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1. INTRODUCTION 
 
Precipitation measurements are one of the main areas of interest and application in radar 

meteorology. Weather influences many aspects of life and economic value such as crop & 

livestock farming, wind and hydropower production, effective ground and air transport through to 

outdoor leisure events.  With severe weather occurrences such as storms and flash floods causing 

some of the most frequent and devastating natural hazards world wide, there is a growing demand 

for accurate quantitative measurements of rainfall. It has been shown that flooding causes more 

deaths and damage than any other hydro meteorological phenomenon world wide, and was the 2nd 

leading cause of weather related deaths in 1992 after lighting.  Recent events such as the Boscastle 

floods in 2004, where 2 inches of rain fell in just 2 hours, or the Pakistani floods in Feb 2005 

where 278 people died as a result of one week’s torrential rain, have highlighted the importance for 

better localized weather warnings.  The scale and intensity of these weather events is governed by 

atmospheric processes within the hydrological cycle, the movement of water from the oceans to 

the atmospheres and back to the oceans, via the land, with both local and more global scale effects 

such as climate change.   

 

 
Figure 1.  Schematic diagram of the Hydrological cycle (adapted image, original from Scientific American 1989), all 
units are in 31210 m× of water transport. 
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intensities are being used alongside frequent synoptic observations and NWP mesoscale model 

data to produce more accurate short range forecasts known as ‘nowcasts’ e.g. in the Met office 
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polarization measurements, particularly differential reflectivity at points of azimuth and range 
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2.  RADAR THEORY AND RAIN
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Empirical relationships exist relating Z to R using  

 

                                                                   baRZ = ,                                                                 (2.3)      

                                           

where Z is proportional to the concentration of drops with fixed diameter D given in Eq.(2.1), 

hence the return in Z could be equivalent for a high density of small drop as that of fewer larger 

drops, leading to uncertainties in distinguishing precipitation type.  Such relationships have been 

proposed where rain coefficients a and b vary, dependant on drop diameter and concentration, 

giving rise to unique relationships characteristic of different rainfall types. 

       

  Z(R) relationship Z= a bR   Hydrometeor type Reference 

  300 44.1R   Spherical ice and water   Rhyde (1946) 

  200 6.1R  Stratiform rain Marshall and Palmer (1948) 

  31 71.1R  Orographic rain at cloud base Blanchard (1953) 

  486 37.1R  Thunderstorm rain Jones (1956) 

  140 5.1R  Drizzle Joss et al 1970 

  250 5.1R  Widespread rain  Joss et al (1970) 

  500 5.1R  Thunderstorm rain  Joss et al (1970) 

 
Table 1 Empirical Z(R) relationships for varying hydrometeor types, using conventional reflectivity, a measured 
in bmmhmmm −−− )( 136  
 

For a scan of hydrometeor particles with a classified rain type, we can find a set of coefficients (a 

and b) which provide the best fit to the Z(R) relationship (see Eq.2.3) allowing R to be estimated, 

such as those proposed above for drizzle, widespread rain and thunderstorms (by Joss et al 1970), 

but in reality these coefficients are expected to vary spatially between different rain types even 

within a single radar scan.  Atlas and Ulbrich (1974) have shown that early empirical relationships 

between radar reflectivity at non-attenuating wave lengths do not account for such different rainfall 

types, hence conventional reflectivity Z(R) relations based on single-parameter drop size 

distributions are prone to large errors. Important extensive research has been carried out showing 

that raindrops under aero-dynamical stress vary with size, becoming increasingly oblate with 

increased size, but conventional radar are unable to detect these properties.  To overcome this 
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problem, reflectivity measurements at both vertical and horizontal polarizations have been 

introduced to determine both oblateness and size plus drop concentration hence resulting in better 

rainfall rates.  
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The oblateness of raindrops falling at terminal velocity through the atmosphere is known to 

increase with drop volume. With such measurements it is possible to relate drop size distributions 

such as the exponential function proposed by Marshall and Palmer (1948) given by Eq. (2.5) 

 

                                               )/67.3exp()( 00 DDNDN −=  13 −− cmm ,                                       (2.5) 

 

to rainfall rate.  Where D is the individual drop diameter, 0D  is the median volume drop diameter, 

0N  is the concentration parameter fixed by 0D  and the observed value of actual reflectivity 
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there is little, if any cross polar return in the DRZ , yet cells of slightly high polar activity around 
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within the range of -20 to -26dB, which can be distinguished from heavy rain fall with an upper 

band of ≈ -26dB and lower band of around -34dB (Chandrasekhar and Bringi 2001). 

