


Abstract

4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations
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5.7 � (Ŝp) (blue surface) and theoretical bounds (red-mesh surfaces)

with assimilation window length, n, and number of spatial

observations,q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Block Ger�sgorin theorem applied toSx where � (Sx ) = 3 :912� 106.

Eigenvalues ofSx (small red circles). Eigenvalues ofSx (i;i ) (green

dots). Ger�sgorin discs (large blue circles) and estimated upper and

lower bounds of the block Ger�sgorin Theorem (red vertical lines). . 162

6.2 Scalar Ger�sgorin theorem applied toSx where � (Sx ) = 3 :912 �

106. Eigenvalues ofSx (small red circles). Ger�sgorin discs (large

blue circles) and estimated upper and lower bounds of the scalar

Ger�sgorin Theorem (red vertical lines). . . . . . . . . . . . . . . . . 162

6.3 Log-scale graphs of� (Sx ) (black line) with bounds from Theorem

6.1.1 (green dotted lines) and Theorem 6.1.2 (red dotted lines) as a

function of � q (a), � q=� o (b) and � b=� q (c). . . . . . . . . . . . . . . 164

6.4 Surface plot of � (Sx ) (blue surface) and bounds (red mesh).

Horizontal axes measure background error correlation length-scale

L (CB ) and model error correlation length-scaleL (CQ). Vertical axis

measures condition number. . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Log-scale surface plot of� (Sx ) (blue surface) and lower bound

(red mesh). Horizontal axes are the background error correlation

length-scaleL (CB ) and model error correlation length-scaleL (CQ).

Vertical axis measures condition number on a log scale. . . . . . . . 166

xii



6.6 Surface plot of� (Sx ). Vertical axis measures condition number.

The non-vertical axes measure spatial observation densityq and

assimilation window length,n. . . . . . . . . . . . . . . . . . . . . . 168

6.7 Condition numbers ofSp (blue line) and Sx (red line) as a function

of assimmilation window length,n. . . . . . . . . . . . . . . . . . . 169

7.1 Contour plot of the time evolution (vertical axis) of the N = 40

variables (horizontal axis). Colour bar represents atmospheric

quantity value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Respective objective function and gradient norm values with the

number of minimisation iterations. . . . . . . . . . . . . . . . . . . 185

7.3 Solution relative errors throughout the assimilation window,J (p)

(blue line) and J (x) (red line). . . . . . . . . . . . . . . . . . . . . 185

xiii



Chapter 1

Introduction and Motivation

The aim of data assimilation is to provide a statistically optimal estimate of the

state of a system given a set of observations and a dynamical model. There are

various data assimilation techniques used for a variety of problems in numerical

weather prediction (NWP), earth sciences, oceanography, agriculture, ecology and

the geo-sciences. The complexity of the data assimilation problem is related to

the area of application, since thesize and the dynamics of the system or model is

dependent on the application.

Figure 1.1: Classi�cation of popular data assimilation techniques.
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Figure 1.1 is diagrammatic representation of data assimilation techniques

and their classi�cation. Each technique has several sub-categories which

we deliberately omit. For the remainder of the thesis we abbreviate the

optimal interpolation technique as OI, 3-dimensional variational data assimilation

as 3DVAR, 4-dimensional variational data assimilation as 4DVAR and the

Kalman-�lter equations as KF.

The standard 4DVAR approach seeks a statistically optimal �t to the observations,

subject to the constraint of the 
ow, or the model of the physical process for

which we are assimilating data. The statistical uncertainties are represented by

the 4DVAR objective function, which aims to minimise the mismatch between

the model trajectory and the background and observations. The errors in these

two quantities are assumed to be independent of each other and possess Gaussian

statistics with zero mean. The main assumption of 4DVAR is that the model



where it is today, followed by current research involving relevant applications of

wc4DVAR. We then state the aims of our research and then give a chapter overview

of the thesis.

1.1 Brief Historical Background

In the 1950s there was signi�cant theoretical research progress around the weather

forecasting problem, which led to a variety of mathematically similar yet di�erently

formulated ideas, forming the basis of data assimilation. The �rst marked attempt

was by Gilchrist and Cressman, [33], where they use a least-squares method to

�t a second degree polynomial presented by their interpretation of a simpli�ed

meteorological system. A serially successive correction technique was introduced

by Bergthorsen and D•o•os, [8], where they added statistically weighted increments

to a prior estimate. Variational data assimilation was theoretically suggested by

Sasaki in the late 1950s in the same era as the OI and KF techniques, [76], [77].

The KF [48] and OI [29] techniques eventually made their way into the weather

forecasting arena by the 1960's. The variational techniques at this time were not

receiving as much research attention as the OI or KF variants. The strength of

variational techniques was not yet realised.

Sasaki formally de�ned `Variational formalism with weak constraint' as early as

1970, [78]. The weak-constraint variational formulation of the data assimilation

problem has received increased attention in the last two decades, [38], [39], [72], [5],

[83], [56], [14]. Weak-constraint 4DVAR is most useful when used with observations

of a dynamical system or process that perhaps is not yet well-understood.

Notable distinctions and advantages of the variational techniques is the inclusion

of model dynamics and feasibility for very large problems such as those in

NWP. 4DVAR became feasible for operational NWP centres in 1994, [13], with

the introduction of `Incremental 4DVAR', nearly 30 years after itsnearlye3(4D)6a95(neast)1 0 -21.669 Td [(form)27(ulated)-269(ideas,)270(�90ers,)27emealised.



Medium-Range Weather Forecasts (ECMWF) in 1997, documented in [74], [64]

and [50]. The Met O�ce then followed with their operational implementation of

4DVAR in 2004, [75].

Operational NWP centres in the last 25 years have largely concentrated their

e�orts in implementing variational techniques for longer range forecasting due to

their computational feasibility. Variational techniques are di�cult to implement

compared to KF or OI because one of the components required to calculate the

gradient is a backward or `adjoint' model. Writing adjoint code is one of the main

sources of di�culty and it can take years for scientists to correctly code these

for very large NWP models, [75], [74]. The KF technique is infeasible for large

problems such as those in NWP because KF requires propagation of background

error covariances, which is too computationally expensive. However, there are

studies beginning to emerge showing that KF variants may be practicable for large

NWP systems. Comparisons between ensemble 4DVAR (4DEnVAR) variants and

NWP-applied ensemble KF (EnKF) variants highlight the ease of implementing

EnKF over hybrid-4DVAR due to the absence of an adjoint, [59], [22] [60].

The most recent developments surrounding the variational techniques is the

implementation of the hybrid 4DVAR technique. These techniques aim to remedy

the weakness in sc4DVAR where the background matrix is unable to capture `errors

of the day'. At the Met O�ce, hybrid 4DVAR utilises a variable transformation

technique to combine the conventional climatological estimates of the background

error covariance matrix with data from the 23-member Met O�ce ensemble

prediction system (MOGREPS). This has been implemented by the Met O�ce

in their global model as of July 2012, [10]. The Met O�ce are also attempting to

develop a hybrid 4DEnVAR technique, which if successful will alleviate the need for

linearised and adjoint models. The di�erence between hybrid 4DVAR and hybrid

4DEnVAR is that 4DEnVAR uses a localised linear combination of non-linear

forecasts, whereas hybrid 4DVAR uses the linearised model and its adjoint. A

comparison between these two techniques shows that the currently operational

hybrid 4DVAR method is still superior to the proposed hybrid 4DEnVAR, [60].
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be found in [84]. The operational application is discussed in [56] and [27].

The ECMWF brie
y implemented a bias-only corrective version of wc4DVAR,

but this has been suspended due to numerical conditioning issues, which is

an area we address in this thesis theoretically, [personal communications with

Mike Fisher and Yannick Tremolet, 2013], [Poster by Stephen English, ECMWF

Research Dept: https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/

posters/nwp_3_english.pdf ].

Another growing area of research that has begun implementing wc4DVAR is earth

and soil observation. The main problem in this area is that the current models are

not an accurate representation of terrestrial ecosystems. There is also the issue of

models not being coupled with each other. So for example in the event of a forest

�re, abrupt changes in the state would take place in a separate radiative transfer

model which will have an e�ect on the terrestrial model, however, the terrestrial

https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf
https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf


assimilation window, given the error statistics in the background, observationsand

the model. The problem is fully4-dimensional since it seeks temporally evolving





1.4 Thesis Overview

In Chapter 2 we present the variational data assimilation problem. We also discuss

the incremental 4DVAR and control variable transform (CVT) techniques which

are used to enable operational execution of the variational algorithm. We then

introduce the two weak-constraint variational methods and extend the incremental

and CVT techniques to wc4DVAR followed by a short discussion of the Hessian

structures of the two wc4DVAR formulations. Finally, we review the current

literature more closely linked to the wc4DVAR formulations at the focus of the

thesis.

In Chapter 3 we introduce the de�nition of the condition number used in this thesis

as a measure to quantify the sensitivities of the variational problem to changes in

its input parameters. We then detail the iterative solvers used to solve the 4DVAR

optimisation problem. This is followed by an overview of the particular class of

matrix, which are shared by the two covariance structures in the experiments

conducted in our research. We then discuss the mathematical techniques and

theorems used to obtain the results in the thesis. We then introduce the two

models used in our theory and experiments.

In Chapter 4 we detail the practical implementation considerations of both the

model error and state estimation wc4DVAR problems. We then detail the

experimental design and examine their numerical minimisation characteristics

when applied to the 1-dimensional advection equation model.

In Chapter 5 we examine the condition number of the Hessian of the model error

objective function. We derive new theoretical bounds on the condition number

of the Hessian and derive theoretical insight from the bounds. We explore the

sensitivities of the condition number to input data by demonstrating the bounds

through numerical experiments, both on the condition number and the iterative

solution process. We precondition the problem and derive similar theoretical

results and demonstrate in a similar fashion that the overall conditioning of the

9



preconditioned problem is improved as a result.

Chapter 6 is dedicated to examining the condition number of the Hessian of the

state estimation objective function. We derive new theoretical bounds on the

condition number of the Hessian and derive theoretical insight from the bounds.

We examine and highlight certain properties of this Hessian that are uniquely

di�erent from the model error formulation Hessian. We demonstrate all our

�ndings through numerical experiments on the condition number and the solution

process of the state estimation problem.

In Chapter 7 we implement both weak-constraint formulations on the Lorenz-95

system and show that the sensitivities of both formulations obtained in Chapters

5 and 6 also hold for a non-linear chaotic model.

Chapter 8 concludes our work and discusses avenues for further work.
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Chapter 2

Variational Data Assimilation

We introduce the Gauss-Newton ‘incremental’ and CVT techniques currently used

for sc4DVAR. We then introduce the two wc4DVAR formulations. We then extend

the theory of the Gauss-Newton and CVT concepts to both formulations and

brie
y discuss the structures of the two wc4DVAR Hessians. We conclude the

chapter with a literature review of applications of wc4DVAR in NWP and current

understanding of the conditioning of the wc4DVAR problem.

We begin by detailing the style of notation used in this thesis.

2.1 Notation and Assumptions

Matrices and Vectors

Bold upper-case letters denote partitioned matrices, meaning a matrix of matrices.

In this thesis we refer to these partitioned matrices as 4-dimensional (4D) since they

possess spatial and temporal information. Matrices with a normal font represent

a standard N � N matrix as opposed to a partitioned 4DNn � Nn matrix, for

N; n 2 N, where N refers to the spatial dimension andn denotes the temporal

11



dimension. Similarly, we represent 4D partitioned vectors with bold lower-case

letters and normal vectors of sizeN are written in normal font.

Operators

This notation also interlinks between operators and matrices. We denote non-linear

operators using calligraphic font whereas a non-linear operator which has been

di�erentiated and linearised around a point is denoted with normal font, which

can then also be represented as a matrix. This also applies to 4D operators, so

a linearised 4D operator for example would be bold. Letters with standard font

denote linear or linearised operators,which can be represented in matrix form.

Condition Number

The condition number used throughout this chapter is the 2-norm condition

number, composed of the ratio of the largest and smallest eigenvalue of a symmetric

positive-de�nite matrix. We formally introduce the condition number in Chapter

3 Section 3.1.

We now introduce the sc4DVAR problem.

