THE UNIVERSITY OF READING DEPARTMENTS OF MATHEMATICS AND METEOROLOGY

4D-Var for high resolution,

Abstract

z do o e e_ae e a o enc ed y oc ed con ec e c e e ac a a oc nd econo_a_c _ap c o c ae en a c e ed o n need an n_ae c e a ped c on o _ap o e ac cc cy o con ec e c e o ec n M ny ope on cen e o nd ac o d e de e op n o ec n _aode ac p e o on do n o _a_n c ac ac ac o n o ac do_a_n n _ao on ac con ec e c e o e ene y e ep e en ed

n condonon_meccoec n_mode epoded nd _man on _mecmeco_mane o e on maccene _mane e meccoec e o e e d e o _mane ne poe ey mame e o n_mode c nony co e _maned e do_man ma_men ma mec_many ep meno_men peen n me _mop mee maen macce ma e on e man medo_mano me_mode.

____pon w_____d _____ on on w_____ed e ____qde LAM c p e o 🗚 🕷 🗚 nd e c e nc d n en 🔩 c e on e 🔩 n 🔬 LAM do_4 n one e 🔊 deen ce e e ed n LAM d 💷 on e ne \mathbf{M} n \mathbf{b} ne decond on \mathbf{A} ode nd \mathbf{p} e \mathbf{n} o ____ed e do____n on 🍉 d 🏼 🚛 on c 🙉 📭 e e d cee o e d_∎en on ne no____o ne e we we ecped y we d ____ on na na na eo ono e on na LAM d ____ on e e 😡 occeyepeen 🔬 ___ ce oee cnnocpe 🔬 🚾 cy deoeo co___n o___ condy condon ede__qn e ceo o___ ne ondy condon e ____ on nne o ono ne LAM ceeo o en____e e o ne na en nace one na nae LAM do___ ne edonoo 🔬 en 🚛 e 🗽 🚓 🚛 o yo 🚓 no 🚛 on en edono ne ___e__ado ___pon __eo en ____e __an __e LAM 🍉 n¶. ___n n nn ___ cc cyn ___ ce c_eed y __ e_ __eo on

Declaration

🕨 n B e

Acknowledgements

Contents

1	Introduction	1
	Mo on	7
	ncpeo de	
	e o ne	
	Data Assi ilation	л. Г
	ype od on	7
	7 No on	
	7 7 on $c \in \mathbb{R}_{1}$	
	7 is $-\mathfrak{l}_1^n$ e	
	Σ a b a le adocace	
	77 $\&_1$ $\&_1$ C O_1 O $>$	

e ne no e **L**/

Mar	nipula	ating sca	lles in a 4 D Va	r analysis us	ing the	ackground error	c
cova	rianc	e atri					ı T
	0	R - 1	B co e pond	oc no ce o	№ - 1 ₁		7
7	n	е					

