Abstract

The flow over an isolated two-dimensional mountain is investigated using a vertical slice
version of the Met Office Unified model. The upstream flow is of constant wind speed U
and constant Brunt-Vaisala frequency N. The dimensionless parameters for this problem
are the Froude number Fr = U/NH, Rossby number Ro = U/fL and the ratio f/N,
where L is the half-width of the mountain, f is the Coriolis parameter and H is the
maximum height of the mountain. The solution is approximately determined by Ro and

Frif H/L is fixed. It is found that the limit f — 0 is singular (i.e. the flow solution does
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Chapter 1

Introduction

The problem of stratified flow over mountains has been studied for several decades. A
“classical” problem in this field of study is that of steady, Boussinesq, hydrostatic, non-
rotating flow, unbounded above (Smith 1989).

There are a wide range of scales that must be considered, for example, the nature of
a disturbance caused by a narrow hill is quite different to that of a broad plateau, even if
the height of the terrain and other factors are the same. For small-scale mountains or hills
which are 100m to 50km wide, the flow can be considered without including the Coriolis
force. For mesoscale and synoptic-scale mountains (wider than 50km) the rotation of
the Earth cannot be neglected. Examples of such mountains include the Scandinavian
mountain range (width ~ 300km), the Alps (width ~ 250km), and the Canadian Rockies
(width ~ 400km) (Smith 1979b).

There are many features of airflow over mountains, both upstream and downstream
of the mountain. A few examples include upstream blocking, barrier jets, gravity waves,
trapped lee waves and fohn winds.

The blocking of low-level air is one of the most important ways in which mountains
affect the air flow. The heavy surface air may have difficulty in running upslope and due
to this, the surface level flow tends to slow as it approaches the mountain (Smith 1979a).
In the nonrotating case this upstream layer of stagnant fluid will eventually be of infinite

extent. However, in the rotating case the Coriolis force limits this extent to a maximum









Figure 1.1 indicates how the flow is influenced for different values of Ro and F'r.

and stratification

Figure 1.1: Influence of rotation and stratification on the flow as a function of Ro and Fr.

(Adapted from Cushman-Roisin (1994))

The problem considered in this project is that of a flow of constant speed with height
(U) and constant stratification with height (N). This flow goes over an isolated, two-

dimensional cosine mountain of half-width L and maximum height H (Fig. 1.2).



W

U=const.
N = const.’

Figure 1.2: Schematic of the flow problem considered in this project. The mountain is a cosine

shape of half-width L and mazimum height H. The upstream



model is given by Cullen et al. (1997



Chapter 2

Linear Analysis of the Basic

Equations

2.1



horizontal momentum equations, (2.3) is the vertical momentum equation, (2.4) is the
thermodynamic equation and (2.5) is the mass conservation equation. These are the

equations that are being solved by the model used in this project.



We now non-dimensionalise Eqs. (2.7) - (2.11) by using scalings of the form

u* = Uu
v* = Uv
w* = Wuw
t" =Tt
=Lz
y =Ly
2z =Hz
61 = 0,0
p" = Pp

and we choose U = LT~!, W = HT ! and P = L*>T~2.
By using the above scalings and multiplying through by 7//U, the non-dimensional

horizontal momentum equations become
By N By B Wp 4

+U=— + V= +w=—+ =— — Ro

— =0 2.12
TR TR TR TR T ! (2.12)

uw=0 (2.13)

and we see that the dimensionless Rossby number is now present as a control pa-
rameter. Doing the same as above but this time multiplying through by 7'/W, the non-

dimensional vertical momentum equation becomes

By B B B WL 914
TR T TR PR (2.14)

where the aspect ratio g e E E) ¢ ¢ C C>



and
B W B
— 4+ —+ —=0. 2.16
Nz + Ny + N ( )

We now define the linearised, non-dimensional form of the Boussinesq hydrostatic

balance approximation to be

oL

= ¢6. 2.1
> g0 (2.17)

We linearise about a state of rest (p = p(2), # = 6(z)) and divide the dependant vari-

ables into constant basic state portions (t v on



and by using (2.17) we obtain the linearised vertical momentum equation

.wl + A_2._pI _

0 = 0.
n n:

Finally, the linearised mass conservation and thermodynamic equations are

7% N [ [3d N (70
i Ny N

AN N

= = =0
T T

respectively.