2.2 Strong-Constraint 4DVAR

The aim of data assimilation is to merge the trajectory of a model with

observational data from the process being modeled. In sc4DVAR the model

is assumed to be perfect meaning each state is described exactly by the

model equations. The errors therefore in the strong-constraint problem are the

background, a previous forecast, and the observations. The objective is to seek the

model initial conditions which minimises the distance between the model trajectory

and the background and observations.

12





space to observation space such thatH i : RN ! Rp. Therefore we have

H i (x i ) � yi = � o
i ; i = 0 ; :::; n , (2.3)

where � o
i 2 Rp denotes the observation error att i . The errors in the observations

are typically assumed to be uncorrelated with all other types of error, and of the

form

� o
i � N (0; Ri ); i = 0 ; :::; n , (2.4)

whereRi 2 Rp� p is the observation error covariance matrix and the mean is equal

to zero. The assumption of a normal distribution allows the distributions to be

de�ned by the mean and covariance, which simpli�es the problem. The Gaussian

assumption in (2.4) is still currently used by leading weather centres’ 4DVAR

implementations, such as the Met O�ce and the ECMWF, [74], [75], [13].

Next, we consider model trajectory errors. Initial conditionsx0, produce a model

trajectory by utilising the non-linear model described in (2.1), with states at

each time (x1; :::; xn ). The initial conditions that produce the previous forecast

trajectory, is known as the ‘background’, denoted asxb
0. The background is the

solution of a previous 4DVAR application, since variational data assimilation is a

cyclic process. We therefore have a background trajectory such that

xb
i = M i;i � 1(xb

i � 1); i = 1 ; :::; n , (2.5)

with initial conditions xb
0 producing a trajectory (xb

1; :::; xb
n ). The error associated

with the background is such that

x0 � xb
0 = � b

0; (2.6)

where the error is such that

� b
0 � N (0; B0): (2.7)

The background error� b
0 2 RN is assumed to be uncorrelated with all other types

of error, have a zero mean and a background error covariance matrix such that

B0 2 RN � N .
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So the aim of the variational problem is to minimise the errors in (2.6) and (2.3)

with respect to the statesx i for i = 0 ; :::; n, subject to the constraint of theperfect

model (2.1).

Figure 2.1: Strong-constraint 4DVAR assimilation window with following forecast trajectory.
Background estimate (blue dotted line) and solution (red line). (Diagram template courtesy of
ECMWF training course presentation by Phillipe Lopez)

Figure 2.1 is a pictorial representation of sc4DVAR. The aim is to �nd the model

trajectory (red line), which minimises the distances between the background (blue

dotted line) and the temporally distributed observations (green dots), within the

assimilation window. Therefore, sc4DVAR seeks the initial model statex0e



objective function, (2.8), provides the initial conditions for the non-linear model

M , which minimises the errors in the backgroundJ b and the observationsJ o.

The gradient equation is as follows

rJ (x0) = B � 1
0 (x0 � xb

0) +
nX

i =0

M T
0;i H

T
i R� 1

i (H i (M i; 0(x0)) � yi ); (2.9)

where the Jacobian ofM is denoted asM , which is known as thetangent linear

or linearised model andM T is traditionally known as the linearisedadjoint model.

The �rst-order Hessian of (2.8) is

S = B � 1
0 +

nX

i =0

M T
0;i H

iX



We approximate the non-linear operators in (2.8) to �rst-order such that

H i (M i; 0(x(k)
0 )) = H i (M i; 0(x(k)

0 + �x (k)
0 )) ;

� H i (M i; 0(x(k)
0 )) + ( H i (M i; 0(x(k)

0 ))) 0�x (k)
0 ;

= H i (M i; 0(x(k)
0 )) + ( H i M i; 0)x ( k )

0
�x (k)

0 : (2.12)

Thus an `incremental objective function' can be written in terms of the increment

�x (k)
0 ,

min
�x ( k )

0

J (�x (k)
0 ) =

1
2

(�x (k)
0 � (xb

0 � x(k)
0 ))T B � 1

0 (�x (k)
0 � (xb

0 � x(k)
0 ))

+
1
2

nX

i =0

(H i M i; 0�x (k)
0 � di )T R� 1

i (H i M i; 0�x (k)
0 � di ); (2.13)

where

di = yi � (H i (M i; 0(x(k)
0 )) : (2.14)

Solving problem (2.13) is known as the `inner-loop'. The inner-loop objective

function (2.13) can be minimised directly using an iterative method, or by solving

the gradient equation at the minimum (r J = 0),

(B � 1
0 +

nX

i =0

M T
0;i H

T
i R� 1

i H i M i; 0)�x (k)
0 =

nX

i =0

M T
0;i H

T
i R� 1

i di + B � 1
0 (xb

0 � x(k)
0 ):

(2.15)

We can see that (2.15) is simply the linearised sc4DVAR Hessian applied to

�x 0, with the initial input data comprised of the errors in the background and

observations on the right-hand side. The incremental 4DVAR Hessian of (2.13)

is identical to the �rst-order Hessian of the non-linear objective function (2.10).

Minimising the inner-loop objective function yields a new increment�x 0 to update

the current guess for the outer-loop objective function via (2.11).
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Figure 2.2: Illustration of incremental sc4DVAR. (Diagram template: ECMWF presentation
by Sebastien Lafont)

Figure 2.2 illustrates the incremental sc4DVAR algorithm. The initial guess to

start the algorithm is x0 = xb, which is then used to evaluate the non-linear

objective function J . Evaluating the ‘outer-loop’ objective function,J , yields the

non-linear model trajectory and ‘departures’, as seen in Figure 2.2, which allows

the linearised inner-loop to begin. The initial guess for the inner-loop objective

function is �x i = 0, then the iterative minimisation algorithm will solve using the

linearised inner-loop objective functionJ and its gradient r J to provide the new

�x i increment which is added on to the previous guessx i . This process is then

repeated again until the desired convergence criterion is reached.

The Gauss-Newton approach detailed here is equivalent to solving the equations

arising from the gradient equation (2.9), [52]. However, solving the gradient

equation is not practicable operationally since it is deemed too computationally

expensive, so we do not consider it in this thesis. In operational NWP most of

the computational cost is associated with the minimisation of (2.13), [74]. The
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ECMWF has the dominant super-computing capability in the NWP community

and they perform � 50 inner-loop iterations with only � 3 outer-loop iterations.

The sc4DVAR problem is known to be ill-conditioned mainly due to the

correlations in the background error covariance matrixB0, [43], [41]. The matrix

B0 is also known to be very large due to the number of variables in the sc4DVAR

problem, [4]. We now introduce a technique which is operationally used to deal

with the background error covariance matrix.

2.2.2 The Control Variable Transform

The Control Variable Transform (CVT) technique has traditionally been used to

deal with the ill-conditioning of the B0 matrix in variational data assimilation, [58].

More recently the Met O�ce has utilised this technique to implement their hybrid

4DVAR and hybrid 4DEnVAR techniques, [60]. A change of variables is introduced

which allows for the implicit treatment of B0, therefore alleviating the need to store

an explicit inverse ofB0. The two principal reasons for this transform are; theB0



and have variance equal to one. Solving (2.17) is equivalent to solving (2.13) as

long as (2.18) holds. From (2.18) we require

B0 = UUT ; (2.19)

to hold. In practice U does not necessarily have to be square. The challenge is

to �nd U and its adjoint UT to be an optimum representation ofB0. Obtaining

transforms for B0 is an extensive area of current research, [4], which is not the

focus of this thesis. We assumeU is the unique symmetric-square rootof B0 in

this thesis and thusU = B 1=2
0 .

Therefore (2.17) becomes

Ĵ (�z (k)) =
1
2

�
�z (k) � (zb � z(k))

� T �
�z (k) � (zb � z(k))

� T
(2.20)

+
1
2

nX

i =0

(H i M i; 0B 1=2
0 �z (k) � di )T R� 1

i (H i M i; 0B 1=2
0 �z (k) � di ); (2.21)

with Hessian

r 2Ĵ (�z ) = I +
nX

i =0

B 1=2
0 M T

0;i H
T
i R� 1

i H i M i; 0B 1=2
0 : (2.22)

A paper by E.Andersson et al. [1] found the conditioning of (2.22) on a 2-grid

point example, with q



In the next section we introduce the two wc4DVAR formulations at the focus of

the thesis.

2.3 Weak-Constraint 4DVAR

The weak-constraint problem arises from relaxing the perfect model assumption

(2.1) allowing for model error. This implies the model is enforced as a

weak-constraint and the control variable has now increased by an order of

magnitude as we will see shortly. We revisit (2.1) now and �nd

x i � M i;i � 1(x i � 1) = � i ; (2.24)

for i = 1 ; :::; n, where � i 2 RN , represents the model error. We assume the model

errors are random with zero mean, Gaussian error statistics and a known covariance

such that

� i � N (0; Qi ); (2.25)

for i = 1 ; :::; n, whereQi 2 RN � N represents the model error covariance matrix. We

also assume that model errors are independent of the background and observation

errors.

The additional model error now becomes a quantity for consideration and thus is

incorporated into the objective function. One way of writing the objective function



estimates. This formulation is more common in the literature than the alternative,

implemented mainly on non-operational models, [94], [83], [84], [93]. An

operational implementation of this formulation was functioning at the ECMWF,

[56], until it was taken o�ine recently due to numerical conditioning issues.

Another way to consider the problem is in terms of the statesx i such that

min
(((m/F33 7/F35momm33260such that(such that

min20960suy 3.3r32326(that)]TJ5.70811.9552 Tf -318.322 -33.624 Td [(m3n381)]9552 Tf -30051/F31 53d [(()]TJ4.55 14mon6

min20960



Similarly the previous guess for the initial conditions and model errors produces

a similar vector to p, denoted aspb 2 RN (n+1) , where the ‘b’ superscript denotes

the background. We de�ne the 4D model operator,L : RN (n+1) ! RN (n+1) which

enables us to map from ‘state space’ to ‘model error space’ such that

L (x) = p: (2.29)

We can think of (2.29) as a 4D representation of (2.24), which links the two vectors

p and x via (2.29). The operatorL is invertible, since we can determinex from

p using (2.24).

We now de�ne the following 4D spatial-temporal variables,

y =
� y0

y1
:
:

yn

�
; (2.30)

D =

 
B 0

Q1
:

:
Qn

!

; R =

 
R0

R1
:

:
Rn

!

: (2.31)

We notice a few subtleties here. We have composedD 2 RN (n+1) � N (n+1) such that

there areno temporal correlationsbetween the initial conditions and model errors.

This also applies to the observation error covariance matrixR 2 Rp(n+1) � p(n+1)

which is also assumed to be temporally uncorrelated.

We can now write the wc4DVAR objective function (2.26) in 4D form

min
p

J (p) =
1
2

jjp � pbjj 2
D � 1 +

1
2

jjH (L � 1(p)) � yjj 2
R � 1 ; (2.32)

whereH is the 4D non-linear observation operator. The alternative formulation,

(2.27), is as follows

min
x

J (x) =
1
2

jjL (x) � pbjj 2
D � 1 +

1
2

jjH (x) � yjj 2
R � 1 : (2.33)

Di�erentiating (2.32) yields

rJ (p) = D� 1(p � pb) + ( Hx L� 1
x )T R� 1(H (L � 1(p)) � y); (2.34)

where Hx and L� 1
x are Jacobians, linearised around the subscripted quantity.

Similarly, by di�erentiating (2.33) we have

rJ (x) = LT
x D� 1(L (x) � pb) + HT

x R� 1(H (x) � y): (2.35)
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The linearisation points in the subscripts ofH and L are omitted herein since this

is not the focus of the thesis. The di�erent gradients (2.34) and (2.35) suggest

that the minimisation characteristics of (2.32) and (2.33) will be di�erent.

To be clear on the de�nition of each term in the gradients above, we write the

operatorsL and H in matrix form

H =

 H 0
H 1

...
H n

!

; L =

0

B
B
B
@

I

� M 1;0 I

� M 2;1
...
...

� M n;n � 1 I

1

C
C
C
A

: (2.36)

The inverse ofL can be obtained from the weak-constraint equation (2.24), thus

taking the following form

L� 1 =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

I

M 1;0 I

M 2;0 M 2;1 I

M 3;0 M 3;1 M 3;2 I
...

