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Abstract

Hazardous or extreme weather is often caused by localised, convective scale features.

The high social and economic impact of such events has created a growing need within

numerical weather prediction to improve the accuracy of convective scale forecasting.

Many operational centres around the world are developing forecasting models with spa-

tial resolutions down to 1km. Such high resolution allows the dominant motions at the

convective scale to be generally well represented.

Initial conditions for numerical forecasting models are provided using data assimila-

tion, a method which combines observations with a current estimate of the atmospheric

state. However, due to limits in computer power, very high resolution models can only

cover a limited area domain. This means that there may be phenomena present in the

atmosphere with length scales that are longer than the domain of the model.

It is important that the data assimilation on the limited area model (LAM) capture

both the small and large scales, including lengthscales longer than the LAM domain.

To investigate how different scales are treated in a LAM data assimilation, we nest a

limited area domain within a 1D linear advection-diffusion model and implement a four

dimensional variational (4D-Var) data assimilation scheme. We use a discrete Fourier

sine transform to investigate which wavelengths are captured by the data assimilation.

We show that, with high resolution observations, the LAM data assimilation is able

to accurately represent the small scales. However, it cannot capture the truth exactly,

due to errors coming from the boundary conditions. We demonstrate that errors from

the boundary conditions, as well as limitations in the resolution of the LAM, cause errors

at low wavenumbers. We also show that lengthscales longer than the LAM domain are

aliased onto other wavenumbers, with the majority of the information being aliased onto

the longest waves contained by the LAM spectrum. Using this knowledge we develop

a new method for improving the low wavenumbers within the LAM 4D-Var whilst still

maintaining the accuracy in the small scales achieved by the high resolution.
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Chapter 1

Introduction

The ultimate problem in meteorology [18, p. 6].

This bold statement has been used to describe the problem of forecasting the weather [11,

Ch. 1 ], [18, p. 6]. According to Bjerknes, to produce the best weather forecast it is



1.1 Motivation

When forecasting the weather there are many scales to consider. We might be forecasting

synoptic scale phenomena, of order 1000km or more. Most of the high and low pressure

areas seen on weather maps are on the synoptic scale. Alternatively, we might be

forecasting more localised phenomena that occur on the mesoscale or convective scale

(of order a few to several hundred km). Squall lines, fronts and storm bands are all

mesoscale weather events. Individual thunderstorms occur on the convective scale.

Hazardous or extreme weather is often caused by convective scale features. Convec-

tive storms produce some of the most damaging weather experienced in the UK [60].

The leading cause of floods in the UK over the summer months is severe rainfall from





2. Even with perfect observations and no background term, the LAM data assim-

ilation cannot capture the truth exactly, due to errors introduced through the

LBCs.

3. Errors introduced through the LBCs, as well as differences in resolution between

the truth and the LAM, cause the LAM data assimilation to have errors at low

wavenumbers.

4. In the LAM data assimilation waves with lengthscales longer than the domain of

the LAM are aliased onto other wavenumbers, with the majorit





Chapter 2

Data Assimilation



4. We do not have sufficient observations to give a complete representation of the

atmospheric state.

In order to generate initial conditions that accurately describe the observed reality we

therefore combine a previous model forecast (background) with observations. The tool

that allows us to do this is data assimilation and the initial conditions are known as the

‘analysis’ [50, p.13], [64].

An NWP model requires an estimate of the state that is accurate at the initial time.

However, the aim of a weather prediction model is to produce an accurate forecast. The

aim of data assimilation therefore has to be to generate an analysis that most accurately

describes the observed reality at the present (initial) time but also one that will generate

an accurate estimate of the future state of the system [64].

Many types of data assimilation have been developed, varying in computational cost,

optimality and speed [12]. In this chapter we introduce a few of the different types

of data assimilation schemes and illustrate the main differences between the varying

approaches. We then go on to consider the scheme to be used in the work in this thesis

in more detail, demonstrating its derivation and discussing its practical implementation.

2.1 Types of data assimilation

There are many different types of data assimilation schemes. These schemes can be

sequential or variational and three-dimensional (space) or four-dimensional (space-time).

Sequential algorithms, such as Optimal Interpolation (OI) [50, Section 5.4.1], [54] or





2.1.2 Variational schemes

In variational assimilation algorithms we find the analysis xa which minimises a cost

function as a least squares problem. The cost function is minimised directly, using an

iterative scheme, to find the analysis [56], [64].

A 3D-Var scheme [56], [70] finds the analysis by minimising the cost function

J(x) =
1

2
(x −



The difference between the 4D-Var cost function (2.2) and the cost function for 3D-

Var (2.1) is the time dependence in the observation term. A 4D-Var scheme is run over

an assimilation window and the observations are allowed to be distributed in time. The

model equations are evolved forward in time and then the values predicted by the model

are compared with the observations at the time the observations are valid. We try to

find an analysis xa such that if we run the model forward from xa we get a best fit

trajectory through the observations and the background.

2.1.3 The Kalman Filter

In contrast to the variational technique used by 4D-Var, the Kalman Filter (KF) is a

4-dimensional sequential method [49]. It too allows observations to be assimilated over

a time window. However, the KF steps through time, assimilating observations timestep

by timestep, to give the optimal analysis at each observation time, given all previous

information.

The KF can be viewed in two stages: forecast (denoted f) and analysis (denoted a).

The forecast stage comprises of the state forecast

x
f
k = Mk−1xa

k−1
, (2.4)

and the error covariance forecast

P
f
k = Mk−1P a

k−1
MT

k−1
, (2.5)

where Mk is the linear model at time tk and Pk is the error covariance matrix at time

tk, such that at the beginning of the assimilation window P0 = B, where B is the error

covariance matrix used in 4D-Var. For simplicity we have neglected the model error

term from the error covariance forecast here but it can be included in the formulation.

The analysis stage comprises of the Kalman gain computation

Kk = P
f
k HT

k

[
HkP

f
k HT

k + Rk

]−1
, (2.6)

the state analysis

xa
k = x

f
k + Kk

[
yk − Hkx

f
k

]
, (2.7)

and the error covariance of the analysis

P a
k = [I − KkHk] P

f
k , (2.8)

10



where xa
k is the analysis at time tk, with the associated error covariance P a

k .

In the least squares sense, the KF algorithm is the optimal way to assimilate observations

sequentially. It provides the best linear unbiased estimate of the state and its error

covariance [50, 5.6.1].

2.1.4 Why 4D-Var is the method of choice

One advantage of variational algorithms is that they can handle indirect observations

in their ‘raw’ format, eliminating the need for retrieval operations [65]. They can also

link observations to model variables in a nonlinear manner and project information

from model space to observation space, and vice versa, via nonlinear observation oper-

ators [19], [65].

4D-Var also has the advantage that observations can be distributed in time as well as

space, by utilising the model dynamics. This means that not only are the observa-

tions being used at the appropriate time, but also that several observations at the same

location can be used within one assimilation period [71]. 4D-Var can extract dynam-

ically consistent information from a time-series of observations [57]. When fitting to

the observations, solutions which are inconsistent with the dynamical equations can be

penalised [19]. This temporal benefit is not available from 3D-Var as the observations

are assumed to be valid at a single time level. It is however, available from the Kalman

filter.

