


Abstract

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations
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Chapter 1

Introduction and Motivation

The aim of data assimilation is to provide a statistically optimal estimate of the
state of a system given a set of observations and a dynamical model. There are
various data assimilation techniques used for a variety of problems in numerical
weather prediction (NWP), earth sciences, oceanography, agriculture, ecology and
the geo-sciences. The complexity of the data assimilation problem is related to
the area of application, since thesize and the dynamics of the system or model is

dependent on the application.

Figure 1.1: Classi cation of popular data assimilation techniques.



Figure [1.] is diagrammatic representation of data assimilation techniques
and their classication. Each technique has several sub-categories which
we deliberately omit. For the remainder of the thesis we abbreviate the
optimal interpolation technique as Ol, 3-dimensional variational data assimilation
as 3DVAR, 4-dimensional variational data assimilation as 4DVAR and the

Kalman- Iter equations as KF.

The standard 4DVAR approach seeks a statistically optimal t to the observations,
subject to the constraint of the ow, or the model of the physical process for
which we are assimilating data. The statistical uncertainties are represented by
the 4DVAR objective function, which aims to minimise the mismatch between
the model trajectory and the background and observations. The errors in these
two quantities are assumed to be independent of each other and possess Gaussian

statistics with zero mean. The main assumption of 4DVAR is that the model



where it is today, followed by current research involving relevant applications of
wc4DVAR. We then state the aims of our research and then give a chapter overview

of the thesis.

1.1 Brief Historical Background

In the 1950s there was signi cant theoretical research progress around the weather
forecasting problem, which led to a variety of mathematically similar yet di erently
formulated ideas, forming the basis of data assimilation. The rst marked attempt
was by Gilchrist and Cressman,| [33], where they use a least-squares method to
t a second degree polynomial presented by their interpretation of a simpli ed
meteorological system. A serially successive correction technique was introduced
by Bergthorsen and Dees, [8], where they added statistically weighted increments
to a prior estimate. Variational data assimilation was theoretically suggested by
Sasaki in the late 1950s in the same era as the Ol and KF techniques, [76], [77].
The KF [48] and Ol [29] techniques eventually made their way into the weather
forecasting arena by the 1960's. The variational techniques at this time were not
receiving as much research attention as the Ol or KF variants. The strength of

variational techniques was not yet realised.

Sasaki formally de ned "Variational formalism with weak constraint' as early as
1970, [78]. The weak-constraint variational formulation of the data assimilation
problem has received increased attention in the last two decades, [38], [39], [72], [5],
[83], [56], [14]. Weak-constraint 4DVAR is most useful when used with observations

of a dynamical system or process that perhaps is not yet well-understood.

Notable distinctions and advantages of the variational techniques is the inclusion
of model dynamics and feasibility for very large problems such as those in
NWP. 4DVAR became feasible for operational NWP centres in 1994, [13], with

the introduction of ‘Incremental 4DVAR', nearly 30 years after itsnearlye3(4D)6a95(neas



Medium-Range Weather Forecasts (ECMWF) in 1997, documented in [74], [64]
and [50]. The Met O ce then followed with their operational implementation of
4DVAR in 2004, [75].

Operational NWP centres in the last 25 years have largely concentrated their
e orts in implementing variational techniques for longer range forecasting due to
their computational feasibility. Variational techniques are di cult to implement
compared to KF or Ol because one of the components required to calculate the
gradient is a backward or “adjoint' model. Writing adjoint code is one of the main
sources of diculty and it can take years for scientists to correctly code these
for very large NWP models, [75], [74]. The KF technique is infeasible for large
problems such as those in NWP because KF requires propagation of background
error covariances, which is too computationally expensive. However, there are
studies beginning to emerge showing that KF variants may be practicable for large
NWP systems. Comparisons between ensemble 4DVAR (4DEnVAR) variants and
NWP-applied ensemble KF (EnKF) variants highlight the ease of implementing
EnKF over hybrid-4DVAR due to the absence of an adjoint, [59], [22] [60].

The most recent developments surrounding the variational techniques is the
implementation of the hybrid 4DVAR technique. These technigues aim to remedy
the weakness in sc4DVAR where the background matrix is unable to capture “errors
of the day'. At the Met O ce, hybrid 4DVAR utilises a variable transformation
technique to combine the conventional climatological estimates of the background
error covariance matrix with data from the 23-member Met O ce ensemble
prediction system (MOGREPS). This has been implemented by the Met O ce
in their global model as of July 2012, [10]. The Met O ce are also attempting to
develop a hybrid 4DEnVAR technique, which if successful will alleviate the need for
linearised and adjoint models. The di erence between hybrid 4DVAR and hybrid
4DENnVAR is that 4DEnVAR uses a localised linear combination of non-linear
forecasts, whereas hybrid 4DVAR uses the linearised model and its adjoint. A
comparison between these two techniques shows that the currently operational
hybrid 4DVAR method is still superior to the proposed hybrid 4DEnVAR, [60].
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be found in [84]. The operational application is discussed in |56] and |[27].
The ECMWF briey implemented a bias-only corrective version of wc4DVAR,
but this has been suspended due to numerical conditioning issues, which is
an area we address in this thesis theoretically, [personal communications with
Mike Fisher and Yannick Tremolet, 2013], [Poster by Stephen English, ECMWF
Research Dept: https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/

posters/nwp_3 english.pdf |.

Another growing area of research that has begun implementing wc4DVAR is earth
and soil observation. The main problem in this area is that the current models are
not an accurate representation of terrestrial ecosystems. There is also the issue of
models not being coupled with each other. So for example in the event of a forest
re, abrupt changes in the state would take place in a separate radiative transfer

model which will have an e ect on the terrestrial model, however, the terrestrial


https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf
https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf

assimilation window, given the error statistics in the background, observatiorad

the model. The problem is fully4-dimensional since it seeks temporally evolving






1.4 Thesis Overview

In Chapter 2 we present the variational data assimilation problem. We also discuss
the incremental 4DVAR and control variable transform (CVT) techniques which
are used to enable operational execution of the variational algorithm. We then
introduce the two weak-constraint variational methods and extend the incremental
and CVT techniques to wc4DVAR followed by a short discussion of the Hessian
structures of the two wc4DVAR formulations. Finally, we review the current
literature more closely linked to the wc4DVAR formulations at the focus of the

thesis.

In Chapter 3 we introduce the de nition of the condition number used in this thesis
as a measure to quantify the sensitivities of the variational problem to changes in
its input parameters. We then detail the iterative solvers used to solve the 4DVAR
optimisation problem. This is followed by an overview of the particular class of
matrix, which are shared by the two covariance structures in the experiments
conducted in our research. We then discuss the mathematical techniques and
theorems used to obtain the results in the thesis. We then introduce the two

models used in our theory and experiments.

In Chapter 4 we detail the practical implementation considerations of both the
model error and state estimation wc4DVAR problems. We then detail the
experimental design and examine their numerical minimisation characteristics

when applied to the 1-dimensional advection equation model.

In Chapter 5 we examine the condition number of the Hessian of the model error
objective function. We derive new theoretical bounds on the condition number
of the Hessian and derive theoretical insight from the bounds. We explore the
sensitivities of the condition number to input data by demonstrating the bounds
through numerical experiments, both on the condition number and the iterative
solution process. We precondition the problem and derive similar theoretical

results and demonstrate in a similar fashion that the overall conditioning of the



preconditioned problem is improved as a result.

Chapter 6 is dedicated to examining the condition number of the Hessian of the
state estimation objective function. We derive new theoretical bounds on the
condition number of the Hessian and derive theoretical insight from the bounds.
We examine and highlight certain properties of this Hessian that are uniquely
di erent from the model error formulation Hessian. We demonstrate all our
ndings through numerical experiments on the condition number and the solution

process of the state estimation problem.

In Chapter 7 we implement both weak-constraint formulations on the Lorenz-95
system and show that the sensitivities of both formulations obtained in Chapters

5 and 6 also hold for a non-linear chaotic model.

Chapter 8 concludes our work and discusses avenues for further work.
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Chapter 2

Variational Data Assimilation

We introduce the Gauss-Newton ‘incremental’ and CVT techniques currently used
for sc4DVAR. We then introduce the two wc4DVAR formulations. We then extend
the theory of the Gauss-Newton and CVT concepts to both formulations and
brie y discuss the structures of the two wc4DVAR Hessians. We conclude the
chapter with a literature review of applications of wc4DVAR in NWP and current

understanding of the conditioning of the wc4DVAR problem.

We begin by detailing the style of notation used in this thesis.

2.1 Notation and Assumptions

Matrices and Vectors

Bold upper-case letters denote partitioned matrices, meaning a matrix of matrices.
In this thesis we refer to these partitioned matrices as 4-dimensional (4D) since they
possess spatial and temporal information. Matrices with a normal font represent
a standardN N matrix as opposed to a partitioned 4DNn  Nn matrix, for

N;n 2 N, whereN refers to the spatial dimension anch denotes the temporal

11



dimension. Similarly, we represent 4D partitioned vectors with bold lower-case

letters and normal vectors of sizé\ are written in normal font.