... . . . . . . . . .

M n;0 M n;1 : : : : : : Mn;n � 1 I

1

C
C
C
C
C
C
C
C
C
C
C
C
A

: (2.37)

The linearised forward model ofM is denoted byM , which is embedded in the

operator L. The adjoint operators areLT and L� T , which have the linearised

adjoint model M T within them. We notice that L� 1 is a lower triangular matrix

meaning all its eigenvalues lie on its main diagonal, which all equal 1.

The Hessians of (2.32) and (2.33) are as follows,

Sp = r 2J (p) = D� 1 + L� T HT R� 1HL� 1; (2.38)

and

Sx = r 2J (x) = LT D� 1L + HT R� 1H: (2.39)

We can already see at this point that the alternate minimimsation problems

(2.32) and (2.33) are quite di�erent, leading to di�erent gradients and Hessians.

Therefore it is natural to expect di�erences in their respective minimisation

characteristics. Let us now examine the structure of the Hessians ofJ (p) and

J (x).
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2.3.1 The Weak-Constraint 4DVAR Hessians

The Hessians are important since they provide information on the local curvature

of the objective function. The structure of the Hessians give us insights into how

each wc4DVAR formulation iteratively achieves its solution, as seen in (2.52) and

(2.53).

We now illustrate the structure of the Hessian ofJ (p),

Sp =

0

@
B � 1

0

Q � 1
1 :

:
Q � 1

n

1

A +

0

B
B
B
B
B
B
B
B
@

nP

i =0
(H i M i; 0 )T R � 1

i H i M i; 0

nP

i =1
(H i M i; 0 )T R � 1

i H i M i; 1

nP

i =2
(H i M i; 0 )T R � 1

i H i M i; 2 ::: (H n M n; 0 )T R � 1
n H n

nP

i =1
(H i M i; 1 )T R � 1

i H i M i; 0

nP

i =1
(H i M i; 1 )T R � 1

i H i M i; 1

nP

i =2
(H i M i; 1 )T R � 1

i H i M i; 2 ::: (H n M n; 1 )T R � 1
n H n

nP

i =2
(H i M i; 2 )T R � 1

i H i M i; 0

nP

i =2
(H i M i; 2 )T R � 1

i H i M i; 1

n � 2P

i =0
(H i M i; 2 )T R � 1

i H i M i; 2
...

...
...

... ... ... (H n M n;n � 1 )T R � 1
n H n

H T
n R � 1

n H n M n; 0 H T
n R � 1

n H n M n; 1 ::: H T
n R � 1

n H n M n;n � 1 H T
n R � 1

n H n

1

C
C
C
C
C
C
C
C
A

:

(2.40)

The Sp structure is full block where each block is quite sparse in practice due to

the observation operator having much lower dimension than the state.

The Hessian ofJ (x) possesses a block tri-diagonal structure,

Sx =

0

B
B
B
B
B
B
B
@

B � 1
0 + M T

1 Q � 1
1 M 1 � M T

1 Q � 1
1

� Q � 1
1 M 1 Q � 1

1 + M T
2 Q � 1

2 M 2 � M T
2 Q � 1

2

... ... ...
...

� Q � 1
n � 1M n � 1 Q � 1

n � 1+ M T
n Q � 1

n M n � M T
n Q � 1

n

� Q � 1
n M n Q � 1

n

1

C
C
C
C
C
C
C
A

+

0

B
@

H T
0 R � 1

0 H 0

H T
1 R � 1

1 H 1

...
H T

n R � 1
n H n

1

C
A : (2.41)

These Hessians are bothsymmetric positive-de�nite matrices implying they possess

a unique inverse. It is important to note that the Hessians of the incremental

formulations (2.46) and (2.49) are identical to these �rst-order Hessians provided

the linearisation state used to obtain these �rst-order Hessians is close to the

solution of the non-linear objective functions. So our work in this thesis is relevant
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to both problems. We also notice that the Hessian of sc4DVAR, (2.8), is contained

within (2.40), such that S = Sp(1;1).

The parallelism of (2.27) over (2.26) can be seen in the Hessian matrices (2.41) and

(2.40) respectively. The separate blocks of (2.41) can be calculated much quicker

than (2.40) since each block in (2.40) requires sequential model integration. Each

single time-step block seenSx can be allocated to a single processor, and with

enough processors to cover each block inSx , the calculation can be obtained much

quicker than Sp. Each block in Sp requires the entire string of model time-step

integrations to be completed, which in operational NWP can take a while.

We have discussed the structural di�erences in the Hessians of (2.32) and (2.33)

in this section. We now introduce the Gauss-Newton incremental formulation of

the weak-constraint problem.

2.3.2 Incremental Weak-Constraint 4DVAR

In this section we extend the Gauss-Newton incremental 4DVAR approach shown

in Section 2.2.1 to the weak-constraint problem.

We derive the incremental formulation by de�ning an increment inp such that

p(k+1) = p(k) + � p(k) : (2.42)



where the superscripts denote the relevant formulation variable. We substitute

(2.43), (2.44) and (2.45) into the non-linear objective function (2.32) giving us the

incremental wc4DVAR inner-loop ‘� p’ function

min
� p ( k )

J (� p(k)) =
1
2

jj � p(k) � bp jj 2
D � 1 +

1
2

jjHx L� 1
x � p(k) � dp jj 2

R � 1 ; (2.46)

which is now a quadratic function in � p(k) . Since all the operators have been

linearised as in (2.43), the constraint (2.29) becomes

Lx ( k ) � x(k) = � p(k) : (2.47)

Solving the inner loop problem yields a new� p(k) increment to update the oldp(k)

as in (2.42).

We derive the incremental formulation for (2.33) in a similar fashion to (2.46) by

approximating H and L as in (2.43) and de�ning increment inx such that

x(k+1) = x(k) + � x(k) ; (2.48)

similar to (2.42). We can now write an incremental� x formulation such that

min
� x ( k )

J (� x(k)) =
1
2

jjLx � x(k) � bx jj 2
D � 1 +

1
2

jjHx � x(k) � dx jj 2
R � 1 ; (2.49)

where

bx = pb � L (x(k)); (2.50)

dx = y � H (x(k)): (2.51)

Figure 2.3 illustrates the algorithmic schematic of wc4DVAR incremental

formulation (2.46).
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Figure 2.3: Illustration of Weak-Constraint Incremental 4DVAR, � p formulation. (Diagram



directly have been shown to be equivalent for sc4DVAR, [52], we believe this is also

true for wc4DVAR but this has yet to be proven. We see that the left hand side of

both equations (2.52), (2.53) are the respective HessiansSp, Sx , and the right-hand

is the initial guess. The emphasis on the gradients and hence the HessiansSp and

Sx can be seen from these gradient equations.



Substituting (2.55) and (2.56) into (2.46) yields the following objective function

min
� z( k )

Ĵ (� z(k)) =
1
2

jj � z(k) � (zb � z(k))jj 2
U T D � 1U +

1
2

jjHL� 1U� z(k) � djj 2
R � 1 ; (2.57)

where idealU-transform is such that

UT D� 1U =



In this section we have introduced the method of preconditioning wc4DVAR

(2.32) using the CVT technique, which is essential for wc4DVAR to be considered

practicable operationally. This naturally extends from concepts used to implement

sc4DVAR.

We have introduced the two wc4DVAR formulations at the focus of this thesis

and brie
y highlighted di�erences in the minimisation problems that ensue just by

viewing the di�erent gradients and Hessians. We have also extended the theory

of the incremental and CVT techniques from sc4DVAR to wc4DVAR. We now

discuss the literature around the wc4DVAR problem both in its application and

any relevant research related to the conditioning of the problem.

2.4 Literature Review

This chapter so far has been dedicated to introducing all the background material

relevant to the work in this thesis.

We review the current literature in this section, with the intention of placing the

research in this thesis adequately within the current body of research. This section

is divided into two parts. We summarise the relevant literature with regards to

the application of wc4DVAR, mainly the model error estimation formulation, in

the �rst part. The second part reviews the literature more relevant to the subject

of the thesis namely the conditioning of the wc4DVAR problem.

2.4.1 Applications of Weak-Constraint 4DVAR

The sc4DVAR problem has had more time under research focus than wc4DVAR

since it became operationally viable in the early 90’s, [45], [38], [39], [18]. This

can be seen as a necessary stepping stone required to begin to understand the

weak-constraint problem, since the sc4DVAR is just a simpli�cation of wc4DVAR,
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by assuming the model is perfect. There have been numerous suggestions in the

literature that wc4DVAR holds an advantage over the sc4DVAR, [84], [16], [17],

which we will now discuss. It is important to note that the weak-constraint

formulation considered in the majority of the literature refers to the J (p)

formulation.

A study by Zupanski [94] examined the application of the both wc4DVAR and

sc4DVAR on the regional National Centre for Environmental Prediction (NCEP)

model. The author highlights that in the presence of model error, the sc4DVAR

method provides a solution with incorrect initial conditions since it attempts to

correct errors while enforcing the constraint of a perfect model. However wc4DVAR

will average these errors out across the assimilation window yielding state estimates

that are more inline with the truth. This means that the solution increment for the

initial conditions from wc4DVAR is not as severe as sc4DVAR. She concludes that

there is a need for considering wc4DVAR over the sc4DVAR. She also concedes that

wc4DVAR is computationally expensive and ill-conditioned, and proposes looking

at the lower-dimensional observation-space dual formulation of the problem.

A climate application of wc4DVAR in Korea using satellite data for heavy rainfall

simulation was documented in [54]. The authors detail a study where they use

both sc4DVAR and wc4DVAR and they clearly show that wc4DVAR provided

much improved initial conditions for their model compared to sc4DVAR.

In 2004, Vidard et al. showed that wc4DVAR gives a marked improvement over

sc4DVAR when applied to a non-linear one-layer two-dimensional shallow water

model, [86]. The model error in this case was a systematic bias, but nevertheless it

does serve as a good guide for a more complex setting. The authors conclude

that the weak-constraint formulation provides a better solution both over the

assimilation window and in the forecast phase.

An article by Lindskog et al. [56] details the implementation of the weak-constraint

model error formulation to correct for known biases in the upper stratosphere

on the ECMWF operational system. The paper highlights potential issues from
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a more practical perspective, but this often provides well-informed directions

for the requirement of theoretical understanding. They conclude that careful



wc4DVAR from a more theoretical perspective was presented by Cullen, [14]. The

author compares cycled sc4DVAR to wc4DVAR by simplifying the problem down

to a scalar case. He concludes that wc4DVAR must be interpreted as a smoother

since it allows the control of error growth throughout the assimilation window. It is

shown that where cycled sc4DVAR remains close to the observations, the solution

in the scalar case converges to that of a long-window wc4DVAR equivalent. This

is true if the regularisation of wc4DVAR, through theQ matrix, is identical to the

regularisation of the cycled sc4DVAR method’sB matrix at the beginning of each

assimilation window cycle.

A. Moore et al. at the University of California discuss their Regional Ocean

Modeling System (ROMS) implementation in a lengthy three-part paper, [68], [66]

and [67]. The detailed implementation of both the original state-space primal

form and lower dimensional observation-space dual form are detailed in [66]. The

authors state that wc4DVAR is too large and computationally infeasible when

considering the full primal problem. It is suggested that the dual formulation is a

sensible step towards an operationally feasible implementation of wc4DVAR. They

also discuss methods on error-covariance modeling and suggest preconditioners

that have not been fully trialled yet. They conclude that the forecast skill of

wc4DVAR is improved over sc4DVAR.

The collective 
avour of the literature indicates that wc4DVAR is superior to

sc4DVAR. The minimisation problem that ensues from the wc4DVAR approach

requires further study, since more degrees of freedom and a larger problem needs

careful consideration. Some pieces of literature point in the direction of the dual

formulation as a remedy for the size of the problem, [12]. However, we are not

concerned with dual problem in this thesis.

A few pieces of literature produced by the ECMWF suggest they are actively

developing their implementation of wc4DVAR, [27], [83], [84], [26]. Their

intention is to tackle the more practical issues since their operational wc4DVAR

implementation detailed in [56] has been put o�-line (https://cimss.ssec.

wisc.edu/itwg/itsc/itsc19/program/posters/nwp_3_english.pdf ) due to
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numerical conditioning issues (conversation with Mike Fisher, ECMWF training

course, 2013).