The KF algorithm is the optimal way to assimilate observations sequentially (in the

least squares sense). It provides the best linear unbiased estimate of the state and its

error covariance [50, 5.6.1]. There are similarities betwe



Both 4D-Var and the KF benefit from using evolved error covariances [57]. However, a

major advantage of the KF is that it advances the background error covariances via an

error covariance forecast step. This error covariance forecast provides a flow dependent

background error covariance matrix at the end of the time window, rather than esti-

mating it as a constant covariance matrix as is done in 4D-Var.



lution, limited area models. 4D-Var is currently run at JMA (Japan meteorological

Agency) at 5km resolution [46]. The UK Met Office 4km model is currently run with

3D-Var with the aim of moving to 4D-Var [22] and there are already plans published by

Météo-France for a 3D-Var-based high-resolution limited-areasba0-0.248413(u)0.0492351(t)-3237224(d)-30492351(r)-0.210368(o)0.m926628-bh





Equation (2.13) gives the constraint equation (2.10). Integrating equation (2.12) back-

wards in time from tT to t0 gives the adjoint equations

λT +1 = 0 (2.14)

λk = Mk
T λk+1 + Hk

T Rk
−1(yk − hk(xk)), k = T , . . . , 0. (2.15)

The gradient of Jo at the initial time is then given by

∇Jo(x0) = −λ0. (2.16)

This can now be used in an iterative equation that requires the gradient of J to be

calculated. M is known as the forward linear model and MT as the adjoint model.

Equation (2.16), found using Lagrange multipliers, is the same as the result found using



does not need to be linearised and can simply be written as

J(x0) =
1

2
(x0 − xb)T B−1(x0 − xb)

+
1

2

T∑

k=0

(yk − Hkxk)T Rk
−1(yk − Hkxk), (2.17)

def
= Jb + Jo,

and the constraint is

xk = Mk−1xk−1. (2.18)

where Jb is defined to be the background term and Jo is defined to be the observation

term.

2.3.1 Minimisation of the cost function J

To minimise the cost function we require a minimisation algorithm. Possible choices

include the quasi-Newton or conjugate gradient methods [64]. Detailed descriptions of

these methods can be found in [82], or [33, Sections 9.3, 10.2], for example, and are

therefore not described here. However, these types of gradient-descent algorithms will

require the value of J and its gradient ∇J to be calculated at each iteration and we

therefore need to consider how these can be evaluated.

The evaluation of the cost function is relatively straight forward by simply calculating

equation (2.17) as shown. Jb can be calculated directly. To calculate Jo we must simply

use our tangent linear model Mk to evolve our solution forward in time. We can then

calculate and store

dk = Rk
−1 (yk − Hkxk) , (2.19)

where dk are known as the normalised departures. These departures can then be used

to calculate Jo, as a series of contributions.

Jo(x) =
1

2

T∑

k=0

Jok(x), (2.20)

where

Jok(x) = (yk − Hkxk)T dk. (2.21)

16



The evaluation of the gradient can also be done in two parts. The gradient of Jb can

simply be found by calculating ∇Jb directly,

∇Jb = B−1 (x0 − xb) . (2.22)

To calculate ∇Jo directly would be computationally unfeasible as it would require N

forward model runs. The adjoint allows ∇Jo to be calculated with just one adjoint

model run. We first need to factorise

∇Jo(x) =
1

2

T∑

k=0

∇Jok(x),

= −
T∑

k=0

M1
T . . .Mk

T Hk
T dk,

= −{HT
0

d0 + MT
1

[HT
1

d1 + MT
2

[HT
2

d2 +

MT
3

[HT
3

d3 + · · · + MT
T

HT
T

dT ] · · · ]]}. (2.23)

Equation (2.23) can now be calculated from right to left by initialising the adjoint

variable λ to zero at the final time, λT +1 = 0 (as in equation (2.14)). We then step

backwards through the timesteps, at each step adding the forcing term HT
k dk to λk,

before applying the adjoint model to give λk−1. Hence equation (2.23) becomes [12]

∇Jo(x) = −λ0. (2.24)

The gradient of Jo has been found here using linear algebra. The result (equation (2.24))

is the same as that found in Section 2.2 (equation (2.16)) derived by the method of

Lagrange multipliers.

Here the adjoint model is defined as the transpose of the tangent linear model, i.e. MT .

Operationally however, the adjoint is not constructed explicitly from the transpose of the

tangent linear model matrix. The adjoint model, and how it is tested, is now considered

in the next section.

2.3.2 The adjoint model

Operationally, the discrete model is linearised to give the tangent linear model and then

the discrete adjoint equations are constructed from these discrete linearised equations.

The adjoint is derived directly from the tangent linear model code using an ‘automatic

adjoint’ method [29].

17



However, we can also use the matrix form of the discrete tangent linear equations to

find the transpose. Due to the (small) size of the system to be used in this thesis, it

is perfectly feasible here to simply transpose the matrix M to generate the adjoint, so

that is what is done in our scheme (Chapter 5).

Once the adjoint is constructed, it needs to be tested. There are two different aspects

which need to be tested and these are done using separate methods.

The Adjoint test

When the adjoint equations have been derived directly from the model code, the adjoint

code needs to be tested to verify it is producing the correct adjoint. To do this we use

the definition

〈Ab, c〉 =
〈
b,AT c

〉
, (2.25)

where A is a linear operator, AT is its adjoint, b and c are vectors and the brackets

〈. . . , . . .〉 denote an inner product [29].

Therefore, for our model M and its adjoint MT we can use equation (2.25) as a test

by first applying the model to the initial conditions δx0 to produce a final state, then

applying the adjoint to this final state.

If the adjoint is correct we should get

〈Mδx0,Mδx0〉 −
〈
δx0,M

T Mδx0

〉
= 0.

The Gradient test

We must verify that the adjoint produces the correct gradient of the cost function. To

do this we use the gradient test, a method already established to test adjoint models,

for example [53], [63].

A Taylor expansion of the cost function J gives

J(x + αδx) = J(x) + αδx
T ∇J(x) +O(α2), (2.26)

where α is a small scalar and δx is a vector of unit length. This formula can be

18



rearranged to give a function of α

φ(α) =
J(x + αδx) − J(x)

αδx
T ∇J(x)

= 1 +O(α). (2.27)



In Section 2.3.1 we demonstrated how to minimise the cost function with respect to x.

However, this method still leaves the problem of representing and inverting the matrix B.

For NWP this is simply infeasible, as the matrix B is typically of O(107 × 107). To

overcome this problem, the cost function is instead posed in terms of a different control

variable, by means of a control variable transform [7]. This





Chapter 3

The discrete Fourier transform

In this chapter we introduce the discrete Fourier transform (DFT) and the power spec-

trum. The DFT can be an extremely useful method for understanding the analysis

generated by the data assimilation. We demonstrate features of the power spectrum

and how they relate to properties of the DFT, and thus how they enable us to use the

DFT as a tool to understand the analysis.

3.1 Definition

Sines, cosines and imaginary exponentials have the property that they are orthogonal

over a series of discrete, equally spaced points [37, p.25],

Lemma 3.1

1

N

N−1∑

j=0

e−isξj =





1 if s = Nm, m ∈ Z

0 otherwise,

where ξ



The DFT of a function fj (where fj = f(ξj)) is defined to be

DFT (fj) = f̂k =
N−1∑

j=0

fje
−i2πjk/N , k = 0, 1, . . . , N − 1, (3.1)

where k is the wavenumber and N
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Figure 3.1: The power spectrum of sin(ξj), scaled by the factor 2/N .

which can be rearranged to give

f̂k =
1

2i

N−1∑

j=0

e−iξj(k−κ) − 1

2i

N−1∑

j=0

e−iξj(k+κ). (3.4)

In order to evaluate equation (3.4) we use the fact that the complex exponent3)



example, Figure 3.1 shows the power spectrum of sin(ξj) on the domain x = [0, 1),

where ξj = 2πxj , j = 0, · · · , N − 1, xj = j/N and N = 16.

By setting κ = 1 in equation (3.5), we see that it agrees with the power spectrum of

sin(ξj) plotted in Figure 3.1, which has amplitude at k = 1 and k = N − 1 and is zero

everywhere else. By applying the scaling factor 2/N to equation (3.5) we also obtain an

amplitude of one.

From this simple example we can begin to see the usefulness of the power spectrum.

The power spectrum provides a method to observe the features of the DFT coefficients

in an illustrative way.

