in turbulence models, will be compared with the

results of this project.

Some observations of the statistics of vorticity in the atmosphere have been summarised -

these include the observation that the distribution of atmospheric pressures is not symmet-

ric, and that the skewness of the distribution of vorticity increases with latitude. These



Chapter 3

Numerical Model Development

This Chapter describes the numerical model that is used in this study. It is a much

modified version of the model written for the Department of Meteorology ‘Numerical

Modelling’ module, MTMW14.

3.1 Designing the numerical model

There are many factors which influence the design of the model to be used. The model cho-

sen is a two-dimensional solution (for the reasons given in Section 2.3.1) to the barotropic

vorticity equation (see Eqn. 3.1 below). The reason for this choice is that this is the

simplest possible model to simulate a mid-latitude storm track.

The model is not designed to produce forecasts, but just to analyse the statistics of the

distribution of vorticity. For this reason all surface friction effects are ignored, so we assume

that the model is in geostrophic balance. The equations are solved on a β-plane, which

assumes that the Coriolis parameter, f , varies linearly with latitude in the region under

test. For small ranges of latitude this is a reasonable, and commonly used approximation.

3.1.1 Barotropic vorticity equation

The governing equation for the evolution of vorticity can be derived from the momentum

equations on a rotating sphere. The atmosphere is a very thin fluid in comparison to

the size of the planet and can, to a first approximation be considered as two-dimensional.

Another common approximation that can be made is to assume that the atmosphere is
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Figure 3.1: Diagram showing the geometrical set up of the model with a latitude band
wrapping around the globe.

3.3.1 Choosing the numerical scheme

The barotropic vorticity equation (Eqn. 3.1) includes both an advection term and a dif-

fusion term. It is known that a centred time, centred space (CTCS) scheme is unstable

with respect to a diffusion term, and that a forward time, centred space (FTCS) scheme is

unstable with respect to an advection term. We therefore need to look for an alternative.

Choosing the CTCS scheme, but putting the diffusion term on a different time level is an

obv3(t)3.8873302(c)4.44234(e)4.44234(n)27.5403(t)3.88733(r)-4.33492(e)4.44234(d)-390.396(s)-1.55762(p)-5.g
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3.3.2 Initial conditions

The background initial geopotential height field, Φ, is a linearly varying field with a

gradient chosen to produce roughly the correct magnitude of easterly zonal flow (u ∼
30 m s−1) in the channel. The model is started with a Gaussian distribution of random

noise of relative vorticity imposed on the zonal flow. The width of the random distribution

is chosen to mimic the distribution of vorticity in the atmosphere - a typical value for the

width used was 10−4.





Chapter 4

Statistical Methodology

This Chapter defines and describes the statistical methodology that is going to be used

to investigate vorticity in the model simulations.

4.1 Moments

The sample moments, mk, of a random variable ξ are defined as,

ξ =
1

n

n
∑

i=1

ξi,

mk(ξ) =
1

n

n
∑

i=1

(ξi − ξ)k for k ≥ 2,

where the mean is denoted by ξ. The standard deviation, skewness and kurtosis are defined

respectively as,

s =
√
m2,

b1 =
m3

s3
,

b2 =
m4

s4
.

The standard deviation measures the width of a distribution
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are taken over a sufficiently large time interval. Similar theoretical arguments apply to

the distribution of minima and so comparisons can be made between extreme positive
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Chapter 5

Exploratory Data Analysis

5.1 Introduction

Two numerical experiments are performed using the model described in Chapter 3 - firstly

the two-dimensional turbulence case, with β = 0, and secondly the geostrophic turbulence

case with β > 0.

5.1.1 Two-dimensional turbulence case

The β = 0 case is chosen to test the model without the extra complications of the differen-

tial rotation, and also allows comparisons with other numerical studies of two-dimensional

turbulence. Physically, this situation represents turbulence on a cylindrical planet! In

this situation, as β = 0, the potential vorticity (PV) is equal to the relative vorticity

(RV). Fig. 5.1a shows a snapshot of the vorticity field after 500 days. It clearly shows

the coherent vortices that form in the same way as previous numerical studies of two-

dimensional turbulence (e.g. McWilliams 1990a). The differences between this study and

previous two-dimensional turbulence models is that we are forcing the turbulence, and

have included a zonal flow. The snapshot shows the vortices forming in the forcing region,

and propogating along the domain.