 

 
Figure 5  Vertical RHI scan of linear depolarization ratio (dB) equivalent location and time to figures 3 & 4.  Showing 
clear anomalous propagation at low ground levels 0.1 to 0.2km high, and higher 20−
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Such relationships are also advantageous since they are likely to be unaffected by attenuation 

inaccuracies, or spurious hail measurements. Inaccuracies can arise since these relationships 

assume DPφ  can be measured to 1º or better, but in reality the DPφ   resolutions can be quite noisy, 

with large perturbations of up to ± 5 º in some cases. Measuring the velocity gradient DPK  rather 
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(2.10) is equivalent to that of the exponential DSD proposed by Marshal and Palmer Eq.(2.5) if the 

spectrum shape parameter µ governing the shape of the distribution is = 0. This new 3-parameter 

gamma distribution has a range of tuneable parameter sets µ, 0N  and 0D  derived by Ulbrich from 

the range of empirical Z(R) relationships published by Battan (1973). For or a better representation 

of the variations in drop size distributions Illingworth and Blackman (2002) have shown that a 

normalized form of Eq.(2.10) where the 3 variables become independent, each representing real 

physical characteristics is more consistent with DSD observations Eq.(2.11).  The natural 

variability of rain drop size spectra are hence well captured by this normalized 3-parameter gamma 

distribution 
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wN  is now the normalized concentration parameter independent of the spectrum width µ. 

Such distributions were invented to overcome the non-independence of µ and 0D  present in 
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fluctuating instrumental error, leading to unrealistic negative rain rates, hence we combine 

unconditionally positive Z with polar parameters DRZ  or DPK  for more accurate results.   
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formulae) relating the observations to the state variables, where =Y H [ ]X  can be used directly for 

a linear problem. For slightly non-linear problems the forward model can be linearized about some 

prior state to find a solution, yet many heavily non-linear realistic systems are not adequate for 

linearization within the desired accuracy of the measurements. 

 

3.2   The least squares method and the non-linear problem 

 
Early inverse modeling techniques proposed by Laplace required perfect and complete input data, 

but radar data which is often noisy and incomplete lends itself to a another type of inverse problem 

where a line of best fit can be used as an approximating function, even though it might not agree 

precisely with the data at any point.  Such an approach is the ‘method of least squares’, sometimes 

called the ‘method of differential correction’ using observations to refine an initial estimate, by 

minimizing the squared differences between the values on the approximating line and the observed 

data. 

 

 
Figure 7   diagramatic representation of the least squares fit or linear regression line for the linear case, where the line 
of best fit is found my minimizing the sum of the squares of these differences. 
 
Inverse problems can be particularly difficult to treat if there are many unknown parameters or if 

the forward model is heavily non-linear, especially if no previous knowledge of the parameters are 

available (R. Bannister 2003).  Fortunately our moderately non-linear problem with a relatively 

low number of parameters and prior information is manageable.  
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                                                [ ] [ ]( ) [ ]( )XHYSXHYXJ Y
T −−= −1

2
1

                                     (3.2) 

 

For simplicity this is equivalent to the first term only of Eq.(3.1), the ‘a priori’ state (second term) 

has been removed to be re-introduced in section.3.2.2. In general X is the state vector (size n), Y 

the observation vector (size m), H is the forward model operating on the observations and YS  an 

mm×  covariance matrix containing the uncertainty or standard deviations of the observations 

squared.  If the observational errors of different Y components are uncorrelated it follows that YS  

is diagonal matrix of the variances for each individual element of Y.   Y .    

Y  YY Y .  
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If we substitute Eq. (3.4) into the cost function Eq. (3.2) we have Eq.(3.6) 

 

            [ ]
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                                                       YRKAX T δδ 11 −−= ,                                                            (3.11) 

 

from which we can determine X using 0XXX += δ  .   