Operators

This notation also interlinks between operators and matrices. We denote non-linear
operators using calligraphic font whereas a non-linear operator which has been
di erentiated and linearised around a point is denoted with normal font, which
can then also be represented as a matrix. This also applies to 4D operators, so
a linearised 4D operator for example would be bold. Letters with standard font

denote linear or linearised operators,which can be represented in matrix form.

Condition Number

The condition number used throughout this chapter is the 2-norm condition
number, composed of the ratio of the largest and smallest eigenvalue of a symmetric
positive-de nite matrix. We formally introduce the condition number in Chapter

3 Section[3.1.

We now introduce the sc4DVAR problem.

2.2 Strong-Constraint 4DVAR

The aim of data assimilation is to merge the trajectory of a model with
observational data from the process being modeled. In sc4DVAR the model
is assumed to be perfect meaning each state is described exactly by the
model equations. The errors therefore in the strong-constraint problem are the
background, a previous forecast, and the observations. The objective is to seek the
model initial conditions which minimises the distance between the model trajectory

and the background and observations.

12






space to observation space such that; : RN | RP. Therefore we have
Hi(xi) yi= {i=0;:5n, (2.3)

where ? 2 RP denotes the observation error at;. The errors in the observations
are typically assumed to be uncorrelated with all other types of error, and of the

form
° NO;R); i=0;:5n, (2.4)

whereR; 2 RP P is the observation error covariance matrix and the mean is equal
to zero. The assumption of a normal distribution allows the distributions to be

de ned by the mean and covariance, which simpli es the problem. The Gaussian
assumption in [2.4) is still currently used by leading weather centres’ 4DVAR
implementations, such as the Met O ce and the ECMWF, [74],|[75], [13].

Next, we consider model trajectory errors. Initial conditions<g, produce a model
trajectory by utilising the non-linear model described in[(2]1), with states at
each time (q;::;;xn). The initial conditions that produce the previous forecast
trajectory, is known as the ‘background’, denoted ag§. The background is the
solution of a previous 4DVAR application, since variational data assimilation is a

cyclic process. We therefore have a background trajectory such that
b _ N D o \e i — 4.
XP=Mii (X0 1), 1 =150, (2.5)

with initial conditions x§ producing a trajectory (x2;::;;x2). The error associated

with the background is such that

Xo X5= 9 (2.6)
where the error is such that

5 N(0;Bo): 2.7)

The background error §2 RN is assumed to be uncorrelated with all other types
of error, have a zero mean and a background error covariance matrix such that
Bo2 RN N,

14



So the aim of the variational problem is to minimise the errors i (2/6) and (2.3)

with respect to the statesx; fori = 0;:::; n, subject to the constraint of theperfect

model (2.7)).

X

Figure 2.1: Strong-constraint 4DVAR assimilation window with following forecast trajectory.
Background estimate (blue dotted line) and solution (red line). (Diagram template courtesy of
ECMWEF training course presentation by Phillipe Lopez)

Figure[2.]1 is a pictorial representation of sc4DVAR. The aim is to nd the model
trajectory (red line), which minimises the distances between the background (blue
dotted line) and the temporally distributed observations (green dots), within the

assimilation window. Therefore, sSc4DVAR seeks the initial model statee



objective function, (2.8), provides the initial conditions for the non-linear model

M , which minimises the errors in the background , and the observations] .
The gradient equation is as follows
X
I (x0)= Bo'(xo x0)+  MgHTR *(Hi(Mio(x0) ¥)i  (2.9)

i=0
where the Jacobian oM is denoted asM, which is known as thetangent linear

or linearised model andM T is traditionally known as the linearisedadjoint model

The rst-order Hessian of [2.8) is

S=By'+ MgH



We approximate the non-linear operators in (2.8) to rst-order such that

Hi(M i.0(x57)) = Hi(M i.o(x5" + x §9));
H (M io(x$0)) + (Hi(M 0(x§9))) °x §;
= Hi(M O(X(k))) + ( HiMi;O)ng) Xo ) (2.12)

Thus an “incremental objective function' can be written in terms of the increment

x &
min J(xo”) = (x(” x5 x§NTBo xS (x5 x§))
Xo
+ %)@ (HiMio x5 d)TR, Y(HiMio x O dp); (2.13)
i=0
where

d=vyi  (Hi(Mo(xd): (2.14)

Solving problem (2.13) is known as the ‘inner-loop’. The inner-loop objective
function (2.13) can be minimised directly using an iterative method, or by solving

the gradient equation at the minimum ¢ J = 0),

(B ROV H'R; 'HiM )x(k’—w MEHTR; 1d + By *(x§  x{&):
0 0;i i;0 oithi Ny i 0 0
i=0 i=0

(2.15)
We can see that (2.15) is simply the linearised sc4DVAR Hessian applied to
X o, with the initial input data comprised of the errors in the background and
observations on the right-hand side. The incremental 4DVAR Hessian of (2.13)
is identical to the rst-order Hessian of the non-linear objective function (2.10).
Minimising the inner-loop objective function yields a new incremeni  to update

the current guess for the outer-loop objective function via (2.11).
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Figure 2.2: lllustration of incremental sc4DVAR. (Diagram template: ECMWF presentation
by Sebastien Lafont)

Figure [2.2 illustrates the incremental sc4DVAR algorithm. The initial guess to
start the algorithm is Xo = Xp, which is then used to evaluate the non-linear
objective functionJ . Evaluating the ‘outer-loop’ objective function,J , yields the
non-linear model trajectory and ‘departures’, as seen in Figufe 2.2, which allows
the linearised inner-loop to begin. The initial guess for the inner-loop objective
function is x; =0, then the iterative minimisation algorithm will solve using the
linearised inner-loop objective function) and its gradientr J to provide the new
X increment which is added on to the previous guess. This process is then

repeated again until the desired convergence criterion is reached.

The Gauss-Newton approach detailed here is equivalent to solving the equations
arising from the gradient equation [(2.p), [[52]. However, solving the gradient
equation is not practicable operationally since it is deemed too computationally
expensive, so we do not consider it in this thesis. In operational NWP most of
the computational cost is associated with the minimisation of (2.13), [F4]. The
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ECMWEF has the dominant super-computing capability in the NWP community

and they perform 50 inner-loop iterations with only 3 outer-loop iterations.

The sc4DVAR problem is known to be ill-conditioned mainly due to the
correlations in the background error covariance matriBg, [43], [41]. The matrix
By is also known to be very large due to the number of variables in the sc4DVAR
problem, [4]. We now introduce a technique which is operationally used to deal

with the background error covariance matrix.

2.2.2 The Control Variable Transform

The Control Variable Transform (CVT) technique has traditionally been used to
deal with the ill-conditioning of the B, matrix in variational data assimilation, [58].
More recently the Met O ce has utilised this technique to implement their hybrid
4DVAR and hybrid 4DEnVAR techniques, [60]. A change of variables is introduced
which allows for the implicit treatment of B, therefore alleviating the need to store

an explicit inverse ofBy. The two principal reasons for this transform are; thé3,



and have variance equal to one. Solving (2.17) is equivalent to solving (2.13) as

long as (2.18) holds. From (2.18) we require
Bo= UUT; (2.19)

to hold. In practice U does not necessarily have to be square. The challenge is
to nd U and its adjoint UT to be an optimum representation of8,. Obtaining
transforms for By is an extensive area of current research, [4], which is not the
focus of this thesis. We assum#é is the unique symmetric-square rootof By in

this thesis and thusU = B; °.

Therefore (2.17) becomes
J\(z(")):% 200 (2 0y T 0 (b gy T (2.20)
+é (HiM.0BEZz®  d)TR, Y(HiM.oBg 2 z®  d);  (2.21)
with Hessian

X _ -
r2f(z)=1+ By M&EHTR; 1HiM;oBs (2.22)
i=0
A paper by E.Andersson et al. [1] found the conditioning of (2.22) on a 2-grid

point example, with q



In the next section we introduce the two wc4DVAR formulations at the focus of

the thesis.

2.3 Weak-Constraint 4ADVVAR

The weak-constraint problem arises from relaxing the perfect model assumption
@.7) allowing for model error. This implies the model is enforced as a
weak-constraint and the control variable has now increased by an order of

magnitude as we will see shortly. We revisif (2]1) now and nd
i Mg a(xi 1) = i (2.24)

fori=1;::n, where ; 2 RV, represents the model error. We assume the model
errors are random with zero mean, Gaussian error statistics and a known covariance

such that
i N(0;Q); (2.25)

fori =1;::;n, whereQ; 2 RN N represents the model error covariance matrix. We
also assume that model errors are independent of the background and observation

errors.