There are many known properties of the DFT and descriptions of these can be found

in [13, Section 4.1 and 4.2], [25, p.49] and [72, p.53-56] amongst others. We will explore

a few of these properties and relate them to the features we see in the power spectrum.

We will demonstrate how the DFT can be used as a tool to understand the analysis

generated by the data assimilation.

3.3 Properties of the DFT

1. Linearity

The DFT is a linear function [25, p.49], such that, for a function

yj = afj + bgj ,

where a and b are scalars, the DFT of yj is

ŷk = af̂k + bĝk.

2. Symmetry of the Complex Conjugate

For a real sequence fj with j = 0, · · · , N−1, its DFT will, in general, be a sequence

of N complex numbers. In particular f̂k and f̂N−k are related by

f̂N−k = f̂∗
k

for k = 0, · · ·



3. Phase

In general, the DFT of a function fj can be written as

f̂k = f̂R
k + if̂ I

k ,

where f̂R
k is the real part and f̂ I

k is the imaginary part.

However, for an even function
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the power spectrum.

This property of the power spectrum allows us to use the DFT to identify scaling factors

in an analysis produced by the data assimilation.

3.4.3 Phase

As stated in Section 3.3, odd functions transform to imaginary parts only and even

functions transform to real parts only. Functions can be odd or even, or can be made

up of a combination of both odd and even parts. By considering the real and imaginary

parts of the DFT separately we can understand better the phase of a function. For

example, yj = sin(κξj) is an odd function and therefore has purely imaginary DFT

coefficents. This is demonstrated in the calculation done in Section 3.2.1. However, if

we now consider a sine wave with a phase shift we can see another useful property of

the DFT.
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Figure 3.3: The power spectrum of the real (red) and imaginary (green) parts of the DFT of sin(ξj +π/4),
scaled by the factor 2/N .

3.5 Summary

We have shown that it is possible to learn a lot of information about a solution by simply

performing a DFT and considering the features of its power spectrum in relation to the

known properties of the DFT. By considering the sine and cosine waves as a basis for

function space, we have shown that the wavenumber and pattern, amplitude and phase

of the components of a function can all be found from the DFT and its power spectrum.

We have also demonstrated methods for how this can be done. These methods have

been demonstrated here on basic sine wave examples but can easily be applied to more

complicated functions.
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Chapter 4

Limited Area Models

There are many different limited area models (LAMs) currently being run operationally

at weather centres around the world. We begin by introducing



• The Unified model (UM) at the UK Met Office is run on limited area domains as

well as globally [79].

• The WRF (Weather Research and Forecasting) model is a multiagency collabo-

ration [78]. Current major WFR partners include NCAR, the National Oceanic

and Atmospheric Administration’s (NOAA)’s National Center for Environmental



LAM

buffer zone

LAM boundary: LBCs provided by
parent model

Figure 4.1: Schematic of the LAM domain and buffer zone.

HIRLAM-5 is run at 5-15km resolution [39] and HARMONIE has a target resolution of

2.5km [40]. Aladin has a horizontal resolution of about 9.5km and AROME will run at

2.5km gridmesh [26]. The MSM at JMA currently has a 5km resolution [46].

Another shared property of all the models is that their lateral boundary conditions

(LBCs) are provided from a larger, courser resolution (parent) model. In order to relax

the solution on the interior of the LAM domain to the values prescribed by the parent

model at the boundaries, a buffer zone is implemented at the boundaries of the LAM, as



Although all the models utilise this relaxation across a buffer zone, the structure of the

relaxation term αi and the width of the buffer b varies between models. For exam-

ple, in the WRF system b = 4 and α is a simple linear interpolation [78] whereas in

HIRLAM-5, b = 10 is the default in the reference system and the default value of α is

αi = 1
2 {1 + cos[πi/b]} [38]. As well as a relaxation zone, HIRLAM also implements an

extension zone to obtain periodicity on the LAM domain [35]; this will be discussed in

Section 4.2.1.

All the LAMs get their LBCs from a parent model. However, the frequency with which

they are provided differs between the models. In the WRF system the LBCs are specified

by the parent model at every coarse-grid time step [78]. In contrast, in MSM the LBCs

are only given at the initial time and at the end of the assimilation window and are

interpolated between these two times [41]. This interpolation could degrade the accuracy

of the model as it forces all variations at the boundaries to b







LBCs supplied by the parent model can be a major source of error in the LAM [65],[84].

This is due to several reasons.

1. The horizontal, vertical and temporal resolution of the parent model is generally

coarser than that of the LAM and thus the LBCs have to be interpolated to the

LAM grid at every timestep. Even if the parent model run providing the LBCs

is perfect, there will be interpolation errors introduced when it is interpolated to

the LAM resolution.

2. There may also be differences in model setup and parameterisation, even if the

resolution is the same in both models. This will cause differences in the model

outputs and these differences at the boundaries may cause spurious waves and

gradients, which can influence the LAM interior.

3. The parent model may simply be wrong for some reason. It may have an at-

mospheric feature occuring in the wrong spatial location or developing too early

or too late for example, and this error will be transmitted to the LAM at the

boundary interface.

These problems and others are dicussed by [84]. Although these are problems associated

with the LAM itself, they can also be exacerbated in the data assimilation. This is

discussed in the next section.

One way to negate these problems is to simply locate the boundaries sufficiently far from

the area of meteorological interest such that errors cannot be transmitted inwards from

the boundary in the time window of the forecast [84]. For high resolution forecasting

however, this is simply impractical as the domain can only be a limited size and there

are insufficient computer resources to allow for boundaries to be sufficiently far away.

As discussed in Section 4.1.1, one method that is implemented operationally is the

use of a ‘buffer zone’. The buffer zone blends the two solutions near the boundaries

and therefore avoids any sharp jumps, which could arise because the models evolve

independently, by smoothing any discrepencies between the models at the boundaries.
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observation

LAM domain

Figure 4.3: Diagram illustrating the observational information lost from observations outside the LAM
domain. The red dot is an observation and the dotted lines indicate the spreading of this observational
information by the matrix B. The green area is the part of the LAM domain that would be influenced
by the observation if it were visable to the LAM.

1-4 above. This can create inconsistencies between features represented in the LAM and

the coarser model providing the LBCs. For example, the position of a weather front

may be different in the two domains.

As discussed in Section 2.3.4, a control variable transform is used to remove horizontal

correlations in the state variable. In global variational assimilation schemes this control

variable transform results in a state variable defined in spe



LAM

buffer zone

extension zone

Figure 4.4: The extension zone of the HIRLAM model, as shown in [35]

LAM domain

Figure 4.5: Diagram illustrating a feature being ‘cut-off’ by the LAM boundary. The colours indicate
the size of the increment, white being zero increment and pink being the largest increment.

same as those of the parent. If we think in terms of increments, this second option

can be described as having zero boundary conditions, as the boundaries are not allowed

to change. A consequence of zero boundary conditions is that we have the periodic

solution we need in incremental space to perform a spectral control variable transform.

In particular, having zero boundary conditions mean that a sine transform can be used,

as is implemented at the UK Met Office [55]. However, zero boundary conditions can

result in phenomena being ‘cut-off’ or contained by the boundary when they should pass

through it [2]. This is demonstrated in Figure 4.5.

One attempt by [2] to improve this problem of phenomena being ‘cut-off’ by the bound-
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aries has been to modify the LAM background by adding on the analysis increments of

the coarse analysis, filtered to scales greater than a specified length scale N . The anal-

ysis in the LAM is then only done for scales less than N km. Results presented in [2]

show this can improve the increments in the region of the boundary but the increments

at the boundary are still zero so phenomena are still being cut off. This method will not

solve the problem when the LAM assimilation is run more frequently than the model

providing the LBCs [2], as the results are produced assuming that the coarse model

analysis is available at the time of the LAM analysis. Operationally, this may not be

the case. However, it might be possible to use a coarse model forecast to provide the

large scales, but this has not been tested.