 

It is unlikely that the first minimum of J, will predict the best estimate of X  particularly if the 

initial guess is considerably different to the current state , so this process of linearization and 

minimizing is then repeated, where the previous value of X then becomes 0X , about which we 

linearize.  This process is repeated in a Newtonian iteration fashion (Rodgers 2000) where we 

update our initial guess at each iteration using XXX δ+→ 0 , the iterative loop terminates when 

the values of X and 0X  converge to a chosen suitable degree of accuracy.   

This final vector X giving rise to the minimum value of the cost function minJ  at J∇ = 0 is known 

as the analysis vector aX .  In our problem aX  contains the optimal parameters 
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such as the ‘cubic spline’ for improving piecewise cubic Lagrange and piecewise cubic Hermite 

interpolation. Basis splines which we shall denote B-splines from now on, can be linear, quadratic 

or cubic with the particular property of local control.  Bartels et al (1987) have shown that local 

control makes it possible to alter a single data point to modify only part of a curve or surface 

without affecting points outside of its vicinity, unlike a polynomial or Fourier transform.  The 

equation for a B-spline of thk -order with n+1 control points 
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Rodgers (2000) uses techniques similar to Eq.(3.18) and Eq. (3.19) in his discussion of the Kalman 

smoother where a best estimate of some quantity is needed from given data for before and after the 

desired time, the filter is run forwards in time as described, then additionally run backwards, 

commencing with a prior estimate given by the final analysis of the forward time series.  For the 

scope of our project we will only implement the Kalman smoother in the forward direction.  

 

Simulation of more realistic evolving dynamical systems are commonly described in versatile 

four-dimensional variation schemes, capturing the complex time and space scales of real physical 

processes. Lermusiaux and Robinson (1999) discuss further filtering and smoothing schemes via 

data assimilation for evolving error subspace statistical estimation (ESSE). 
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4. THE RETRIEVAL ALGORITHM 

 

4.1   Observational data 

 
The observational data for our algorithm provided by the Chilbolton S-band radar UK on 19th May 

1999, gives varying scans at elevations from 0.5º dwelling in low level precipitation though to 
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DATA SET 1: ‘Horizontal Plan-Position Indicator (PPI) radar scan with shallow elevation 0.5º, at 

time 16:29:18’ 

  
Figure 9 A PPI radar reflectivity scan at elevation 0.5º dwelling in low level precipitation, observed with the narrow 
S-band Chilbolton radar in the UK on 19th May 1999, at 16:29:28. Data with Spurious linear depolarization returns 
( DRL  >-10 dB) have been removed. Warm coloured areas of high reflectivity visible in the ENE direction.  

 
Figure 10 Differential reflectivity cross section at 0.5º, observed with the narrow S-band Chilbolton radar in the UK 
on 19th May 1999, at equivalent time to Fig. 9.  Evidence of oblate drops in DRZ  returns at various points in range and 

Azimuth, ( DRL >-10 dB removed). 
 

Visual analysis of the conventional reflectivity field (see Fig.9) and the equivalent polarized 

reflectivity returns, indicate similarities in the location of precipitation features, with heavy rainfall 

characteristics identifiable from high dBZZ 30≥ corresponding to dBZ DR 1≥ triggered by oblate 

droplets.  Between 60km and 80km east we can see a region of range gates triggering minimal 

polarized returns of dBZ DR 10 ≤
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DATA SET 2: ‘Horizontal (PPI) scan at 2.0º’ elevations, affected by melting layer at mid range, 

retrieved at 16:38:06. 

 

 
Figure 11 A PPI radar reflectivity scan with higher target elevation 2.0º covering varying levels of precipitation with 
range, from the S-band Chilbolton radar in the UK on 19th May 1999, at 16:38:06. Data with spurious linear 
depolarization returns ( DRL  >-10 dB
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RHI SCAN   Vertical (Range Height Indicator) profile of the atmospheric state taken at 16:53:46 
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DATA SET 3:  ‘Horizontal (PPI) radar data with mid level elevation 0.7º, at time 16:55:33’ 

          
Figure 14 A PPI radar reflectivity scan at elevation 0.7º dwelling in low/mid level precipitation ranging from ground 
level at close range to just beneath the melting layer at far distance (90km). Observed with the Chilbolton S-band radar 
on the 19th May 1999,at a later time 16:55:33 ( 17:27 minutes on from data set 2). Data with Spurious linear 
depolarization returns ( DRL  >-10 dB) evident at close range has been removed. 
                                                                                                

 
Figure 15 Horizontal profile of differential reflectivity for data at elevation 0.7º, observed with the narrow S-band 
Chilbolton radar in the UK on 19th May 1999, at 16:55:33 showing evidence of more oblate drops with positive DRZ  
over numerous range gates in range and azimuth, data containing DRL >-10 dB has again been removed.  
 