The additional model error now becomes a quantity for consideration and thus is

incorporated into the objective function. One way of writing the objective function



estimates. This formulation is more common in the literature than the alternative,
implemented mainly on non-operational models,| [94], [83], [84], [93]. An
operational implementation of this formulation was functioning at the ECMWF,

[56], until it was taken o ine recently due to numerical conditioning issues.
Another way to consider the problem is in terms of the states; such that

min
((m/F33 7/F35momm33260SUCh that(such that

51/F31 53d [(()]TJ4.55 14mon6



Similarly the previous guess for the initial conditions and model errors produces
a similar vector to p, denoted asp® 2 RN("*D where the ‘b’ superscript denotes
the background. We de ne the 4D model operatorl. : RN("D 1 RN(*1) \which

enables us to map from ‘state space’ to ‘model error space’ such that
L(x)= p: (2.29)

We can think of (2.29) as a 4D representation of (2.24), which links the two vectors

p and x via (2.29). The operatorL is invertible, since we can determine from

p using (2.2%).

We now de ne the following 4D spatial-temporal variables,

Yo
y = ygl : (2.30)

IR !
Bo Ro
D= O ‘R = o, : (2.31)
" Qn "Rn
We notice a few subtleties here. We have composBd2 RN (™D N(*1) gych that
there areno temporal correlationsbetween the initial conditions and model errors.
This also applies to the observation error covariance matriR 2 RP(M*1) p(n+1)

which is also assumed to be temporally uncorrelated.

We can now write the wc4DVAR objective function |(2.26) in 4D form
. 1. . 1. .
min J (p) = ziip  PYip <+ SiHL '(P) ik 1 (2.32)

whereH is the 4D non-linear observation operator. The alternative formulation,

[2.27), is as follows
min 3 (0= ZILO) PRk QIHOO Vi (233)
Di erentiating (2.32] yields
I (p)=D *p P)+(HLMDTR YHL Y(p) ) (2.34)

where Hy, and L, ! are Jacobians, linearised around the subscripted quantity.
Similarly, by di erentiating (2.33)] we have

I (xX)=LID XL(x) p»)+ HIR YH(X) vV): (2.35)
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The linearisation points in the subscripts oH and L are omitted herein since this
is not the focus of the thesis. The dierent gradients[(2.34) and (2.85) suggest
that the minimisation characteristics of [2.32) and [(2.33) will be di erent.

To be clear on the de nition of each term in the gradients above, we write the

operatorsL and H in matrix form
1

HoH ' M1:.0 |
H = : L=% Mo g: (2.36)

Mn;n 1 |

The inverse ofL can be obtained from the weak-constraint equatiorj (2.24), thus

taking the following form
0 1

I
M 2,0 M 2;1 |

L 1= : (2.37)
Mzo Msz1 M3o |

Mpno Mp1 20 ti0 Mppn 1 |
The linearised forward model oM is denoted byM, which is embedded in the
operator L. The adjoint operators areL™ and L T, which have the linearised
adjoint model M T within them. We notice that L ! is a lower triangular matrix

meaning all its eigenvalues lie on its main diagonal, which all equal 1.

The Hessians of[(2.32) and (2.33) are as follows,
S,=r?(p)=D *+L "H'R 'HL % (2.38)
and
Ss=r2J(x)=L'D L+ HR H: (2.39)

We can already see at this point that the alternate minimimsation problems
(2.32) and (2.3B) are quite di erent, leading to di erent gradients and Hessians.
Therefore it is natural to expect dierences in their respective minimisation
characteristics. Let us now examine the structure of the Hessians &f(p) and
J (X).
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2.3.1 The Weak-Constraint 4ADVAR Hessians

The Hessians are important since they provide information on the local curvature
of the objective function. The structure of the Hessians give us insights into how
each wc4DVAR formulation iteratively achieves its solution, as seen in (2.52) and

(2.53).

We now illustrate the structure of the Hessian o (p),

0. 1
0
@ & A
p= v +
' 1
0, kS - 1
(HiMi:0)TR; *HiM; (HiMi:0)TR; *HiM; (HiMi0)TR; *HiM; (HaMn:0)T Ry *H
i i; 0 i i i; 0 i i;0 i i i1 i i; 0 i i i; 2 n n; 0 n n
i=0 i=1 i=2
P P P
v1(HiMi:1)TRi 1HiMi;0vl(HiMi;1)TRi "HiMi 1 vZ(HiMizl)TRi THiM; 2 g (HaMp;1)TRp Hn
1= 1= 1=
P np 2
(HiMi2)TR; "HiMo  (HiMi2)TR; "HiMi1 ~ (HiM;2)TR; "HiM; 2
i=2 i=2 i=
(HoMpn 1) Rp *Hap
HTRn'HnMn 0 HT Ry THaMp; 1 o HIRnHnMnn 1 HT Ry Hn

The S, structure is full block where each block is quite sparse in practice due to

the observation operator having much lower dimension than the state.

The Hessian of] (x) possesses a block tri-diagonal structure,

1
1 1 1
B, +M1T1Q1 M1 . MTQ, ) .
QM1 Q; '+MJQ, M2 M7 Q,
inan 1Qn11+M,TinMn Mr-]rin
1 Qn'Mn Qn'
HJ Ry 'Ho
HIR, *H1 g
) : (2.41)
HT Ry TH,

These Hessians are botfymmetric positive-de nite matrices implying they possess
a unique inverse. It is important to note that the Hessians of the incremental
formulations (2.46) and (2.49) are identical to these rst-order Hessians provided
the linearisation state used to obtain these rst-order Hessians is close to the

solution of the non-linear objective functions. So our work in this thesis is relevant
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to both problems. We also notice that the Hessian of sc4DVAR, (2.8), is contained
within (2.40), such that S = Sp, ).

The parallelism of [2.2F) over|(2.26) can be seen in the Hessian matrides (2.41) and
(2.40) respectively. The separate blocks df (2]J41) can be calculated much quicker

than (2.40) since each block in (2.40) requires sequential model integration. Each
single time-step block seers, can be allocated to a single processor, and with
enough processors to cover each block3y, the calculation can be obtained much
quicker than S,. Each block in S, requires the entire string of model time-step

integrations to be completed, which in operational NWP can take a while.

We have discussed the structural di erences in the Hessians of (3.32) afd (2.33)
in this section. We now introduce the Gauss-Newton incremental formulation of

the weak-constraint problem.

2.3.2 Incremental Weak-Constraint 4ADVAR

In this section we extend the Gauss-Newton incremental 4DVAR approach shown
in Section[2.2.1 to the weak-constraint problem.
We derive the incremental formulation by de ning an increment inp such that

pkD) = pl 4 pk. (2.42)

[ ]



where the superscripts denote the relevant formulation variable. We substitute

(2.43), (2.44) and [2.4p) into the non-linear objective function (2.32) giving us the

incremental wc4DVAR inner-loop ‘ p’ function

. 1. ) 1. )
min J( P = Zii P BPjip 1+ SiHkL p® AR s (2.46)

which is now a quadratic function in p®). Since all the operators have been

linearised as in[(2.4B), the constraint[(2.29) becomes
Ly ) x® = p(k): (2.47)

Solving the inner loop problem yields a newp® increment to update the oldp®

as in (2.42).

We derive the incremental formulation for [(2.3B) in a similar fashion to[ (2.46) by
approximating H and L as in (2.43) and de ning increment inx such that

x® D = x4 ik (2.48)

similar to (2.42). We can now write an incremental x formulation such that

mi(rk1) J( x®) = %jj L x® pXjd .+ %jox x®d*jjg o (2.49)
where

b* = p® L (xW): (2.50)

d=y H(xW): (2.51)

Figure [2.3 illustrates the algorithmic schematic of wc4DVAR incremental

formulation (2.486).
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Figure 2.3: lllustration of Weak-Constraint Incremental 4DVAR, p formulation. (Diagram



directly have been shown to be equivalent for sc4DVAR, [52], we believe this is also
true for wc4DVAR but this has yet to be proven. We see that the left hand side of
both equations [2.5D), [(2.5B) are the respective HessiaBs S, and the right-hand

is the initial guess. The emphasis on the gradients and hence the Hessi&psind

Sy can be seen from these gradient equations.



Substituting () and (2.56) into (2.46) yields the following objective function

. 1. ) 1. )
min J(29 =35 2% (@ 2jifip w + SIHL U 29 diiE 5 (257)

where idealU-transform is such that

U'D U=
I
[ ]
] ] [ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]



In this section we have introduced the method of preconditioning wc4DVAR

(2.32) using the CVT technique, which is essential for wc4DVAR to be considered
practicable operationally. This naturally extends from concepts used to implement
Sc4DVAR.

We have introduced the two wc4DVAR formulations at the focus of this thesis
and brie y highlighted di erences in the minimisation problems that ensue just by
viewing the di erent gradients and Hessians. We have also extended the theory
of the incremental and CVT techniques from sc4DVAR to wc4DVAR. We now
discuss the literature around the wc4DVAR problem both in its application and

any relevant research related to the conditioning of the problem.

2.4 Literature Review

This chapter so far has been dedicated to introducing all the background material

relevant to the work in this thesis.

We review the current literature in this section, with the intention of placing the
research in this thesis adequately within the current body of research. This section
is divided into two parts. We summarise the relevant literature with regards to
the application of wc4DVAR, mainly the model error estimation formulation, in
the rst part. The second part reviews the literature more relevant to the subject

of the thesis namely the conditioning of the wc4DVAR problem.