(2.20)

(2.21)

(2.22)

We see that the Froude number has not yet been introduced into the equations. To

do this we take 2 of Eq. (2.20), giving

.2 ! .2 / .9/
ad + A2 P —g— =0.
N2 | P4 [7 N
Substituting in for aa_at’ from Eq. (2.22) gives
L SN L, Wy , 19
iz T e Ty
We now define
L 1]
Fr—2 = g=—A?
" glz
and note that
L 7
N? = Vg = T?Fr2A~?
2z

SO
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N2H?
Fr=2 = N?T?%A% = = u .

So F'r has been introduced into the equations after linearisation. Solutions of the
nonlinear equations will thus depend only on Ro, A and ¢. If the linearisation is accurate,

the solution will depend on Ro, A and F'r.

2.2 Solution of the linearised equations
We now assume solutions of the form

i(wtt+kz+ly+mz)

u = ae

v =7 ei(wt+km+ly+mz)
w= 0 ei(wt+km+ly+mz)
p= ﬁei(wt+km+1y+mz)
0 — éei(wt+kx+ly+mz)

and upon substitution these give

iwi+ikp — fo =0
iwi +ilp+ fi =0
0
i +imp — 2 =0
0o
ikt —+ 10 +imw = 0
N 7
1wl + —w = 0.
N

Non-trivial solutions to this system of equations are given by

12



iw—f 0 ik 0

fiw 0 il 0
det| 0 0 iw im —£|=0.
0
tk il im 0 O

0 0 2 0 jw

We assume that N? = 0%% is independent of z and we obtain

—iw? (k% + 12 + m?) + iw f*m? + iw(k* + *)N? = 0

f?m? 4 (k? + [12) N2
= w=0 o w= :i:\/ PR (2.23)

We now define a characteristic time scale T = w™!, horizontal length scale L

(k2+12)~% and height scale H = m . Three cases of (2.23) can be investigated as follows:

l
Case 1: m*> > K>+ 1% and f



Case 3: m? > k? + 1% but f?*m?* < (k* + I*)N? (L/H > 1)

In this case the solution reduces to

P (RGN w N
N m

= _— =
m?2 VEZF+ 12

leading to internal gravity waves.

We expect these solutions to be typical of the wave solutions of the fully compressible

equations.

2.3 Description of the semi-geostrophic solution

Shutts (



Chapter 3

Steady State Experiments

3.1 Overview of the model

The experiments in this project are conducted using a vertical slice version of the Met
Office Unified model. The model makes use of a semi-implicit integration scheme and
semi-Lagrangian advection (Cullen et al. 1997). There is no CFL criterion and so in the
scheme u; does not depend upon its immediate neighbours and thus there is no restriction
on At. The idea of semi-Lagrangian schemes is to achieve stability even for large At by
choosing the most appropriate interval for interpolation, so satisfying the CFL criterion.
However, stability is still limited by a trajectory crossing condition. Some disadvantages
of semi-Lagrangian schemes are that more computer time is required per time step, they
are not particularly accurate with fast forcing such as semi-implicit gravity waves and
they are overly diffusive on coarse grids.

Other features of the model are the inclusion of non-hydrostatic effects and the use of
a semi-implicit algorithm for solving the fully compressible equations. Finite differences
are used and the ‘Charney-Phillips’ vertical arrangement of variables (Fig. 3.1) is used
to improve the geostrophic adjustment properties (Cullen et al. 1997).

The time integration scheme used in the model is based on the second order implicit
Trapezoidal scheme

A
a1 = w4 SR+ F ()

15
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Figure 3.1: Position of the variables of the Charney-Phillips grid where m = Exner pressure

(taken from Cullen et al. (1997)).

which is then generalised by

u" =" %[QF(UHI) + (1 —a)F(u")]

where « is a weighting parameter between 0 and 1. Three choices of « can occur as

follows:
a < % unstable
a= % scheme 209 order accurate
a > % damping occurs.