Observations with negative DRZ  returns indicating unphysical negative rainfall rates will be 

ignored in the retrieval scheme when computing R using R(Z, DRZ  ) relationships. 
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4.2   Methodology 

 
The optimal estimation scheme designed for use on each data set exploits individual measurements 

of Z, DRZ   and DR

DRZ
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Figure 17 
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METHOD 1: Constant a & b per ray, no a priori data constraint  

 

If we first consider the case with only an initial guess of the state variables ),(0 baX =  with a=200 

and b=1.6 (Marshall and Palmer 1948) for each ray (azimuth), we then wish to determine an 

optimum analysis state ),( baX a =  for each ray from which we can estimate rainfall rate at each 

pixel using Eq.(4.4). Each ray in the north easterly domain will be processed in turn commencing 

with the most northerly finishing at the most easterly ray. There will be no relation between 

adjacent rays at this stage. 

 

Our Jacobian  K  Eq.(4.1) using both Eq.(4.7) and Eq.(4.8) will be an 2×m  matrix where m is the 

number of finite HZ  and DRZ  elements within the full range of each ray. It then follows that the 

Hessian matrix as described in Section (3.2) Eq.(3.10) )2)(()2(1 ×××== − mmmmKRKA TT   

is an invertible 22×)()�
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The variances in the a priori constraints )ln( apa and apb will be taken to be 0.5 and 0.002 

respectively, allowing error variations of 71.0)ln( ±a equivalent to 6.4056.98 ≤≤ a  
bmmhmmm −−− )( 136 and errors in b of 045.0±b .   

The Hessian )22()22(11 ×+×=+= −−
ap

T SKRKA  remains a square 22×  matrix, and the 

update vector )}12)(22()12{()22()}({ 1111 ××−××=−−= −−−−
apap

T XXSYRKAX δδ is again a 

12×  vector containing Inaδ  and bδ as in method 1.  At this stage of the retrieval algorithm a and 

b have been constrained by a realistic prior state, but do not best represent the physical fluctuation 

state within each ray, hence we will introduce a method to overcome this. 

 

METHOD 3: Constant a and b calculated over ranges of length 3km or 9 km, within each ray.  

 

We then use a similar approach to that of Thompson and Illingworth (2003) to calculate an 

independent analysis state vector for numerous range gates within each ray of total length 90≈ km, 

rather than the continuity of method 2.  We subdivide each ray into n sections, in our case using 

n=10 (equivalent to 9km) or 30 sections (length 3km) and apply the retrieval algorithm to optimize 

the unique state of each section.  For each ray the state vector ),( baX =  now has n components of 

both a and b, again with the initial guess 0X  equal to a=200 and b=1.6.  Our Jacobian Eq.(4.1) is 

now a nm 2× matrix given by 
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variables a and b. To compute this Jacobian it is necessary to multiply each side of K̂  by the 

weighting function W, to give the desired function 
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The Hessian and update then follow from method 3.  A final, smoother 2×m  analysis state vector 

( )baX a
ˆ,)ˆln(ˆ =  can be calculated from the final 2×n  analysis state )),(ln( baX a = , from which we 

can then calculate ib

i

i
i a

ZR
ˆ

1

ˆ ⎟⎠
⎞⎜

⎝
⎛= to give a more accurate estimate of rainfall at each pixel. 

 

METHOD 5: ‘additional continuity constraint in azimuth using the Kalman smoother approach’ 

 

The finale step in developing the most accurate retrieval system is to implement a Kalman filtering 

technique Eq.(3.19) for a smoother relation from ray to ray.  To do this we introduce an additional 

weighted constraint using the final analysis state from the previous estimate at time t-1 denoted 

pX , taken to be the most recent computed state of the adjacent ray. We will implement the 

Kalman smoother in the forward direction, from most Northerly to East, but in future work an 

additional smoothing in the opposite direction could be tested.  The Hessian function now with the 
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The update state (Eq.4.16) now contains ),( baX =
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We now implement method 2 on the observed (Z, DRZ ) field to calculate a single Z(R) relationship 

for each ray, with an initial guess and a priori constraint both equivalent to a=200 and b=1.6. 