We now review the literature that is more closely related to the conditioning and

preconditioning of the wc4DVAR problem.

2.4.2 Conditioning and Preconditioning of

Weak-Constraint 4DVAR

At this moment, there are only a few select articles that are directly related to the

conditioning or preconditioning of the wc4DVAR problem. They are not related to

the study of the condition number, but the areas of research seem to be pointing

in the direction of trying to understanding the minimisation process that arises

from the wc4DVAR problem.

In [83], the author broadly summarises the variational approaches to the data

assimilation problem in the presence of model error. An illustrative example in

this paper alludes to the ‘Laplacian-like’ nature of the �rst term of Sx under

simplistic assumptions (M = I and B = Q = I ) and usingQ = diagf Q; :::; Qg =

diagf I; :::; I g to precondition.

Sprecond
x = A + Q1=2HT R� 1HQ1=2; (2.61)

where

A =

0

@

2I � I
� I 2I � I

... ... ...
� I 2I � I

� I I

1

A ; (2.62)

where the other bold-faced matrices are block-diagonal partitions of their own

respective matrices similar toQ. If M 6= I , then the preconditioner would need

to be composed in such a way as to remove the in
uence ofM from the �rst part

of the HessianSprecond
x . This leads into the next part of the research e�orts by the

ECMWF to �nd a preconditioner which approximates L well, sinceL contains the

model M .

35



An internal ECMWF report, [27], suggests that the HessianSx is sensitive to

the choice of preconditioner. Fisher et al. introduce an alternative saddle-point

formulation of the problem. A disadvantage of the saddle-point system to be solved

is that it will be



2.5 Summary

In this chapter we have introduced the strong-constraint and weak-constraint

variational data assimilation problems. We introduced concepts such as the

Gauss-Newton incremental approach and the CVT technique for both sc4DVAR

and wc4DVAR. We also discussed the structures of the weak-constraint Hessians.

This was then followed by a review of the current literature detailing the

applications and conditioning of the weak-constraint problem.

We now introduce the mathematical framework required to understand and solve

the 4DVAR problem and the necessary tools used to obtain the results in this

thesis.

37



Chapter 3

Mathematical Theory

The variational data assimilation problem is statistical in its formulation but

obtaining a solution from the non-linear objective function is an optimisation

problem. In this chapter we introduce the necessary material and mathematical

tools required to understand and solve the wc4DVAR problems. We remind the

reader of the model error formulation,

min
p

J (p) =
1
2

jjp � pbjj 2
D � 1 +

1
2

jjH (L � 1(p)) � yjj 2
R � 1 ; (3.1)

and the state estimation formulation,

min
x

J (x) =
1
2

jjL (x) � pbjj 2
D � 1 +

1
2

jjH (x) � yjj 2
R � 1 : (3.2)

We begin by introducing the condition number, followed by the numerical

optimisation techniques used to solve wc4DVAR problems (3.1), (3.2). We then

detail matrix norm properties required to analyse the condition number of the

Hessians of (3.1), (3.2). Finally we introduce the models we use in our data

assimilation experiments to put into context the sensitivities of the bounds and

their e�ect on the performance of the optimisation problem.
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3.1 Condition Number

The condition number measures sensitivities of the solution to perturbations in

the input data. The input data for the data assimilation problem in this thesis

is governed by the wc4DVAR objective functionals (3.1), (3.2). We examine the

e�ect of perturbing input data on the wc4DVAR problem in this section to show

the importance of the condition number, using a similar argument to that used

in [34], (pages 302-304).

We assume the wc4DVAR objective functional has a solution, which we denote as

x� . We then perturb the input data by perturbing J and denote the perturbed

objective function as eJ . The perturbed objective function has the solution

x̂ = x� + h� x; (3.3)

where h = jj x̂ � x� jj and jj � xjj = 1. We assume that the perturbation in the

objective function is small enough to satisfy the following

j eJ (x� ) � J (x� )j � jJ (x̂) � J (x� )j � �: (3.4)

The di�erence in the perturbed and original objective functions atx� is assumed to

be bounded above by the di�erence in the original objective functions evaluated at

the original solution x� and the perturbed solutionx̂. We make this assumption

to understand some of the factors in
uencing solution accuracy. We expandJ

using the Taylor series

J (x̂) = J (x� + h� x) = J (x� ) +
1
2

h2� xT r 2J (x� )� x + O(h3) + : : : ; (3.5)

and approximate to second order. Therefore

2jJ (x̂) � J (x� )j � jj x̂ � x� jj 2� xT r 2J (x� )� x: (3.6)

Using 1
j� x T A� x j � jj A � 1 jj

j � x T � x j , we have

jj x̂ � x� jj 2 �
2��

jjr 2J (x� )jj
; (3.7)
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where we de�ne the condition number as

� = jj (r 2J )� 1jj :jjr 2J jj : (3.8)

We see from the expression (3.7) that the growth of the squared di�erence of the

original and perturbed solutions is proportional to the condition number of the

Hessian and the objective function di�erences. The relationship in (3.7) shows that

the condition number of the Hessian is an appropriate measure of the sensitivity

of the solution to small perturbations in the input data, and hence the objective

function. However, the limitation of this assumption is that the perturbation in the

objective function J must be small enough for (3.4) to hold and for the condition

number � seen in (3.7) to be considered a good measure. Another limitation is

that the condition number of the Hessian here is linearisedat the solution, which

is not known in practice.

The speci�c condition number we use in this thesis is using the 2-norm. Therefore

� =
�
�
�
�
� max (r 2J )
� min (r 2J )

�
�
�
� ; (3.9)



3.2.1



Algorithm 3.1 Linear Conjugate Gradient
1: Counter k = 0.

2: Initial guess x(0) = 0, if initial data does not exist,

3: Set residualr (0) = Ax (0) � b(0) ,

4: Set search directionp(0) =



3.2.2 Preconditioned Conjugate Gradient

Preconditioned Conjugate Gradient (PCG) is used to speed up the convergence

rate of CG by lowering the condition number of the system being solved. The

cost of preconditioning must be cheap and reduce the condition number enough

to achieve a considerable reduction in iterates. LetP denote the symmetric

positive-de�nite. The algorithm is as follows

Algorithm 3.2 Preconditioned Conjugate Gradient
1: Counter k = 0.

2: Initial guess x(0) = 0, if initial data does not exist,

3: Set residualr (0) = Ax (0) � b(0) ,

4: For the �rst iteration compute z(0) = Pr (0)

5: Set p(0) = z(0) ,

6: While jj r (k) jj > � ;

� (k) =
(r (k))T z(k)

( > � ;

� (k



3.2.3 The Polak-Ribiere Conjugate Gradient Method

We use the Polak-Ribiere CG (PRCG) method as an alternative to the linear CG

method in later chapters to demonstrate links between iteratively solving the full

non-linear problem and the iterative treatment of the Gauss-Newton approach to

the 4DVAR problem.

Fletcher and Reeves extended the linear CG method to non-linear functions by

http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m
http://learning.eng.cam.ac.uk/carl/code/minimize/minimize.m


In an operational NWP setting there is not enough time or computing power

to execute the amount of iterations required to solve the problem completely.

Therefore an iterative stopping criterion is required. In the next section we brie
y

discuss the iterative stopping criterion used in our work.

3.2.4 Iterative Stopping Criterion

The purpose of iterative stopping criteria is to enable the user to stop the iterative

solver when certain criterion are met, for example when it reaches a certain



3.3 Matrices



De�nition 3.3.4 (See [35], Sec 2.3) The family of matrix p-norms on RN � M

is such that

jjCjj p = sup
x6=0

jjCxjj p

jj xjj p
; (3.32)

for C 2 RN � M and x 2 RM .

In this thesis we use the 1-norm, 2-norm and1 -norm. For explicit de�nitions of

these norms please refer to [35], Section 2.3.

We now state some useful norm relations which are used in cases where the norms

may be di�cult to calculate explicitly.

Theorem 3.3.5 (See [3], Sec A.1) For matrices A; B 2 RN � N the followingCjj



3.3.2 Toeplitz Matrices

We use covariance matrices with a special structure in our research, which fall

under a class of matrices known as Toeplitz matrices. So we begin this section

by introducing the Toeplitz matrix, which gets its name from the German

mathematician Otto Toeplitz. He was the �rst person to work with Toeplitz

operators in 1911, [82]. A Toeplitz matrix is such that

T =

0

B
B
B
B
B
B
B
B
B
B
B
B
@

t0 t � 1 t � 2 : : : : : : t� (N � 1)

t1 t0 t � 1
. . . ...

t2 t1
. . . . . . . . . ...

... . . . . . . . . . t � 1 t � 2

... . . . t1 t0 t � 1

tN � 1 : : : : : : t2 t1 t0

1

C
C
C
C
C
C
C
C
C
C
C
C
A

whereT 2 RN � N and the entries



The matrix is composed of cyclic permutations of the �rst row. A useful property

of a circulant matrix is that the eigenvalues and eigenvectors can be written as

Fourier transforms of the top row explicitly. The eigenvalues and eigenvectors of

circulant matrices are explicitly known.

Theorem 3.3.8 (See [37], Section 3.1) The eigenvalues ofC denoted� m (C) 2

C are such that



Theorem 3.3.10 (See [37]) Circulant matrices have the following

eigendecomposition:

C = F � CF H (3.39)

where � C = diag(� 1(C); :::; � n (C))



for x; y 2 RN . The expected value of a random �eld is denoted as<> . A direct

consequence of (3.43) is the function is symmetricf (x; y)vy )vy



for i; j = 1; :::; N .

We now discuss the background and model error covariances more speci�c to the



on the real line and on the periodic domain we replace the great circle distancer

in (3.50) by the chordal distance

d = 2asin
�

�



Figure 3.1: 250th row of the Laplacian (red line) and SOAR (blue line) correlation matrices.
Model grid points N = 500, L = 0 :9 for both Laplacian and SOAR.

The correlation structures of the SOAR and Laplacian covariance matrices are

shown in Figure 3.1. The Laplacian covariance matrix has negative correlations

whereas the SOAR matrix does not. We also notice that the SOAR correlations

have a larger spread across the grid points in comparison to the Laplacian

correlation structure.

We now introduce the apparatus we have employed in the thesis to bound the

condition number of the Hessian of the wc4DVAR objective functions.

3.4



3.4.1 Eigenvalue Bounds and Mathematical Results

We begin with the following determinant theorem.

Theorem 3.4.1 For any given square matricesA; B 2 RN � N of equal size we

have

Det(AB ) = Det(A)Det(B ): (3.55)

One of the most useful eigenvalue bounds used on more than one occasion in our

work is the following.

Theorem 3.4.2 Courant-Fischer Theorem [See [35], Section 8.1].

For any given symmetric matrices A; B 2 RN � N the kth eigenvalue of the matrix

sum A + B satis�es

� k(A) + � min (B ) � � k(A + B ) � � k(A) + � max (B ): (3.56)

We also have

Theorem 3.4.3 (See [35], Sec 8.6) Let E 2 RN � M such that M < N . Then

the non-zero eigenvalues ofEE T and E T E are equal andEE T has N - M additional

eigenvalues equal to zero.

Another simple yet e�ective upper bound using norms is as follows:

Theorem 3.4.4 (See [3], Section A.1) For a matrix A 2 RN � N then the

following is true:

j� k(A)j � jj Ajj p (3.57)

for p � 1 .
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Finally,

Theorem 3.4.5 (See [11], Section 2.4 (p13-14)) For �nite m; n 2 Z> 0 and

p 2 R, we have:

nX

p= m

p =
(n + 1 � m)(n + m)

2
(3.58)

nX

p=1

p2 =
n(n + 1)(2 n + 1)

6
: (3.59)

We now introduce the Rayleigh Quotient.

3.4.2 Rayleigh Quotient

The Rayleigh Quotient is historically named after Baron Rayleigh (John William

Strutt), an English physicist who received a Nobel prize in physics in 1904. This

function is also known as the ‘Rayleigh-Ritz ratio’ in engineering, where it was also

named after Walther Ritz, a Swiss theoretical physicist. The Rayleigh Quotient is

a function which we use for the purpose of eigenvalue estimation in this thesis.