The results presented here are from one particular set of initial conditions, and the sensi-

tivity to these initial conditions is discussed in Section 5.5.

5.1.2 Geostrophic turbulence case

A more realistic (for the atmosphere) model would include the differential rotation of the

planet (the β-effect) - and this case is analysed to see how the turbulent nature of the

flow changes. A latitude of 45◦N is chosen for the study, which is approximately where

the ‘storm track’ exists on Earth, and this means that β = 1.619 × 10−11 s−1 m−1.
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(a)



35

A snapshot of the relative vorticity is shown in Fig. 5.1b and it is clear that the two cases

are strikingly different - the β = 0 case shows separated, coherent vortices at different

latitudes, whereas the addition of β ensures the vortices are concentrated in a band, and
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Figure 5.4: Latitude-time cross section of relative vorticity for β = 0 in 100 day slices,
starting at t = 0.
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Figure 5.5: Latitude-time cross section of relative vorticity for β > 0 in 100 day slices,
starting at t = 0.
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5.4 Time series and histogram

Fig. 5.8a shows the time series of vorticity for a specific point (x = 200, y = 64 - i.e. in the

centre of the channel) using data from every time-step in the β = 0 case. The ‘quieter’

period visible in the time-lapse figure is easily picked out in the time series plot as a sudden

reduction in variance around 650 − 800 days. Fig. 5.8b shows the time series at the same

point for the geostrophic version. The features seen in the t
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Figure 5.10: Mean of potential vorticity for (a) the results presented above, and (b), (c),
and (d) for different random initial conditions.

5.6 Summary



Chapter 6

Extremes of Vorticity in

Turbulence

6.1 Introduction

The main aim for this project was to examine the extremes of both positive and negative

potential vorticity in the numerical model. The symmetry and latitude dependence of the
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6.2 Latitude variation of vorticity extremes
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a GEV distribution. This is likely to be due to boundary effects, and the grid points near

the boundary should be ignored.

It can be seen that the estimated shape parameters are consistent with no dependence on

latitude in the β = 0 experiment. The shape parameter is slightly positive for the positive

vorticity extremes, but consistent with zero for the entire central region, and the errors are

approximately ±0.15. For the minima the shape parameter is significantly negative over

the whole range, rather than zero, suggesting that the minima and maxima have slightly

different GEV distribution shapes.

The negative shape parameter for the negative vorticity extremes (high-pressure systems)

implies that these systems have a finite bound, whereas the positive vorticity extremes

(low-pressure systems) have a shape parameter consistent with zero which implies that
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6.3 Maps of vorticity extremes

Rather than look at a cross-section, it is possible to see how the parameters vary as a

function of latitude and longitude. Fig. 6.6 shows the GEV distribution shape parameters

as a map, using the closed form estimate of the parameters, as this is quicker to calculate

and has been shown to be consistent with the maximum likelihood form.

The shape parameter for the two-dimensional turbulence case again shows the turbulent

wake seen in the moment analysis, and also the strong asymmetry in shape parameter

between maxima and minima that has already been noted in the latitude cross-section.
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6.4 Sensitivity to initial conditions

Fig. 6.10 shows the GEV distribution shape parameter (γ̂) for four different starting ran-

dom initial conditions - the first row is the model run already analysed, and shows the

asymmetry between the maxima (left column) and minima (right column). The second

row shows an asymmetry in the opposite direction with a generally more negative shape

parameter in the maxima map than the minima map. The other two runs show a more

symmetric shape parameter between the maxima and minima.

These results reflect the change in the mean vorticity shown in Fig. 5.10 with the runs with

more symmetric maps of the mean with latitude also showing a more symmetric pattern

in the shape parameters of the maxima and minima.

Resolving the reasons for this effect requires a more detailed analysis, including an ensem-

ble of longer simulations.

6.5 Summary

It has been shown that the distribution of vorticity produced in these simulations is well

fitted by a GEV distribution, with a block size of 10 days, for both the maxima and minima.

It was also shown that the closed-form estimates of the GEV distribution parameters gave

similar results to the maximum likelihood estimates, and were easier to calculate.

The estimated GEV distribution shape parameters are asymmetric with respect to the sign

of vorticity in the two-dimensional turbulence simulation, but this is not highly significant,

and is initial condition dependent. In the geostrophic turbulence case this asymmetry is

not present, though there are strong variations of the shape parameter with latitude. In

both simulations the scale and location parameters show similar features to those seen in

the moment estimates.
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observed in the atmosphere (Swanson 2001).