 
Figure 23 plots of state variables X=(a,b) calculated for each ray in azimuth, where visibly higher values of constant 
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In the log difference profile Fig.(24) 3dB and -3dB represent a difference factor in the final rain 
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Figure 26 State variables X=(a,b) calculated for each ray over every 3km in range, showing large fluctuations in the 
state parameters for each ray.   
 

 
Figure 27 Rain rate for the equivalent easterly ray of (Fig.25) where the estimated rain rate peaks with conventional 
reflectivity (57km, and 83km). For kmX 6355 ≤≤  we have a=346 and b=1.27, and for kmX 9082 ≤≤  a=25.78 
b-1.42, different relationships both giving rise to increased rain estimates. 
 

Figure 27 shows the sensitivity of the combination of a and b in the Z(R) relationship Eq.(4.4) in 

predicting rain from reflectivity intensity.  The same set of state coefficients can produce either 

higher or lower estimates of rain than the standard state (a=200, b=1.6) predictions, dependant on 

the measured reflectivity Z (dBZ). Essentially a low value of a does not necessarily infer high rain 

rate unless it is combined with a low b coefficient, nor does a high value of b always imply low 

rain rates.  Using the analysis state ),( and 
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but at a more dense drop concentration indicated by high Z, hence resulting in heavier rain rates in 

the model forecast.  

 

 
Figure 28   Plot in logarithmic units (dB) of the final rainfall rate 1−mmh , with 10 sets of state coefficients for each 
ray, and the difference between this block-wise estimate state (method 3) and the standard Z(R) state (difference of  
6dB ≈ factor of 4). 
    

 
Figure 29 Measured, model estimated and the standard Z(R) differential reflectivity taken from the middle ray of the 
scan spatially equivalent to Fig.(21). The model 

DRZ  is predicted from the constant set of state variables Fig.(26) over 
every 9km range gate using only a priori data.   
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If we compare Fig.21 and Fig.29 we can clearly see that the block-wise range techniques of 

method 3 allows our model to better represent the characteristic highs and lows of the DRZ  field for 

finite non-negative observations than the results of method 2, which assume a constant analysis 

state over the whole domain of each ray.    

 

In analysis of Fig.(28) the ratio between predicted rain rate for the regional approach and the 

standard rain rate estimates, shows that there are visible areas of sharp variations at regional 
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The final rainfall rates calculated using the smoothed set of analysis state variable â  and b̂  for 

each individual radar pixel of Fig.(31) shows a vast difference from the standard estimates.  An 
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state of adjacent rays.  The results of the optimization enforcing the Kalman smoothing constarint 

gives smoother state variables (Fig.32) which are then transferred into rain rate (Fig.33). 

  
Figure 32 All smooth state variables ( )baX ˆ,ˆˆ =  calculated for each ray with n=10 range sectors within m observations 
in range, using the weighted linear (m x n) B-spline technique of method 4 and the Kalman filter of method.5 with ray 
to ray covariance of Eq.(4.17). 

 

. 
Figure 33 Plot of logarithmic final rainfall rate 1−mmh  and difference (dB), calculated from 
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var(lna)=0.5 varb=0.001 for Eq.(4.9), plus the weighted spline function, the results confirm this 

spatial relation where the characteristic physical features of the simple block-wise process in 

Fig.(28) remain, becoming even more pronounced with continuity forcing. 

 

 

Figure 34 DRZ  verification by comparing the model, measured and standard differential reflectivity using methods 4 
and 5 combined (azim 51º), for range > 30km.   
 

The 
DRZ  field predicted using our fully developed model Fig.(34) still shows a more accurate fit to 
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5.2  Case 2: Choosing  regional range lengths for a high elevation scan (2.0º), 
affected by hail and bright band 
 

Next we will consider the case at 16:38:06 with elevation of 2.0º on 19th may 1999 using data set 

2, with 225 measurements in azimuth and 300 within 90km range from the polarized reflectivity 

fields of Fig.11, Fig.12.  Again we re-calibrate the observed DRZ   by the ‘zero DRZ ’ criterion for 

finite, positive values, noting that at 2.0º we expect returns of 01 ≤≤− DRZ  beyond 50km (the 

melting layer) due to ice, which is clearly visible in the DRL  field (Fig.11) 

 

 
Figure 35  Polarized differential reflectivity (dB) taken at an ENE ray for finite data (recalibration criterion applied to 
data < 50km) with the equivalent conventional reflectivity field HZ  , with high HZ returns (dB)  yet falling DRZ  at 
further  range beyond the melting layer. 
 