An alternative method proposed by [34] attempts to improve the consistency of the LAM

analysis with the LBCs provided by the parent model by including an extra term in the

cost function. This extra term measures the distance between the lateral boundary

values of the analysis and the LBCs from the global model in a low resolution geometry.

This fits with the recommendations in [65] and [87] that the LB
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Chapter 5

A 4D-Var algorithm for a LAM

domain

In this Chapter we introduce a general limited area model (LAM) domain and discuss the



LAM lateral boundary
conditions provided by the
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Figure 5.1: Diagram of model domains.

window.

The lateral boundary conditions (LBCs) for the LAM are provided by the parent model.

In order to relax the solution on the interior of the LAM domain to the values prescribed

at the boundaries there is a buffer zone implemented at the boundaries of the LAM. The

buffer zone covers b LAM gridpoints and a Davies Relaxation scheme is used [20], [21].

We use Davies Relaxation because this is what is used operationally [79], as discussed

in Section 4.1. We use a linear interpolation function

αi = 1 − [i/b],

where b



5.2 Modifications to the 4D-Var algorithm for the LAM

domain

As discussed in Section 2.2, to generate an analysis using 4D-Var we must minimise the

cost function (2.17)

J(x) =
1

2
(x − xb)T B−1(x − xb) +

1

2

T∑

k=0

(yk − Hk(xk))T R
−1

k (yk − Hk(xk)),

subject to the model equation (2.18)

xk+1 = Mkxk.

However, the LAM has Davies Relaxation performed in the buffer zone which takes

values from the parent model so it is not possible to write the model equations including

the modifications at the boundaries in this form. We can however write the LAM model

equations as

xk+1 = M̂kxk + P x
p
k+1

, (5.1)

where xk is now the state vector on the LAM domain at time level k, M̂k is a modified

matrix at time level k that takes account of the scaling factor in the buffer zone due

to the Davies relaxation, P is a matrix of scaling factors for the influence of the global

values in the buffer zone due to the Davies relaxation and x
p
k is a vector of values from

the parent model at time level k.

For simplicity we assume that the matrix M̂k is the same at all time levels and we can

therefore replace M̂k in equation (5.1) with the constant matrix M̂ . Assuming that M̂

represents a three-point discretisation scheme of the form

xi,k+1 = ηxi−1,k + γxi,k + µxi+1,k,
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we have

cM =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 . . . 0

ψ1η ψ1γ ψ1µ 0 . . . 0

0 ψ2η ψ2γ ψ2µ 0 . . . 0

. . .

0 0 ψb−1η ψb−1γ ψb−1µ 0 . . . 0

0 0 η γ µ 0 . . . 0

. . .

0 0 η γ µ 0 0

0 . . . 0 ψb−1η ψb−1γ ψb−1µ 0 0

0 . . . 0 ψb−2η ψb−2γ ψb−2µ 0 0

. . .

0 . . . 0 ψ1η ψ1γ ψ1µ

0 . . . 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(5.2)

and

P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

φ0 0 . . . 0

0 φ1 0 . . . 0

0 0 φ2 0 . . . 0

...

0 0 φb−1 0 . . . 0

0 0 0 0 0

. . .

0 0 0 0 0

0 . . . 0 φb−1 0 0

0 . . . 0 φb−2 0 0

...

0 . . . 0 φ1 0

0 . . . 0 φ0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (5.3)

where φ = {φi}b−1
i=0 is a vector of Davies Relaxation coefficients and ψi = 1 − φi, where

the subscript here refers to the spatial step.

It is clear that this change in the form of the model equations can have no effect on ∇Jb

[equation (2.22)] but it is less clear what effect it has on ∇Jo [equation (2.23)]. Therefore,
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we now consider ∇Jo. From the model equations (5.1) we have

x1 = M̂x0 + P x
p
1,

x2 = M̂x1 + P x
p
2 = M̂(M̂x0 + P x

p
1) + P x

p
2,

x3 = M̂x2 + P x
p
3 = M̂(M̂(M̂x0 + P x

p
1) + P x

p
2) + P x

p
3,

...

xT = M̂xT −1 + P x
p
T

= M̂(· · · (M̂(M̂x0 + P x
p
1) + P x

p
2) · · · ) + P x

p
T
.

Inserting these into Jo from equation (2.17) gives

Jo =
1

T

T∑

k=0

(yk − Hk(xk))T R
−1

k (yk − Hk(xk)),

=
1

2
(y0 − H0(x0))T R

−1

0 (y0 − H0(x0))

+
1

2
(y1 − H1(x1))T R

−1

1 (y1 − H1(x1))

+
1

2
(y2 − H2(x2))T R

−1

2 (y2 − H2(x2))

+ · · · +
1

2
(yT − HT (xT ))T R

−1

T
(yT − HT (xT )),

=
1

2
(y0 − H0(x0))T R

−1

0 (y0 − H0(x0))

+
1

2
(y1 − H1(M̂x0 + P x

p
1))T R

−1

1 (y1 − H1(M̂x0 + P x
p
1))

+
1

2
(y2 − H2(M̂(M̂x0 + P x

p
1) + P x

p
2))T R

−1

2





where δyk = yk − Hkxb
k. We also now have the model constraint

δxk+1 = Mkδxk. (5.7)

From equation (5.6) it is easy to rewrite the gradients in terms of increments. The

gradient of Jb with respect to δx0 becomes

∇Jb = B−1δx0,

and the gradient of Jo with respect to δx0 is still

−∇Jo = HT
0

d0 + MT [HT
1

d1 + MT
2

[HT
2

d2 + · · · + MT HT
T

dT ] · · · ],

but now

dk = R
−1

k (δyk − Hkδxk).

5.4 A gridpoint and a spectral scheme for the LAM do-

main

5.4.1 The gridpoint scheme



discrete intervals with grid points numbered j = 0, 1, 2, · · · , N and f0 = fN = 0, the

Fourier sine transform is defined to be

sine transform(fj) = f̃κ =
N−1∑

j=1

fj sin (πjκ/(N)), (5.8)

where κ is the wavenumber [68].

The sine transform and its properties are discussed in Section 6.4.

The spectral version of the algorithm will be referred to throughout this thesis as the

‘spectral’ scheme. This spectral version is developed because it is a spectral scheme that

is used operationally on the LAM by the Met Office, as discussed in Section 4.2.1.

Both the gridpoint and the spectral schemes are used in this thesis. By using both a

gridpoint and a spectral based data assimilation scheme we can compare the output

of the two methods when given identical data and investigate the effect of the sine

transform.

To change the data assimilation scheme to a spectral one we need to perform a control

variable transform, as discussed in Section 2.3.4. The control variable transform used

here is the sine transform and it transforms the increments from physical to spectral

space. We define control variable transform

z = W x, (5.9)

and an inverse transform

x = Uz, (5.10)

where W ∈ R
N×N is the sine transform and U ∈ R

N×N is the inverse sine transform.

In matrix notation the sine transform W can be written as

W = {Wjκ}, j = 1, . . . , N − 1



Now that we have our new control variable we consider the effect it has on the cost

function. We start from equation (5.6) but now in terms of z instead of x.

J(z0) =
1

2
(Uδz0)T B−1(Uδz0) +

1

2

T∑

k=0

(δyk − HkUδzk)T R
−1

k (δyk − HkUδzk).

This can be written as

J(z0) =
1

2
δz0

T Σ−1δz0 +
1

2

T∑

k=0

(δyk − HkUδzk)T R
−1

k (δyk − HkUδzk), (5.13)

where

Σ−1 = UT B−1U . (5.14)

We now consider the effect the control variable transform has on the gradient of the cost

function. The gradient of J





where θ ∈ R, ϑ ∈ R, xj = j∆x, j = 0, 1, 2, · · · , N − 1, ∆x = L/N is the gridspacing

and L is the length of the domain (i.e. x ∈ [0, L580413(.)-0.24.9802]TJ
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This is illustrated in Figure 6.1 for the case of a LAM domain which is half that of

the parent (i.e. m = 2). As can be seen, the sine wave on the parent domain has

wavenumber 2 (two full wavelengths fit in the parent domain) but the same wave on the

LAM domain has wavenumber 1 (only one wavelength fits in the LAM domain).