7	nenode op t .,≉ od een peo on nd ne
	e o coyap ed o ae ny c o on
7 7	e cyono se den c cono se dpon cse se
7	e cono <u>se</u> den c con o <u>se</u> pec c <u>se se</u>
	Mode o p nd po e pec t uen ue u^r x j
	7 n 7 7 x ^r n 7 x ^r n 7 x ^r
7	Mode o p nd po e pec $\mathfrak{s}_{-\mathfrak{s}_1}$ dd e o $\mathfrak{s}_{-\mathfrak{s}_2}$ on n
	do ænæ vu ^r x ^r j ⁊ n ⁊ ⁊x ^r j n ⁊ x ^r j n ⁊ x ^r j.
	$\mathrm{Mode} \ \mathrm{o} \ \mathrm{p} \mathrm{nd} \ \mathrm{po} \ \mathrm{e} \ \mathrm{pec} \qquad t \qquad \mathrm{co}_{\underline{} \underline{\mathbf{p}}} \mathrm{on} \ \mathrm{o} \mathrm{se} \ \mathrm{LAM} \qquad \mathrm{se}$
	nd ve de an on a service a
	Mode o p nd po e pec $\mathfrak{k} - \mathfrak{l}_1$ dd e o $\mathfrak{k} - \mathfrak{l}_1$ on n
	do co_p on o reLAM rend red on
	▶ e ence e een ne ne e u xj n 7 xj ene ed ne ne
	eo on ed co_p ed o _p y ne po n o e eo on e
	e
	$ \begin{tabular}{ccccc} {\rm Mode \ o \ p} & {\rm nd \ po \ e \ pec} & t & {\rm co}_{_____} p & {\rm n} & {\scriptstyle ____} n & {\scriptstyle ____} n & {\scriptstyle ____} n & {\scriptstyle _____} n & {\scriptstyle ______} n & {\scriptstyle ______} n & {\scriptstyle ______} n & {\scriptstyle ______} n & {\scriptstyle ________} n & {\scriptstyle _________} n & {\scriptstyle ___________} n & {\scriptstyle ___________} n & {\scriptstyle __________________________________$
	e ed 🙀e e o on on 🕫 p en nd LAM don n
7	Mode o p nd po e pec $\mathfrak{k} - \mathfrak{l}_1$ dd e o $\mathfrak{k} - \mathfrak{l}_1$ on n
	do conpn ng ny ene ed ngne e o on on ng
	p en nd LAM do_ 1_{1} n
	$\mathrm{Mode \ o \ p \ nd \ po \ e \ pec} t \qquad {}_{\mathfrak{R}} n {}_{\mathfrak{R}} {}_{\mathfrak{R}$
	τητ <mark>κ</mark> ί τηττ <mark>κ</mark> ί ητ κ ί ητ κ ί
	Mode o p nd po e pec $\mathfrak{k} - \mathfrak{l}_1$ dd e o $\mathfrak{k} - \mathfrak{l}_1$ on n
	do ænæ «u ^r xj ^r ⁊n⁊xj ^r ヵnァ⁊xj ^r nァxj ^r
	n $\boldsymbol{\mathcal{F}}$ \boldsymbol{X}_{j}^{r}
	Mode op ndpoe pec t uen ue u^r x j
	テ n テ x j / ・ テ n テ x j / ・ テ n テ x j ・ n テ x j ・ n テ x j
	n ⁊ xj n ⁊ ⁊xj
	Mode o p nd po e pec \mathfrak{A} end o \mathfrak{A} $-\mathfrak{l}_1$ on ndo
	ænæ «u ^r xj ^r τητxj ^r /τητxj ^r /τητxj ^r
	$7 n 7 7 x_j^r$ $n 7 x_j^r$ $n 7 x_j^r$ $n 7 7 x_j^r$
7	Mode op nd poe pec t we we $u^r x_j^r$
	$7 n 7 X_j^r$ $7 n 7 7 X_j^r$ $n 7 X_j^r$ $n 7 X_j^r$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mode o p	nd po e pec		È 👧 U	rxjr ≯n	> xj/>	
Mode o p nd po e pec an a a $\mathbf{u}^{r} \mathbf{x}_{j}^{r} \mathbf{z} \mathbf{n} \mathbf{z} \mathbf{x}_{j}^{r}/\mathbf{n} \mathbf{z} \mathbf{x}_{j}^{r}$ n $\mathbf{z} \mathbf{x}_{j}^{r}$ n \mathbf{z} n \mathbf		ァ n ァ ゔXj	n 🛪 🕺 n	⁊ xj				7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mode o p	nd po e pec		e 🗖 U	rxjr ⁊n	. ⁊ x _j r/	
Mode o p an a a e on Comp n o ce o \mathbf{x}^b o na ee mpe a paea \mathbf{z} 7 Comp n o ce o \mathbf{x}^b o na ee mpe a paea \mathbf{z} Comp n o ce o \mathbf{x}^b o ne ee mpe a paea \mathbf{z} 7 Comp n o ce o \mathbf{x}^b o ne ee mpe \mathbf{z} paea \mathbf{z} \mathbf{z} o e een aqde o p ad een eo on o ne nd na \mathbf{z} \mathbf{z} o o o a \mathbf{z}_{-1} \mathbf{B} 7 foo o o a \mathbf{z}_{-1} ce \mathbf{B}_{γ} n e nd \mathbf{B}_{μ} ned Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p nd po e pec o acce \mathbf{z}_{0}^{-1} Mode o p \mathbf{z} o \mathbf{z}_{0}^{-1} a nd \mathbf{z} o n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a nd \mathbf{z} o n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a nd \mathbf{z} o n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0}^{-1} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0} a b nd \mathbf{z}_{0} n acpo e pec \mathbf{z}_{1} t o \mathbf{z}_{0} n b coe po k ,, nd k ,, \mathbf{z}_{1}		7 n 7 x _j ^r /7	n 🛪 xj n	r γxj ^r	n ⁊ Xj	n 7	x ^r j a a a	
Comp n o ce o \mathbf{x}^b o n a ee mpe \mathbf{x} p a e a \mathbf{x} comp n o ce o \mathbf{x}^b o n a ee mpe \mathbf{x} p a e \mathbf{x} \mathbf{x} comp n o ce o \mathbf{x}^b o ne ee mpe \mathbf{x} p a e \mathbf{x}		Mode o p	ngn ng ng	e or	1			
7 Co. p n o ce o x^b o na ee p a pa e a z Co. p n o ce o x^b o ne ee p o e een q de o p a de en eo on o ne nd na e io o a a_1 B 7 o o o o a a_1 ce B_γ n e nd B_μ ned Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec o a ce a_1^{-1} Mode o p nd po e pec a_1 t o a_1^{-1} a nd a_1 o n a po e pec a_1 t o a_1^{-1} a nd a_2 o n a po e pec a_1 t o a_1^{-1} a nd a_2 o n a po e pec a_1 t o a_1^{-1} a nd a_2 o n a po e pec a_1 t o a_1^{-1} a nd a_2 o n a po e pec a_1 t o a_1^{-1} a nd a_2 o n a po e pec a_1 t o a_1^{-1} a b nd a_2 o n a po e pec a_1 t o a_1 a b nd a_2 o n a po e pec a_1 t o a_1 a b nd a_2 o n a po e pec a_1 t o a_1 a b nd a_3 o n a po e pec a_1 t o a_1 a b nd a_3 o n a po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b nd a_3 o n a_4 po e pec a_1 t o a_1 a b a d co e box a box		Con n o	ce o x ^b o	n _M e	ep e			7
Comp n o ce o \mathbf{x}^{b} o ne e mape \mathbf{x}^{b} o ne e mape \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e o ne end \mathbf{x}^{d} e en e o on o ne nd n \mathbf{x}^{d} e end e o n o ne nd n \mathbf{x}^{d} e end e o n e nd e p e pec o end e end e \mathbf{x}^{d} e end e o p nd po e pec o end e end e \mathbf{x}^{d} e end e o p nd po e pec o end e end \mathbf{x}^{d} e end e o p nd po e pec o end e end \mathbf{x}^{d} e end e o p nd po e pec o end e end \mathbf{x}^{d} e end e o p end po e pec o end e end \mathbf{x}^{d} e end e o p end po e pec o end e end \mathbf{x}^{d} e end e o p end po e pec end	7	Con n o	ce o x ^b o	n _M e	ep e	ng page	1 2	7
, o e een aqde o p ad een eo on o ne nd na e. ''o o $\mathbf{k} = \mathbf{a}_1 \mathbf{B}$ ''o o o o $\mathbf{k} = \mathbf{a}_1 \operatorname{ce} \mathbf{B}_\gamma$ n e nd \mathbf{B}_μ n ed Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p nd po e pec o ac e a $\mathbf{\hat{a}_0}^1$ Mode o p t o $\mathbf{\hat{o}_0}^1$ a nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{a_1}$ t o $\mathbf{\hat{o}_0}^1$ a nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{o}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{o}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{o}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{o}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}$ o n ac po e pec $\mathbf{\hat{a}_1}$ t o $\mathbf{\hat{a}_0}^1$ a B nd $\mathbf{\hat{a}_0}^1$ a b a nd $\mathbf{\hat{a}_0}^1$ a b nd $\mathbf{\hat{a}_0}^1$ a b a		Con n o	ce o x ^b o	ne ee	e _∎b e			77
e. For $a \in \mathbf{A}_{1}$ B For $a \in \mathbf{A}_{1}$ c \mathbf{B}_{γ} n end \mathbf{B}_{μ} ned Mode o p nd poepec o acce \mathbf{a}_{0}^{-1} Mode o p nd poepec o acce \mathbf{a}_{1}^{-1} Mode o p nd poepec o acce \mathbf{a}_{2}^{-1} Mode o p nd poepec o acce \mathbf{a}_{2}^{-1} Mode o p nd poepec \mathbf{a}_{1} t \mathbf{a}_{2}^{-1} Mode \mathbf{a}_{2} p n acpoepec \mathbf{a}_{1} t \mathbf{a}_{2}^{-1} and \mathbf{a}_{2} o n acpoepec \mathbf{a}_{1} t \mathbf{a}_{2}^{-1} and \mathbf{a}_{2} o n acpoepec \mathbf{a}_{1} t \mathbf{a}_{2}^{-1} and \mathbf{a}_{3} o n acpoepec \mathbf{a}_{1} t \mathbf{a}_{3} and \mathbf{a}_{4} o n acpoepec \mathbf{a}_{1} t \mathbf{a}_{5} and \mathbf{a}_{5} o n acpoepec \mathbf{a}_{5} t \mathbf{a}_{5} t \mathbf{a}_{5} and \mathbf{a}_{5} o n acpoepec \mathbf{a}_{5} t \mathbf{a}_{5}		· o e een	qde o p	nd ee	en eo c	on o ne	nd n ĸ	
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		e a la la la la						7
7 0 0 0 0 $\mathbf{a}_{-\mathbf{a}_{1}}$ ce \mathbf{B}_{γ} n e nd \mathbf{B}_{μ} n ed Mode o p nd po e pec o \mathbf{a}_{c} c e \mathbf{a}_{0}^{-1} Mode o p nd po e pec o \mathbf{a}_{c} c e \mathbf{a}_{1}^{-1} Mode o p nd po e pec o \mathbf{a}_{c} c e \mathbf{a}_{0}^{-1} Mode o p nd po e pec o \mathbf{a}_{c} c e \mathbf{a}_{0}^{-1} Mode o p t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A b nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A b nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A b nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{b}_{0}^{-1} A coe po \mathbf{k}_{r} ,, nd \mathbf{k}_{r} ,, 7 \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{1} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{b}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o n \mathbf{a}_{r} po e pec \mathbf{a}_{r} t o \mathbf{a}_{r} nd \mathbf{a}_{r} o nd \mathbf{a}_{r} o nd \mathbf{a}_{r} o nd \mathbf{a}_{r} o nd \mathbf{a}_{r} o nd \mathbf{a}_{r} o nd $\mathbf{a}_$			в					7
Mode o p nd po e pec o \mathbf{k} c e \mathbf{k} 0^{1} Mode o p nd po e pec o \mathbf{k} c e \mathbf{k} 1^{1} Mode o p nd po e pec o \mathbf{k} c e \mathbf{k} 1^{1} Mode o p nd po e pec o \mathbf{k} c e \mathbf{k} 1^{1} Mode o p nd po e pec o \mathbf{k} c e \mathbf{k} 1^{1} Mode o p t o 0^{1} A nd	7		n – ce Ba	~ n e	nd B	n ed		-
Mode o p nd po e pec o \mathfrak{k} c e $\mathfrak{k} \stackrel{1}{\mathfrak{a}} \stackrel{1}{\mathfrak{a}}$ Mode o p nd po e pec o \mathfrak{k} c e $\mathfrak{k} \stackrel{1}{\mathfrak{a}} \stackrel{1}{\mathfrak{a}}$ Mode o p nd po e pec o \mathfrak{k} c e $\mathfrak{k} \stackrel{1}{\mathfrak{a}} \stackrel{1}{\mathfrak{a}}$ Mode o p t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ nd co e po k ,, nd k ,, 7 Mode o p t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ B nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ A nd co e po k ,, nd k ,, 7 Mode o p t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ B nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ A B nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ A B nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o $\stackrel{1}{\mathfrak{o}} \stackrel{1}{\mathfrak{a}}$ A d co e po k ,, nd k ,, 7 \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o μ nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o μ nd \checkmark o n \mathfrak{k} po e pec \mathfrak{a}_1 t o \mathfrak{a} h o h co e		Mode o p	nd po e pec	0 16	ce µ	1		7
Mode o p nd po e pec o \mathbf{k} c e $\mathbf{k} \cdot \mathbf{a}^{1}$ Mode o p nd po e pec o \mathbf{k} c e $\mathbf{k} \cdot \mathbf{a}^{1}$ Mode o p t o \mathbf{b}^{1} A nd \mathbf{a}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{1} A nd \mathbf{a}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{1} A nd coe po k ,, nd k ,, \mathbf{b} Mode o p t o \mathbf{b}^{1} A B nd \mathbf{a}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{1} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{1} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} A B nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} o n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} n \mathbf{k} po e pec \mathbf{a}_{1} t o \mathbf{b}^{0} nd \mathbf{b}^{0} nd \mathbf{b}		Mode o p	nd po e pec	O LR	ce p	1 1		
Mode o p nd po e pec o \mathbf{k} c e $\mathbf{k} \cdot \frac{\mathbf{a}}{\mathbf{\beta}}^{1}$ 7 Mode o p t o $\mathbf{\hat{0}}^{1}$ A nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A nd coe po k ,, nd k ,, 7 Mode o p t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\hat{0}}^{1}$ A B nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{a}_{1} t o $\mathbf{\mu}$ nd \mathbf{v} o n \mathbf{k} po e pec \mathbf{v} o \mathbf{v} nd \mathbf{v} o n \mathbf{k} no \mathbf{v} nd \mathbf{v} o n		Mode o p	nd po e pec	0	c e n	, 1		
7 Mode o p t o $\mathbf{\hat{o}}^{1}$ A nd $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{o}}^{1}$ A nd $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{o}}^{1}$ A nd coe po k ,, nd k ,, 7 Mode o p t o $\mathbf{\hat{o}}^{1}$ A B nd $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{o}}^{1}$ A B nd $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{o}}^{1}$ A B nd coe po k ,, nd k ,, 7 $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{\mu}}$ nd coe po k ,, nd k ,, 7 $\mathbf{\hat{o}}$ o n $\mathbf{\hat{e}}$ po e pec $\mathbf{\hat{h}}_{1}$ t o $\mathbf{\hat{\mu}}$ nd coe po k ,, nd k ,, 7		Mode o p	nd po e pec	0 16	ce n	α		
• o n \mathfrak{k} po e pec \mathfrak{k}_{1} t o \mathfrak{i}_{0}^{1} A nd • o n \mathfrak{k} po e pec \mathfrak{k}_{1} t o \mathfrak{i}_{0}^{1} A nd coe po k $\mathfrak{k}_{1}, \mathfrak{k}_{2}, \mathfrak{k}_{2}, \mathfrak{k}_{3}$ Mode o p t o \mathfrak{i}_{0}^{1} A B nd • o n \mathfrak{k} po e pec \mathfrak{k}_{1} t o \mathfrak{i}_{0}^{1} A B nd • o n \mathfrak{k} po e pec \mathfrak{k}_{1} t o \mathfrak{i}_{0}^{1} A B nd coe po k $\mathfrak{k}_{2}, \mathfrak{k}_{3}, \mathfrak{k}_{4}, \mathfrak{k}_{4}, \mathfrak{k}_{5}, \mathfrak{k}_{5}$ • o n \mathfrak{k} po e pec \mathfrak{k}_{1} t o \mathfrak{k}_{1} nd coe po k $\mathfrak{k}_{2}, \mathfrak{k}_{3}, \mathfrak{k}_{4}$ t o \mathfrak{k}_{4} nd coe	7	Mode o p	t o o ¹	Δ	nd	β		
• o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o \mathfrak{l}_{0}^{1} A nd coe po k ,, nd k ,, 7 Mode o p t o \mathfrak{l}_{0}^{1} A B nd • o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o \mathfrak{l}_{0}^{1} A B nd • o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o \mathfrak{l}_{0}^{1} A B nd • o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o \mathfrak{l}_{0}^{1} A B nd coe po k ,, nd k ,, 7 • o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o μ nd • o n \mathfrak{k} po e pec \mathfrak{l}_{1} t o μ nd coe po k ,, nd k ,, 7		o n ep	o e pec _	t o	τ ¹ Δ	nd		
$ \begin{array}{c} \bullet & \bullet $			po e pec	t o		nd	сое	
Mode o p t o $\mathbf{\hat{0}}^{1}$ A B nd $\mathbf{\hat{v}}$ o n $\mathbf{\hat{k}}$ po e pec $\mathbf{\hat{a}}_{1}$ t o $\mathbf{\hat{0}}^{1}$ A B nd $\mathbf{\hat{v}}$ o n $\mathbf{\hat{k}}$ po e pec $\mathbf{\hat{a}}_{1}$ t o $\mathbf{\hat{0}}^{1}$ A B nd coe po k ,, nd k ,, $\mathbf{\hat{v}}$ $\mathbf{\hat{v}}$ o n $\mathbf{\hat{k}}$ po e pec $\mathbf{\hat{a}}_{1}$ t o $\mathbf{\hat{\mu}}$ nd $\mathbf{\hat{v}}$ o n $\mathbf{\hat{k}}$ po e pec $\mathbf{\hat{a}}_{1}$ t o $\mathbf{\hat{\mu}}$ nd $\mathbf{\hat{v}}$ o n $\mathbf{\hat{k}}$ po e pec $\mathbf{\hat{a}}_{1}$ t o $\mathbf{\hat{\mu}}$ nd coe po k ,, nd k ,, $\mathbf{\hat{v}}$		▼	\dots nd k \dots	7	0 4			
$ \begin{array}{c} \bullet & n & \texttt{lepo} e & pec & \texttt{lepo}_1 & \mathbf{t} & \circ & \bullet_0^{-1} & \texttt{A} & \texttt{B} & \texttt{nd} \\ \hline & \bullet & n & \texttt{lepo} e & pec & \texttt{lepo}_1 & \mathbf{t} & \circ & \bullet_0^{-1} & \texttt{A} & \texttt{B} & \texttt{nd} & \texttt{coe} \\ \hline & & p \circ & \mathbf{k} & \texttt{,, nd} & \texttt{k} & \texttt{,, 7} \\ \hline & \bullet & n & \texttt{lepo} e & pec & \texttt{lepo}_1 & \mathbf{t} & \circ & \mu & \texttt{nd} \\ \hline & \bullet & n & \texttt{lepo} e & pec & \texttt{lepo}_1 & \mathbf{t} & \circ & \mu & \texttt{nd} & \texttt{coe} \\ \hline & & p \circ & \mathbf{k} & \texttt{,, nd} & \mathbf{k} & \texttt{,, 7} \end{array} $		Mode o p	t o o ¹	AB	nd			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		o n ep	o e pec _	t o	<u>_</u> 1 0 A	в nd		7
pok,, ndk,, $\overline{\tau}$ o n sepo e pec $\underline{a_1}$ t o μ nd o n sepo e pec $\underline{a_1}$ t o μ nd coe pok,, ndk,, $\overline{\tau}$	7	on _k p	$po e pec \2$	t o	τ ¹ Λ Α	в nd	сое	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• pok ,	., nd k ,			_		
$ \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$		_on _ep	o e pec	t o	μ	nd		
pok,, ndk,,		τ í		t o) µ	nd	сое	
• • • • • • •		pok ,	., nd k ,	. , 7	•			7