2.4.1 Applications of Weak-Constraint 4ADVAR

The sc4DVAR problem has had more time under research focus than wc4DVAR
since it became operationally viable in the early 90’s, [45], |38], [39], [18]. This
can be seen as a necessary stepping stone required to begin to understand the

weak-constraint problem, since the sc4DVAR is just a simpli cation of wc4DVAR,
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by assuming the model is perfect. There have been numerous suggestions in the
literature that wc4DVAR holds an advantage over the sc4DVAR, [84], [16], [17],
which we will now discuss. It is important to note that the weak-constraint
formulation considered in the majority of the literature refers to the J (p)

formulation.

A study by Zupanski [94] examined the application of the both wc4DVAR and
sc4DVAR on the regional National Centre for Environmental Prediction (NCEP)
model. The author highlights that in the presence of model error, the sc4DVAR
method provides a solution with incorrect initial conditions since it attempts to
correct errors while enforcing the constraint of a perfect model. However wc4DVAR
will average these errors out across the assimilation window yielding state estimates
that are more inline with the truth. This means that the solution increment for the
initial conditions from wc4DVAR is not as severe as sc4DVAR. She concludes that
there is a need for considering wc4DVAR over the sc4DVAR. She also concedes that
wc4DVAR is computationally expensive and ill-conditioned, and proposes looking

at the lower-dimensional observation-space dual formulation of the problem.

A climate application of wc4DVAR in Korea using satellite data for heavy rainfall
simulation was documented in [54]. The authors detail a study where they use
both sc4DVAR and wc4DVAR and they clearly show that wc4DVAR provided

much improved initial conditions for their model compared to sc4DVAR.

In 2004, Vidard et al. showed that wc4DVAR gives a marked improvement over
sc4DVAR when applied to a non-linear one-layer two-dimensional shallow water
model, [86]. The model error in this case was a systematic bias, but nevertheless it
does serve as a good guide for a more complex setting. The authors conclude
that the weak-constraint formulation provides a better solution both over the

assimilation window and in the forecast phase.

An article by Lindskog et al. [56] details the implementation of the weak-constraint
model error formulation to correct for known biases in the upper stratosphere

on the ECMWEF operational system. The paper highlights potential issues from
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a more practical perspective, but this often provides well-informed directions

for the requirement of theoretical understanding. They conclude that careful



wc4DVAR from a more theoretical perspective was presented by Cullen, [14]. The
author compares cycled sc4DVAR to wc4DVAR by simplifying the problem down
to a scalar case. He concludes that wc4DVAR must be interpreted as a smoother
since it allows the control of error growth throughout the assimilation window. It is
shown that where cycled sc4DVAR remains close to the observations, the solution
in the scalar case converges to that of a long-window wc4DVAR equivalent. This
is true if the regularisation of wc4DVAR, through theQ matrix, is identical to the
regularisation of the cycled sc4DVAR method’8 matrix at the beginning of each

assimilation window cycle.

A. Moore et al. at the University of California discuss their Regional Ocean
Modeling System (ROMS) implementation in a lengthy three-part paper, [68], [66]
and [67]. The detailed implementation of both the original state-space primal
form and lower dimensional observation-space dual form are detailed |in|[66]. The
authors state that wc4DVAR is too large and computationally infeasible when
considering the full primal problem. It is suggested that the dual formulation is a
sensible step towards an operationally feasible implementation of wc4DVAR. They
also discuss methods on error-covariance modeling and suggest preconditioners
that have not been fully trialled yet. They conclude that the forecast skill of

wCc4DVAR is improved over sc4DVAR.

The collective avour of the literature indicates that wc4DVAR is superior to
SC4DVAR. The minimisation problem that ensues from the wc4DVAR approach
requires further study, since more degrees of freedom and a larger problem needs
careful consideration. Some pieces of literature point in the direction of the dual
formulation as a remedy for the size of the problem, [12]. However, we are not

concerned with dual problem in this thesis.

A few pieces of literature produced by the ECMWF suggest they are actively
developing their implementation of wc4DVAR, [2[7], [[83],| [84], [26]. Their
intention is to tackle the more practical issues since their operational wc4DVAR
implementation detailed in [56] has been put o -line lqttps://cimss.ssec.

wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3 _english.pdf ) due to
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numerical conditioning issues (conversation with Mike Fisher, ECMWF training

course, 2013).

We now review the literature that is more closely related to the conditioning and

preconditioning of the wc4DVAR problem.

2.4.2 Conditioning and Preconditioning of

Weak-Constraint 4DVAR

At this moment, there are only a few select articles that are directly related to the
conditioning or preconditioning of the wc4DVAR problem. They are not related to
the study of the condition number, but the areas of research seem to be pointing
in the direction of trying to understanding the minimisation process that arises

from the wc4DVAR problem.

In [83], the author broadly summarises the variational approaches to the data
assimilation problem in the presence of model error. An illustrative example in
this paper alludes to the ‘Laplacian-like’ nature of the rst term of Sy under

simplistic assumptions M = 1 andB = Q = |) and usingQ = diagf Q;:::; Qg =

diagfl;:::;1 g to precondition.
S)p()recond = A+ QlZZHTR 1HQ1:2; (261)
where
0 2 | 1
I 2 |
A= @ A - (2.62)

where the other bold-faced matrices are block-diagonal partitions of their own
respective matrices similar toQ. If M 6 1, then the preconditioner would need
to be composed in such a way as to remove the in uence Mf from the rst part

of the HessianSPecond, This leads into the next part of the research e orts by the
ECMWF to nd a preconditioner which approximates L well, sinceL contains the

modelM .

35



An internal ECMWEF report, [27], suggests that the Hessiar, is sensitive to
the choice of preconditioner. Fisher et al. introduce an alternative saddle-point

formulation of the problem. A disadvantage of the saddle-point system to be solved
is that it will be



2.5 Summary

In this chapter we have introduced the strong-constraint and weak-constraint
variational data assimilation problems. We introduced concepts such as the
Gauss-Newton incremental approach and the CVT technique for both sc4DVAR
and wc4DVAR. We also discussed the structures of the weak-constraint Hessians.
This was then followed by a review of the current literature detailing the

applications and conditioning of the weak-constraint problem.

We now introduce the mathematical framework required to understand and solve
the 4DVAR problem and the necessary tools used to obtain the results in this

thesis.
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Chapter 3

Mathematical Theory

The variational data assimilation problem is statistical in its formulation but
obtaining a solution from the non-linear objective function is an optimisation
problem. In this chapter we introduce the necessary material and mathematical
tools required to understand and solve the wc4DVAR problems. We remind the

reader of the model error formulation,

min 3 ()= i PR L+ ML NP Vi @D
and the state estimation formulation,

min 3 (9= ZiLO) Pl Lk SiHGO  Viig 32)

We begin by introducing the condition number, followed by the numerical
optimisation techniques used to solve wc4DVAR problem$ (3.1), (3.2). We then
detail matrix norm properties required to analyse the condition number of the
Hessians of [(3]1), [(3]2). Finally we introduce the models we use in our data
assimilation experiments to put into context the sensitivities of the bounds and

their e ect on the performance of the optimisation problem.
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3.1 Condition Number

The condition number measures sensitivities of the solution to perturbations in
the input data. The input data for the data assimilation problem in this thesis
is governed by the wc4DVAR objective functionals| (3]1),[(3}2). We examine the
e ect of perturbing input data on the wc4DVAR problem in this section to show
the importance of the condition number, using a similar argument to that used
in [34], (pages 302-304).

We assume the wc4DVAR objective functional has a solution, which we denote as
X . We then perturb the input data by perturbing J and denote the perturbed

objective function as®. The perturbed objective function has the solution
X=X +h x; (3.3)

whereh = jj& x jj andjj xjj = 1. We assume that the perturbation in the

objective function is small enough to satisfy the following
JP(x) 3 (x)i 9 &) I (x)i (3.4)

The di erence in the perturbed and original objective functions aix is assumed to
be bounded above by the di erence in the original objective functions evaluated at
the original solution x and the perturbed solution®. We make this assumption
to understand some of the factors in uencing solution accuracy. We expant

using the Taylor series
JR)=JI(X +hx)=J(x)+ %hz X'r2)(x) x+0Mh)+ ;. (3.5)

and approximate to second order. Therefore

20 % J (x)j jj & xj2x'r&A(x) x (3.6)
Using J.”f(\T 1)’3]., we have
) ) 2
iz xiji? (3.7)

jir 23 (x)jj’
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where we de ne the condition number as
= ji(r 23) Yisir 23jj: (3.8)

We see from the expressior (3.7) that the growth of the squared di erence of the
original and perturbed solutions is proportional to the condition number of the
Hessian and the objective function di erences. The relationship ifi (3.7) shows that
the condition number of the Hessian is an appropriate measure of the sensitivity
of the solution to small perturbations in the input data, and hence the objective
function. However, the limitation of this assumption is that the perturbation in the
objective functionJ must be small enough for[(3]4) to hold and for the condition
number seen in [3.7) to be considered a good measure. Another limitation is
that the condition number of the Hessian here is lineariseak the solution, which

is not known in practice.