In common with previous authors (e.g. Nakamura and Wallace 1
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7.2 Future directions

If there was more time, and more computing resources available then there are a number

of further analyses and experiments that could be performed.

7.2.1 Simulation length

It is seen in the atmosphere that ‘storm tracks’ have cycles of periods of different strength

and activity. This characteristic was also seen in both turbulence simulations - throughout

the 1000 day model run there were different regimes. In this study these different regimes

have been largely ignored in the statistical estimates. Scientifically it would be valuable

to analyse each regime separately to see how the extremes vary in each case, and whether

they are different. To do this a longer simulation would be needed to produce longer

periods of each regime.

A longer simulation length would also help reduce the errors in the statistical estimates.

Currently, the asymmetry of extremes seen in the two-dimens



65

50 100 150 200 250

20

40

60

80

100

120

Figure 7.1: Snapshot of the distribution of passive tracer in geostrophic turbulence.

would be interesting to see if a passive tracer in the numerical model acted in the same

way.

7.2.3 Increase of horizontal resolution

The major weather centres are continually aiming to increase the resolution of their models

in an effort to more accurately predict the weather. The UK Met



Appendix A

Numerical Model Design

A.1 The barotropic equation algorithm

This algorithm is a much modified version of that used for the ‘Numerical Modelling’

module, MTMW14.

A.1.1 Design

Once the numerical scheme was decided, it was then necessary to code up the model.

From the initial conditions of vorticity and streamfunction the following sequence is im-
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Figure A.1: The computational mode of the numerical scheme. The blue line is a unfiltered
version of the vorticity at a single point over the time range indicated.

A.1.3 Computational mode of the numerical scheme

When using a centred temporal scheme it is inevitable that there is an extra solution to

the finite difference equations. This ‘computational mode’ is an artifact of the numerical

scheme, and is normally oscillatory. The blue line in Fig. A.1 shows the vorticity at a

particular point for a small time range, and shows the computational mode which appears

superimposed on the physical mode. It can be seen that the mode is small (∼ 0.2%) and

this is partly due to the diffusion term in the equations which helps to damp out the

oscillations. There are known filtering techniques to help r





Appendix B

Numerical Model Testing

B.1 Simulation length

Choosing the length of the model run was achieved by needing enough data to ensure the

statistics are robust, but with the limits of time to perform the runs, and disk space to

consider. The time of 1000 days was chosen, with a ‘spin-up’ time of 300 days, leaving

700 days for the statistics to be calculated over. It has been checked that the measured

statistics do not change very significantly for slightly different values of the ‘spin-up’ time.

The time of 300 days for the ‘spin-up’ was chosen, partly by examining the time lapse

movie (not shown) of the run, and partly by examining the cumulative moments like

those shown in Fig. B.1. The panels show the standard moments calculated cumulatively,

starting at the end of the run, e.g. the point plotted at 500 days is the cumulative moment

for the data from 500 – 1000 days etc. The lower moments show a fair amount of variation,

with the mean being affected strongly by the different activity regimes in the run. The

values at large time points are noisy as there are few data points involved.

One of the most striking features of the plots for the higher moments are the large jumps in

skewness and kurtosis, e.g. at about 475 days. This demonstrates how a few extreme values

can affect the moment values far more significantly than might be expected. As previously

discussed, this was also noted by Nakamura and Wallace (1991) in their observations of

geopotential height, where the extreme values dominated the values of skewness they

observed. Using the quantile moments (not shown) the jumps are far less significant, as

expected, due to the measures being less dependent on individual events and they can be
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B.3 Estimating an optimal block size

When using a GEV distribution to consider extremes, Section 4.3.2 describes how it is

necessary to estimate an optimal block size to take the maxima and minima over. It was
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increasing block size, within the confidence intervals shown. For block sizes less than 10

days the shape parameter is often not constant. The confidence intervals become larger

with increasing block size as there are less points to fir the GEV distribution to. A block

size of 10 days is hence chosen as a suitable size for this experiment.

The figures also show that, in the two-dimensional turbulence experiment, both the max-

imum likelihood and closed-form estimates agree, which gives us confidence in their use.

In the geostrophic experiment the agreement is not as close, and it was noted that the

maximum likelihood fit had more trouble converging in this case. It is decided to use the

closed-form estimates predominantly, as they are easier to calculate, and they also allow

approximate confidence intervals to be estimated.
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