Acronyms

Ă			
N	$N_{1} e c e e ped con$		
LAM	Led eqde		
LBC	L e ond y cond on		
>	d_len on d	- 1	on
>	den on d	- 1	on
	n · e		
∼ ⁿ	$\mathbf{v}^{\mathbf{n}} \mathbf{e}_{\mathbf{n}} \mathbf{e} \mathbf{e}_{\mathbf{n}} \mathbf{n} \mathbf{e}$		
	► cee o e no_1		
	o e n o		

Data Assimilation Notation

Х	e ee	с о		
\mathbf{X}^{a}	n y	ec o		
\mathbf{x}^{t}	e	e ec o		
\mathbf{x}^{b}	c o	nd epo	ee	
У	o e	on ec o		
h	o e	on ope o		
н	ne	on o o e	on ope	5 h

Model Notation

u	je_ape e e
х ^Р	en p $\cos dn$ e
xL	LAM p coodn e
t	$-\mathbf{L}_{\mathbf{I}}^{\mathbf{e}}$
С	Ad ec on e oc y
	▶ on con n
хP	Pendpcn
tP	P en _⊥e ep
xL	LAM d p c n
tL	LAM _ ep
Ν	N ₋ 1 e o p en dpon
Μ	Ne o LAM dpon
Τ	N_ \mathbf{A}_1 e open_ \mathbf{A}_2 de _ \mathbf{A}_1 epn \mathbf{A}_2 _ \mathbf{A}_2 on ndo
S	N e o LAM ep n \mathfrak{k} on ndo
h	oo LAM op en dp ce
	oo LAM op en _ _e ep
D	$\mathbb{N}_{1} = \mathbb{A}_{1}$ e op en <u>a</u> de de core ed y LAM
В	i en dponcoe pondno' LAM ond y
B۶	en dpon co e pond n o econd LAM o nd y
b	d no e zone

Chapter 1

Introduction

The ultimate problem in meteorology [18, p. 6].

P.	o d	e_∎en	1 20	een	ed	o de	с	е	ъро	e_∎_0	(o ec	n		2	e	R
C M		p .	Acc	o d n	0	Ве	ne		o p od	ce "	R	e	e	R	0	$\mathbf{e}\mathbf{c}$	

1.1 Motivation

z do o e e_ \mathbf{n}_1^e e \mathbf{k}_2^e o enc ed y con ec e c e e e. Con ec e o \mathbf{n}_1^e pod ce o \mathbf{n}_2^e o $\mathbf{k}_2^e - \mathbf{n}_1^o$ d \mathbf{n}_1^e n e \mathbf{k}_2^e e pe enced n \mathbf{k}_2^e . \mathbf{k}_2^e e d n c e o o o d n \mathbf{k}_2^e o e $\mathbf{k}_2^e - \mathbf{n}_1^e$ e e e n o \mathbf{n}_1^e .

- ✓ en wepe ecoe on nd no conde_____ we LAM d _____ on cnno cpe we we cyde oe on od ced we we LBC.
- onod ced wo wake LBC e deence neo on e een wand wa LAM c e ke LAM d ____ on owaeeo o en ____e

Chapter 2

Data Assimilation

node o ene en cond on \mathbf{x} cc eydec e \mathbf{x} o e ed e y e \mathbf{x} e o e co \mathbf{x} ne pe o \mathbf{x} o e co nd \mathbf{x} o e on \mathbf{x} oo \mathbf{x} o o do \mathbf{x} d \mathbf{x} on nd \mathbf{x} n cond on e no n \mathbf{x} n y p

An N $\int_{-\mathbf{n}q} d\mathbf{e} \, \mathbf{e} \, \mathbf{e} \, \mathbf{n} \, \mathbf{e}_{\mathbf{n}} \, \mathbf{e}_{\mathbf{n}}$

2.1 Types of data assimilation

 $\mathbf{x} \in \mathbf{e}_{\mathbf{a}_1} \text{ny de en ype od} \mathbf{a}_1 \text{ on } \mathbf{c}_{\mathbf{x}_2} \mathbf{a}_2 \text{ ... } \mathbf{x} \in \mathbf{c}_{\mathbf{x}_2} \mathbf{a}_2 \text{ cn e}$ $\mathbf{e} \text{ en } \mathbf{o} \text{ on } \mathbf{nd}_{\mathbf{x}_2} \text{ eed}_{\mathbf{a}_2} \mathbf{n} \text{ on } \mathbf{p} \text{ ce } \mathbf{o} \text{ d}_{\mathbf{a}_2} \mathbf{n} \text{ on } \mathbf{p} \text{ ce } \mathbf{c}_{\mathbf{a}_2} \mathbf{a}_1^{\mathbf{c}}$ $\mathbf{e} \text{ en } \mathbf{o}_{\mathbf{x}_3} \mathbf{a}_1 \mathbf{c}_{\mathbf{x}_4} \text{ Op }_{\mathbf{a}_1} \text{ nepo on } \mathbf{O} \text{ ec on } \mathbf{o}$

2.1.2 Variational schemes

n on \underline{a}_{1} on o \underline{a}_{2}_{1} end \underline{a}_{1} y \mathbf{x}^{a} \underline{a}_{2} \underline{a}_{2} \underline{a}_{1}^{n} \underline{a}_{1}^{n} e conconsistence of the set of the se

A deence e een A → co ncon >> nd A co ncon >> > A → c A →

2.1.3 The Kalman Filter

n con o ne on ech e edy b ne _n n e d _n e on e en _n e nd o o o e on o e _n edo e _n e ndo o e ne ne en e e e no ne _n e en _n e en y _n e ep o e ne op _n ny ech e on _n e en pe o no _n on

ne cneedno e oec denoed **f** nd ny denoed **a** ne oec eco_⊥peo ne eoec

$$\mathbf{x}_{k}^{f} \quad \mathbf{M}_{k, 1} \mathbf{x}_{k, 1'}^{a}$$

nd $\mathfrak{k} e \circ co$ nce $\circ ec$

$$\mathbf{K}_{k} \quad \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} \quad \mathbf{H}_{k} \mathbf{P}_{k}^{f} \mathbf{H}_{k}^{T} \quad \mathbf{R}_{k}^{-}$$
,

en y

$$\mathbf{x}_k^a$$
 \mathbf{x}_k^f \mathbf{K}_k \mathbf{y}_k – $\mathbf{H}_k \mathbf{x}_k^f$, 7.7

nd <u>k</u>eo co nceo <u>k</u>en y

 $\mathbf{x} \in \mathbf{X}_k^a$ is ny $\mathbf{x} \in \mathbf{I}_k$ is a condition of \mathbf{P}_k^a

n <u>k</u>e eene <u>k</u>e o <u>k</u>a₁ <u>k</u>op <u>a</u>₁ yo <u>a</u>₁ eo e on e en y po de <u>k</u>e ne n ed e <u>a</u>₁ eo <u>k</u>e e nd e o co nce

2.1.4 Why 4D-Var is the method of choice

One d n e o on o $\mathbf{x}\mathbf{a}_1$ \mathbf{x} \mathbf{x} \mathbf{y} c n \mathbf{x} nd e nd e c o e on n \mathbf{x} o \mathbf{a}_1 e \mathbf{a}_1 n n \mathbf{x} need o e e ope on \mathbf{x} \mathbf{y} c n o n o e on o \mathbf{a}_1 de e n non ne \mathbf{a}_1 nne nd poec no \mathbf{a}_1 on o \mathbf{a}_1 \mathbf{a}_1 de p ce o o e on p ce nd ce e non ne o e on ope o

Bo 👞 🕨 nd 🝙 ene o 🚛 n e o ede o co nce 7. o e e -____o d n eo e e d nce e c o nde o co nce n e o co nce o ec ep e o co nce o ec po de o dependen condeoconce_____ e endo e __e ndo e __e ne $-\mathbf{1}_1$ n con n co n ce $-\mathbf{1}_1$ done n \mathbf{b}

on	ed eede	e. 🕨	c en y	n MA	p ne eo	0 0 C	
A ency	e o o	n 🔊	Me Q	cede	c en y	n 🔥	
		qno 🕨	77 nd	Reeee	dyp n p	∎ed y	
Me eo	nce o	ed 👧	⊾eo on	\mathbb{A}_1 ed e	. 7	7	לדק ל d

$$_k$$
 $\mathbf{M_k}^{\mathsf{T}}_{k+1}$ $\mathbf{H_k}^{\mathsf{T}} \mathbf{R_k}^{-}$ \mathbf{y}_k – \mathbf{h}_k \mathbf{x}_k , k \mathcal{T}_1, \ldots, n

ne den o**J₀** ne ne y

$$\mathbf{\nabla} \mathbf{J}_{\mathbf{0}} \mathbf{X}_{\mathbf{0}} = \mathbf{0}.$$

 $\mathbf{M} = \mathbf{M} =$

 \neg on 7 ond n L ne_1 pe \mathfrak{A} \mathfrak{A} e ond n ne e \mathfrak{A} \mathfrak{A} nn ec on 7.