The speci ¢ condition number we use in this thesis is using the 2-norm. Therefore

max (I 2J
) min ((: 2J ; / (3.9)

L1 [ L1 [



3.2.1

1 ]




Algorithm 3.1 Linear Conjugate Gradient

1: Counter k = 0.
2: Initial guessx(©@ = 0, if initial data does not exist,
3: Set residualr©® = Ax©@ PO,

4: Set search directiorp©® =



3.2.2 Preconditioned Conjugate Gradient

Preconditioned Conjugate Gradient (PCG) is used to speed up the convergence
rate of CG by lowering the condition number of the system being solved. The
cost of preconditioning must be cheap and reduce the condition number enough
to achieve a considerable reduction in iterates. LelP denote the symmetric

positive-de nite. The algorithm is as follows

Algorithm 3.2 Preconditioned Conjugate Gradient
1. Counter k = 0.

2: Initial guessx© = 0, if initial data does not exist,
3: Set residualr©® = Ax©@ P9,

4: For the rst iteration compute z©@ = Pr©

5: Setp® = z®,

. While jjr®jj >

o))

(r(9)T 2(K)

(> ;

(k) =

(k



3.2.3 The Polak-Ribiere Conjugate Gradient Method

We use the Polak-Ribiere CG (PRCG) method as an alternative to the linear CG
method in later chapters to demonstrate links between iteratively solving the full
non-linear problem and the iterative treatment of the Gauss-Newton approach to
the 4DVAR problem.

Fletcher and Reeves extended the linear CG method to non-linear functions by
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In an operational NWP setting there is not enough time or computing power
to execute the amount of iterations required to solve the problem completely.
Therefore an iterative stopping criterion is required. In the next section we brie y

discuss the iterative stopping criterion used in our work.

3.2.4 Iterative Stopping Criterion

The purpose of iterative stopping criteria is to enable the user to stop the iterative

solver when certain criterion are met, for example when it reaches a certain



3.3 Matrices



De nition 3.3.4 (See [35], Sec 2.3) The family of matrix p-norms onRN M
is such that
e JICXijp.
C = SuUp—>—-—, 3.32
B0 = Sad Tixii, (3.82)

for C2RN M andx 2 RM.

In this thesis we use the 1-norm, 2-norm and -norm. For explicit de nitions of

these norms please refer to [35], Section 2.3.

We now state some useful norm relations which are used in cases where the norms

may be di cult to calculate explicitly.

Theorem 3.3.5 (See [3], Sec A.1) For matrices A;B 2 RN N thg followingC



3.3.2 Toeplitz Matrices

We use covariance matrices with a special structure in our research, which fall
under a class of matrices known as Toeplitz matrices. So we begin this section
by introducing the Toeplitz matrix, which gets its name from the German
mathematician Otto Toeplitz. He was the rst person to work with Toeplitz

operators in 1911, [82]. A Toeplitz matrix is such that

1
to t, t, 00 ot (N 1)
tl to tl
T: tz t]_
B CR 1) t 1
t to

tn 1 0ot

whereT 2 RN N and the entries



The matrix is composed of cyclic permutations of the rst row. A useful property
of a circulant matrix is that the eigenvalues and eigenvectors can be written as
Fourier transforms of the top row explicitly. The eigenvalues and eigenvectors of

circulant matrices are explicitly known.

Theorem 3.3.8 (See [37], Section 3.1) The eigenvalues of denoted ,(C) 2

C are such that



Theorem 3.3.10 (See [37]) Circulant matrices have the  following

eigendecomposition:
C=F cF" (3.39)

where ¢ = diag( 1(C);:::; n(C))
L1



for x;y 2 RN. The expected value of a random eld is denoted as> . A direct

consequence of (3.43) is the function is symmetrigx; y)v )v

[ ]



fori;j =1;::;N.

We now discuss the background and model error covariances more speci ¢ to the



on the real line and on the periodic domain we replace the great circle distarrce
in (8.50) by the chordal distance

d=2asin



Figure 3.1: 250th row of the Laplacian (red line) and SOAR (blue line) correlation matrices.
Model grid points N =500, L =0:9 for both Laplacian and SOAR.

The correlation structures of the SOAR and Laplacian covariance matrices are
shown in Figure[3.1. The Laplacian covariance matrix has negative correlations
whereas the SOAR matrix does not. We also notice that the SOAR correlations
have a larger spread across the grid points in comparison to the Laplacian

correlation structure.

We now introduce the apparatus we have employed in the thesis to bound the

condition number of the Hessian of the wc4DVAR objective functions.

3.4



3.4.1 Eigenvalue Bounds and Mathematical Results

We begin with the following determinant theorem.
Theorem 3.4.1 For any given square matricesA;B 2 RN N of equal size we
have

Det(AB) = Det(A)Det(B): (3.55)

One of the most useful eigenvalue bounds used on more than one occasion in our

work is the following.

Theorem 3.4.2 Courant-Fischer Theorem [Seg [35], Section 8.1].
For any given symmetric matrices A;B 2 RN N the k' eigenvalue of the matrix

sumA + B satis es

k(A) T min (B) k(A + B) k(A) + maX(B): (356)

We also have

Theorem 3.4.3 (See [35], Sec 8.6) Let E 2 RN M such thatM < N . Then
the non-zero eigenvalues &E T andETE are equal andEE T has N - M additional

eigenvalues equal to zero.

Another simple yet e ective upper bound using norms is as follows:

Theorem 3.4.4 (See [3], Section A.1) For a matrix A 2 RN N then the

following is true:
I k(A i Aljp (3.57)
forp 1.
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Finally,

Theorem 3.4.5 (See [11], Section 2.4 (p13-14)) For nite m;n 2 Z., and

p2 R, we have:

X o= (n+1 m)(n+ m)

. 5 (3.58)
X n(n+1)(2n + 1)

2 = . 359
. 5 (3.59)

We now introduce the Rayleigh Quotient.

3.4.2 Rayleigh Quotient

The Rayleigh Quotient is historically named after Baron Rayleigh (John William

Strutt), an English physicist who received a Nobel prize in physics in 1904. This
function is also known as the ‘Rayleigh-Ritz ratio’ in engineering, where it was also
named after Walther Ritz, a Swiss theoretical physicist. The Rayleigh Quotient is

a function which we use for the purpose of eigenvalue estimation in this thesis.

De nition 3.4.6 (See [3], Section 4.4) The Rayleigh quotient of a symmetric
matrix A 2 RN N is as follows:

xH Ax
xH x

Ra(X) = (3.60)

for x 2 CN, wherex! is the Hermitian of x.

To nd the smallest eigenvalue one would simply substitute the eigenvector that



Theorem 3.4.7 (See [81], Section 5.9) Let A 2 RN N be a symmetric matrix.
Then the Rayleigh quotient|(3.4)6) is bounded such that:

min (A) R A(X) max (A): (3-62)

3.4.3 The Block Analogue of Gersgorin’s Circle Theorem

Semyon Aranovich Gesgorin introduced his theorem as early as the 1930s, [32],
now known as thescalar Gesgorin’s circle theorem. He introduced the notion
of bounding the eigenvalues of a matrix by the sum of the row and/or column

constituents in the following theorem.

Theorem 3.4.8 (See [85]) Let A2 CN N, Then all eigenvalues of A satisfy
. - »I - -
I &l jag J; (3.63)
i6i

wherea;; denotes the entries oA on thei®™ row andj" column.

It is a well-known theorem with many applications in linear algebra and numerical



This constitutes all the mathematical apparatus used in the rest of the thesis. We
now introduce the models used in our experiments to demonstrate the sensitivities

obtained from the theoretical bounds on the condition number of the Hessian.

3.5 Models

In this section we introduce the models used in this thesis to illustrate the theory

we have derived.

The rst model is a linear advection equation. This is a simpli ed model describing
the transportation of a passive tracer through the atmosphere. In the atmosphere
if we consider very small intervals of space and time, the movement of a passive

tracer will be approximately linear, similar to that of the advection equation.

The second model is the non-linear chaotic Lorenz 95 system. The variables in this
system simulate values of some atmospheric quantity in sectors of a latitude circle.
The physics of the model possess useful weather-model-like characteristics such as
external forcing, internal dissipation and advective terms. The error growth of this

model is also similar to that of full NWP models.

The numerical discretisation of these models presents a set of calculations required
to propagate the model from one time step to the next. These are represented in
matrix form in the following sections. We now introduce the models used in this

thesis.

3.5.1 The Advection Equation

The advection equation is a partial di erential equation describing the ow of a

scalar quantity, u(x;t), through space,x with respect to time, t:

@Qu @u_
@t+ a@x— 0 (3.66)
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where the scalar quantity is moved through a vector eld at a velocity o&(

[ ]



For 1 0 the nite dierence system (3.71) is consistent, stable and

convergent, [69], Section 5.4.