Figure 35 shows how polarization returns of low (-1 to 0 dB) DRZ  at 45km or beyond 50km with 

very high observations of Z can be used to identify tumbling highly oblate ice particles. Below the 

melting layer such returns can be the results of extreme concentrations of spherical drops, or more 

probably an area of hail, Or at higher elevations (2.0º) as the radar signal passes through the 

melting layer at mid-range in to a region of ice as shown in (Fig.9).  We will now optimize the full 

scan using our smoothed retrieval algorithm, using various regional range lengths. 
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Figure 36 Smooth state variables ( )baX ˆ,ˆˆ =  for method 4 B-spline with 10 (9km) range sections then 30 (3km) regions, 
followed by the combined B-spline and Kalman smoothing technique of method 5 for the equivalent range lengths. 
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For a 2º elevation scan changes in precipitation structure will occur at sharper gradients in range 

below melting layer than those of a low elevation scan dwelling in precipitation e.g. (Case 1). For 

this data set such changes may be more accurately represented by implementing more frequent 

range divisions, for example at every 3km rain gate.  The results of the state parameters )ˆ,ˆ(ˆ baX =  

are shown for the block-wise technique with B-spline weighting and then Kalman smoother for 

both 3km and 9km region lengths shown in Fig.(36). 

 

               

 
Figure 37 Plots of Standard Rainfall rate (dB) with a=200 b= 1.6, the optimal final rainfall rate using smoothing in 
azimuth and range, and their logarithmic difference profile with 10 9km sections per ray. 
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Figure.38. Final rain rate and the difference between them using Eq. (4.18), all in logarithmic units (dB) using the B-
spline in azimuth and Kalman smoother in range over 3km range divisions 
 

The final rainfall profiles using the optimal retrieval algorithm over both 3km and 9km range 

sections seem to strongly agree in the location of precipitation characteristics with only slight 

variations in rainfall intensity over each area. At 9km (Fig.37) rainfall features above bright band 

are more intense than those using 3km (Fig.38) shown by larger areas of high R(final)/R(standard) 

difference ratios ≈15dB in (Fig.37).  Below the melting layer logarithmic differences are higher 

using 3km regions implying better sensitivity to DRZ  fluctuations at steeper gradients. In each case 

a major feature resulting in increased rain rate is indicated around 40km to 47km east and 0km to 

10km north with a difference factor of up to 15 dB to previous standard rain estimates, this area 

coincides with large Z and zero DRZ
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this area is likely to be underestimated by the conventional model for the standard Z(R) 

relationship, hence we implement our optimal algorithm using the block-wise smoothed approach. 
 

 

 

 
Figure 41 plots of Standard Rainfall rate using mm/hr in logarithmic units (dB) using the standard rainfall coefficients 
a=200 b= 1.6, the optimal final rainfall rate using the smoothed state in azimuth and range of Fig.(42), and their 
logarithmic difference profile Eq.4.(18). Region of heavy rain high with Z, and DRZ  indicated. 
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The rain rate predictions surrounding the returns of returns at (A) and (C) in (Fig.40) predict 

heavier rainfall levels using the block-wise approach than that of the standard model as expected, 

clearly visible in the circled region of logarithmic difference profile around 30km NNE. But this 

area of heavy attenuating rainfall is may have affected the stability of the retrieval algorithm at rain 

gates beyond this range, hence other polarization parameters could be applied gate by gate to 

correct for attenuation (Smyth and Illingworth 1998).  The retrieval algorithm using the original 

ray to ray correlation covariance as proposed in method 5 using the covariance matrix Eq.(4.17) 

predicts the rain rates of Fig.(41) which are given by optimized state variables shown by Fig.(42). 

 
Figure 42 Plot of all smooth state variables ( )baX ˆ,ˆˆ =  calculated for each pixel using optimization with 10 range gates, 
the linear B-spline (method 4) and the forward Kalman smoother of (method 5). 