R C C	0	on	рросмо	o _ 1	n 🕨	$-\mathbf{I}_1^n$	n	n no	le
nd n	e con	c on o	b -	con	ned $\underline{a}_n \underline{a}_n$	on	е	∎ p	n

doe no need o e ne ed nd c n ___p y e en

$$\begin{array}{cccc} \mathsf{J} \ \mathbf{x}_{0} & -\frac{1}{7} \ \mathbf{x}_{0} - \mathbf{x}^{b} \ ^{\mathsf{T}} \mathsf{B}^{-} \ \mathbf{x}_{0} - \mathbf{x}^{b} \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

nd a con n

2.3.1 Minimisation of the cost function J

o \underline{a}_{1} \underline{n}_{1} \underline{a}_{1} e \underline{a}_{1} concorrected e \underline{a}_{1} \underline{n}_{1} on o \underline{a}_{1} or o \underline{c}_{2} concorrected e concorre

d
$$_k$$
 R $_k^-$ y $_k$ – H $_k$ X $_k$, 7

 $\mathbf{k} \in \mathbf{d}_k$ e no n \mathbf{k} no \mathbf{d}_1 ed dep e \mathbf{k} e dep e c n \mathbf{k} n e ed oc c e \mathbf{J}_0 e e o con on .

ne e

nee ono ne den cn o e done n op . ne den o Jb cn _npy e o nd yc c n ▼Jb d ec y

occ e▼J₀decyodeco_ap onyne e ode eN o d_aqde n; acdon o ▼J₀oecc ed ac one don _aqde n e' needo co e

on 77 cnno eqc c ed o_1 koe yn n k don e ozeo k n 12 +1 ne on 7 e kn ep c d ko k 12 ec ep ddn k ocn $e_1 H_k^T d_k$ o k e oe ppyn k don 12 do e k- encee on 77 eco_1 7

k den o**J_{o k} een ond ken ne e kee e on 77** ke_ne kond necon 77 e on 7 de ed y ke_ne kodo L ne_n₁ pe.

e e e don_aque de ned e npoeo e nen ne _aque e M^T. Ope on y e e e don no con cedep c y o_a, e npoeo e n en ne _aque_a, e don_aque nd e ed no con de ed n e e e on

2.3.2 The adjoint model

Ope on y med cee_mode ne ed o e me nen ne _mode nd men med cee done on econ ced o_m_n med cee ne ed e on me don de edd ec y o_m_n men ne _mode code n n o_m_n c don _me med 7 opee ech o e $\mathbf{k}_{-\mathbf{1}_1}$ o \mathbf{k}_1 o \mathbf{k} d cee nen ne e on o nd \mathbf{k} npoe beo $\mathbf{k}_{-\mathbf{1}_1}$ zeo \mathbf{k} y $\mathbf{e}_{-\mathbf{1}_1}$ o e ed n $\mathbf{k}_{-\mathbf{k}_1}$ peecye e \mathbf{k} eo $\mathbf{k}_{-\mathbf{1}_1}$ y npoe $\mathbf{k}_{-\mathbf{1}_1}$ Mo ene e \mathbf{k} don o $\mathbf{k}_{-\mathbf{k}_1}$ done no c $\mathbf{k}_{-\mathbf{1}_1}$ C \mathbf{k} pe

Once \mathfrak{A} don con ced need o e e ed \mathfrak{A} e e o d e en pec \mathfrak{A} e \mathfrak{A} need o e e ed nd \mathfrak{A} e e done n ep e \mathfrak{A} e \mathfrak{A} d.

The Adjoint test

ne don co ec e ne d e

$$\mathbf{M} \mathbf{x}_0, \mathbf{M} \mathbf{x}_0^{?} - \mathbf{x}_0, \mathbf{M}^{\mathsf{T}} \mathbf{M} \mathbf{x}_0$$

The Gradient test

e_____e e y ____ _ e don pod ce __e co ec den o __e co ncon o do ____ e e __e den e ____e ad e dye ___ed o e don ____de o e ___pe

A yo e p n on o 🔬 co nc on **J** e

ue ____c nd x ecoon en ue ue o____ c n e

e ned o e nc on o

$$\frac{J \mathbf{x} \mathbf{x} - J \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x} \mathbf{x}} = \mathbf{0} \quad \mathbf{x}$$

n ec on 7 e de aqn ed a o $aqn a_{1}$ e a con con a e pec o Xo e e i a aq aq d e e aq po e aq e pe en n nd n e n $aq a_{1}$ **B** o N i a aq py n e e aq **B** ypc yo O o o e co aq aq po e a_{1} aq con n e d po ed n e a_{1} o d e en con o e y aq n o con o e n o aq 7 aq

Chapter 3

The discrete Fourier transform

n $\mathbf{x} \in \mathbf{x} \in \mathbf{x} = \mathbf{x} + \mathbf{x} = \mathbf{x} + \mathbf{x}$

3.1 Definition

Le a l

 $\frac{N^{-}}{N} e^{-is_{j}}$ if s Nm, m Z j otherwise,

where

DFT
$$f_j = f_k = f_j e^{-i - jk/N}$$
, $k = 1, ..., N = 1, j$

 $\mathbf{k} \in \mathbf{k} \quad \mathbf{k} \quad \text{en } \mathbf{n}_{\mathbf{k}} \in \mathbf{N}$

Figure 3.1: The power spectrum of $sin(\xi_j)$, scaled by the factor 2/N.

Mc Mc n e e n ed o e

$$f_k = \frac{N}{\overline{z_i}} e^{-i_j k} - \frac{N}{\overline{z_i}} e^{-i_j k} + \frac{N}{\overline{z_i}}$$

no de o e e e on e e \mathfrak{k} c \mathfrak{k} co_p e e ponen

e___pe e _____epoe pec ____o njon __edo____nx , ____eej 7 xjj , ,N – xj j/N nd N .

By en ne on eee ke ee ke poe pec ____o njpoedn e. ke ke ma ke poe pec ____o eey ke eee By ppyn ke cn co 7/N oe on e oo nn ___p deo one

o_____ ___pee___pee_____eene o ___pee_____ & poe pec____pode____eadooee ___ee eo ____ coe__ cen nn ey

3.3 **Properties of the DFT**

Linearity

Rencont pcra o ncon

yj afj bgj,

ngeandbec ng ┣- oyj

$$y_k$$
 af_k bg_k.

> Sy etry of the Co ple Conjugate

o e e ence f_{j} , , N − ► n ene e e ence o N co_ape n_a_e np c f_k nd f_{N-k} e e ed y

ok , ks

Phase

n ene R > o nc on fj c n e en

æef<mark>k</mark> æep nd f<mark>l</mark> æ₋₋a_n nyp

o e e o n e en nc on

ne po e pec ____

3.4.3 Phase

A ednecon odd ncon no \underline{a}_{1} o \underline{a}_{1} nyp onyndeen ncon no \underline{a}_{1} o e p ony ncon cneoddo een o cne \underline{a}_{1} de po co \underline{a}_{1} n ono o wodd ndeenp Bycon de n we e nd \underline{a}_{1} ny p o we ep ey ecn nde nd ee we pwe eo ncon o e \underline{a}_{p} e y n j nodd ncon nd we eo e we pey \underline{a}_{1} ny e coe cen we de \underline{a}_{1} n y e o ee en con z o e e e no con de ne e we pwe we ecn ee no we e pope yo we -

o en ne ed onde nd pne e en ne on yj nj ne e

Figure 3.3: The power spectrum of the real (red) and imaginary (green) parts of the DFT of $sin(\xi_j + \pi/4)$, scaled by the factor 2/N.

3.5 Summary

e ne no n ne ро eoen oo no₋₋a, on o o on y ____ y pe o ___n nd con de n ne eo poe pec ___ne on o 🖻 By con de n 🔬 ne nd co ne no n p ope e o æ 🕨 e 0 en ____e nd p e n ___p de nd p 🙀 e nc on p ce e 🕰 e 🔊 🕅 👧 n**C** o 😰 co___ponen o po e pec ____ nconcn eondo₋₁ R nd e 👞 e o de___on ed__∎e, pod o po 🖈 c n e done ne e_ne nod Me e $een de_{-} \underline{} on ed \underline{} e on c ne$ cne y e pp ed o___o e ee ___pe co___p c ed nc on

Chapter 4

Limited Area Models

ne e_n_nyd een _n_ed e_node LAM c en y en nope on y e ne cen e ond ne od e en yn od cn

Figure 4.1: Schematic of the LAM domain and bu er zone.

	LAN	1	n	- 1	e o on	nd	А	MON	T	е	e o	on o
7	- 1	A	dn ĸ	∎Q Z	on e o	on o	0		$_\mathbf{I}_1$ nd	A OM	•	n
7	- 1	d_e n	47	M 3	M MA	c en	y ne		e o	on		
Ano	D 🖻	ne ed	p ope	уо	R _ 1	de	Pa.	n Q	e	o nd	y cond	on
LE	BC	еро	ded o	.	e co	е ео	on	p e	end	le no	de o	е
R	0	on on	e ne	0 0	e LAM	don	0	R	ерес	e ed	у кр	$\mathbf{e}\mathbf{n}$
٩L	de	R O	nd e		e zone	_ _ p e	$\operatorname{en}_{1} \mathbf{ed}$	l a	a ond	e o	e LA	М

A LAM e LBC on pennode o ee le ency la lac de le even le note de lac e ency la lac de y le pennode e even le note de lac eperode verse de lac eperode y le pennode e even le even l

LBC pp ed y kp en ___qde c n e ____o o ceoe o n ke LAM ke de oee e on.

- . ne ne zon e c nd e_npo eo ono ne p en _node ene y co e ne ne ne ne ne po ed o ne LAM d e e y _ne ep , en ne p en _node npo dn ne LBC pe ec ne e ne po one o nod ced nen ne po ed o ne LAM e o on
- 7 Le e_l, y o ed eence n_lode e p nd p_le e on e en le eo on le _le n o le lode . LAM ne o.
 7 Le e_lode on le _le n o le lode . LAM ne o.

keepoe_k_ndoke edc edy A kekeepoe_k_oc ed kekeLAM e keych oeece edn ked _k_on ke dc edn kene econ

One yone e \mathfrak{k} epo $\mathfrak{e}_{\mathfrak{n}_1}$ o \mathfrak{p} yoc e \mathfrak{k} ond e \mathfrak{p} cen y o \mathfrak{n}_1 \mathfrak{k} e o \mathfrak{n}_1 ed n d o \mathfrak{n}_1 \mathfrak{k} ond yn \mathfrak{k} \mathfrak{n}_1 ndo o \mathfrak{k} oec o \mathfrak{k} we o on oec n \mathfrak{k} e e \mathfrak{k} \mathfrak{n}_1 \mathfrak{p} \mathfrak{p} c \mathfrak{k} do \mathfrak{n}_1 nc nony e \mathfrak{n}_1 ed ze nd \mathfrak{k} e e n \mathfrak{p} cen co \mathfrak{p} e e o ce o o o ond e o e \mathfrak{p} cen y y

A d c ed n ec on . one <u>ne</u> <u>nod</u> <u>a</u> <u>ne</u><u>nedope</u> on y <u>k</u> eo e zone. <u>k</u> e zone end <u>k</u> o o on ne <u>k</u> ond e nd <u>k</u> eo e od ny <u>a</u> p <u>ne</u><u>n</u> <u>a</u> <u>c</u> <u>a</u> <u>c</u> <u>o</u> d e ec e <u>k</u> <u>no</u> <u>d</u> de eo e ndependen y y <u>no</u><u>n</u> nyd cepence e een <u>k</u> <u>no</u> <u>d</u> e <u>c</u> <u>c</u> <u>c</u> <u>o</u> <u>d</u> e.