We have introduced all the necessary properties of the advection model that we

use in the thesis. We now discuss the non-linear chaotic Lorenz 95 model.

3.5.2 The Lorenz 95 Model

The Lorenz 95 model was pioneered by Edward Lorenz, making its rst appearance

in the article [62], in 1996. This later made its way into published format



95 system are similar to that of full weather models, with a doubling time of 2.1

days, making it a suitable model to use for weather prediction purposes.

The Lorenz 95 ODE equations take the form

dX;
d—tJ: Xj 2Xj 1t Xj 1Xj+1 Xj+F;
L]
[]
] L]



In the next chapter we discuss the design considerations for the application of both
formulations J (p) and J (x) on the 1D advection model. We then compare the
performance of both formulations of wc4DVAR when subjected to changes in the

data assimilation parameters composing the problem.
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4.1.1



4.1.2 1D Advection Equation: Model Properties



and tangent linear arise from linearisind. . The input and output of the wc4DVAR
operators are ‘4-dimensional’, since they require inputs de ned at several temporal
points. The wc4DVAR model operator also has linearised inversds,* and L T,
which constitute part of the wc4DVAR gradient calculations. So the additional
tests required for wc4DVAR are to ensure that the mapping between model states
and model errors is correct for non-lineat and linearisedL operators and their

inverses.

We carry out four principal tests in the preceeding sections to ensure the that
the wc4DVAR assimilation system is correctly coded. The rst test is checking
that the numerical mapping of; theL operator, the linearisedL operator and

the linearised adjoint operatorL™ are all correct. The second test ensures that

the gradient of theL



(@ jL x pj O;
(b) jiL *p  xj O.
3. Linearised adjoint model operator and inverse;
(@ jiL" x pii O;
(b) jL " p  xj O.
The quantities in tests 1, 2 and 3 must equal exactly zero or be very close to

machine precision O (10 !°). We choose the 2-norm for each test detailed above

and ensure it is in the vicinity of machine precision.

Test | Norm of the Di erence
1(a) 1.70E-014
1(b) 3.72E-015
2(a) 1.43E-015
2(b) 1.37E-015
3(a) 1.32E-015
3(b) 1.43E-015

Table 4.1: Mapping test results.

Table[4.] shows that the results are all in the region of machine precision, therefore

the numerical mapping tests are all numerically valid.

We now discuss the wc4DVAR equivalent of the tangent linear test.

4.1.3.2 The Linearised Weak-Constraint Model

Operator: Correctness Tests

Taylor expansion of our non-linear operator to rst-order yields the following
approximated identities:
JiL(x+ i X) LX)
IiL i xi
jL(x+ i x) L(X) L ;xj 0 (4.4)

=1+ O( i x); (4.3)
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which should hold for small values of ; x. We vary ; such that
=10 (4.5)

fori = 1;:::;16. Since the advection model is linear, there should be no higher
order terms in the expansions above. The purpose of these tests is to ensure the
numerical validity correctness of the gradients of these two operators. We also test

the inverse,L in a similar manner.

100%]

10°%]

0.04 |

Error value

10

10°02 |

lou 20 15 . 10 . 5 0
10° 10 10° 10° 10

(a) Identity test (43 (b) Identity test (4).]

Figure 4.1: Correctness test plots for theL operator.

[] []
L] L]



Figure 4.2 shows that the correctness tests also hold for inverse operator?.

We now discuss the nal test with regards to thel. operator. This is required for

the calculation of the gradients of] (p) and J (x).

4.1.3.3 The Linearised Weak-Constraint Adjoint Model Operator:
Validity Tests

This test is equivalent to the sc4DVAR adjoint test. The aim is to test the validity

of the inner products
< yiLx>=<LTy; x> (4.6)
< y;Llx>=<L Ty; x>: (4.7)
These tests are done by executing each side of the respective equations numerically

and comparing the results. We call the left-hand side of each equation (4.6) and

(4.7) the “forward product' and the right-hand side is called the "adjoint product'.

Forward Product Adjoint Product Di erence
Test (4.6) | -45.4842738297631838 -45.48427382976313384.9738e-014
Test (4.7) | -216.363507105409070-216.36350710540913065.6843e-014

The dierence of both products is in the range of machine precision, which

concludes that the numerical adjoint operator is accurate to machine precision.

This concludes all the tests for the. operator. TheL operator is required for both
calculating the objective functions (2.32), (2.33) and the gradients of the objective
functions (2.34) and (2.35). We now discuss the nal test in the assimilation

system, which tests the numerical validity of the coded objective function gradient.

4.1.3.4 Objective Function Gradient: Validity Tests

This test is similar to the tests in Section 4.1.3.2, but instead we check the

numerical validity of the objective functions (2.32) and (2.33) and their respective
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gradient calculations [2.3%) and[(2.35). We verify that
( )_J(x+ X) J (X)
B XTrd (X)

is accurate for su ciently small perturbations  Xx.

=1+ O( ); (4.8)

The gradient test for the objective function is dierent to the gradient test in
Section[4.1.3.R because the operators are di erent. The operator in Section 4.1.3.2
is such that L : RN(MD 1 RN~ which is why norms were used. The
weak-constraint objective functions[(2.32) and (2.33) are such that : RN |

R, so no norms are required.

For perturbations that are too large the identity (4.8) will not hold since the higher
order terms will increase and the approximation made i (4.8) is to rst-order. If
the perturbations are too close to machine precision the identity (4.8) will not hold

because the denominator of (4.8) will approach zero.

Variation of residual

10°L o : )
10" 10™ 10° 10

Figure 4.3: Objective function gradient test. The red line shows the gradient test ) for
J (p). The blue line shows the gradient test [4.8) forJ (x).

Figure [4.3 shows that for su ciently small perturbations the identity (¢.8) holds
for both J (p) and J (x).

This concludes all the tests to ensure mathematical and numerical accuracy of

both wc4DVAR assimilation systems for solvingl (p) and J (x). The second
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consideration to discuss is the nature of the observations we use to observe the

truth.

4.1.4 Observations

The observationsy are generated using the truth trajectory plus additive Gaussian

noise such that
y=y' +ys (4.9)

where y' is the unchanged true state at the appropriate spatio-temporal
grid-points, andy® N (0; 21). The observation error variance is stated before

each experiment.

We take the observations directly at the grid points with regular intervals in space,
where the rst spatial point is always observed\Ve also observe at regular intervals
in time, where the rst temporal point is always observedWe let the temporal
observation interval (also referred to in this thesis as an ‘assimilation step’) be
every g model steps. We observe the same grid-points at every assimilation step,

thus the observation operatorH;



Figure 4.4: Advection Equation characteristic curves. The black lines are the advection
equation characteristic lines, and the red circles are observation points.

In Figure we see that if we were to observe every other temporal and spatial
point, some of the characteristic lines will be missed. Even with a periodic domain,
the same characteristic lines will remain unobserved for an inde nite time period.

We ensure that the temporal and spatial spacing of the observations is such that

none of the characteristic lines are missed.

In this section we have discussed our choice of observation con guration. We now

state how our background trajectory is created.

4.1.5 Background Trajectory

The background trajectory, p°, is created using the truth trajectory plus additive

Gaussian noise such that
p°= p'+ p%; (4.10)

where p® e,



4.1.6 Solution Error

The relative solution errors are calculated at each timg such that

o < X X

i @41

where x; 2 RN is the solution vector resulting from the assimilation, which
describes the state at timd; and the superscript denotes ‘truth’. The total relative
error is simply the L, norm calculation of the vector containing the values offe;

fori=1;:;n+1.

We now state our choice of iterative solver.

4.1.7 Iterative Solver and Stopping Criterion

We use the LCG method detailed in Sectioh 3.2.1 for both (232) and (2]33). Both

[ ]



1. number of observations;
2. length of the assimilation window;
3. correlation length-scales;

4. background, model and observation error variances.

We gauge the performance of the weak-constraint minimisation problems by

examining:

1. the relative error within the assimilation window between the truth and the
solution. We compare the generated truth to the state estimates obtained
using the J (x) formulation. We also compare the generated ‘true’ model

errors to the model error estimates obtained from thd (p) formulation;
2. the number of iterations required to achieve the desired tolerance;

3. the numerical condition number.

The covariances and error variances used to generated the truth are identical to
those used in the assimilation experiments. We now present our experimental

results.

4.2.1 Experiment 1. Observation Density

The aim of this experiment is to highlight the e ect of number of observations
on the solution process of both wc4DVAR formulations. We choose all other
parameters in this experiment such that the only possible contribution to any
rise in condition number must be the number of observations. So we choose
low correlation length-scales, short assimilation windows and error variance ratios

which are close to 1.
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4.2.1.1 Experiment la: Half Spatial Domain Observed

The experiment settings are as follows. We choose the background erBg, =
2Csonr , Such that the correlation length-scalé. =2 x =0:04and ,=0:1. The
model error,Q; = SCLAP is such that the correlation length-scalé. = x =0:02
and 4 =0:05. The observation error is such thaR; = 2|, where ,=0:05. We
take observations every =5 model time-steps,n = 10 in total, with 25 equally
spaced observed grid-points out of th&l = 50 grid-points per assimilation step.