Now that we understand the equivalence between wavenumbers on the domain L = 1

and those on the domain L < 1 of the same wave, we can consider the DFT when L < 1,

knowing where we expect the amplitude to appear in the power spectrum.
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2 sin (πj/N) wave we consider the definition of the DFT in more detail.

Since fj is a linear combination of sine waves, the DFT of fj can be written as

f̂k = ak + bk + ck + dk, (6.10)

where

ak =
1

i

N−1∑

j=0

(
e−i2πj(k−L)/N − e−i2πj(k+L)/N

)
,

bk =
1

i

N−1∑

j=0

(
e−i2πj(k−2L)/N − e−i2πj(k+2L)/N

)
,

ck =
1

2i

N−1∑

j=0

(
e−i2πj(k−4L)/N − e−i2πj(k+4L)/N

)
,

dk =
1

2i

N−1∑

j=0

(
e−i2πj(k−8L)/N − e−i2πj(k+8L)/N

)
,

We first consider k = 0. By substituting k = 0 and L = 1/2 into equation (6.10) we

get b0 = c0 = d0 = 0 from Lemma 3.1. However a0 is not in the form of the orthogonality

relation so it requires different treatment. Using angle summation formulas and the

properties of telescopic sums, a0 can be written as

a0 =
1

i

N−1∑

j=0

(
e



For the case with resolution N = 256, this gives

a0 =
1

sin (π/256)
[2 + cos (π/256) − cos (255π/256)]

which would give a peak on the power spectrum at k = 0 of amplitude corresponding

to the value we see at k = 0 in Figure 6.3(a) and Figure 6.2(b).

Next we consider k = 1. By substituting k = 1 and L = 1/2 into equation (6.10) we

again get c1 = d1 = 0 from Lemma 3.1 and also get that b1 = −iN . Again however, a1

cannot be simplified using the orthogonality relation and is left as

a1 =
1

i

N−1∑

j=0

(
e−iπj/N − e−i3πj/N

)
.

So at k = 1 we have

f̂1 = a1 + b1. (6.12)

Again for the case with resolution N = 256, this gives

a1 =
1

i

255∑

j=0

(
e−iπj/256 − e−i3πj/256

)

which would give an amplitude in the power spectrum at k = 1 corresponding to the

value we see at k = 1 in Figure 6.3(a). Also

a1 + b1 =
1

i

255∑

j=0

(
e−iπj/256 − e−i3πj/256

)
− i256

which would give an amplitude in the power spectrum at k = 1 corresponding to the

value we see at k = 1 in Figure 6.2(b).

If we consider k = 2 in the same way we get that b2 = d2 = 0, c2 = −iN/2 and

a2 =
1

i

N−1∑

j=0

(
e−i3πj/N − e−i5πj/N

)
.

So at k = 2 we have

f̂2 = a2 + c2. (6.13)

For the case with resolution N = 256, this gives

a2 =
1

i

255∑

j=0

(
e−i3πj/256 − e−i5πj/256

)
,
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N DFT amplitude in power spectrum



does vary as N increases. For very low resolutions this variation could be significant,

increasing N from 8 to 16 will increase the amplitude at k = 0 by O(10−1), but as the

resolution increases the amplitude at k = 0 approaches a limit.

To investigate whether the majority of the long-wave information is always sent to k = 0

we now consider the definition of the DFT for a general LAM domain of length L.

6.3.2 A general case

The continuous Fourier series approximation of a function has many known properties,

including convergence results for specific classes of functions. The discrete Fourier series

interpolation has convergence properties very similar to those of the continuous case.

Of particular interest here is the fact that the discrete cas



Theorem 6.1 For any f(ξ) ∈ W r
p [0, 2π] with r > 1/2, there exists a positive constant

C, independent of N , such that

‖f − I2Nf‖L2[0,2π] ≤ CN−r
∥∥∥f (r)

∥∥∥
L2[0,2π]

.

where W q
p [0, 2π]



always have zero amplitude at k = 0. To investigate this we now perform a sine transform

on the function fj from equation (6.8).

6.4 The sine transform

From Section 5.4.2, for a periodic function f = fj , defined on a given domain divided

into equally spaced discrete intervals with grid points numbered j = 0, 1, 2, · · · , N and

f0 = fN = 0, the Fourier sine transform is defined to be

sine transform(fj) = f̃k =

√
2

N

N−1∑

j=1

fj sin (πjk/(N)),

where k is the wavenumber.

For large values of N , the sine transform can be calculated utilising efficient code avail-

able for the FFT. However, due to the (small) size of the vectors being considered here,

we can simply perform the sine transform via matrix multiplication, as described in

Section 5.4.2.

To understand better the sine transform we start by considering its calculation from the

definition.

6.4.1 Calculating the sine transform from its definition

We begin by considering the effect of the sine transform on a general sine wave, as we

did for the DFT in Section 3.2.1. We have a general sine wave with wavenumber θ and

amplitude α

ϕj = α sin (2a



Using the identity

sin (
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Considering k



Due to the doubling effect on the wavenumbers caused by the sine transform, unlike

with the DFT, all the wavenumbers contained by fj correspond to whole wavenumbers

in the power spectrum when L = 1/2. Therefore, we instead consider L = 1/4.

6.4.4 The sine transform when L = 1/4

Before we perform the sine transform we need to know what we expect. From Section 6.3

we know that the wavenumbers in fj on the domain L = 1/4 are κ = 1/4, 1/2, 1, 2

and from Section 6.4 we know that the sine transform produces peaks in the power

spectrum at k = 2κ. We therefore expect peaks in the power spectrum at k = 1/2, 1, 2, 4.

However, amplitude cannot be assigned to wavenumbers that are not whole numbers.

The 2 sin (2πjL/N) wave in fj is too long to be represented and we are therefore unclear

as to how this wave will be treated by the sine transform.

The power spectrum of f̃k over the domain L = 1/4, with N = 64, is shown in Figure 6.5.

As can be seen, there is considerable amplitude at k = 1. However, there is lower

amplitude than we would expect at k = 2. Since the 2 sin (2πjL/N) wave in fj is the

one we suspect is causing these peculiarities we consider the sine transform of this wave

separately. Its power spectrum is shown in Figure 6.6. As can be seen, the majority of

the amplitude is at k = 1, with a cascade of amplitude through the higher wavenumbers.

This cascade effect is due to the convergence properties of the sine transform, as discussed

for the DFT in Section 6.3.2.

To understand Figure 6.5 better we consider again the definition of the sine transform.
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Figure 6.6: (a) The power spectrum of the sine transform of 2 sin (2πxj) over the domain L = 1/4,
scaled by a factor of 2/N . (b) Close up of 0 − 0.5 amplitude section.
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k = 0 and then cascading down through the spectrum. In comparison, when using the

sine transform, the magnitude at k = 0 is automatically set to zero and the majority of

the long-wave information is instead sent to wavenumber k = 1.
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Chapter 7

A 1D linear advection-diffusion

model

We wish to model a simple PDE in order to mimic the operational system in a simple

model. We want our model to have as many of the properties of the operational model as

possible in order to be able to understand the potential problems. However, by using a

simple 1D-PDE model we are more able to identify the cause of problems and investigate

them individually.

We have pre-existing code for a parent model of the 1D heat equation [4] and this is

adapted here to include a nested LAM model. The heat equation is also extended to

the 1D linear advection-diffusion equation.