In this model the orography is grown in the first part of the run to ensure a smooth

start.

16



3.2 Choice of CFL and «

An important consideration in all numerical modelling is how computationally expensive
the model is, i.e. how much computer time is needed to achieve the required result. In
the model used here the value of the CFL number determines the timestep. A larger CFL
number will give a larger timestep. We obviously want to use as little computer time as
possible and so we want to find the least number of timesteps and the longest timestep
necessary for steady state, i.e. the solution in which the fields no longer vary with time.
We require this steady state in order to see the response to the presence of the ridge.

The value of the weighting parameter a will also affect how quickly the solution reaches
steady state. As stated in the previous section damping of the solution occurs for o > %
So in this section we set the Coriolis parameter f to zero and investigate different values
of CFL and «a to see which combination gives the fastest convergence to steady state.

Values of CFL investigated here are 0.2 and 0.4. Higher values were tried but these
caused the model to fail in the region of strong downslope winds. Values of « investigated
are 0.8 and 1.0. To keep each experiment consistent we keep the product of CFL and
the number of timesteps for the orography to grow to its final height, equal to 20. Thus
for CFL = 0.2 the orography takes 100 timesteps to grow, and for CFL = 0.4 it takes 50
timesteps to grow.

Figure 3.2 shows graphs of how the u and w fields for each combination of CFL and «
tend to steady state. We can see that for CFL = 0.4 the differences in the fields between
time steps are less than for CFL = 0.2 from 150 time steps and from here these differences
remain small and reasonably constant. Thus the solution tends to steady state in a lesser
number of timesteps than for CFL = 0.2. Also, for CFL = 0.4 and for a = 1.0 steady
state is reached at the same time as for @« = 0.8 but the difference in each field between
timesteps is slightly less.

For subsequent experiments in this project we therefore choose standard values of CFL

= 0.4 and o = 1.0.

17
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3.3 Steady state for f — 0

In these experiments we now switch rotation on and attempt to find the steady state
solution of flow over an isolated cosine hill of half-width L = 300km and height H =
2400m. In the vertical the model has 20 levels with a grid length of 0.5km. The horizontal

grid length is 50km.

For the steady state solution (%7; = % + u% + w% = 0) our y-component equation
of motion (2.2) becomes
18
fU=--2 (3.1)
p Wy

where U is the wind speed in the = direction. As we keep U at a constant value of

!and vary f we must also vary the right-hand side of (3.1) by the same factor so

10ms™
as to always keep the equation in balance. For example, if we halve the value of f we
must also halve the value of the right-hand side.

From the linear analysis in Section 2.2 we can say that Case 1 is applicable here
because our mountain half-width L = 300km and mountain height H = 2400m (L/H >
1). This gave a characteristic timescale T' = f~!. The time to reach geostrophic balance
will be of order this timescale and so the time for the solution to reach steady state
should be a few times f~!. This will increase with decreasing values of f and decrease
with increasing values of f. However, the downstream flow is turbulent and so the solution
will never reach steady state.

Table 3.1 gives the values of f used in this experiment. A value of f = f,/6 was
also tried but this solution did not converge to a steady state. Increasing the domain

length further may have solved this problem but then the experiment would become too

computationally expensive.

19









principle applies here as in the previous section in that if we halve the value of U we must

also halve the value of the right-hand side.

Table 3.2: Values of U used in experiment.

U Value

22Uy  20ms~!
Uy 10ms !
Up/2 5ms1
Up/4 2.5ms™!

Again, the time for the solution to reach steady state should be a few times f~! and
only the left half of the domain is considered when using (3.2).

Table 3.2 gives the values of U used in this experiment. The timestep is also determined
by the value of U and so it is still necessary to do the steady state experiments even
though f is being held constant. The model would not run for values of U smaller than
2.5ms~! which may be due to the timestep becoming too large for the given Courant
number. For U = 2Uy, Uy, Uy/2,Uy/4 the timesteps are 1012s, 20255, 4050s and 8101s
respectively. Therefore the times for the mountain to fully grow are 14.1hr, 28.1hr, 56.3hr
and 112.0hr respectively.