The iterative tolerance is setto =10 4.

Figure 4.5: Assimilation window time series left to right, t =0, t = n=2 andt = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

In Figure we see the time series plot of the truth and the solutions of both
wc4DVAR algorithms. We can see that visually the solutions are in close agreement

with the truth.

1
0.065 007 007

Figure 4.6: Model error time series left to right, t =0, t = n=2 andt = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure we see the time series plot of the true model error vs the estimated

model error at the end of the minimisation usingJ (p). The variance of the
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4.2.1.2 Experiment 1b: Sparse Spatial Observations

The experiment settings are identical to those in Experiment 1a, except that there



t =0 and t = n=2 with a noticeable under-estimation of the variance. We also see
evidence of poor model error estimation at the nal time step in Figurg 4.9. The
nal time step estimated model error mean is incorrect, however the variance has

been well estimated.

Matrix | Condition Number | No. of iterations

S, 278 43
S 1663 412
D 837

Table 4.3: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table[4.3 shows that minimisation ofJ (x) takes 10 times more iterations than

J (p), as well as an increase in Hessian condition number. These condition numbers
are still not particularly indicative of any serious ill-conditioning. We believe
the condition number of D is not the main contributor of ill-conditioning in this
experiment since it remains the same as Experiment 1a, while the only change we
have introduced is a decrease in the number of observations. The observations are
associated with the second term of both Hessiai$s and S, whereD is the rst

term.

We also see that the condition numbers of5, and Sy have both roughly
doubled, compared to Experiment 1a, while the condition number @&, remains
approximately 3 times higher than the numerical condition number of5,. It
is possible that the J (x) formulation is sensitive to the decrease in spatial
observations, due to the increase in condition number and iterations exhibited

in this experiment.
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Figure 4.10: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure [4.10 we see that the errors look the same throughout the assimilation
window, with total relative errors of 0:356 forJ (x) and 0:357 forJ (p). We also
see that the errors are distributed at the beginning and mostly the end of the
assimilation window, showing that both solutions failed to correctly specify the

initial conditions and the model errors at the end of the assimilation window.

4.2.1.3 Summary

The number of observations a ects the assimilation problem in that there is less
information to t. In this experiment we see two pieces of evidence, which
show the sensitivities ofJ (x) to the number of observations: the increase in
numerical condition number and the number of iterations required for convergence.

The errors in the solution remain the same as they should, since we solve both



4.2.2 Experiment 2: Error Variance Ratios

The aim of this experiment is to highlight the e ect of changing the error variances
( 5, & &) onthe minimisation ofJ (p) and J (x). We choose all other parameters
to ensure that any change in condition number or iterations comes solely from the
error variances. The iterative tolerance is changed to = 10 ° to ensure high
solution accuracy. The iterative solver will reach the solution before the tolerance
is reached, but we are ensuring that each algorithm yields its respective optimal
solution. The iterations after reaching the solution are not important and the

algorithm that reaches its solution in the least number of iterations will still take



Figure 4.12:



Ratio | Value
b=q | 200
b= o | 200
q= o 1

Table 4.5: Assimilation error variance ratios.

The = q ratio in Table 4.5 explains the large condition number oD since this

ratio increases the di erence between the largest and smallest eigenvalue of the

matrix D



4.2.2.2 Experiment 2a (ii): Small Background Error Variance

In this experiment we use the same parameters as the previous experiment except
we change the background standard deviation from, = 10to , =2:5 104

so that it is now 200 times smaller than 4, as opposed to being 200 times bigger
as in Experiment 2a (i). We only show results related to the performance of the

minimisation of both J (p) and J (x).

Matrix | Numerical Condition No. | No. of iterations
Sp 853 10 635
Sk 1:.00 1C¢° 1756
D 853 10°

Table 4.6: Numerical condition numbers and iteration count of respective objective function
minimisations.

In Table [4.6 we see that the minimisation of] (x) requires just under 3 times as
many iterations asJ (p) to achieve the same gradient tolerance respective to each
objective function. The numerical condition number ofS, is O(10?) higher than
Sp. This complements the higher number of iterations seen fdr(x) over J (p).
We also see that the numerical condition number d§, is of the same order of

magnitude asD.

Ratio | Value
=g |5 10°3
b= o 5 10 3

g= o 1

Table 4.7: Assimilation error variance ratios.

The small ,= 4 is the reason for the large condition number oD. The large
condition numbers ofS, and S, follow the large condition number ofD in this

experiment, with S, exhibiting more sensitivity.
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t=1

t=0

—— Solution J(p)
- = - Solution J(x)

—— Solution J(p)
- = - Solution J(x)
““““ Truth

©
3 360
>
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Space Space

Figure 4.15: Assimilation window time series left to right, t =0, t = n=2 andt = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure[4.15% shows that the solutions are of similar quality. The problem is more
demanding since the variance of the model errors are much larger now. Even with
the power of wc4DVAR to closely match the trajectory inside the assimilation

window, both solutions are noticeably missing the truth because the true model

errors are considerably large.

Value

0 0.2 0.4 0.6 0.8 1
Space

Figure 4.16: Model error time series left to right, t =0, t = n=2 andt = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure we see the variance of the estimated model error is again not quite
as large as the true model error. On the nal time step the variance of the true

model error is more than twice as large as the range of the estimated model error.

Matrix | Numerical Condition No. | No. of iterations
Sp 109 10 341
Sy 188 10 972
D 213 10 -

Table 4.8: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table[4.8 shows the numerical condition number @&, to be nearly double that of
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Sp. Similarly, the minimisation of J (X) requires more than double the number of

iterations compared toJ (p).

Ratio Value‘
b= g 10 «




We now reduce the model error variance and examine its e ect on the minimisation
of both wc4DVAR problems.

4.2.2.4 Experiment 2b (ii): Small Model Error Variance

In this experiment we use the same parameters as the previous experiment except
we change the model standard devation fromg =10to =5 10 *. We now

discuss the e ect this has on the assimilation.

Matrix | Numerical Condition No. | No. of iterations
Sp 7.85 10° 182
Sx 157 1¢° 2693
D 141 10

Table 4.10: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table shows the minimisation of] (x) requiring over 15 times as many
iterations asJ (p). The numerical condition number ofS, and D are 3 orders
of magnitude higher thanS,, which complements the di erence in the number of
iterations. We also see that the numerical condition number @&, is of the same

order of magnitude asD.

Ratio | Value
b= q | 200
b= o 2
o | 001

Table 4.11: Assimilation error variance ratios.

The high = 4 value is the reason for the high condition number dD, since they

increase the distance between the extrema eigenvaluednf
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Figure 4.18: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure [4.18 we see that the errors are identical again with total relative error
values for both formulations at 0095, while the distribution of errors is linear and

di ers from the previous experiment, Figure[4.1]7. The bulk of the errors are in
the beginning of the assimilation window, which linearly decrease until nal time.
The errors are largest at the beginning of the window because the size of the

background error variance y is large relative to .

We now examine the e ects of the observation error variance.

4.2.2.5 Experiment 2c (i): Large Observation Error Variance

The experiment settings identical to the previous experiment with the exception of,
the background standard deviation, , = 0:1, model standard deviation, 4 = 0:05
and increased observation standard deviation, = 10, thus yielding the following

error variance ratios:
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Ratio | Value
b= q 2
b= o 0.01
=o |5 103

Table 4.12: Assimilation error variance ratios.

We now present the time series plots of the solution with the truth

=0 t=0.5
7 7 8 .
— Solution J(p) Solution J(p)
6 - - = Solution J(x) 6 7
5 5 6
5
e ‘ g
3 g4
>3 3 >
3
2 2 2
1 1 1
o A > 0 0
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Space Space

Figure 4.19: Assimilation window time series left to right, t =0, t = n=2 andt = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure shows that both solutions are showing visually noticeable shortfalls
at this scale, even with the truth and assimilation error settings being identical.

This is mainly due to the , parameter being too restrictive and not allowing for



‘ Matrix ‘ Numerical Condition No. | No. of iterations




4.2.2.6 Experiment 2c (ii): Small Observation Error Variance

In this experiment we use the same parameters except we change the observation
standard devation from ,=10to , =5 10 4 vyielding the following error

variance ratios

Ratio
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The experiments we have considered with model errors show that even with model
errors larger than the background error, both algorithms can still solve the problem
relatively well, as seen in Figur¢ 4.18. However this comes at the cost of increased
condition numbers and iterations for bothJ (x) and J (p), where J (x) exhibits

the most sensitivity in terms of iterations to convergence. When the model error is
small the problem becomes less demanding in general, and both algorithms solve
to much improved accuracy as seen from Figure 4]18. But it is clearly evident that

J (x) is far more sensitive to changes ing

[ ]



the e ect of a longer assimilation window.