De�nition 3.4.6 (See [3], Section 4.4) The Rayleigh quotient of a symmetric

matrix A 2 RN � N is as follows:

R A (x) =
xH Ax

xH x
(3.60)

for x 2 CN , wherexH is the Hermitian of x.

To �nd the smallest eigenvalue one would simply substitute the eigenvector that



Theorem 3.4.7 (See [81], Section 5.9) Let A 2 RN � N be a symmetric matrix.

Then the Rayleigh quotient (3.4.6) is bounded such that:

� min (A) � R A (x) � � max (A): (3.62)

3.4.3 The Block Analogue of Ger�sgorin’s Circle Theorem

Semyon Aranovich Ger�sgorin introduced his theorem as early as the 1930’s, [32],

now known as thescalar Ger�sgorin’s circle theorem. He introduced the notion

of bounding the eigenvalues of a matrix by the sum of the row and/or column

constituents in the following theorem.

Theorem 3.4.8 (See [85]) Let A 2 CN � N . Then all eigenvalues� of A satisfy

j� � ai;i j �
NX

j 6= i

jai;j j; (3.63)

whereai;j denotes the entries ofA on the i th row and j th column.

It is a well-known theorem with many applications in linear algebra and numerical



This constitutes all the mathematical apparatus used in the rest of the thesis. We

now introduce the models used in our experiments to demonstrate the sensitivities

obtained from the theoretical bounds on the condition number of the Hessian.

3.5 Models

In this section we introduce the models used in this thesis to illustrate the theory

we have derived.

The �rst model is a linear advection equation. This is a simpli�ed model describing

the transportation of a passive tracer through the atmosphere. In the atmosphere

if we consider very small intervals of space and time, the movement of a passive

tracer will be approximately linear, similar to that of the advection equation.

The second model is the non-linear chaotic Lorenz 95 system. The variables in this

system simulate values of some atmospheric quantity in sectors of a latitude circle.

The physics of the model possess useful weather-model-like characteristics such as

external forcing, internal dissipation and advective terms. The error growth of this

model is also similar to that of full NWP models.

The numerical discretisation of these models presents a set of calculations required

to propagate the model from one time step to the next. These are represented in

matrix form in the following sections. We now introduce the models used in this

thesis.

3.5.1 The Advection Equation

The advection equation is a partial di�erential equation describing the 
ow of a

scalar quantity, u(x; t ), through space,x with respect to time, t:

@u
@t

+ a
@u
@x

= 0 (3.66)
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where the scalar quantity is moved through a vector �eld at a velocity ofa(



For � 1 � � � 0 the �nite di�erence system (3.71) is consistent, stable and

convergent, [69], Section 5.4.

We have introduced all the necessary properties of the advection model that we

use in the thesis. We now discuss the non-linear chaotic Lorenz 95 model.

3.5.2 The Lorenz 95 Model

The Lorenz 95 model was pioneered by Edward Lorenz, making its �rst appearance

in the article [62], in 1996. This later made its way into published format



95 system are similar to that of full weather models, with a doubling time of 2.1

days, making it a suitable model to use for weather prediction purposes.

The Lorenz 95 ODE equations take the form

dX j

dt
= � X j � 2X j � 1 + X j � 1X j +1 � X j + F;



In the next chapter we discuss the design considerations for the application of both

formulations J (p) and J (x) on the 1D advection model. We then compare the

performance of both formulations of wc4DVAR when subjected to changes in the

data assimilation parameters composing the problem.
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4.1.1



4.1.2 1D Advection Equation: Model Properties



and tangent linear arise from linearisingL . The input and output of the wc4DVAR

operators are ‘4-dimensional’, since they require inputs de�ned at several temporal

points. The wc4DVAR model operator also has linearised inverses,L� 1 and L� T ,

which constitute part of the wc4DVAR gradient calculations. So the additional

tests required for wc4DVAR are to ensure that the mapping between model states

and model errors is correct for non-linearL and linearisedL operators and their

inverses.

We carry out four principal tests in the preceeding sections to ensure the that

the wc4DVAR assimilation system is correctly coded. The �rst test is checking

that the numerical mapping of; the L operator, the linearisedL operator and

the linearised adjoint operatorLT are all correct. The second test ensures that

the gradient of the L



(a) jjL� x � � pjj � 0 ;

(b) jjL� 1� p � � xjj � 0 .

3. Linearised adjoint model operator and inverse;

(a) jjLT � x � � pjj � 0 ;

(b) jjL� T � p � � xjj � 0 .

The quantities in tests 1, 2 and 3 must equal exactly zero or be very close to

machine precision� O (10� 15). We choose the 2-norm for each test detailed above

and ensure it is in the vicinity of machine precision.

Test Norm of the Di�erence

1(a) 1.70E-014

1(b) 3.72E-015

2(a) 1.43E-015

2(b) 1.37E-015

3(a) 1.32E-015

3(b) 1.43E-015

Table 4.1: Mapping test results.

Table 4.1 shows that the results are all in the region of machine precision, therefore

the numerical mapping tests are all numerically valid.

We now discuss the wc4DVAR equivalent of the tangent linear test.

4.1.3.2 The Linearised Weak-Constraint Model

Operator: Correctness Tests

Taylor expansion of our non-linear operator to �rst-order yields the following

approximated identities:

jjL (x + � i � x) � L (x)jj
jjL� i � xjj

= 1 + O(� i � x); (4.3)

jjL (x + � i � x) � L (x) � L� i � xjj � 0; (4.4)
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which should hold for small values of� i � x. We vary � i such that

� i = 101� i ; (4.5)

for i = 1 ; :::;16. Since the advection model is linear, there should be no higher

order terms in the expansions above. The purpose of these tests is to ensure the

numerical validity correctness of the gradients of these two operators. We also test

the inverse,L in a similar manner.
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(a) Identity test (4.3). (b) Identity test (4.4).

Figure 4.1: Correctness test plots for theL operator.



Figure 4.2 shows that the correctness tests also hold for inverse operator,L � 1.

We now discuss the �nal test with regards to theL operator. This is required for

the calculation of the gradients ofJ (p) and J (x).

4.1.3.3 The Linearised Weak-Constraint Adjoint Model Operator:

Validity Tests

This test is equivalent to the sc4DVAR adjoint test. The aim is to test the validity

of the inner products

< � y ; L � x > = < L T � y ; � x >; (4.6)

< � y ; L � 1� x > = < L � T � y ; � x > : (4.7)

These tests are done by executing each side of the respective equations numerically

and comparing the results. We call the left-hand side of each equation (4.6) and

(4.7) the `forward product' and the right-hand side is called the `adjoint product'.

Forward Product Adjoint Product Di�erence

Test (4.6) -45.484273829763183 -45.4842738297631334.9738e-014

Test (4.7) -216.363507105409070-216.3635071054091305.6843e-014

The di�erence of both products is in the range of machine precision, which

concludes that the numerical adjoint operator is accurate to machine precision.

This concludes all the tests for theL operator. TheL operator is required for both

calculating the objective functions (2.32), (2.33) and the gradients of the objective

functions (2.34) and (2.35). We now discuss the �nal test in the assimilation

system, which tests the numerical validity of the coded objective function gradient.

4.1.3.4 Objective Function Gradient: Validity Tests

This test is similar to the tests in Section 4.1.3.2, but instead we check the

numerical validity of the objective functions (2.32) and (2.33) and their respective
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gradient calculations (2.34) and (2.35). We verify that

�( � ) =
J (x + �� x) � J (x)

�� xT rJ (x)
= 1 + O(� ); (4.8)

is accurate for su�ciently small perturbations �� x.

The gradient test for the objective function is di�erent to the gradient test in

Section 4.1.3.2 because the operators are di�erent. The operator in Section 4.1.3.2

is such that L : RN (n+1) ! RN (n+1) , which is why norms were used. The

weak-constraint objective functions (2.32) and (2.33) are such thatJ : RN (n+1) !

R, so no norms are required.

For perturbations that are too large the identity (4.8) will not hold since the higher

order terms will increase and the approximation made in (4.8) is to �rst-order. If

the perturbations are too close to machine precision the identity (4.8) will not hold

because the denominator of (4.8) will approach zero.
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Figure 4.3: Objective function gradient test. The red line shows the gradient test (4.8) for
J (p). The blue line shows the gradient test (4.8) forJ (x).

Figure 4.3 shows that for su�ciently small perturbations the identity (4.8) holds

for both J (p) and J (x).

This concludes all the tests to ensure mathematical and numerical accuracy of

both wc4DVAR assimilation systems for solvingJ (p) and J (x). The second
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consideration to discuss is the nature of the observations we use to observe the

truth.

4.1.4 Observations

The observationsy are generated using the truth trajectory plus additive Gaussian

noise such that

y = yt + ye; (4.9)

where yt is the unchanged true state at the appropriate spatio-temporal

grid-points, and ye � N (0; � 2
oI). The observation error variance is stated before

each experiment.

We take the observations directly at the grid points with regular intervals in space,

where the �rst spatial point is always observed. We also observe at regular intervals

in time, where the �rst temporal point is always observed. We let the temporal

observation interval (also referred to in this thesis as an ‘assimilation step’) be

every � q model steps. We observe the same grid-points at every assimilation step,

thus the observation operatorH i



Figure 4.4: Advection Equation characteristic curves. The black lines are the advection
equation characteristic lines, and the red circles are observation points.

In Figure 4.4 we see that if we were to observe every other temporal and spatial

point, some of the characteristic lines will be missed. Even with a periodic domain,

the same characteristic lines will remain unobserved for an inde�nite time period.

We ensure that the temporal and spatial spacing of the observations is such that

none of the characteristic lines are missed.

In this section we have discussed our choice of observation con�guration. We now

state how our background trajectory is created.

4.1.5 Background Trajectory

The background trajectory,pb, is created using the truth trajectory plus additive

Gaussian noise such that

pb = pt + pe; (4.10)

where pe �e�e



4.1.6 Solution Error

The relative solution errors are calculated at each timet i such that

rei =
jj x t

i � x i jj 2

jj x t
i jj 2

; (4.11)

where x i 2 RN is the solution vector resulting from the assimilation, which

describes the state at timet i and the superscript denotes ‘truth’. The total relative

error is simply the L2 norm calculation of the vector containing the values ofrei

for i = 1 ; :::; n + 1.

We now state our choice of iterative solver.

4.1.7 Iterative Solver and Stopping Criterion

We use the LCG method detailed in Section 3.2.1 for both (2.32) and (2.33). Both



1. number of observations;

2. length of the assimilation window;

3. correlation length-scales;

4. background, model and observation error variances.

We gauge the performance of the weak-constraint minimisation problems by

examining:

1. the relative error within the assimilation window between the truth and the

solution. We compare the generated truth to the state estimates obtained

using the J (x) formulation. We also compare the generated ‘true’ model

errors to the model error estimates obtained from theJ (p) formulation;

2. the number of iterations required to achieve the desired tolerance;

3. the numerical condition number.

The covariances and error variances used to generated the truth are identical to

those used in the assimilation experiments. We now present our experimental

results.

4.2.1 Experiment 1: Observation Density

The aim of this experiment is to highlight the e�ect of number of observations

on the solution process of both wc4DVAR formulations. We choose all other

parameters in this experiment such that the only possible contribution to any

rise in condition number must be the number of observations. So we choose

low correlation length-scales, short assimilation windows and error variance ratios

which are close to 1.
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4.2.1.1 Experiment 1a: Half Spatial Domain Observed

The experiment settings are as follows. We choose the background error,B0 =

� 2
bCSOAR , such that the correlation length-scaleL = 2� x = 0 :04 and� b = 0 :1. The

model error,Qi = � 2
qCLAP is such that the correlation length-scaleL = � x = 0 :02

and � q = 0 :05. The observation error is such thatRi = � 2
oI , where � o = 0 :05. We

take observations every �q = 5 model time-steps,n = 10 in total, with 25 equally

spaced observed grid-points out of theN = 50 grid-points per assimilation step.