Figure 3.4 shows graphs of how the u, v and w fields for each U tend to steady state.
For U = 2U,, Uy, Uy/2,Uy/4 the steady states are taken to be 112hr (400 timesteps),
112hr (200 timesteps), 112hr (100 timesteps) and 338hr (150 timesteps) respectively.

Note that for the first three the time to reach steady state th Issi prin - e e seming ¥
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1985). We can see from (4.1) that as f decreases L increases and so as f — 0, Lr — 0.
Similar results were found by Cullen et al. (1987). They conducted experiments with
a stratified flow over a mountain barrier and in the absence of rotation they found no
limit on the upstream influence as dense air was blocked by the mountain. With rotation
present the upstream influence was restricted to a finite distance.

We can also measure the distance of upstream influence using

§p = Jme (4.2)

where 0z is the distance that an air parcel is ‘pushed back from where it wants to be’
by the orography, and v,,,, is the maximum wind speed in the barrier jet. We again see
that as f decreases, this distance increases.

We now compare our results with the above theory. To begin with we can see a well
defined barrier jet for each f value in Fig. 4.1 in the form of high v values on the upstream
side of the mountain. This immediately agrees with the theory.

The distance of upstream influence for each f is found by calculating the horizontal
upstream distance from the centre of the mountain that the value of v decreases to 10%
of it’s maximum value in the jet. We shall call this model-produced distance L,,.

The variation of L,, with f is shown in Fig. 4.3 along with the theoretical deformation
radius Lp as given by (4.1). Also shown is the variation of dx as calculated using (4.2)
with the model-produced values of v,,,,.

We can see that the distance dz is in close agreement with the theoretical Lr and
that it decreases as f increases, as it should do. However, the distance L,, follows the
same trend but has much larger values. The difference between L,, and Lg is of the order

1000km.
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amplitude of the displacements of potential temperature contours increase, so does the
component of vertical velocity w.

The potential temperature and w fields for each f used in our numerical experiments
are shown in Figs. 4.4 and 4.5 respectively.

We can see clearly defined vertically propagating gravity waves for each value of f
(Fig. 4.4) and as f decreases the amplitude of the displacement of the isentropes appears
to increase. The flow becomes more turbulent and is very turbulent for f = f;/4 (Fig.
4.4(d)), however the flow for f =0 (Fig. 4.4(e)) is not as turbulent as this. The w fields
(Fig. 4.5) also clearly show the vertically propagating gravity waves and the maximum
value of w appears to increase as f decreases. Therefore, we expect that as f decreases,
the vertical kinetic energy increases.

A diagnostic calculation of the vertical kinetic energy is performed using (4.3). Above
the mountain top the vertical KE of the balanced flow is negligible and so we use this as
a measure of the gravity wave activity. Below the mountain top even the balanced flow
implies large vertical KE. The region above the mountain over which we calculate the KE

is the same size for each solution and is defined by

1 x 105m < 2 < 4 x 105m, 4000m < z < 10000m  f = 0,2f0, fo, fo/2
2 x 105m < z < 5 x 10%m, 4000m < z < 10000m  f = fo/4

2 is evaluated and all values added together to

At each grid point in the region pw
calculate the total vertical KE. The variation of this energy with f is shown in Fig. 4.6.
As expected we see that the vertical KE increases as f decreases, however the value
for f = 01is less than that for fy/4. This may be further evidence of the singularity of the

limit f — 0 (previously discussed in Section 4.1 in that the solution does not converge

with decreasing f to the f = 0 state.
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Figure 4.6: Variation of vertical kinetic energy with Coriolis parameter f.

4.4 Variation of pressure drag with f

Wind speed tends to be low on the windward slope of a mountain or ridge and faster on
the leeward slope. From Bernoulli’s equation, this requires a pressure difference across
the mountain—high pressure upwind and lower pressure downwind (Smith 1979a) . The
pressure difference results in a net drag on the mountain which can be computed as the

horizontal pressure force on the mountain

o d
D = / p(x,z = O)é dx (4.4)

where 7 is a height coordinate.