7.1 The advection-diffusion equation

Mathematical models involving a combination of advection and diffusion are widespread.

For example, in meteorology the advection-diffusion equation can be used to model the

dispersal of atmospheric pollution [62, p.3].

We use the 1D linear advection-diffusion equation [62, p.12]

ut + cux = σuxx, t ≥ 0, (7.1)
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Considering the truncation error (7.7), we can see that equation (7.3) is also a second

order accurate in space, first order accurate in time approximation to the modified

equation
∂u

∂t
+ c

∂u

∂x
= σ

(
1 +

Pe

2

)
∂2u

∂x2
, (7.10)

where Pe = c∆x/σ





or
∆t(2σ + c∆x)

∆x2
≤ 1, (7.12)

as a sufficient condition for stability.

It is worth noting here that if we set σ = 0 in equation (7.12) then we get

ν ≤ 1,

the standard stability condition for the advection equation [23, p.45]. If we instead

set c = 0 in equation (7.12) then we get

µ ≤ 1

2
,

the standard stability condition for the heat equation [62, p.17].

Now that we know the accuracy and stabilty conditions of the scheme, we can apply the

discrete equations to a parent and LAM domain.

7.3 The model design

We now use the discrete equation (7.5) to approximate equation (7.1) on the parent and

LAM domains. On the parent domain we use uP , xP , tP as the temperature, space and

time coordinates respectively and on the LAM we use uL, xL, tL.

7.3.1 The parent model

The parent domain xP ∈ (0, 1] is divided up to contain N spatial gridpoints and there

are T parent timesteps. On the parent grid equation (7.5) becomes

uP
j,n+1 = (νP + µP )uP

j−1,n + (1 − νP − 2µP )uP
j,n + µPuP

j+1,n, (7.13)

where

νP =
c∆tP

∆xP
and µP =

σ∆tP

(∆xP )2
,

with boundary conditions

uP
0,n = uP

N,n. (7.14)

Here uP
j,n = uP (xP

j , t
P
n ), xP

j = j∆xP , and tPn = n∆tP . The gridspacing ∆xP = 1/N and

the timestep ∆tP = 0.5/T .
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7.3.3 Convergence of the model

Now that we have a model we need to check that it converges and that it is converging



For example, if we have the initial conditions

u(x, 0) = sin (4πx), (7.23)

then substituting into equation (7.22) gives

u(x, 0) = sin (4πx) =

∞∑

n=−∞

ane
i2πnx. (7.24)

Using Fourier orthogonality relationships gives

an =





−i/2 when n = 2

i/2 when n = −2

0 otherwise.

(7.25)
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Chapter 8

The representation of different

scales in a 4D-Var analysis on a

LAM domain







domain, with the shortest wave being too short to be resolved by the parent model. We

would expect this wave to be treated more accurately by the LAM data assimilation.

The initial condition for the parent scheme is

uP (xP
i , 0) = 2 sin(2πxP

i ).

Figure 8.1(a) shows the truth and both analyses in physical space, at the initial time

t = 0. As can be seen, the higher resolution of the LAM compared with the parent

allows it to pick up the higher resolution features in the truth that cannot be captured
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(a) Model outputs at the middle of the assimilation window.
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that while the LAM is considered more accurate because it captures the k = 4 wave

that is missed by the parent, for the k = 1 wave the LAM is only marginally better than

the parent and for the k = 2 wave it is actually marginally worse.
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Plotted is the truth (green), the parent analysis (dark blue), the LAM analysis generated

using full observations (red) and the LAM model run without data assimilation (light

blue). In order to consider the benefit of high resolution observations, the LAM analysis

generated with just the observations seen by the parent (i.e. low resolution observations)

is also plotted (pink).

Considering t = 0 first, we begin by noting that the LAM model run without data

assimilation matches the parent analysis exactly in physical space. This is as we would

expect due to the parent analysis providing the initial conditions for the LAM. However,

if we consider the power spectrum over the LAM domain, shown in Figure 8.3(b), we

see that the power spectrum of these two outputs does not match in spectral space.
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We also notice from Figure 8.3(b) that the LAM analysis generated with low resolution

observations has failed to capture the high resolution detail and remains equal to the

parent analysis. This is due to the information content of the low resolution observa-

tions. On the parent grid, the high resolution detail in the observations is aliased to

other wavenumbers; in the case of the sin(2π12xr
j) wave this information is aliased to

wavenumber k = 2. When we have the same low resolution observations on the LAM

grid, although there is now the resolution to resolve the small scale wave, without extra

high resolution information the small scale wave is still aliased.

If we now consider the middle of the assimilation window, we see in Figure 8.4(a) that the

LAM model run without data assimilation no longer matches the parent analysis, due to

being run at a different resolution. However, the model run without data assimilation

does match the LAM assimilation run with low resolution observations. This clearly
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wavenumbers due to the LBCs.

The errors introduced because of the LBCs are an important point to note, as it affects



referred to here as long-waves. We now consider how these long-waves are treated on a
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the power spectrum of the truth as well as the analyses. The comparison in magnitude

between the truth and the analyses is as important as the actual amplitude location.

In Figure 8.8(c) we see that the LAM is capturing the aliased information at k = 0

well while the parent analysis does a poorer job. However, the parent analysis is more

accurate at k = 1, and the inaccuracies at k = 2 have about the same magnitude in

both analyses, but the LAM overestimates while the parent underestimates.

If we now consider the middle of the assimilation window, we see from Figure 8.9(a)

that the LAM analysis again appears to fit the truth more closely than the parent. This

is confirmed by the rms error shown in Figure 8.9(b). As before, the largest errors in

the LAM are close to the boundaries, caused by errors introduced through the LBCs.

Looking at the power spectrum shown in Figure 8.9(c) we see that at the middle of the

assimilation window, the LAM matches the truth more closely at all wavenumbers.



Figure 8.10(a) shows the truth and both analyses, in physical space, at the initial time

t = 0. The LAM looks more accurate than the parent as it appears to be mapping

the shape of the truth more closely. However, the shortest wave contained in the truth

cannot be resolved, even by the LAM, and these high resolution oscillations in the truth

make it difficult to judge the accuracy of the analyses by simply plotting their values.

We therefore consider the rms error of both analyses, plotted in Figure 8.10(b). As can

be seen, the LAM is significantly more accurate at all but a couple of isolated gridpoints,

and as before, the largest errors in the LAM are close to the boundaries.

The accuracy of the analyses can also be understood by considering the power spectra.

The power spectra of the truth and both analyses is shown in Figure 8.10(c). As we
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can be seen, the two agree to O(10−5). Therefore, in the other plots shown in Figure 8.13

only the spectral LAM analysis is plotted.

In Figures 8.13(b) and 8.13(d) the truth is plotted along with both the LAM and parent

analyses, at the initial time and at the middle of the assimilation window respectively.

In both we see that the LAM fits the truth more closely as it is able to pick out the

higher resolution detail missed by the parent. This is confirmed by the power spectra

plotted in Figures 8.13(c) and 8.13(e).

It is worth noting here that as occurred in Sections 8.1 and 8.2, although the LAM is

more accurate in the sense that it picks out wavenumbers missed by the parent, at some

wavenumbers the magnitude is actually more accurate in the parent than the LAM. For

example, at k
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(a) Difference between the spectral and grid-

point analysis.
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Figure 8.15(b) shows the model outputs at t = 0. We see that the parent analysis

over-compensates in the regions of rapid change. Although this has diminished by the

middle of the assimilation window, it is still evident. At both times the LAM analysis

is more accurate accross the entire LAM domain.





where xbP
0

is the parent resolution background at time t0 and xb
0

is the LAM resolution

background at time t
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(a) Model outputs at t = 0.
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Figure 8.19: Error between model outputs with different resoltions for sine and tanh waves.