The iterative tolerance is set to� = 10� 4.
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Figure 4.5: Assimilation window time series left to right, t = 0, t = n=2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

In Figure 4.5 we see the time series plot of the truth and the solutions of both

wc4DVAR algorithms. We can see that visually the solutions are in close agreement

with the truth.
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Figure 4.6: Model error time series left to right, t = 0, t = n=2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.6 we see the time series plot of the true model error vs the estimated

model error at the end of the minimisation usingJ (p). The variance of the
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4.2.1.2 Experiment 1b: Sparse Spatial Observations

The experiment settings are identical to those in Experiment 1a, except that there



t = 0 and t = n=2 with a noticeable under-estimation of the variance. We also see

evidence of poor model error estimation at the �nal time step in Figure 4.9. The

�nal time step estimated model error mean is incorrect, however the variance has

been well estimated.

Matrix Condition Number No. of iterations

Sp 278 43

Sx 1663 412

D 837 -

Table 4.3: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.3 shows that minimisation ofJ (x) takes � 10 times more iterations than

J (p), as well as an increase in Hessian condition number. These condition numbers

are still not particularly indicative of any serious ill-conditioning. We believe

the condition number ofD is not the main contributor of ill-conditioning in this

experiment since it remains the same as Experiment 1a, while the only change we

have introduced is a decrease in the number of observations. The observations are

associated with the second term of both HessiansSp and Sx , whereD is the �rst

term.

We also see that the condition numbers ofSp and Sx have both roughly

doubled, compared to Experiment 1a, while the condition number ofSx remains

approximately 3 times higher than the numerical condition number ofSp. It

is possible that the J (x) formulation is sensitive to the decrease in spatial

observations, due to the increase in condition number and iterations exhibited

in this experiment.
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Figure 4.10: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.10 we see that the errors look the same throughout the assimilation

window, with total relative errors of 0:356 for J (x) and 0:357 for J (p). We also

see that the errors are distributed at the beginning and mostly the end of the

assimilation window, showing that both solutions failed to correctly specify the

initial conditions and the model errors at the end of the assimilation window.

4.2.1.3 Summary

The number of observations a�ects the assimilation problem in that there is less

information to �t. In this experiment we see two pieces of evidence, which

show the sensitivities ofJ (x) to the number of observations: the increase in

numerical condition number and the number of iterations required for convergence.

The errors in the solution remain the same as they should, since we solve both



4.2.2 Experiment 2: Error Variance Ratios

The aim of this experiment is to highlight the e�ect of changing the error variances

(� 2
b, � 2

q, � 2
o) on the minimisation ofJ (p) and J (x). We choose all other parameters

to ensure that any change in condition number or iterations comes solely from the

error variances. The iterative tolerance is changed to� = 10� 10 to ensure high

solution accuracy. The iterative solver will reach the solution before the tolerance

is reached, but we are ensuring that each algorithm yields its respective optimal

solution. The iterations after reaching the solution are not important and the

algorithm that reaches its solution in the least number of iterations will still take



Figure 4.12:



Ratio Value

� b=� q 200

� b=� o 200

� q=� o 1

Table 4.5: Assimilation error variance ratios.

The � b=� q ratio in Table 4.5 explains the large condition number ofD since this

ratio increases the di�erence between the largest and smallest eigenvalue of the

matrix D



4.2.2.2 Experiment 2a (ii): Small Background Error Variance

In this experiment we use the same parameters as the previous experiment except

we change the background standard deviation from� b = 10 to � b = 2 :5 � 10� 4

so that it is now 200 times smaller than� q, as opposed to being 200 times bigger

as in Experiment 2a (i). We only show results related to the performance of the

minimisation of both J (p) and J (x).

Matrix Numerical Condition No. No. of iterations

Sp 8:53 � 106 635

Sx 1:00 � 108 1756

D 8:53 � 106 -

Table 4.6: Numerical condition numbers and iteration count of respective objective function
minimisations.

In Table 4.6 we see that the minimisation ofJ (x) requires just under 3 times as

many iterations asJ (p) to achieve the same gradient tolerance respective to each

objective function. The numerical condition number ofSx is O(102) higher than

Sp. This complements the higher number of iterations seen forJ (x) over J (p).

We also see that the numerical condition number ofSp is of the same order of

magnitude asD.

Ratio Value

� b=� q 5 � 10� 3

� b=� o 5 � 10� 3

� q=� o 1

Table 4.7: Assimilation error variance ratios.

The small � b=� q is the reason for the large condition number ofD. The large

condition numbers ofSp and Sx follow the large condition number ofD in this

experiment, with Sx exhibiting more sensitivity.
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Figure 4.15: Assimilation window time series left to right, t = 0, t = n=2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure 4.15 shows that the solutions are of similar quality. The problem is more

demanding since the variance of the model errors are much larger now. Even with

the power of wc4DVAR to closely match the trajectory inside the assimilation

window, both solutions are noticeably missing the truth because the true model

errors are considerably large.
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Figure 4.16: Model error time series left to right, t = 0, t = n=2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

In Figure 4.16 we see the variance of the estimated model error is again not quite

as large as the true model error. On the �nal time step the variance of the true

model error is more than twice as large as the range of the estimated model error.

Matrix Numerical Condition No. No. of iterations

Sp 1:09 � 107 341

Sx 1:88 � 107 972

D 2:13 � 106 -

Table 4.8: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.8 shows the numerical condition number ofSx to be nearly double that of
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Sp. Similarly, the minimisation of J (x) requires more than double the number of

iterations compared toJ (p).

Ratio Value

� b=� q 10� q



We now reduce the model error variance and examine its e�ect on the minimisation

of both wc4DVAR problems.

4.2.2.4 Experiment 2b (ii): Small Model Error Variance

In this experiment we use the same parameters as the previous experiment except

we change the model standard devation from� q = 10 to � q = 5 � 10� 4. We now

discuss the e�ect this has on the assimilation.

Matrix Numerical Condition No. No. of iterations

Sp 7:85 � 103 182

Sx 1:57 � 106 2693

D 1:41 � 106 -

Table 4.10: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.10 shows the minimisation ofJ (x) requiring over 15 times as many

iterations as J (p). The numerical condition number ofSx and D are 3 orders

of magnitude higher thanSp, which complements the di�erence in the number of

iterations. We also see that the numerical condition number ofSx is of the same

order of magnitude asD.

Ratio Value

� b=� q 200

� b=� o 2

� q=� o 0.01

Table 4.11: Assimilation error variance ratios.

The high � b=� q value is the reason for the high condition number ofD, since they

increase the distance between the extrema eigenvalues ofD.
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Figure 4.18: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

In Figure 4.18 we see that the errors are identical again with total relative error

values for both formulations at 0:095, while the distribution of errors is linear and

di�ers from the previous experiment, Figure 4.17. The bulk of the errors are in

the beginning of the assimilation window, which linearly decrease until �nal time.

The errors are largest at the beginning of the window because the size of the

background error variance� b is large relative to � q.

We now examine the e�ects of the observation error variance.

4.2.2.5 Experiment 2c (i): Large Observation Error Variance

The experiment settings identical to the previous experiment with the exception of,

the background standard deviation,� b = 0 :1, model standard deviation,� q = 0 :05

and increased observation standard deviation� o = 10, thus yielding the following

error variance ratios:
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Ratio Value

� b=� q 2

� b=� o 0.01

� q=� o 5 � 10� 3

Table 4.12: Assimilation error variance ratios.

We now present the time series plots of the solution with the truth
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Figure 4.19: Assimilation window time series left to right, t = 0, t = n=2 and t = n. Truth
(black-dashed line), wc4DVAR J (x) solution (red line), wc4DVAR J (p) solution (blue line).

Figure 4.19 shows that both solutions are showing visually noticeable shortfalls

at this scale, even with the truth and assimilation error settings being identical.

This is mainly due to the � q parameter being too restrictive and not allowing for



Matrix Numerical Condition No. No. of iterations



4.2.2.6 Experiment 2c (ii): Small Observation Error Variance

In this experiment we use the same parameters except we change the observation

standard devation from � o = 10 to � o = 5 � 10� 4, yielding the following error

variance ratios

Ratio
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The experiments we have considered with model errors show that even with model

errors larger than the background error, both algorithms can still solve the problem

relatively well, as seen in Figure 4.18. However this comes at the cost of increased

condition numbers and iterations for bothJ (x) and J (p), where J (x) exhibits

the most sensitivity in terms of iterations to convergence. When the model error is

small the problem becomes less demanding in general, and both algorithms solve

to much improved accuracy as seen from Figure 4.18. But it is clearly evident that

J (x) is far more sensitive to changes in� q



the e�ect of a longer assimilation window.

In previous experiments in this chapter we had an assimilation window which

allowed the advection model to propagate the Gaussian curve far enough through

the domain so it passes by its original percevied position, we denote this as one

period. In the following experiment we lengthen the assimilation window to allow

for the Gaussian curve to pass its original starting position 5 times. We reduce

the spatial resolution so that the Hessian matrix remains a reasonable size for an



notice the Gaussian curve has moved upwards and deformed considerably over

time, since the assimilation window is now much longer and the model has more

time to evolve the initial state. We can also see that some �ner details of the

Gaussian curve structure have been missed by both solutions.

Figure 4.24: Model error time series left to right, t = 0, t = n=2 and t = n. Estimated model
error (red line) using wc4DVAR J (p). True model error (blue line).

Figure 4.24 agrees with Figure 4.23 in that theJ (p) formulation has mimicked the

truth. The estimated model errors have a much improved error variance than in

previous experiments. It is likely that the longer assimilation window has improved

the estimates of the model error.

Matrix Numerical Condition No. No. of iterations

Sp 6:13 � 104 71

Sx 1:66 � 103 42

D 878 -

Table 4.16: Numerical condition numbers and iteration count of respective objective function
minimisations.

Table 4.16 shows thatJ (p) requires nearly twice as many iterations asJ (x) to

converge on an equivalent solution. The condition number ofSp is an order of

magnitude higher thanSx . This is not proportional to the increase in iterations,

but we see a simultaneous increase in condition number and iteration count of

J (p) over J (x), further reinforcing the possibility of J (p) being more sensitive

to assimilation window length thanJ (x).
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Figure 4.25: Assimilation relative error calculations. Errors in wc4DVAR J (x) solution (red
line), wc4DVAR J (p) solution (blue line).

Figure 4.25 shows that the errors inJ (p) are slightly higher, with a total relative

error of 0:196, whereasJ (x) has a total relative error of 0:153. The relative errors

are low with the exception of the beginning of the assimilation window.

Summary

This experiment shows that the length of the assimilation window, while it a�ects

both algorithms, has a more profound e�ect on the minimisation ofJ (p), through

an increased Hessian condition number and iterations. TheJ (x) formulation

performs better in this experiment in terms of condition number, number of

iterations and relative solution error, with a fully observed domain.

4.3 Conclusions

In this chapter we detailed the design of the weak-constraint variational system

along with the tests to ensure its numerical validity. We then explained our

reasoning behind the choice of observation con�guration and model setup to carry

out the experiments. The experiments were carried out on a simple 1-dimensional

96



linear system using correlated background and model error covariances and regular

observation spacing to enable us to study the e�ects of di�erent parameter settings

on the minimisation process. The experiment results showed the following:

1. The J (x) formulation is more sensitive to lower observation density than

J (p). The J (x) formulation takes longer to converge onto an identical

quality solution to J (p) with the same settings. The Hessian condition

number of J (x) is also higher than that of J (p). This is shown in

Experiments 1a and 1b.

2. The J (x) formulation is more sensitive thanJ (p) to the balance of model

errors with background errors. This can be seen from �ndings in Experiments

2a and 2b.

(a) Experiment 2a shows that J (x) is sensitive to changes in the

background error, more so when the background error is small. This is

seen in the number of iterations only.

(b) Experiment 2b shows the increased sensitivity ofJ (x) over J (p) for

small model error variances� q. This is seen in the condition number and the

number of iterations required for convergence.

(c) Experiment 2c shows that a large observation error variance

dramatically increases the number of iterations required byJ (x) to converge.

The condition number is also very large, of order 5 times larger than the

condition number ofSp. We see that for a small observation error variance,

the J (x) formulation takes less iterations to converge thanJ (p) for the �rst

time, albeit not by a signi�cant amount.

3. The J (p) formulation is more sensitive thanJ (x) to assimilation window

length where the spatial domain is fully observed, shown in Experiment 3.

4. Another more general conclusion about wc4DVAR is that the variance of the

estimated model errors provided by the solutions of bothJ (p



of the model error variance by both algorithms was noticeably improved in

Experiment 3, with a longer assimilation window.