Figure 4.3: Diagram illustrating the observational information lost from observations outside the LAM domain. The red dot is an observation and the dotted lines indicate the spreading of this observational information by the matrix \mathbf{B} . The green area is the part of the LAM domain that would be influenced by the observation if it were visable to the LAM.

oe _R cnce encon ence	e een e e ep e en ed n 🙀 LAM nd
ne co eqde po dn ne LBC	oepe pe on o e pe on
y ed een n 🔬 odon	
Adc edn econ 7 con o	e noe do eo zon
coe on n e e n o	yon on cree a con o
e noe n e	e de ned n pe

Figure 4.4: The extension zone of the HIRLAM model, as shown in [35]

Figure 4.5: Diagram illustrating a feature being 'cut-o' by the LAM boundary. The colours indicate the size of the increment, white being zero increment and pink being the largest increment.

e an ne_a, o nce_aen _**_**.e ngeo ngpen econd op on cnedeced 🙀 nzeo ondycondon ∉ ond e e no o ed ocan e A con e ence o ze o o nd y cond on е ке ne pe od c n¶. p ce o pe o ____ pec on e need n nc e___en n o ____ 0 con o е na nzeo ondy condon_ne na n p \mathbf{c} ne no___cne ed Me Q ce _**_**₽ e_∎en ed o e e ze o o nd y cond on c n ı**R** n p **@**no_**⊥**en en c o o con ned y 🔊 o nd y е nen ney ne dp de__on ed n е 0Pg 7 n¶.

One e_ap y > o _ap o e_a p o e_a_o p @no_aen en c o y @ ond

An en e_ae adpopoed y e_ap o_apoe acon encyo acLAM ny acacLBC poded y acp en_aode ync dn ne e_an ac concon ace e_anae e ad nce e een ac e ond y e oquen y nd acLBC o_anae o _aode n o eo on eo_ae y ac acce eco_anaend on n nd 7 ac acLB

Chapter 5

A 4D-Var algorithm for a LAM domain

n $\mathbf{a} \in \mathbf{C}$ $\mathbf{a} \in \mathbf{p} \in \mathbf{c}$ n od ce ene \mathbf{a}_1 ed e \mathbf{a}_2 de LAM do \mathbf{a}_1 n nd d c \mathbf{a}

Figure 5.1: Diagram of model domains.

ndo .

∎e b

5.2 Modifications to the 4D-Var algorithm for the LAM domain

A d c ed n ec on 7 o ene e n n y n \sim $e_{-\mathbf{a}_1} - \mathbf{a}_1 - \mathbf{a}_1 e$ \mathbf{a}_2 co nc on 7 7

$$J \mathbf{x} = \frac{1}{7} \mathbf{x} - \mathbf{x}^{b \top} \mathbf{B}^{-1} \mathbf{x} - \mathbf{x}^{b} = \frac{1}{7} \mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{x}_{k} \mathbf{x}^{\top} \mathbf{R}_{k}^{-1} \mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{x}_{k},$$

ec o 😰 🚉 e on 🏞

$$\mathbf{x}_{k+1}$$
 $\mathbf{M}_k \mathbf{x}_k$.

o e e LAM $\mathbf{x} \rightarrow \mathbf{e}$ e on pe o \mathbf{a}_1 d n \mathbf{k} e zone $\mathbf{x}_{\mathbf{x}}$ e e o \mathbf{a}_1 \mathbf{k}_1 \mathbf{k}_2 p en \mathbf{a}_2 de o no po e o e \mathbf{k}_2 \mathbf{a}_2 de on nc d n \mathbf{k}_2 \mathbf{a}_2 de o no c d n $\mathbf{$

 $\mathbf{x}_{k+1} \quad \mathbf{M}_k \mathbf{x}_k \quad \mathbf{P} \mathbf{x}_{k+1}^p,$ $\mathbf{x}_k \in \mathbf{x}_k \quad \text{no} \quad \mathbf{x} \quad e \text{ eco on} \quad \mathbf{x} \text{ LAM do}_{\mathbf{a}_1} \text{ n} \quad \underline{\mathbf{a}}_1^e e e \mathbf{k} \quad \mathbf{M}_k \quad \underline{\mathbf{a}}_1^o d e d$ $\mathbf{a}_1 \quad \underline{\mathbf{a}}_1^e e e \mathbf{k} \quad \mathbf{x} \quad e \text{ cco no} \quad \mathbf{x} \text{ c n co n} \quad \mathbf{x} \quad e \text{ zone de e}$ $\mathbf{o} \quad \mathbf{x} \quad \mathbf{b} \quad e e \quad \text{on} \quad \mathbf{P} \quad \underline{\mathbf{a}}_1 \quad \mathbf{o} \quad \mathbf{c} \text{ n} \quad \mathbf{co} \quad \mathbf{n} \quad \mathbf{x} \quad e \text{ zone de e}$ $\mathbf{e} \quad \mathbf{n} \quad \mathbf{e} \quad e \text{ zone de o} \quad \mathbf{x} \quad \mathbf{b} \quad e e \quad \text{on nd} \quad \mathbf{x}_k^p \quad e \text{co o} \quad e \quad \mathbf{o}_{\mathbf{a}_1}$ $\mathbf{x}_1 \quad \mathbf{a}_2^e e e \mathbf{k}$

 $\mathbf{x}_{i,k+1}$ $\mathbf{x}_{i,1,k}$ $\mathbf{x}_{i,k}$ $\mathbf{\mu}\mathbf{x}_{i+1,k}$

eno con de
$$\mathbf{F}_{0}$$
 o \mathbf{a}_{1} \mathbf{k}_{1} $\mathbf{n}\mathbf{q}\mathbf{d}\mathbf{e}$ on $\mathbf{e}_{\mathbf{k}}\mathbf{e}$
 \mathbf{x}_{1} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{P}\mathbf{x}_{1}^{p}$,
 \mathbf{x}_{2} $\mathbf{M}\mathbf{x}_{1}$ $\mathbf{P}\mathbf{x}_{2}^{p}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{P}\mathbf{x}_{2}^{p}$,
 \mathbf{x}_{3} $\mathbf{M}\mathbf{x}_{2}$ $\mathbf{P}\mathbf{x}_{3}^{p}$ \mathbf{M} \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{P}\mathbf{x}_{2}^{p}$ $\mathbf{P}\mathbf{x}_{3}^{p}$,
 \mathbf{x} $\mathbf{M}\mathbf{x}_{-1}$ $\mathbf{P}\mathbf{x}^{p}$ \mathbf{M} \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{P}\mathbf{x}_{2}^{p}$ $\mathbf{P}\mathbf{x}_{2}^{p}$.
ne n $\mathbf{k}\mathbf{e}$ no \mathbf{J}_{0} $\mathbf{o}_{-\mathbf{A}_{1}}\mathbf{e}$ on \mathbf{v}_{-7} \mathbf{e}
 \mathbf{J}_{0} $\frac{\mathbf{T}}{\mathbf{T}}_{\mathbf{k}}$ $\mathbf{y}_{k} - \mathbf{H}_{k}$ $\mathbf{x}_{k}^{-1}\mathbf{R}_{k}^{-1}\mathbf{y}_{k} - \mathbf{H}_{k}$ \mathbf{x}_{k} ,
 $= \mathbf{y}_{0} - \mathbf{H}_{0}$ $\mathbf{x}_{0}^{-1}\mathbf{R}_{0}^{-1}\mathbf{y}_{0} - \mathbf{H}_{0}$ \mathbf{x}_{0}
 $= \mathbf{y}_{1} - \mathbf{H}_{1}$ $\mathbf{x}_{1}^{-1}\mathbf{R}_{1}^{-1}\mathbf{y}_{1} - \mathbf{H}_{1}$ \mathbf{x}_{1}
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ $\mathbf{x}_{2}^{-1}\mathbf{R}_{2}^{-1}\mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{x}_{2}
 $= \mathbf{y} - \mathbf{H} - \mathbf{x}^{-1}\mathbf{R}^{-1}\mathbf{y} - \mathbf{H} - \mathbf{x}^{-1}$,
 $= \mathbf{y}_{0} - \mathbf{H}_{0}$ $\mathbf{x}_{0}^{-1}\mathbf{R}_{0}^{-1}\mathbf{y}_{0} - \mathbf{H}_{0}$ \mathbf{x}_{0}
 $= \mathbf{y}_{1} - \mathbf{H}_{1}$ $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{2}^{p}$.
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p} - \mathbf{H}_{2}$ \mathbf{x}_{1}^{-1}
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{2}^{p}$.
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{2}^{p}$.
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{2}^{p}$... $\mathbf{v}\mathbf{P}\mathbf{x}^{p}^{-1}\mathbf{R}_{1}^{-1}$
 $= \mathbf{y}_{2} - \mathbf{H}_{2}$ \mathbf{M} $\mathbf{M}\mathbf{x}_{0}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{1}^{p}$ $\mathbf{v}\mathbf{P}\mathbf{x}_{2}^{p}$... $\mathbf{v}\mathbf{P}\mathbf{x}^{p}^{-1}\mathbf{R}_{1}^{-1}$

 $\mathbf{x} \in \mathbf{y}_k \quad \mathbf{y}_k - \mathbf{H}_k \mathbf{x}_k^b \quad e \quad o \quad \mathbf{x} \in \mathbf{x}_k \quad a o de \quad con \quad n$

$$\mathbf{x}_{k+1} \quad \mathbf{M}_k \ \mathbf{x}_k.$$

 $o_{-a_1}e$ on eyo e e e den n $e_{-a_1}o$ n $ce_{-a_2}e$ den o J_b we pec o \mathbf{X} eco_a e

$$\mathbf{V} \mathsf{J}_{\mathsf{b}} = \mathsf{B}^{-1} \mathsf{x}_0,$$

nd \mathbf{M} den o $\mathbf{J}_{\mathbf{0}}$ \mathbf{M} e pec o \mathbf{X}

$$- \mathbf{V} \mathsf{J}_{\mathsf{0}} \quad \mathsf{H}_{0}^{T} \mathsf{d}_{0} \quad \mathsf{M}^{T} \, \mathsf{H}_{1}^{T} \mathsf{d}_{1} \quad \mathsf{M}_{2}^{T} \, \mathsf{H}_{2}^{T} \mathsf{d}_{2} \qquad \mathsf{M}^{T} \mathsf{H}^{T} \mathsf{d} \qquad ,$$

no

$$\mathsf{d}_{m{k}} = \mathsf{R}_{m{k}}^{-1} \quad \mathsf{y}_{m{k}} = \mathsf{H}_{m{k}} \ \; \mathsf{x}_{m{k}} \; .$$

5.4 A gridpoint and a spectral scheme for the LAM domain

5.4.1 The gridpoint scheme

discrete intervals with grid points numbered j , , , , , N and f f_N , the Fourier sine transform is defined to be

sine transform
$$f_j f f_j n j / N$$
,
j

where is the wavenumber [68].

Rene no_l_nd pope e edc edn econ

ne pec e ono ne o man, e e e e d o no ne ne ne pec che ne ne pec e on de e oped ec e pec che ne ne ed ope on yon ne LAM y ne Me Q ce d c ed n ec on . 7.