16 and 64 gridpoints, for both a tanh and a sine wave. As can be seen, the sine wave

has a small difference throughout the domain whereas the tanh wave agrees at all but

a few gridpoints. However, when the tanh wave does differ it differs by a much more

significant amount, 5 times that of the sine wave. It is this large inaccuracy that causes



analysis. However, we also showed that to do this the LAM data assimilation requires

high resolution observations.

We also note however, that even with perfect observations and no background term in

the cost function, the LAM analysis cannot correctly reconstruct the truth, due to the

influence of the background trajectory at the LBCs and buffer zone. We have also shown

that these errors caused by the LBCs affect the low wavenumbers of the LAM spectrum.

Due to the model being less diffusive at higher resolution the LAM analysis also has

errors introduced by trying to compensate for the difference in diffusion rate compared

to the truth. These errors occur on all wavenumbers but the high wavenumbers are

affected to a lesser degree due to these scales diffusing away more rapidly.

When the observations contain information from waves longer than the domain of the

model, these long-waves are aliased onto other wavenumbers. The majority of the alias-

ing is onto the longest waves contained within the spectrum of the model. In particular,

when using the DFT a significant amount of the long-wave information is aliased onto

wavenumber k = 0. In contrast, when using the Fourier sine transform k = 0 is always



run at the same resolution as that of the assimilation to be carried out. Simply inter-

polating a coarser model run introduces errors into the LAM analysis. However, it is

noted that if the LAM is being cycled and the background is coming from a previous

LAM forecast, with only the boundary counditions being provided by the parent model,

then the background is already at the higher resolution and there is no longer an issue.

Throughout this Chapter the background error covariance matrix has been set to zero.

We now go on to consider the spectral scheme with a non-zero background error covari-

ance matrix. We investigate whether we can control how the data assimilation affects

different wavenumbers by manipulating the background error covariance matrix in spec-

tral space.
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Chapter 9

Manipulating scales in a 4D-Var

analysis using the background

error covariance matrix Σ

Now that we understand where information about different scales is projected in a 4D-



control variable δz, where δz is related to δx by equation (5.9),

δz = W δx,

where W is the sine transform. The cost function is now given by equation (5.13),

J(z0) =
1

2
δz0

T Σ−1δz0 +
1

2

T∑

k=0

(δyk − HUδzk)T R
−1

k (δyk − HUδzk),

where U is the inverse sine transform and Σ−1 is given by equation (5.14),

Σ−1 = UT B−1U .

From equation (5.13) we see that, for the spectral scheme, we can consider the back-

ground error covariance matrix in physical space, matrix B, or in spectral space, matrix

Σ.

The background error covariance matrix controls how much th



9.1 How the matrix B corresponds to choices of the ma-

trix Σ

While it is useful for us to define the background error covariance matrix in spectral

space, as this allows us to specify the variances on the different wavenumbers instead of

physical locations, it is important to consider how the choice of the matrix Σ relates to

the corresponding matrix B.

We consider Σγ = diag{γi} and Σµ = diag{µi} for a system with 31 gridpoints where

γi =





0.005 if i = 1, 2, 3

0.01 if i = 4, . . . , 10

0.1 if i = 11, . . . , 16

0.5 if i = 17, . . . , 24

1 if i = 25, . . . , 31

(9.1)

and

µi =





1 if i = 1, 2, 3

0.5 if i = 4, . . . , 10

0.1 if i = 11, . . . , 16

0.01 if i = 17, . . . , 24

0.005 if i = 25, . . . , 31 .

(9.2)

In Σγ we have placed a very small variance on the large scales and a large variance on the

small scales. This corresponds to what we would expect to do in our model, constraining

the large scales to match the background while allowing the observations to influence the

smaller scales. As can be seen in Figure 9.1(a), the corresponding matrix Bγ displays

an oscillating structure, suggesting that the correlations are in the shortest wavelengths,

as we would hope. This is a good sign and warrants further investigation.

In Σµ we have placed a large variance on the large scales and a small variance on the

small scales. This results in the corresponding matrix Bµ resembling a more traditional

matrix B with correlations on the large scales, as can be seen in Figure 9.1(b).

This can be further seen by considering a single row of the matrix B. This is known as

the structure function and illustrates how information is spread by the matrix B. The
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Figure 9.2: Plot of row 8 of the matrices Bγ , in blue, and Bµ , in red.

structure function of matrix Bγ and matrix Bµ are plotted in Figure 9.2. As we see,

the blue line corresponding to Bγ oscillates rapidly which will result in increments on

the small scales. In comparison, the red line corresponding to Bµ is smoother with a

wider spread which will result in increments on the larger scales. These are promising

results as they suggest that we can alter which scales are affected in the LAM analysis

by our choice of matrix Σ. It is therefore worth testing different choices of Σ in the

model. Initial tests with Σ−1 6= 0 are shown in Section 9.2.

9.2 Initial tests with a non-zero background error covari-

ance matrix Σ

We begin by investigating whether, by our choice of matrix Σ, we can control which

wavenumbers are affected by the data assimilation.

We first run the 4D-Var spectral scheme with Σ−1

0 = 0 (no background term in the

cost function), Σ−1

1 = I (a small variance on all scales), Σ−1
α = diag{αi} and Σ−1

β =

diag{βi}, where

αi =





0 if i < M/2

1 if i ≥ M/2 ,
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(no background term for the large scales and a small variance on the small scales) and

βi =





1 if i < M/2

0 if i ≥ M/2 ,

(no background term for the small scales and a small variance on the large scales), M

is the number of LAM gridpoints.

In all four experiments the only thing to change is the matrix Σ−1, everything else

is kept the same. The reference trajectory at time t = 0 is a linear combination of

sine waves with coefficient one and wavenumbers κ = 1, 2, 4, 5,
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(a) Model outputs for the case with Σ
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caused by the difference in resolution compared to the truth. For the Σ−1

0 case, there

is no background term in the cost function so the zero amplitude of the background

trajectory is not affecting the power spectrum of the analysis, except through the LBCs.

However, in Figure 9.4(b) we see that for the Σ−1
1 case the amplitude in the analysis

is much lower than that of the truth, having been influenced by the zero background as

well as the observations.

For the cases with split variances, Σ−1
α and Σ−1

β , we would hypothesize that the power

spectra should resemble half of the power spectrum for the Σ−1

0 case and half of the one

for the Σ−1

1 1

1



9.3 More realistic examples with a non-zero background

error covariance matrix Σ

Having demonstrated in Section 9.2 the potential to use the matrix Σ to influence

different wavenumbers we now want to try varying matrix Σ in more realistic cases.

We take our reference trajectory to be

ur(xr
j) = 5 sin(πxr

j) + sin(2πxr
j) + sin(36πxr

j).

This combines one long-wave and two waves which are contained in the possible spectrum

of the LAM, one low wavenumber and one high.

This reference trajectory is used to provide the observations. However, whereas in

Chapter 8 we used perfect observations, we now add random noise to the observations.

This random noise has variance σ2
o = 0.25 on all wavenumbers and the observation

error covariance matrix is R = σ2
oI, where I is the identity matrix. We use the value

σ2
o = 0.25 for our observation error variance because this is a typical error value for a

thermometer, and in our advection-diffusion model the model variable is temperature.

We have observations at every LAM gridpoint and timestep.

As in Chapter 8, we take the parent model to have N = 16 gridpoints and there are

10 parent timesteps in the assimilation window. The LAM covers the right-hand side

of the parent grid, starting at the middle gridpoint. The LAM has four times the

spatial resolution of the parent model and there are 16 LAM timesteps for every parent

timestep. The reference trajectory has twice the spatial resolution of the LAM and four

times the temporal resolution. The diffusion constant is still σ = 0.001 but now the

advection speed is c = 1.