The aim is to gain a deeper theoretical understanding into the behaviour of both

the minimisation problems presented byJ (p) and J (x). In the next chapter

we bound the condition number of the Hessian ofJ (p) and analyse it more

rigorously.
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solution process of the sc4DVAR. The proof of this result is contained in Appendix

A.

In this chapter we present new theoretical bounds on the condition number of

Sp =

0

@
B � 1

0



The insight gained from the bounds are demonstrated through numerical

experiments on the condition number. We also further demonstrate the condition

number sensitivities obtained from the bounds by examining their e�ect on the

convergence rate of the model error estimation an preconditioned model error

estimation minimisation problems.

We now present the theoretical bounds.

5.1 Theoretical Results: Bounding the

Condition Number of Sp

The following result bounds the spectral condition number ofSp

Theorem 5.1.1 Let B0 2 RN � N and Q



and

� max (D� 1) + � min (L� T HT R� 1HL� 1) � � max (Sp)

� � max (D� 1) + � max (L� T HT R� 1HL� 1): (5.5)

We then take the upper bound of� max (Sp) and lower bound of� min (Sp) giving us

the following upper bound on the condition number,

� (Sp) �
� max (D� 1) + � max (L� T HT R� 1HL� 1)
� min (D� 1) + � min (L� T HT R� 1HL� 1)

: (5.6)

Similarly for the lower bound we take the lower bound of� max (Sp) and upper bound

of � min (Sp), which yields the following lower bound on the condition number,

� (Sp) �
� max (D� 1) + � min (L� T HT R�



the time invariant model error covariance matrix, for i = 1 ; :::; n, where CQ is a

symmetric, positive-de�nite circulant correlation matrix and � 2
q > 0 is the model

error variance. Assumeq < N observations are taken with the same error variance

� 2
o > 0 at each time interval such thatRi = R = � 2

oI q for i = 0 ; :::; n, where I q is

a q � q identity matrix. Assume that observations of the parameter are made at

the same grid points at each time interval such thatH T
i H i = H T H 2 RN � N , so

H T H is a diagonal matrix with unit entries at observed points and zeros otherwise.

Finally, we assume thatM i;i � 1 = M 2 RN � N for i = 1 ; ::; n is a circulant matrix,

and M i;i = I N . The following bounds are satis�ed by the condition number ofSp:

0

@
1 + q

N

min f � 2
b � min (CB );� 2

q � min (CQ )g
� 2

o
 min

1 + q
N

max f � 2
b � max (CB );� 2

q � max (CQ )g
� 2

o
 max

1

A � (D) � � (S0)a024�(D) 



With this in mind we choose a vector,Vk 2 RN (n+1) such that

Vk =

 vk
vk

...
vk

!

; (5.12)

where vk 2 RN is an arbitrary eigenvector of a circulant matrix. We apply the

Rayleigh quotient using (5.12) to obtain the lower bound ofSp. We begin by

considering the second term ofSp

1
� 2

o

V H
k [L� T HT HL� 1]Vk

V H
k Vk

; (5.13)

while deliberately omitting D for now.

The denominator of (5.13) yields

V H
k Vk = n + 1 ; (5.14)

since the eigenvectors of a circulant matrix are orthogonal, Theorem 3.37. The

computation in (5.13) requiresvk and vH
k to multiply every matrix block inside

L� T HT HL� 1. Each block multiplication yields the following:

vH
k (M j )T = vH

k
�� j

� (M ); (5.15)

(M j )vk = � j
� (M )vk ; (5.16)

where � j
� (M ) is some eigenvalue ofM and �� j

� (M ) is the corresponding complex

conjugate eigenvalue ofM . We write � � (M ) = � � for convenience.

Substituting (5.14), (5.15) and (5.16) into (5.13), we obtain the following series:

1
n + 1

2

4
nX

i =0

n� iX

j =0

( �� � ) j (� � ) j vH
k H T Hvk +

nX

i =1

n� iX

j =0

( �� � )( �� � ) j (� � ) j vH
k H T Hvk

+
nX

i =1

n� iX

j =0

(� � )( �� � ) j (� � ) j vH
k H T Hvk + � � � + � � � + ( �� � )nvH

k H T Hvk + ( � � )nvH
k H T Hvk

3

5 ;

(5.17)

where the �rst term in the geometric series (5.17) comes from the main diagonal

of (5.13). The second term of (5.17) is from the upper o�-diagonal block entries of

(5.13) and the third term is from the lower o�-diagonal block entries. This pattern
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continues until the �nal term in the bottom right hand corner of (5.13), which

coincides with the �nal term in (5.17).



We consider the Rayleigh quotient as in (5.13) but for the vectorVmax=min , since

the Rayleigh quotient ofD yields the respective extreme eigenvalues forVmax=min .



which bounds the largest eigenvalue. Similarly for the smallest eigenvalue,

� min (Sp) �
V H

min SpVmin

V H
min Vmin

� � min (D � 1) +
q
N

1
� 2

o
 max (5.27)

where max=min is as computed in (5.24) and (5.25)

 l =

8
>><

>>:

nP

k=0
j� l j2k if � l (D ) = � l (



As the ratio � b=� q approaches zero, or diverges away from 1, the condition number

of D and hence the condition number ofSp will grow. This means if the model

error variance were to be too small, or too large, in comparison to the background

error variance, the condition number ofSp will be large. This argument also applies

to the background error variance. Secondly, as the correlation length-scales in the

background and the model error covariance matrices grows, the condition number

of D and hence the condition number ofSp will also grow. The upper bound

in Theorem 5.1.2 also shows that as the observation accuracy (decreasing� o)

increases, then the upper bound will increase. The lower bound will also increase

as � o decreases, provided min <<  max is true. So both bounds suggest that the

condition number ofSp may grow as� o decreases.

We now use the 1D advection equation as described in Section 3.5.1 to derive more

speci�c bounds to investigate� (Sp) further.

5.1.1 The 1D Advection Equation

Theorem 5.1.3 In addition to the assumptions in Theorem 5.1.2, letM be matrix

(3.71), which is the advection equation discretised using the upwind scheme. Then

for Courant number � 2 [� 1; 0] we have the following bounds on� (Sp):

� (D)

0

@
1 + q

N

min f � 2
b � min (CB );� 2

q � min (CQ )g
� 2

o
 adv

min

1 + q
N

max f � 2
b � max (CB );� 2

q � max (CQ )g
� 2

o
 adv

max

1

A � � (Sp)

� � (D)

 

1 +
min

�
� 2

b� min (CB ); � 2
q� min (CQ)

	

� 2
o

(n + 1) 2

!

; (5.32)

where

 adv
min

8
><

>:

= 1
n

n � 1P

i =1

h
2

�
1� (1+2 � ) ( i +1)

1� (1+2 � )

�
� 1

i
�

h
1�j 1+2 � j2( n +1 � i )

1�j 1+2 � j2

i
if � min (D ) = � min (Q)

� 1�j 1+2 � j2( n +1)

1�j 1+2 � j2 if � min (D ) = � min (B0)

(5.33)

and

 adv
max =

8
<

:

n2

3 + 3
2n � 5

6 � 1
n if � max (D) = � max (Q)

(n + 1) if � max (D) = � max (B0)
: (5.34)
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Proof: We require results on the minimum and maximum eigenvalues ofM to

obtain bounds for� (Sp). We use similar methodology as in [41], where the author

obtained the extreme eigenvalues of a matrix similar to (3.71). SinceM is circulant

with entries as shown in (3.71), by Theorem 3.3.8 the eigenvalues take the following

form,

� m = 1 + � � �e � 2�im
N (5.35)

for m = 0 ; :::; N � 1 wherei =
p

� 1. We also have

j� m j2 = ( � m )( �� m ) = (1 + � )2 � 2� (1 + � ) cos(
2�m
N

) + � 2: (5.36)

Let f (m) = j� m j2 be a continuous function ofm 2 [0; N ). We can �nd the

minimum and maximum of this function by di�erentiation:

f 0(m) =2 � (1 + � )(
2�
N

) sin(
2�m
N

); (5.37)

f 00(m) =2 � (1 + � )(
2�
N

)2 cos(
2�m
N

): (5.38)

Now we see thatf 0(m) = 0 implies the extrema occur atm = 0 ; N
2 . It follows that

f 00(0) < 0 and f 00( N
2 ) > 0 for all permissible values of� 2 (� 1; 0). Therefore, for

N even, it is trivial to see that

� max (M ) = �





Computing (5.49) we �nd:

 adv
max =

1
n

 
n� 1X

i =1

2i (n + 1 � i ) +
n� 1X

i =1

(n + 1 � i )

!

=
1
n

 

2

"
n� 1X

i =1

i (n + 1) � i 2

#

+

"

(n + 1)( n � 1) �
n� 1X

i =1

i

#!

=
1
n

�
2

�
(n + 1)( n � 1)(n)

2
�

(n � 1)(n)(2n � 1)
6

�
+

�
(n + 1)( n � 1) �

(n � 1)(n)
2

��

=
n � 1

n

�
(n + 1)( n) �

n(2n � 1)
3

+ (
n
2

+ 1)
�

=
n � 1

n
(
n
6

(2n + 11) + 1)

=
n2

3
+

3
2

n �
5
6

�
1
n

: (5.50)

Therefore,

 adv
max =

8
<

:

n2

3 + 3
2n � 5

6 � 1
n if � max (D) = � max (Q)

(n + 1) if � max (D) = � max (B0)
: (5.51)

It remains to �nd  adv
min . For the case� min (D) =



by using the de�nition of the 2-norm and norm relationship in Theorem 3.3.6.

We now brie
y discuss the 2-norm of the observation operatorH 2 Rp(n+1) � N (n+1) .

The main assumption states that there are fewer observations than state space, so

from De�nition 3.3.4, we have

jjHjj 2 = sup
x 6=0

�
jx1j2 + jx3j2 + ::: + jxq(n+1) j2

jx1j2 + jx2j2 + ::: + jxN (n+1) j2

�
; (5.56)

wherex 2 RN (n+1) , such that

x =

 x1
x2

...
xN ( n +1)

!

: (5.57)

It is obvious that the numerator can never exceed the denominator becauseq < N .

To illustrate this, let us assume every other point in the state is observed, therefore

it is obvious that

jx1j2 + jx3j2 + ::: + jxq(n+1) j2

jx1j2 + jx2j2 + ::: + jxN (n+1) j2
� 1: (5.58)

We have assumed a particular instance, which adheres to the original assumption of

q < N . In general, the number of observations being less than the state means the

denominator in (5.58)can never exceedthe numerator. Therefore the supremum

of (5.58) is

jjHjj 2 = 1 : (5.59)

To calculate jjL� 1jj 2 we use the inequality

jjL� 1jj 2 � jj L� 1jj 1jjL� 1jj 1 ; (5.60)

while also noting that the in�nity-norm and 1-norm of L� 1 are equal, which can

be seen by quick inspection ofL� 1, (2.37). The matrix L� 1 can be written as a

power series such that,

L� 1 = I + M + M2 + ::: + Mn ; (5.61)

L� 1 =

0

@
I

I
...

I

1

A +

0

@

0
M 1 0

M 2 0
... ...

M n 0

1

A +

0

B
@

0
0 0

M 2M 1 0 0
M 3M 2 0 0

... ... ...
M n M n � 1 0 0

1

C
A +

::: +

 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M n :::M 1 0 0 0 0

!

: (5.62)
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information. We can see that the assimilation window length,n, has a quadratic

in
uence from the  adv
max expression in (5.34). The upper bound of Theorem 5.1.3

shows the quadratic in
uence of the assimilation window lengthn. Both the

upper and lower bounds suggest that the assimilation window length will have an

in
uence on the condition number ofSp.

This concludes the derivation of our bounds onSp. We now brie
y compare the

bounds on the condition number ofSp to the bounds on the condition number of

the sc4DVAR Hessian, before demonstrating the bounds numerically.