Bo ne ne doon nd ne pec che ne e ed n'ne ne By n'o ne doon nd pec edd __n_ on che ne e con co__np e ne o p o ne o __ne no den c'd nd ne e ne e e e e e o ne ne n o __n_

oc_mane med _____ on c_mane o pec one enced ope o_____ con o e no_____ dc ed n ec on $\overleftarrow{}$ _____ me con o e no_____ ed mee me no_____ nd no_____ me nce____n o____p me c o pec p ce e de ne con o e no_____

nd n n e e n o ____

x Uz,

 $\mathfrak{A} \in W \quad \mathsf{R}^{\mathsf{N} \times \mathsf{N}} \quad \mathfrak{A} \quad \text{ne no}_{-\mathtt{I}_1} \text{ nd } \mathsf{U} \quad \mathsf{R}^{\mathsf{N} \times \mathsf{N}} \quad \mathfrak{A} \quad \text{ne e ne no}_{-\mathtt{I}_1}$

 n_{-L_1} no on \mathbb{R} ne no $-L_1W$ cn e en

No \mathbf{x} e \mathbf{x} e o ne con o e e con de \mathbf{x} e e con \mathbf{x} on \mathbf{x} co ne on e o \mathbf{x} on ne \mathbf{x} on ne \mathbf{x} or \mathbf{x} or

$$J z_{0} = \begin{matrix} T \\ \overline{z} & U z_{0} & T B^{-1} & U z_{0} \\ \hline \overline{z} & \begin{matrix} T \\ k \end{matrix} \\ K & C & n e \\ J z_{0} & - \begin{matrix} T \\ \overline{z} & z_{0} \end{matrix} \\ \hline \overline{z} & z_{0} \end{matrix}$$

$$\cdot \ ^{1} \quad \mathsf{U}^{T}\mathsf{B}^{-1}\mathsf{U}.$$

eno con de me ec me con o e no me on me den o me co nc on me den o **J_{b12(</mark>**}

e e	R	Rx	j j	хј	, , ⁷ ,	, N	_	Х	L/N	R	d p c n			
nd L	e en	№ O	ne do_∎	n e	х	, L	I	L>7	7	7		7	7	d

 M
 ed n
 e
 o
 mathcal co
 LAM do_m_n
 mathcal co
 mathcal co

 M
 ed n
 e
 o
 mathcal co
 mathcal co
 LAM do_m_n
 mathcal co
 mathcal co

 M
 e
 e
 e
 mathcal co
 <th

No \mathbf{x} e nde nd \mathbf{x} e ence e een en \mathbf{x}_1 e on \mathbf{x} do \mathbf{x}_1 n \mathbf{L} nd \mathbf{x} e on \mathbf{x} do \mathbf{x}_1 n \mathbf{L} < o \mathbf{x}_2 \mathbf{x}_2 e e c n con de \mathbf{x} \mathbf{b} \mathbf{x}_1 \mathbf{L} < no n \mathbf{x} e e e pec \mathbf{x}_2 \mathbf{x}_1 de o ppe n \mathbf{x} po e pec \mathbf{x}_1

r n j/N e e con de æde n on o æ⊾ n_⊥o e de

nce fj ne co_1 n on o ne e R 🕨 o fj c n e en

ее

a_k

b_k

Ck

d_k

pope e o eecopc **____1 a** c n e en

a _i e

 $f_k \quad a_k \quad b_k \quad c_k \quad d_k,$

e con de k By n k nd L / τ no e on e e b c d o $\underline{a}_1 \underline{L} \underline{a}_1 \underline{a}_1$ o e e **a** no n $\underline{a}_2 \circ \underline{a}_2 \circ$

e on o e e d e en e ____n n n e _____ on o ____ nd _
o pece neo on N 🔊 🙀 e

Ne econde**k** By n**k** nd**L /7** noe on e ne**cd** o____Le____n nd oe **kb** -**iN** A n **k**ee **a** cnno e ___p ed n **k**o **k** on ye on nd e

$$a = \frac{N-i j/N}{i} - e^{-i j/N} - e^{-i3 j/N}$$
.

o k e ĸ e

A no ne ce ne eo on N 🔊 ne e

weekod en poe pec **k** coepondno pec e e e e **k** n e Ao

 $\mathbf{k} \in \mathbf{k}$ od en \mathbf{k} poe pec \mathbf{k} coepondno \mathbf{k} e e e e \mathbf{k} n e $\mathbf{7}$

e con de k 7 n \mathbf{k} _ \mathbf{k} y e e \mathbf{k} b d c -iN/7 nd

$$a = rac{N-}{i} e^{-i3 j/N} - e^{-i5 j/N}$$
 .

o **k 7** e ĸ e

o vece veo on N 🔊 🛚 🖉 e

$$a = \frac{i}{i} e^{-i3 j/i} - e^{-i(j/i)},$$

N - p de n po e pec - 1

doe y Nncee o eyo eo on _{ke} onco de n'c'n nce n N o_lo o ncee ke_lop de k yO - ke eo on ncee ke_lop de k ppoc ke_lon

one e e e e e e e e e e o yo e on eno_e, on y en ok e no con de e de n ono e ro e ne LAM do_e, no en eL

6.3.2 A general case

ka con no o e e e ppo _a_{1} {ono nc on ka _a_{1} ny no npope e nc dn con e ence e o pec cc e o nc on ka d ce e o e e e ne po on ka con e ence pope e e y _a_1 o ka e o ka con no c e O p c ne e ka e ka c ka ka d ce e c e ka e ka _a e y_a po c e ka o ka con no c e γ p *γ on ka Theore I For any f W_p^r , r with r > /r, there exists a positive constant C, independent of N, such that

$$f - N f_{L^2}$$
, $C N^{-r} f^{r}$.

where Wp^q , > (202J 536710.9091 Tf3.514984 719.6R43 1m(68699 10.9091 T 4.22969 0 Td [()0.352268]TJ /R157 7.970= Tf 4.22969

y we ze o ____ de k one e we eno pe o ____ ne no ____ on we no on f_j o____ e on .

6.4 The sine transform

 $o_{-\mathbf{A}_1}$ ec on $\mathbf{\tau}$ o pe od c nc on **f f**_j de ned on en do_{-\mathbf{A}_1} nd ded no e y p ced d c e e n e \mathbf{A}_1 de pon n $_{-\mathbf{A}_1}$ e ed **j** , , $\mathbf{\tau}$, , **N** nd **f f**_N \mathbf{A}_2 o e n e n o $_{-\mathbf{A}_1}$ de ned o e

ne no
$$\mathbf{f}_{j} \mathbf{f}_{k} = \frac{\overline{\mathbf{r}}^{N-1}}{N} \mathbf{f}_{j} \mathbf{f}_{k} \mathbf{f}_{k}$$

n∉ek n∉ en _∎₁e.

o e e o \mathbf{N} de ne no $\underline{\mathbf{a}}_1$ c n e c c ed n e c en conde e o de o de o de $\underline{\mathbf{a}}_1$ zeo de e o en conde ed de e e c n $\underline{\mathbf{a}}_1$ p c on de c ed n e c on $\underline{\mathbf{a}}_1$ de ne no $\underline{\mathbf{a}}_1$ $\underline{\mathbf{a}}_1$ $\underline{\mathbf{a}}_1$ p c on de c ed n

ondendee nen on y con den c c on on a ne de non

6.4.1 Calculating the sine transform from its definition

e e ny con de n \mathfrak{g} e ec o \mathfrak{g} ne no \mathfrak{l}_1 on ene ne e e d d o \mathfrak{g} le ne con \mathcal{T} e \mathfrak{g} e ene ne e \mathfrak{g} en \mathfrak{l}_1 e nd \mathfrak{g} de

j n**~aj**

n 📭 den y

n

Con de n \boldsymbol{k}

be o ne do ne econ ne en _____e c ed y ne no _____ ne
n ____ e en ____e con ned y fj co e pond o ne en _____e
n ____ ne L /7 ne en ed con de L /.

6.4.4 The sine transform when L = 1/4

Be of epe of \mathbf{a}_1 is ne no \mathbf{a}_1 enced on on the epect of \mathbf{a}_1 econ. e no the ten \mathbf{a}_1 ence nfj on the do \mathbf{a}_1 n L / e / , / $\mathbf{7}$, , $\mathbf{7}$ nd o \mathbf{a}_1 econ. e no the ten of \mathbf{a}_1 pod ce pe not the pole pec \mathbf{a}_1 k $\mathbf{7}$. e the eoce pec pe not ten pole pec \mathbf{a}_1 k / $\mathbf{7}$, , $\mathbf{7}$, . o e e \mathbf{a}_1 deconto e ned o en \mathbf{a}_1 enco the encomponent of ten encomponent of tencomponent of tencompo

ondende eeeconde nædenonoæne no_{-le} o_le on æ . 7 n. 7 e7 . . 7 n.

Figure 6.6: (a) The power spectrum of the sine transform of $2\sin(2\pi x_j)$ over the domain L = 1/4, scaled by a factor of 2/N. (b) Close up of 0 - 0.5 amplitude section.

Chapter 7

A D linear advection-di usion model

e \mathbf{x} epeen code o pen \mathbf{x} o \mathbf{x} \mathbf{k} \mathbf{k} e on nd \mathbf{k} d ped \mathbf{x} e on c de ne ed LAM \mathbf{x} o \mathbf{k} \mathbf{k} e on o e ended o \mathbf{k} \mathbf{k} ne d ec on d on e on

7.1 The advection-di usion equation

e e Rel ne decondone on 7 p 7

 $u_t c u_x u_{xx}$, t, .7

Conden en conero 77 ecnee e on 7 o econde o de cc en pre o de cc en e ppo no e od ed e on

		$\frac{u}{t}$ $c\frac{u}{x}$	Pe u/x,		7
ie Pe	c x/	a decen	e ァ p	Con n	∎ _∎e pp

c en cond on o y

0

o venon ve e e ne on 7 7 ven e e

a ndd ycondono a decone on≯p ened e**c** ne on**7**≯aenee

ng nd d y cond on o ng ng e on ≯p .7.

No \mathfrak{k} eno \mathfrak{k} cc cynd ycond on o \mathfrak{k} c \mathfrak{k} e cn ppy \mathfrak{k} d ceee on o p en nd LAM do \mathfrak{l}_{2} n

7.3 The model design

eno e \mathfrak{A} d c e e on \mathfrak{T} o ppo \mathfrak{A}_1 e e on \mathfrak{T} on \mathfrak{A} p en nd LAM do \mathfrak{A}_1 n. On \mathfrak{A} p en do \mathfrak{A}_1 n e e $\mathfrak{u}^{\mathsf{P}} \mathbf{x}^{\mathsf{P}} \mathbf{t}^{\mathsf{P}}$ \mathfrak{A} e \mathfrak{e} \mathfrak{a} $\mathfrak{e}_{\mathfrak{A}}$ p en nd \mathfrak{a}_1 coo d n e e pec e y nd on \mathfrak{A} LAM e e $\mathfrak{u}^{\mathsf{L}} \mathbf{x}^{\mathsf{L}} \mathbf{t}^{\mathsf{L}}$

7.3.1 The parent model

$$u_{j,n+}^{P}$$
 P μ^{P} $u_{j-,n}^{P}$ P $\mathcal{F}\mu^{P}$ $u_{j,n}^{P}$ μ^{P} $u_{j+,n}^{P}$ $\mathcal{F}_{j+,n}$

e e

$$\mathsf{P} \quad \frac{\mathsf{c} \quad \mathsf{t}^{\mathsf{P}}}{\mathsf{x}^{\mathsf{P}}} \quad \mathrm{nd} \; \mathsf{\mu}^{\mathsf{P}} \quad \frac{\mathsf{t}^{\mathsf{P}}}{\mathsf{x}^{\mathsf{P}}},$$