In previous experiments in this chapter we had an assimilation window which
allowed the advection model to propagate the Gaussian curve far enough through
the domain so it passes by its original percevied position, we denote this as one
period. In the following experiment we lengthen the assimilation window to allow
for the Gaussian curve to pass its original starting position 5 times. We reduce

the spatial resolution so that the Hessian matrix remains a reasonable size for an



notice the Gaussian curve has moved upwards and deformed considerably over
time, since the assimilation window is now much longer and the model has more
time to evolve the initial state. We can also see that some ner details of the

Gaussian curve structure have been missed by both solutions.

Figure 4.24. Model error time series left to right, t = 0, t = n=2 andt = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

Figure[4.24 agrees with Figurg 4.23 in that thé (p) formulation has mimicked the
truth. The estimated model errors have a much improved error variance than in
previous experiments. Itis likely that the longer assimilation window has improved

the estimates of the model error.

Matrix | Numerical Condition No. | No. of iterations
Sp 6:13 10 71
Sy 166 1C° 42
D 878

Table 4.16: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table shows thatJ (p) requires nearly twice as many iterations ag (x) to
converge on an equivalent solution. The condition number @&, is an order of
magnitude higher thanS,. This is not proportional to the increase in iterations,
but we see a simultaneous increase in condition number and iteration count of
J (p) over J (x), further reinforcing the possibility of J (p) being more sensitive

to assimilation window length thanJ (x).

95



Figure 4.25: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

Figure 4.25 shows that the errors id (p) are slightly higher, with a total relative
error of 0196, whereas (x) has a total relative error of 153. The relative errors

are low with the exception of the beginning of the assimilation window.

Summary

This experiment shows that the length of the assimilation window, while it a ects
both algorithms, has a more profound e ect on the minimisation od (p), through
an increased Hessian condition number and iterations. The (x) formulation
performs better in this experiment in terms of condition number, number of

iterations and relative solution error, with a fully observed domain.

4.3 Conclusions

In this chapter we detailed the design of the weak-constraint variational system
along with the tests to ensure its numerical validity. We then explained our
reasoning behind the choice of observation con guration and model setup to carry

out the experiments. The experiments were carried out on a simple 1-dimensional

96



linear system using correlated background and model error covariances and regular
observation spacing to enable us to study the e ects of di erent parameter settings

on the minimisation process. The experiment results showed the following:

1. The J (x) formulation is more sensitive to lower observation density than
J (p). The J (x) formulation takes longer to converge onto an identical
quality solution to J (p) with the same settings. The Hessian condition
number of J (X) is also higher than that of J (p). This is shown in

Experiments 1a and 1b.

2. The J (x) formulation is more sensitive thanJ (p) to the balance of model
errors with background errors. This can be seen from ndings in Experiments
2a and 2b.

(a) Experiment 2a shows thatJ (Xx) is sensitive to changes in the
background error, more so when the background error is small. This is

seen in the number of iterations only.

(b) Experiment 2b shows the increased sensitivity af (x) over J (p) for
small model error variances 4. This is seen in the condition number and the

number of iterations required for convergence.

(c) Experiment 2c shows that a large observation error variance
dramatically increases the number of iterations required by (x) to converge.
The condition number is also very large, of order 5 times larger than the
condition number ofS,. We see that for a small observation error variance,
the J (x) formulation takes less iterations to converge thad (p) for the rst

time, albeit not by a signi cant amount.

3. The J (p) formulation is more sensitive thanJ (x) to assimilation window

length where the spatial domain is fully observed, shown in Experiment 3.

4. Another more general conclusion about wc4DVAR is that the variance of the

estimated model errors provided by the solutions of both (p



of the model error variance by both algorithms was noticeably improved in

Experiment 3, with a longer assimilation window.

The aim is to gain a deeper theoretical understanding into the behaviour of both
the minimisation problems presented byl (p) and J (X). In the next chapter
we bound the condition number of the Hessian o (p) and analyse it more

rigorously.
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solution process of the sc4DVAR. The proof of this result is contained in Appendix
Al

In this chapter we present new theoretical bounds on the condition number of



The insight gained from the bounds are demonstrated through numerical
experiments on the condition number. We also further demonstrate the condition
number sensitivities obtained from the bounds by examining their e ect on the

convergence rate of the model error estimation an preconditioned model error

estimation minimisation problems.

We now present the theoretical bounds.

5.1 Theoretical Results: Bounding the

Condition Number of S,

The following result bounds the spectral condition number d§,,

Theorem 5.1.1 LetBy 2 RN N andQ



and

max(D 1)+ min (L THTR 1H|— 1) max(sp)

max(D 1)+ ma(L TH'R *HL %): (5.5)

We then take the upper bound of ax (Sp) and lower bound of i, (Sp) giving us
the following upper bound on the condition number,

max(D 1)+ max(L THTR *HL 1)

o) DD+ (L THTR THL ).

(5.6)

Similarly for the lower bound we take the lower bound of .« (Sp) and upper bound

of min (Sp), which yields the following lower bound on the condition number,

(S) max(D l)+ min (I— THTR
p



the time invariant model error covariance matrix, fori = 1;::;;n, whereCq is a
symmetric, positive-de nite circulant correlation matrix and 5 > 0 is the model
error variance. Assumeq < N observations are taken with the same error variance

2|

2> 0 at each time interval such thalR; = R = 2

q fori =0;::;n, wherelg is
a g qidentity matrix. Assume that observations of the parameter are made at
the same grid points at each time interval such thad'H; = HTH 2 RN N so
HTH is a diagonal matrix with unit entries at observed points and zeros otherwise.

Finally, we assume thaM;; ;= M 2 RN N for i =1;:;nis a circulant matrix,

and M;; = ly. The following bounds are satis ed by the condition number &f;:
0 1+ &minf b mn (Ce)i § mn (CQ)g 1
2 min
@~ ° A (D)  (Soa@

1+ 3 maxf 2 max (Cg); g max (Cq)Q



With this in mind we choose a vectorV, 2 RN such that

|
\
Vi

V= . (5.12)
Vk

wherev, 2 RN is an arbitrary eigenvector of a circulant matrix. We apply the

Rayleigh quotient using (5.1P) to obtain the lower bound oS,. We begin by

considering the second term o,

1 VAL THTHL YV

— ; (5.13)
3 Vi Vi
while deliberately omitting D for now.
The denominator of [5.1B) yields
VAV = n+1; (5.14)

since the eigenvectors of a circulant matrix are orthogonal, Theorem 3/ 37. The
computation in (5.13) requiresvi and vi!' to multiply every matrix block inside
L THTHL 1. Each block multiplication yields the following:

vil(MOT = vt T (M); (5.15)

(MO = T (M)w; (5.16)

where | (M) is some eigenvalue okl and ' (M) is the corresponding complex

conjugate eigenvalue oM . We write (M) = for convenience.

Substituting (5.14), (5.13) and [5.16) into [5.1B), we obtain the following series:

2
L NP X I(YHHT
- (YO OIVEHTHV T ()0 P IV HTHY,
i=0 j=0 i=1 j=0 3
X X -
+ ()C VO YVHTHve+  + +( )" HTHVe+ ()" HTHYS
i=1 j=0
(5.17)

where the rst term in the geometric series ) comes from the main diagonal
of (5.13). The second term of{ (5.17) is from the upper o -diagonal block entries of
(5.13) and the third term is from the lower o -diagonal block entries. This pattern
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continues until the nal term in the bottom right hand corner of (5.13), which

coincides with the nal term in (5.17).



We consider the Rayleigh quotient as in[(5.13) but for the vectoVax=min ,» Since

the Rayleigh quotient of D yields the respective extreme eigenvalues f¥hax=min -

[ ]



which bounds the largest eigenvalue. Similarly for the smallest eigenvalue,

VH S Vi ql
(S min ~p Tmin_ (D H+ — = 5.27
mm( p) Vrmn Vmin mln( ) N (2) max ( )
where max=min 1S @s computed in (5.24) and (5.25)
8
P .
3 j o it (D)=
k=0

3



As the ratio ,= 4 approaches zero, or diverges away from 1, the condition number
of D and hence the condition number o6, will grow. This means if the model
error variance were to be too small, or too large, in comparison to the background
error variance, the condition number o6, will be large. This argument also applies
to the background error variance. Secondly, as the correlation length-scales in the
background and the model error covariance matrices grows, the condition number
of D and hence the condition number ofS, will also grow. The upper bound

in Theorem[5.1.2 also shows that as the observation accuracy (decreasiny
increases, then the upper bound will increase. The lower bound will also increase
as , decreases, provided nin << mnax IS true. So both bounds suggest that the

condition number of S, may grow as , decreases.

We now use the 1D advection equation as described in Section 3.5.1 to derive more

speci ¢ bounds to investigate (S;) further.

5.1.1 The 1D Advection Equation

Theorem 5.1.3 In addition to the assumptions in Theorem 5.1]2, leM be matrix
(B.71), which is the advection equation discretised using the upwind scheme. Then

for Courant number 2 [ 1;0] we have the following bounds on(S;):
0 1

(D)@

1+ 4 minf 2 min (Ce);i & min (Co)J adv
N Z min_ A
(Sp)
max (CQ)g