For the balanced solution there is drag due to upstream blocking (Shutts 1998), then
for larger Ro there is additional wave drag.

The effect of rotation is to reduce the drag. As the parameter Ro~* = Lf /U increases,
the flow gradually loses its wavelike character in the vertical plane (Smith 1979b). Olafsson
and Bougeault (1997) consider the fluid being decelerated as it approaches the mountain.

The deceleration weakens the Coriolis force, and there is a net force acting to turn the flow

32



left. Kinetic energy is transferred from flow in the z direction to flow in the y direction.
The movement along the x axis sources the kinetic energy that counteracts the buoyancy
force and forms the mountain wave. Therefore one may expect less pronounced waves in
the presence of rotation.

In our experiments the drag on the mountain is calculated on the bottom row of the

domain using an approximation to (4.4), i.e.

[V

7

Tig1 7 Tio1 T Tiv1 + 7 Tio1 T
DNy _ ~N" - 45
Z_Egz%( 5 5 ) 51%( 5 5 ) (4.5)

J
=3

where 7 = 0 is the left hand edge of the mountain base, ¢ = J is the right hand edge

of the mountain base and % is the centre point of the mountain.



Chapter 5

Sensitivity of Solution to upstream

flow speed U

I are used

For the experiments in this chapter standard values of f = fy and N = 0.01s~
and U is varied according to the values given in Table 3.2. Thus as U decreases, Ro and

F'r decrease at the same rate.

5.1 Variation of vertical kinetic energy with U

Smith (1979a) considers the limit of very slow wind speeds and strong stratification so
that F'r is small. In this situation there will be little vertical motion and the fluid particles
will deflect horizontally. He states that as F'r increases vertical deflections will occur. We
could then argue that the vertical kinetic energy will also increase.

Sprenger and Schér (2001) conducted experiments in the rotating case where the

upstream flow speed was varied from a standard value of 10ms~! to values of 5ms™!

and 20ms~!.

They noted that in general, a decrease of the upstream velocity inhibited
wavelike features downstream. So we expect to find that as we decrease U, the amplitude
of the displacement of the isentropes decreases. Thus the component of vertical velocity
w should also decrease. In our experiments we again use (4.3) to calculate the vertical KE

in a region above the mountain. We have said previously that this is a measure of gravity

wave activity and so we should find that the vertical KE too decreases with decreasing
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Figure 5.3: Variation of vertical kinetic energy with upstream flow speed U.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
log U

Figure 5.4: Variation of % log KE with logU. The equation of the line of best fit is %log KE =
2.468 log U + 4.250.
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5.2 Variation of pressure drag with U

In Section 4.4 we found that pressure drag increased as f decreased, i.e. as Ro increased.
Since Ro = U/fL and f remains constant in the experiments here, we could expect that
as U increases, pressure drag also increases. Experiments conducted by Smith (1979b)
showed that as the incident velocity decreased, so did the drag. This is indeed the case for
our numerical experiments as shown in Fig. 5.5, yet it is only a weak dependence. Again
Eq. (4.5) is used to compute the pressure force on the mountain. We see a reasonably
linear relationship as U decreases from 20ms~! to 5ms~!. However, the drag is slightly

increased for U = 2.5ms™".

2 4 6 8 10 12 14 16 18 20



Chapter 6

Sensitivity of Solution to Rotation

and Stratification

For the experiments in this chapter we vary the values of f and N but keep the value of the

—!and

dimensionless parameter f/N constant. Using standard values of f; = 1.263x 107 *s
No = 0.01s7! we get a value of f/N = 0.01263. Therefore, experiments are conducted
using 2fo and 2Ny, fo and Ny, fo/2 and Ny/2, and fy/4 and Ny/4. Thus Ro and Fr

increase at the same rate.