ҝ o nd y cond on

7.3.3 Convergence of the model

No $u_{\underline{A}}$ e $u_{\underline{A}}$ e $u_{\underline{A}}$ de enced oc $u_{\underline{A}}$ con e e nd $u_{\underline{A}}$ con e n

oe_npe en condon

en noe on 777 e

$$\mathbf{u} \mathbf{X}, \mathbf{n} \mathbf{X} \mathbf{a}_{\mathbf{n}} \mathbf{e}^{\mathbf{i} \mathbf{n} \mathbf{X}}.$$
 7⁷

n o e o _ko on y e on _kop e

Chapter 8

The representation of dierent scales in a 4D-Var analysis on a LAM domain

ng n cond on o ng p en cag_∎e

$$\mathbf{u}^{\mathbf{P}} \mathbf{x}^{\mathbf{P}}_{\mathbf{i}}$$
, $\mathbf{r} \mathbf{x}^{\mathbf{P}} \mathbf{x}^{\mathbf{P}}_{\mathbf{i}}$.

e. www.andownyenpwyc.pce wen _we t. Acneeen wewee eo ono welAM co_wped wewepen o opc pwewewe eo one e nwe wewecnno ecped

(a) Model outputs at the middle of the assimilation window.

n a .	мe	€ LAM	con	de ed $____$	e cc	eece cpe _k ek	e
n¶.	- 1	ed y ng p	${ m en}$	o 🔊 🧟 🕏		e 🗚 onyn nyee	Mu
р	en	nd o 🧟	k 🤊	e	с	yn v o e	

oed ne meen nepennyd e ne LAM ny ene ed noe on ed nd ne LAM ny ene ed e node ocon de ne ene on ne on ne LAM ny ene ed ne ne on een y nep en e o eo onoe on opoed pn

1

Condent e e nynon we ka LAM_aqde n we d _a_1 on_a_1 cwe we pen ny e cynpwyc pce we e o d e pec de o we pen ny po dn we n cond on o we LAM o e e e con de we po e pec _a_0 e we LAM do_a_1 n we nn e e e we we po e pec _a_0 we e o o p doe no _a_1 cwen pec pce we de ence c ed y we e o ono we o p . A we we wy ppe we _ae np wy c p ce we LAM_aqde n o_a_1 we pen n

eno con de $\mathfrak{k}_{-\mathfrak{a}_1}$ deo $\mathfrak{k}_{-\mathfrak{a}_1}$ on ndo e een e. $\mathfrak{k}_{-\mathfrak{a}_2}$ $\mathfrak{k}_{-\mathfrak{a}_1}$ de o een n $\mathfrak{k}_{-\mathfrak{a}_2}$ on no on $\mathfrak{e}_{-\mathfrak{a}_1}$ c $\mathfrak{k}_{-\mathfrak{a}_2}$ pen n y de o en n de en eo on o e $\mathfrak{k}_{-\mathfrak{a}_2}$ de n \mathfrak{k}_2 d $\mathfrak{k}_{-\mathfrak{a}_1}$ on de en eo on o e $\mathfrak{k}_{-\mathfrak{a}_2}$ on o e o on o e on $\mathfrak{k}_{-\mathfrak{a}_2}$ on de $\mathfrak{k}_{-\mathfrak{a}_2}$ on \mathfrak{k}_2 d \mathfrak{k}_2

(a) Model outputs at the middle of the assimilation window.

en _{la}e de o _{le} LBC i

μeeo nod ced ec eo μeLBC e n_⊥po npononoe ec

	e e	$^{\rm ed}$	0	кe	on	e .	e no	con	de	R	e on	e	е	e	ed	on
--	-----	-------------	---	----	----	-----	------	----------------------	----	---	------	---	---	---	----	----

(a) Model outputs at the middle of the assimilation window.

ne po e pec __n_o ne ne e ne nye ne co__np on n__n_n de e een ne ne nye __npo n ne c __np de oc on

n e.c.ee e e e LAM cp n e ed no____ on k e e e pooe o oee e pon ny ____e cc e k nd e ncc ce k > e o e ____n n de n o e pooe o oee e pooe o oee e pooe ny ____e

e and o anye nparc pce an _an _an t a kAM oo _ane cc e an ap en ppe o e _a_nppn a apeo a a ane co ey o ee a an e e e con ned n a a c nno e eo ed e en y kAM nd ke a ae o on o c on n k a -a_n e d c o de acc cyo ke n ye y _apypo n ke e e ke eo e con de ke cc cyo ke n ye po ed n e A c n e en kAM n c n y_ane cc e co peo o ed dpon nd eo e ke e e o n ke LAM ecoe o ke ond e.

ne cc cyo ne nye cn oende ood yconden ne poe pec . ne poe pec o ne nde od yconden e c. A e

cneeen koeeo**O** - keeen kokpo kenne. ony kepec LAM ny poed

o whon we we occ ednecon nd ≯ we we kAM -____e cc en we ene we pc o en _____e ed y we pen o___e en ____e we ____n de c y___e cc en we pen wen we LAM o e ____p e k we pen ___e cc e wen we LAM o we ___e.

poepec pen e c nd e o o oe pre pe

(a) Di erence between the spectral and gridpoint analysis.

(a) Di erence between the spectral and grid-

- bP					,		1h	T 4 3 6	
in e x₀	∎ep en	e o	on	с	o nd	_∎e t	nd X ₀	i LAM e o	on
c ond	e t								

Figure 8.19: Error between model outputs with di erent resoltions for sine and tanh waves.

o o 🕰 n 🕰 nd ne e A c n e een nd dpo n ne ne е ng ng do_⊥n ng e ⊾ ___ d e ence ⊾o ng nn e ee e door oee wan wan door de y aga door de y n'cn_aqn_ae M O ne e encc cy ĸ c P. e nenoc edeence een n nen y

o_____ e e e ___p e e ee ____p n o ene e e c ond e o______aqde n ____e e o on ____ on o e c ed o . A O A oee Malqde en n еу мео on e e n o Pa Pa 20 eo on <u>a</u>ode o p 7 0 77 d 7 n¶. -**1**- ny oee e o ne ed ne odo ne ne LAM d____ on e e ne ne eo no e on

e onoe we ee we een wepe ecoe on nd no conde_man we concon we LAM ny cnnocoecyecon cwe wede owe n enceo we condecoy we LBC nde zone ewe owe n we we ee o cedy we LBC ec we on en _man e owe LAM pec _man

► e o nod ced y yn o co_npened e ne de eede o ne de eede o ne ced ne de eede o ne ced ne ced o ne ced

n 7 e 7 7 e 7 7 e 1 1 e 1 e 0

n ne _ne eo on ne one _n on o ec edo _ _npyne po n co e _node nnod ce e o no ne LAM ny o e e no ed ne _ne LAM en cyced nd ne c ond co_n o _ne po ded y ne p en _node LAM o ec ______non y ne ond y cond on en po ded y ne p en _node ne c ond e dy ne ne eo on nd ne e no on e n e

Chapter 9

Manipulating scales in a 4D-Var analysis using the background error covariance matrix

No	Pa.	е	nde	nd	ne no_⊥	on	0	d	e en	с	е	p o ec ec	l n	•
----	-----	---	-----	----	---------	----	---	---	------	---	---	-----------	-----	---

con o e z 🙊 e z e ed o x y e on B

z W x,

n∉eW ne no_n ne ne ye on .

$$J z_0 = \frac{\tau}{\tau} z_0^{\mathsf{T}} \cdot \frac{1}{\tau} z_0 = \frac{\tau}{\tau} y_k - \mathsf{HU} z_k^{\mathsf{T}} \mathsf{R}_k^{\mathsf{T}} y_k - \mathsf{HU} z_k,$$

μeeU μeneenen o_⊥₁nd - ¹ en ye on .

1 U^TB 1 U.

 $o_{- \mathbf{a}_1} e$ on e ee $\mathbf{a}_{- \mathbf{a}}$ o $\mathbf{a}_{- \mathbf{p}} e$ c $\mathbf{a}_{- \mathbf{a}_1} e$ c n con de $\mathbf{a}_{- \mathbf{a}} e$ c onde o co n ce $\mathbf{a}_{- \mathbf{a}_1}$ n p $\mathbf{a}_{- \mathbf{x}} e$ p ce $\mathbf{a}_{- \mathbf{a}_1}$ **B** o n p ce \mathbf{p} ce $\mathbf{a}_{- \mathbf{a}_1}$

 $\mathbf{k} \quad c \quad o \quad nd \quad e \quad o \quad c \quad nce_{-\mathbf{A}_1} \quad c \quad o \quad \mathbf{k} \quad \mathbf{k}_1 \quad c \quad \mathbf{k}_2 \quad o \quad e \quad o \quad n \quad o_{-\mathbf{A}_1} \quad \mathbf{k}_1 \quad \mathbf{k$

9.1 How the matrix B corresponds to choices of the matrix

e con de γ d i nd μ d μ_i o y e \underline{I}_1 we do n we e

, 7,	i	•	
,,	i		
,,	i	•	
7,, 7	i		
*	i		

i

nd

		i	, 7,	
		i	,,	
μi	•	i	,,	7
		i	7,, 7	
		i	7,,	

 $\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x} = \mathbf{x} =$

Figure 9.2: Plot of row 8 of the matrices \mathbf{B}_{γ} , in blue, and \mathbf{B}_{μ} , in red.

c e ncono_ \mathbf{a}_1 \mathbf{B}_γ nd \mathbf{a}_1 \mathbf{B}_μ epo ed n e $\mathbf{\tau}$ A e ee \mathbf{a}_2 e ne co e pond n o \mathbf{B}_γ o c e p d y \mathbf{a}_2 \mathbf{a}_4 e n nc \mathbf{e}_1 en on \mathbf{a}_1 \mathbf{a}_1 c e n co \mathbf{a}_1 on \mathbf{a}_2 ed ne co e pond n o \mathbf{B}_μ \mathbf{a}_2 o \mathbf{a}_1 \mathbf{a}_1 o de p e d \mathbf{a}_2 \mathbf{a}_4 e n nc \mathbf{e}_1 en on \mathbf{a}_2 e c e. \mathbf{a}_2 e e e po \mathbf{a}_1 n e \mathbf{a}_2 \mathbf{a}_1 e \mathbf{a}_2 \mathbf{a}_3 c e c e \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_2 \mathbf{a}_2

9.2 Initial tests with a non-zero background error covariance matrix

e e n y n e n \mathfrak{k} \mathfrak{k} y o c \mathfrak{k} c e o \mathfrak{l}_{1} e c n c o n \mathfrak{k} \mathfrak{k}

i

no conde_ \mathbf{A}_1 o \mathbf{a}_2 ecend \mathbf{A}_1 nceon \mathbf{a}_2 \mathbf{A}_1 cend

i

no conde_ \mathbf{a}_1 o \mathbf{a}_2 ... cend \mathbf{a}_1 nceon \mathbf{a}_2 ece \mathbf{M} $\mathbf{a}_1 \mathbf{a}_2$ eo LAM dpon .