9.3.1 A background xb with no random noise

Given the presumption that lon



The background trajectory is then generated by first running the parent model forward

from these initial conditions. The background is then interpolated to the LAM grid

and re-run at the LAM resolution using boundary conditions provided from the parent

resolution run. Generating the background trajectory in this way agrees with a set-up

where the background is provided by a parent model with a coarser resolution but larger

domain size than the LAM.

Varying the choice of matrix Σ, we run the data assimilation (spectral scheme) with the

same observations, background and background trajectory, to compare how the choice

of matrix Σ affects the different scales in the analysis.

We use Σ−1

0 = 0 (no background term in the cost function), ΣA = 0.052I (the same

small variance on all wavenumbers), Σα = diag{α2
i } and Σβ = diag{β2

i } where

αi =





0.005 if i = 1, . . . , 15

0.5 if i = 16, . . . ,M ,

and

βi =





0.005 if i = 1

0.05 if i = 2, . . . , 15

0.5 if i = 16, . . . ,M .

Σβ has a very small variance on wavenumber k = 1, a small variance on the other

lower wavenumbers and a variance equal to that on the observations on the higher

wavenumbers. Σα has the same variance as Σβ on the higher wavenumbers but has an

extremely small variance on all the lower wavenumbers, instead of just k = 1.

We choose Σα and Σβ like this because, as discussed in Section 8.1.2, the LAM over

estimates the low wavenumbers due to the LBCs. The low wavenumbers also contain the

aliased long-wave information, as shown in Section 8.2. By placing a smaller variance on

the low wavenumbers we aim to constrain these scales to match the background, which

is assumed to accurately capture the large scales. The higher wavenumbers are given a

larger variance with the aim of letting the observations have a greater influence on the

small scales.

Figure 9.7 shows the model outputs for the four choices of matrix Σ. The four analyses

are plotted offset from each other on the same axis to enable them to be compared

more easily. The reference trajectory (truth) is shown in green, the background in blue
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Figure 9.8: Errors in the power spectrum at t
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by the lack of high resolution information in the background. We plot these errors, as

well as those of the analyses, because we can use these errors to understand the errors

in the analyses.

We consider the Σ−1

0 case first. Having the matrix Σ−1 being equal to zero means





in the spectrum of the parent model. These new initial conditions give us the background

for the LAM. The background trajectory is then generated by running the background
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As we would expect, the analysis generated with Σ−1

0 again closely fits the observations

due to having no background term in the cost function. In comparison, the analysis

generated with ΣA
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Figure 9.12: Errors in the power spectrum at t = 0, a close up of k = 0, . . . , 4 and k = 16, . . . , 20 for the
observations (dark blue), the background (mid blue), the analyses generated with Σ

−1

0
(light blue), ΣA

(yellow), ΣB (orange) and Σγ (red). A close up of k = 0, . . . , 4 and k = 16, . . . , 20.

is actually slightly lower than that of the background. This demonstrates the possibility

of improving the representation of low wavenumbers on the LAM, even compared to the



the larger scales are accurately represented in the background, the small scales are not.

Comparing this analysis with the ΣB case, which has a smaller variance than Σγ on

the higher wavenumbers, we see that while it has roughly the same error at k = 1 it

has generally worse errors at most other wavenumbers. This demonstrates the need

for balance. While the larger background variances at higher wavenumbers in Σγ have

allowed the observations to influence k = 18, making this noticably better in the Σγ

case compared to the ΣB case, the larger variances have also allowed the errors in the

observations to negatively influence the analysis at other wavenumbers. This highlights

that while the background does not accurately represent the small scales, it is still

important to not use overly large variances in Σ.

By overconstraining the low wavenumbers, the ΣA analysis is more accurate than the

background at low wavenumbers. By splitting the scales in Σγ we can constrain the

low wavenumbers to match the background while allowing the observations to influence

the higher wavenumbers. These results show the possibility of specifying Σ in such a

way as to enable the LAM analysis to accurately capture all the scales present in the

truth. Therefore, we now try more choices of Σ, altering the variances on the different

wavenumbers.

Comparing choices of Σ with different variances on different wavenumbers

We aim to choose the variances in the matrix Σ in such a way as to reduce the error in

the LAM analysis, particularly at low wavenumbers. From Section 8.1.2 we know that

the LBCs cause the LAM to over estimate the low wavenumbers. From Section 8.2 we

know that the long-wave information is also aliased to the low wavenumbers. By placing

a smaller variance on the low wavenumbers we aim to constrain these scales to match

the background, which is assumed to accurately capture the large scales. The higher

wavenumbers are given a larger variance with the aim of letting the observations have a

greater influence on the smaller scales. We now compare different choices of matrix Σ.

All have variances split between the different scales, but the actual variances used at

the different scales varies between them.
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We have Σµ = diag{µ2
i }, Σν = diag{ν2

i }, Σω = diag{ω2
i } and Ση = diag{η2

i }, where

µi =





0.05 if i = 1, . . . , 7

0.5 if i = 8, . . . ,M ,

νi =





0.05 if i = 1, . . . , 7

5.0 if i = 8, . . . ,M ,

ωi =





0.005 if i = 1, . . . , 7

0.5 if i = 8, . . . ,M ,

ηi =





0.005 if i = 1, 2

0.05 if i = 3, . . . , 7

0.5 if i = 8, . . . ,M .

As we saw in Figure 9.10, the subtleties between the different analyses are difficult to

observe in physical space. We therefore do not plot the model outputs in physical space

and just consider the absolute errors in the power spectra.

Figure 9.13 shows the absolute errors in the power spectra. As before, since the columns

are quite tightly packed and difficult to see, a close up of the wavenumbers contained in
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Figure 9.14: Errors in the power spectrum at t = 0, a close up of k = 0, . . . , 4 and k = 16, . . . , 20 for the
observations (dark blue), the background (mid blue), the analyses generated with Σµ (light blue), Σν

(yellow), Σω (orange) and Ση (red). A close up of k





potentally creates a smoother transition between the large and small scales. However, it

also means the small scales do not benefit from the information in previous LAM runs,

as the background is provided by the parent model.

Guidard and Fischer [34] constrain the large scales to those of the model providing the

boundary conditions by means of an extra term Jk in the cost function. Comparing to





bers due to the LBCs and that the long-wave information is also aliased to the low

wavenumbers. It was also shown that the parent analysis can be more accurate at the

larger scales. Here we showed that by placing a smaller variance on the lower wavenum-

bers we can not only constrain the large scales so as to not degrade them in the LAM

analysis, we can actually improve them compared to the background. At the same time

we can accurately represent the small scales by balancing the variance on the higher

wavenumbers in the background with that on the observations.

We also compared our methods to the work done by Guidard and Fischer [34] and

Ballard et al [2]. It would appear, at least on initial inspection, that all three methods

are using the same large scale information from the background to benefit the LAM

analysis. It is just the method with which this information is absorbed that differs.

This comparison of the methods warrants further study.
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Chapter 10

Conclusions and future work

Hazardous or extreme weather is often caused by convective scale features. The need

to predict these events accurately has created a growing need in NWP to improve our

ability to forecast on the convective scale. To accurately predict the convective scale we

need high resolution forecast models, in order to resolve the dominant motions correctly.





scale detail that cannot be resolved by the parent model. However, to achieve

this improvement in the small scales there must be high resolution observations

available to the LAM data assimialtion.

• Even with perfect observations and no background term in the cost function, the

LAM analysis cannot correctly capture the truth due to inacc



The matrix Σ method has shown promise here and warrants further study. However,

the results generated also have some limitations.

By using a linear 1D-advection-diffusion model we were able to consider the different



10.2 Further work

As discussed in Section 10.1, before our results using matrix Σ could be applied opera-

tionally they need to be tested in a nonlinear case. A useful next step would therefore

be to incorporate some nonlinearity into our model. One possibility would be to develop

our advection-diffusion model into a model of the 1D-Kuramoto-Sivashinsky (K-S) equa-

tion [69]. This equation contains the advection and the diffusion term we already have,
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