 

Using the current smoothing constraints Fig.(41) we can still see sharp edges at ray boundaries in 

the state variable field, implying that a tighter relation in azimuth could be enforced. To increase 

this ray to ray correlation such that our co-variance matrix represents stronger spatial continuity we 

use 02.0)ln(var =pa and 009.0)var( =pb  equivalent to 03.0± and 14.0±  error deviations respectively, 

the results of this are shown in Fig.(43). 

 
Figure 43 Smooth state variables â  and b̂  using the optimization of methods 4 and 5, but with a stronger ray to ray 
relation in the Kalman smoother, 02.0)ln(var =pa  error of 14.0±  and 0009.0)var( =pb  or 03.0± error Eq. (4.17). 
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features and hence under-estimate rain rates, so we will subsequently assume the original 

constraint of 03.0)ln(var =pa and 001.0)var( =pb  for improved rain estimates in the optimal model. 

 

   

 

 
 

Figure 45 Plot to compare final predicted, measured and standard differential reflectivity using methods 4 and 5 
combined over two adjacent rays in the NE direction.  The upper plot showing the most northerly 

DRZ  profile, and the 
lower its adjacent more easterly ray of 

DRZ  . Reflectivity field Z for the more northerly ray. 
 
The model predictions shown in Fig.(45) show a better fit to the measured data than the predictions 
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6  CONCLUSIONS  
 
 

6.1 Analysis and model evaluation 
 
 
This study has emphasized the important role of combining conventional and polarization radar 

data (particularly Z and DRZ ) to provide essential drop diameter and concentration information 

required for more accurate rainfall rate estimates using block-wise optimal estimation theory 

techniques.  The method of least squares has proved to be a powerful tool in performing a region 

by region optimization, using the (Marshall and Palmer 1948) prior state for stratiform rain and the 

widely used normalized gamma distribution of raindrop size spectra Eq.(2.11), for fixed 5=µ  

drop shapes of Goddard et al (19995). Exploiting such raindrop information we propose an optimal 

retrieval algorithm for determining a set of state variables ),( baX =  per region or smoothed 

state )ˆ,ˆ(ˆ baX =  with continuity in range and/or azimuth at each range gate to infer unique Z(R) 

relationships Eq.(2.3), alternative to the ideal but costly gate by gate DRZZ /  approach similar to 

that of Thompson and Illingworth (2003). 

 

Our model uses the assumptions that Z (dBZ) should scale with R 1−mmh  for a given rain drop 

diameter ( 0D ) and hence DRZ  , with natural variations in the normalized drop concentration WN  

represented in the formula )(/ DRZfRZ = .  Commencing with an initial guess and back ground 

state we use Z(R) relationships to calculate rain rate and hence  
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development the results in the analysis state and hence rain rate without enforced smoothness 

showed encouraging signs of spatial continuity, but occasional unphysical sharp variations 

between regional boundaries suggested the need for stronger gate to gate relation.  Linear 1-D B-

splines were implemented to smooth unphysical discontinuities in range, then the concept of the 

Kalman smoother applied to constrain the relation of the ray to ray analysis.  These techniques 

generally showed confirmation of the already apparent physical gate to gate similarities within a 

radar scan, by enhancing the influence of evident physical features in resulting precipitation 
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6.2 Future work 
 

The determination of rain fall rates from using Z and DRZ  alone in the operational environment 

can lead to major errors where heavy rain can attenuate the radar beam.  This could be accounted 

for in the retrieval algorithm using calculations of differential attenuation ( VH AA − ) (functions of 

Z/R) to perform a gate by gate correction scheme along a ray on the polarization measurements 

HZ  and VZ such that differential reflectivity can then be calculated properly using Eq.(2.4) and 

hence improve rain rate validity.  Smyth and Illingworth (1998) propose a similar approach using 

additional polarization measurements DPK  and DPφ  to ensure a numerically stable attenuation 

correction algorithm.   

 

The results of our smoothing techniques show definite improvements in range gate relation, yet the 

Kalman smoother did not give show the same level of filtering, without over dampening results. 

Better use of the Kalman smoother could be implemented by performing the smoothing procedure 

ray to ray in both the forward and backward direction (see Sect.3.2.2), requiring the problem to be 

reformulated to operate on the whole region. A more obvious suggestion would be to implement a 

2-D Basis to smooth in both range and azimuth fo
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