n o epe_____ eony wn ocwne we_____ ⁻¹ eey wn ee ep we____eeeence ecoy ___et ne co____n nono ne e wcceecen one nd en ____e ,7,,,

c ed y ked e enceneo on co_npedo ke ko ke o¹ce ke no conde_n n keco ncono kezeo _np deo ke cond ecoy no ecn kepoe pec _n keny e cep ko ke ke LBC. o e e e e e e e e ¹ce ke _np den keny _n ckoe ken keo ke ken eenn enced y kezeo cond e keo e on

o \mathfrak{k} c e \mathfrak{k} p nce \mathfrak{k}^{-1} nd \mathfrak{k}^{-1} e o d \mathfrak{k} po \mathfrak{k} ze \mathfrak{k} \mathfrak{k} po e pec \mathfrak{k}^{-1} c e nd \mathfrak{k} o \mathfrak{k} po e pec \mathfrak{k}^{-1} c e nd \mathfrak{k} o \mathfrak{k} one o \mathfrak{k} o \mathfrak{k} po e pec \mathfrak{k}^{-1} c e nd \mathfrak{k} o \mathfrak{k} one o \mathfrak{k} o \mathfrak{k}^{-1} c e nd \mathfrak{k}^{-1} c e nd \mathfrak{k}^{-1} c e nd \mathfrak{k}^{-1} c e nd \mathfrak{k}^{-1} c e n

9.3 More realistic examples with a non-zero background error covariance matrix

n de_ \underline{A} n ed n ec on $\overline{}$ k po en o e \underline{A} o n ence d e en en \underline{A} e e no n o y yn \underline{A} n \underline{A} n \underline{A} e e c c e.

e eo eeence ecoyoe

$$u^r \; x_j^r \qquad \mathrm{n} \; x_j^r \qquad \mathrm{n} \; \tau \; x_j^r \qquad \mathrm{n} \; x_j^r \quad \mathrm{n} \; x_j^r \; .$$

 $\mathbf{u}_{\mathbf{A}}$ co_ $\mathbf{a}_{\mathbf{1}}$ ne one on end o e $\mathbf{u}_{\mathbf{A}}$ e con ned n $\mathbf{u}_{\mathbf{A}}$ po e pec $\mathbf{a}_{\mathbf{1}}$ o $\mathbf{u}_{\mathbf{A}}$ LAM one o en $\mathbf{a}_{\mathbf{1}}$ e nd one $\mathbf{u}_{\mathbf{A}}$ **u**_{\mathbf{A}}

 Image: a construction
 Image: a construc

An C we pee e we pen _aque o we N doon nd we e pen _ae ep n we _aq on ndo _ we LAM coe we we we we do o we pen d n we _aque doon. we LAM we o _ae we p eo ono we pen _aque nd we e LAM _ae ep o e e y pen _ae ep we e e ence e coy we ce we p eo ono we LAM nd o _ae we e apo eo on we don con n . no we decon peed c .

9.3.1 A background x^b with no random noise

7

k c ond ecoy ken ene edy nnn kep en _node o d o_n_n keen cond on ke c ond ken nepo ed o ke LAM d nd e n ke LAM eo on n ondycond on po ded o_n_n kep en eo on n rene n ke c ond ecoyn ke y ee ke e p kee ke c ond po ded y p en _node ke co e eo on e do_n_n ze ken ke LAM

yn ¿coco____ en æd ___ on pec co____ e æ ___eo e on c ond nd c ond ecoyoco___p e @ @coce o ____ ec @deen cen @ny.

 $e e \tilde{0}^{1}$ no c ond $e_{-\mathbf{a}_{1}}$ n \mathfrak{e} concon \mathbf{A} . I $\mathfrak{e}^{-\mathbf{a}_{1}}$ - \mathbf{a}_{1} nce on $en_{-\mathbf{a}_{1}}e$ $d_{\mathbf{i}}$ nd $d_{\mathbf{i}}$ $\mathfrak{e}e$

i

nd

ec. ec e d c ed n ec on ... 7 . LAM o e e _____e e e e e ____e d e o e LBC. e e en ____e o con n e ed on e no ____ on e n n ec on .7 Byp cn ____ e nce on e o en ____e e ____o con n e e c e o ____ c e e c o nd ec e ____e o c e y c p e e e c e. e e e e n ence on e e nce e e e n e e e n ence on e _____ c e.

e 7 no ne acora con ve epo edo e o a con ne a con ve apo edo e o a con ne a con ve apo e v ne e ecov ne ne ne condre

Figure 9.8: Errors in the power spectrum at t

y ne contacteo on no_{-l}on n ne condepo ne e o e ne nye ece e con e ne e o nde nd ne o n ne nye.

		.1				
e con de	u R	o ¹ ce	n	£ -1 ₁	. ¹ en e	o ze oe n

n	re pec	$-\mathbf{I}_{1}^{0}$	 ≰ p	enq	de 😰 en	ne n	co	ond	on	e	R	с	o n	d
0	LAM	R	c	o nd	ec o y	en	ene	ed	у	nn n	R	с	o ne	d

												٩.		
А	e	0	d e	pec	R	n y	ene	ed			ncoey.	R O	e	on
d e	0	Pa	n	no	с	o nd	e ₋₄₁ n	i CO	nc	on	n cop	on	R 1	n y
ene	9	ed		A A										

Figure 9.12: Errors in the power spectrum at t = 0, a close up of k = 0, ..., 4 and k = 16, ..., 20 for the observations (dark blue), the background (mid blue), the analyses generated with Σ_0^{-1} (light blue), Σ_A (yellow), Σ_B (orange) and Σ_{γ} (red). A close up of k = 0, ..., 4 and k = 16, ..., 20.

с у	муо е	nan na o ng	c ond	🖪 de_10n	e 🖻 bo	у
opon	ne ep e en	on o o	ene on	LAM e	en cop ed o	æ
c ond	yoe con	nn 🔊 o	ene	n 7 ne7	7	

A e c e e c ey ep e en ed n a c o nd a a, c e e no
Comp n a ny a a g b c e a c a a, e nce an on
a a en y o e e o aq o a e en a, e a de aq n e a need
o nce a e a e c o nd nce a a en a, e n a e a e a e c o nd nce a e en a, e n a e e e c o n o n ence k
o ed a e o e on o n ence k
o e on o n ence k
a n a no c y e e n a
o e on o n ence a ny o a e n a, n a no c y e e n a
o e on o n ence a ny o a e n a, n a no c y e e n a
o e on o n ence a ny o a e n a, n a no c y e e n a
a e a c o nd doe no c e y ep e en a a, c e
a po n o no e o e y e nce n

By o e con nn ko en _a e k A ny _a e c c e kn k c o nd o en _a e By p n k c e n e c n con n k o en _a e o _a c k k c o nd ke o n ko e on o n ence k k k en _a e ke e ke ke po yo pec yn n c k y o en e k LAM ny o cc eycp e ke c e pe en n ke k ke eo e eno y _a e c ko e n ke nce on ke d e en en _a e .

Co paring choices of with di erent variances on di erent wavenu ers

e _____ o c _ o c _ _ o c _ _ o c _ _ _ o c _ _ o c _ _ _ o c _ _ o c _ _ _ o c _ _ o c _ _ _ o c _ _ _ o c _ _ _ o _ _

e we µ d µi d i nd d i ne e

μı	•	i	····7
		i	,, M ,
		i	,
I	•	i	,, M ,
i		i	,7
		i	,, M ,
		i	7
i	•	i	,7
		i	,, M .

A e n e \mathfrak{k} e e e e en \mathfrak{k} d e en nye e d \mathfrak{k} o o e e np \mathfrak{k} c p ce e \mathfrak{k} e o e e o n \mathfrak{k} p o e p c .

e a cecona poepec. A eoence a co $_n$ e e coepo a en $_n$ con ned n

Figure 9.14: Errors in the power spectrum at t = 0, a close up of $k = 0, \ldots, 4$ and $k = 16, \ldots, 20$ for the observations (dark blue), the background (mid blue), the analyses generated with Σ_{μ} (light blue), Σ_{ν} (yellow), Σ_{ω} (orange) and Σ_{η} (red). A close up of k

poen yce e _____aqo __e n on equeen __e e nd _____ ce o e e o ___e n __e ____ ce do no ene o _____ e no ____ on n pe o LAM n _____e c o nd po ded y __e p en __aqde.

e de o k LBC nd k k on e no h o o ed o k o en h e o k n k k p en n y c n e h e c e k e c e e e k ed k yp c n h e nce on k o e en h e c n no on y c o n k e c e o o no de de k h n e LAM n y e c n c y h p o e k h c o n d A k h e h e h e e c n c e y e p e en k h c e y n c n k nce on k k k e n k c o n k k k on k o e on

e o co____p edo _____ nd o ne o done y r d d nd c ne nd B de 7: o d ppe e on n n pec on ne neeeq__ae nd e n ne ___e e c e no ____ on o____ ne c o nd o ene ne LAM n y ... ne __e ne ne ne dy

Chapter 10

Conclusions and future work

z do o e $e_{-n}e_{1}e_{1}e_{2}e_{2}e_{2}$ o enc ed y con ec e c e e i e ____e need oped c ____e e e en c ey __e c e ed o n need n N $\int o_{-n}poe o$ y o o ec on ____e con ec e c e o c eyped c ___e con ec e c e e need _____e e o on o ec ____q de no de o e o e ____e do___n n ___q on co ec y

cede we como e eo ed y wep en ___qde. o e e o cwee we ____qoe___an n we ____ ce wee____ e we we eo on o e on e o we LAM d _____ on

en mepeecoe on ndno conde_n_n meco ncon me LAM ny cnno coecycpe me medeon cc

R -1.	ne med m	∎ n p	o_⊥ ₁ e nee	nd	n "	a dy	оее
ke e	ene ed o	re o_⊥e 1	-1 on a				
By n	ne 🕨 d e	ec on d	onqde	e ee	e o cor	n de 🕫	d e en

10.2 Further work

🕫 🕨 on M Z L . Len N o e nd B d 🔤 c

vo v. nd Ci n Lon M. Co_p on d_d on people op n ne y/e

o _ _ on nd e c onde o con n LAM ecence epo Dec 7 7 A e e p e _ _ o L cce ed 7 de Co e M * e nd A C Lo enc n ed no on o d _ _ on Ope on e en nd on J. Met. Soc. Japan 7
- 7 e C d nd O nd On e end n e n o on on non ne c c o c y en Tellus (A z) e A e o y e e n nd B nne y N e c ec pe n O AN e o cen c conp n znd d on C n d e n e y e z o B Be ey nd e en A to p on e o e e z ono d on n y n n c e y en Journal of Computational Physics z i
- 7 e Co e e O nd nd e e c A co p on e een o d en on on on on ny cuarterly Journal of the Royal Meteorological Society
- 7 e nen ne M ond A contraction of CM ope on spesen on o d sen on on spesen on pe sen e spector Quarterly Journal of the Royal Meteorological Society 7 1 1 7

7⁷ _ a₁ ez a da aen nd Concep en ce

- 7 ed On e e ado con e den o e o o o e y e o o ne e on L e p e e o ne e on loceed n o e O o d con e ence o e n e o M e o Apc on e d n Ap 7 Ac de o e 7
- 7 o e N Me eo o o c co_sponen n o ec o e

7 Zo X nd Y o n ____ on wo w nop ____ con o o n nd o nd y cond on n ____ ed e ___e o c e ____de Monthly Weather Review l 4 7 7 7