6.1 Effect on upstream influence distance and barrier

jet

From the equation for the Rossby radius of deformation, Lg (4.1) we see that since we are
keeping f/N constant, this theoretical value will remain at 190km. In our experiments,
the model distance of upstream influence, L,,, is calculated as described in Section 4.2
and the additional measure, dx (4.2) is also calculated. The variation of these are plotted
against what we term the ‘scaling factor’ in Fig. 6.1 and the constant value of Lg is also
shown for comparison. The scaling factor is just the factor of both f and /N used in each

experiment.
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Figure 6.3: Variation of vmaey with scaling factor. The equation of the line of best fit is Vymer =

17855 — 0.903.

Therefore, we could conclude that f/N is a useful parameter for determining the

strength of the barrier jet.

6.2 Effect on vertical kinetic energy

As we have already seen from Section 4.3 that the effect of increasing Ro without any
change in NV is an increase in vertical kinetic energy. Here, we are also varying N and so
Fr becomes an important parameter. We have already argued in Section 5.1 that with
increasing F'r the vertical KE also increases. Therefore as we increase N we expect the
vertical KE to decrease.

Figures 6.4 and 6.5 show the # and w fields for the experiments in this chapter. Note
that we have rearranged the panels so that Fig. 6.4(a)-(c) can easily be compared to Fig.

5.1(a)-(c) respectively. The solution in Fig. 6.4(d) does not reproduce the same Ro and
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KE is still substantial but less than for the Sy 5y = 1/2 case. This could again be due to
the apparent reduction in gravity wave activity as discussed above.

The scaling factors 2, 1 and 0.5 correspond to Ro = 0.13, 0.26 and 0.53 respectively.
The trend of the vertical kinetic energy between these points compare swell to the points
corresponding to U = 5, 10 and 20 in Fig. 5.3. We expect this to be the case.

We could conclude that f/N is a useful parameter for investigating gravity wave ac-

tivity.
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Figure 6.6: Variation of vertical kinetic energy with scaling factor.

6.3 Effect on pressure drag across the mountain

Figure 6.7



The points corresponding to Syy = 1 and 0.5 agree extremely well with the points
corresponding to U = 10 and 20 in Fig. 5.5. The point for Sy y = 2 does not compare so
well with U = 5.

Pressure drag
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Figure 6.7:



Chapter 7

Discussion

A vertical slice version of the Met Office Unified model has been used to investigate the
flow over an isolated cosine mountain. The stratification, N, and upstream flow speed,
U, are both constant with height. The project aimed to simulate some of the features
of flows over orography by varying just three dimensionless parameters. These were the
Froude number (Fr = U/NH), Rossby number (Ro = U/fL) and ratio (f/N).

One of the main results of the project is that the limit f — 0 is singular, i.e. the v
fields of the flow solution did not converge towards the f = 0 solution. It also has multiple
solutions; one for f = 0 and two obtained in the limits f — 0" and f — 0.

A well defined barrier jet exists even for small value of f because, from the horizontal
momentum equation, a weak pressure gradient will still exist. As both f and N are
scaled up the strength of the barrier jet increases linearly with the scaling factor. This
suggests that the dimensionless parameter f/N is useful for determining the strength of
the barrier jet. The barrier jet exists within the distance of upstream influence. The
distance 0x = Ve, /[ agrees well with the theoretical Rossby radius of deformation, Lg,
as f varies but the model upstream distance, L,,, differs substantially from both of these.

Vertical kinetic energy is used as a measure of gravity wave activity above the moun-
tain. The amplitude of these waves increases as f decreases, however, for the f = 0 case
the wave activity is less than for the f = f/4 case. Thus, we see that the vertical kinetic

energy increases as f decreases apart from when f = 0 when it is much less than when
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f = fo/4. As f and N are both scaled down the gravity wave activity increases. In
the case of decreased N, vertical displacements with increased amplitude become more
possible. When f = f;/4 and N = Ny/4, Ro and Fr exceed 1 and gravity wave activ-
ity appears to lessen. Therefore, vertical kinetic energy increases as the scaling factor
decreases, apart from when the factor becomes less than 1/2 when the energy begins to
decrease.

By decreasing U with all other parameters held constant, Ro and F'r are decreased

at the same rate. As Ro decreases wave activity decreases and the solution gets closer to
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