5.1.2 Comparison to Strong-Constraint 4DVAR

The bounds in Theorem 5.1.2 bear some similarities to the bounds derived on the

condition number of the Hessians of the sc4DVAR and 3DVAR problems as shown

in [41] (Theorem 6.1.2 and Theorem 7.1.2). The in
uence of the condition number

of B0 on the condition number of the sc4DVAR Hessian is similar to the in
uence

of the condition number of D on the condition number ofSp. The B0 matrix

was in
uenced only by the condition number of the background error covariance

matrix CB , whereasD is in
uenced by CB , CQ and the ratio of � b=� q. We further

illustrate this by taking a simpli�ed scenario as an example.

Assume the background and model errors are uncorrelated in space such that

D =

0

B
B
B
B
B
B
B
B
B
@

� 2
bI

� 2
qI

� 2
qI

. . .

� 2
qI

1

C
C
C
C
C
C
C
C
C
A

: (5.66)

We also assume that the background error variance is larger than the model error

variance, � b > � q. The background error variance is representative of the errors in

the previous assimilation window in its entirety, which normally consists of several

model time steps. The model error variance represents the errors in one model
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time step. It is intuitive to believe the error variance in one time step is less than

multiple model time steps. Allowing for more model time steps between error

corrections implies that the model error variance will grow such that� q ! � b.

The condition number ofD becomes

� (D ) =
�

� b

� q

� 2

: (5.67)

We now brie
y analyse the wc4DVAR bounds from Theorem 5.1.2 in light of these

additional arguments. We have

�
� b
� q

� 2
+ q

N

�
� b
� o

� 2
 min

1 + q
N

�
� b
� o

� 2
 max

� � (Sp) �
�

� b

� q

� 2

+
�

� b

� o

� 2

� max (L � T H T HL � 1); (5.68)

which can be compared directly to the sc4DVAR bounds in [41] (Theorem 7.1.2),

with the same assumptions:

1 + q
N

�
� b
� o

� 2

 min

1 + q
N

�
� b
� o

� 2

 max

� � (S) � 1 +
�

� b

� o

� 2

� max (Ĥ T Ĥ ); (5.69)

where S is the sc4DVAR �rst order Hessian and
 is the sc4DVAR equivalent

to  , (5.21). We see the added dimension of the background and model error

variance covariance matrix represented by the ratio� b
� q

playing a signi�cant role in

the conditioning of Sp. We also see the contribution of the maximum eigenvalue of

the termsL � T H T HL � 1 and Ĥ T Ĥ , which is linked to the length of the assimilation

window and observation operator.

We showed in Theorem (5.1.3) that� max (L � T H T HL � 1) can be approximated to

(n + 1) 2, where the author in [41] showed that� max (Ĥ T Ĥ ) for sc4DVAR reduces

to (n + 1). So the e�ect of the assimilation window on the bounds from sc4DVAR

to wc4DVAR is greater by an order of magnitude.

In this section we have demonstrated the inherent similarities between the

condition numbers ofSp and S. In the next section we demonstrate the sensitivities

shown by the bounds in the Theorems on the condition number ofSp.
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5.1.3 Numerical Results

We now demonstrate the bounds through numerical experiments. We also

highlight sensitivities of the condition number ofSp with respect to assimilation

parameters, which have been revealed by the theorems in Section 5.1.

We let M be the linear advection model as in (3.71), with a one-dimensional domain

of sizeN = 500 grid points and spatial intervals of � x = 0 :1. We use temporal

intervals of � t = 0 :1 and wave speeda = � 0:3. We let n
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Figure 5.1: � (Sp) (blue line), � (D ) (green line) and theoretical bounds (red-dotted line) as a
function of L (CB ). Model error correlation length-scaleL(CQ ) = � x=5.

Figure 5.1 shows the bounds from Theorem 5.1.2 with the condition numbers of

Sp and D. We see the dependence of� (Sp) on � (D), which rises as a result of the�e77 as a8dth-scale



Figure 5.2: � (Sp) (blue-surface) and bounds (red-mesh surface) as a function ofL (CB ) and
L(CQ ).

In Figure 5.2 we show that the increasing the model error correlation length-scale

does not a�ect the condition number as much as the increase in length-scale in the

B matrix. This is due to the Laplacian covariance matrix being better conditioned

than the SOAR covariance matrix in general, [41], Chapter 5. We see evidence of

this in this experiment: with correlation length-scales ofL (CB ) = L (CQ) = 2 :5� x,

the condition numbers of the SOAR and Laplacian matrices are� (CSOAR ) = 1973

and � (CLAP ) = 359.

Figures 5.1 and 5.2 demonstrate the following:

1. The sensitivity of the condition number of the HessianSp to the condition

number of the background and model error covariance matrixDCL to the condi439 1J -373.179 -21.6684141 -214141 Td [4159(in)-280(t4141JlTL4141ace)-2584141 Td [4159del)-851(error)-4141-405(s159)1(riance)-64141atrix



the correlation length-scales in the covariance matricesCB and CQ, which

in
uences the condition number ofSp.

3. The bounds accurately and closely estimate the true condition number when

varying the correlation length-scales ofCB and CQ in these experiments.

We now demonstrate the bounds and Hessian condition number sensitivities to the

error variance ratios.

5.1.3.2 Experiment 2: Error Variance Ratios

Figure 5.3: � (Sp) (blue line) and theoretical bounds (red-dotted line) as a function of ratio
� b=� q. L (



the condition number ofD increasing as the ratio of� b=� q tends to 0 and increases

from 1.
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Figure 5.4: � (Sp) (blue line) and theoretical bounds (red-dotted line) as a function of ratio
� q=� o. L (CB ) = L(CQ ) = 1� x. Green dotted line at the point � q=�b �

b=� bsholi7(wn34/83 inTJ/825 [(q)]T0(to)3361.64-270(an G
BT
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Sp increases.

2. As the ratio max=min
�

� 2
b� min (CB ); � 2

q� min (CQ)
	

=� 2
o ! 0; 1 the condition

number of Sp increases.

3. The bounds estimate the true condition number well when varying the

background and model� b=� q error variance ratios in these experiments. The

upper bound is also tight for the model and observation error variance ratio

whereas the lower bound is a poor estimate of the� q=� o ratio.

We now demonstrate the bounds and Hessian condition number sensitivities to the

length of the assimilation window.

5.1.3.3 Experiment 3: Assimilation Window Length

We now examine the e�ects of assimilation window length on the condition number

of Sp.

0 10 20

Figure 5.5: � (S



Figure 5.5 demonstrates the bounds in Theorem 5.1.3. The upper bound has the

term (n + 1) 2, which shows that the bound is quadratically in
uenced by the

assimilation window length. We see that the actual condition number ofSp does

increase quadratically as the assimilation window length increases, for example

doubling the window from 50 to 100 sees approximately 4 times the increase in

the condition number ofSp from � 500 to � 2000. The upper bound has similar

behaviour which can be seen from the shape of the graph but it is not exactly

quadratic, doubling the window from 50 to 100 increases the upper bound from

� 1000 to � 3500. The lower bound is uninformative.

5.1.4 Summary

We have obtained new general bounds on the condition number of the wc4DVAR

J (p) formulation. We then developed the bounds by making simple assumptions



length-scales of the background and model error covariance matrices since these

have a direct in
uence on � (D) and hence� (Sp). We have also shown for the

advection equation in Theorem 5.1.3, that the assimilation window length,n,

in
uences the condition number ofSp.

We now examine the preconditioned problem.

5.2 Theoretical Results: Bounding the

Condition Number of Ŝp

We recall the preconditionedSp Hessian as in Chapter 4, Section 2.3.3 equation

(2.60),

Ŝp = I + D1=2L� T HT R� 1HL� 1D1=2: (5.70)

The following result bounds the condition number of̂Sp,

Theorem 5.2.1 Let B0 2 RN � N and Qi 2 RN � N for i = 1 ; ::; n be our background

and static model error covariance matrices respectively. We assumeq observations

are taken such thatq < N with covariance Ri 2 Rq� q thus R 2 Rq(n+1) � q(n+1) .

Let H i = H 2 Rq� N for i = 0 ; ::; n, be the time invariant observation operator.

Finally, let M i;i � 1 = M 2 RN � N for i = 1 ; ::; n, represent the time invariant model

equations. Then the following bounds are satis�ed by the condition number of the

HessianŜp:

1 +
1

q(n + 1)

q(n+1)X

i;j =1

�
R� 1=2HL� 1DL� T HT R� 1=2

�
i;j

� � (Ŝp)

� 1 +
� max (D)
� min (R)

� max (L� T L� 1) (5.71)

whereR� 1=2 is the symmetric square root ofR� 1.

Proof: Let E = R� 1=2HL� 1D1=2. We remember that sinceH is not full rank,
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� min (ET E) = 0. Therefore

� (Ŝp) =
� max (Ŝp)
� min (Ŝp)

=
1 + � max (ET E)
1 + � min (ET E)

= 1 + � max (ET E) = � max (Ŝp); (5.72)

meaning the condition number of̂Sp



the condition number by applying the Rayleigh quotient toeSp using a unit vector

y 2 Rq(n+1) , such that,

y =
1

p
q(n + 1)

(1; 1; : : : ;1): (5.79)

The Rayleigh Quotient is bounded by Theorem 3.4.7, so it follows that

� (Ŝp) = � max (eS) � R eSp
(y); (5.80)

whereR eSp
(y) denotes the Rayleigh Quotient ofeSp using the vectory. Therefore

� (Ŝp) � R eSp
(y) = yT eSpy; (5.81)

= 1 +
1

q(n + 1)

q(n+1)X

i;j =1

�
R� 1=



H i H T
i = I q and M i;i � 1 2 RN � N denote the observation and model operators

respectively andM i;i = I N . We then have the following bounds on the condition

number of Ŝp:

1 +
1

q(n + 1)

0

@� 2
b

� 2
o

q(n+1)X

i;j =1

(HeCB HT ) i;j +
� 2

q

� 2
o

q(n+1)X

i;j =1

(HeCQHT ) i;j

1

A � � (Ŝp)

� 1 +
max

�
� 2

b� max (CB ); � 2
q� max (CQ)

	

� 2
o

 
nX

k=0

jjM jj k
1

!  
nX

k=0

jjM jj k
1

!

(5.83)

where

eCB =

0

B
B
B
@

CB CB M T
1;0 ::: CB M T

n; 0

M 1;0CB M 1;0CB M T
1;0 ::: M 1;0CB M T

n; 0

M 2CB M T
2

...
...

. . .
...

M n; 0CB M n; 0CB M T
1;0 ::: M n; 0CB M T

n; 0

1

C
C
C
A

; (5.84)

eCQ =

0

B
B
B
B
B
@

0 0 ::: 0
0 CQ ::: CQ M T

n � 1;0

... M 1;0CQ M T
1;0+ CQ

.

.



For the upper bound we know

� max (D) = max
�

� 2
b� max (CB ); � 2

q� max (CQ)
	

; (5.88)

and

� min (R) =



3. If the size of the entries in both the background and model error evolved

covariance matrices are large and positive, this will also increase the lower

bound.

4. Longer assimilation windows will increase the summation terms in the upper

bound. This increase will be more noticeable if the one and in�nity norms

of M are larger than one.

We now derive bounds in the case where the model is a circulant matrix to obtain

more informative bounds.



whereVmax 2 RN (n+1) is a vector of eigenvectors which correspond to the largest

eigenvalues ofB and Q such that

Vmax =

0

@
� max
� max

...
� max

1

A ; (5.97)

where � max and � max refer to the eigenvector corresponding to the largest

eigenvalue ofB and Q respectively. We now compute

V T
max [

1
� 2

o
D� 1=2L� T HT HL� 1D� 1=2]Vmax ; (5.98)

in segments. We refer to the blocks ofD� 1=2L� T HT HL� 1D� 1=2 as Ai;j , where i

refers to the block row andj refers to the block column. We recall the structure

of L� T HT HL� 1,
0

B
B
B
B
B
B
B
B
@

nP

i =0
(HM i )T HM i

n � 1P

i =0
(HM i +1 )T HM i

n � 2P

i =0
(HM i +2 )T HM i ::: (HM n )T



on either side of the observation and model operator matrices. We collate the

terms emerging from the computation of (5.98) by computing the �rst block row

and �rst block column together while omitting A1;1 computed in (5.101). The �rst

block row and column computation is as follows

� T
max [Q1=2

n� 1X

i =0

(HM i )T HM i +1 B 1=2]� max = � k
q
N

p
� max (B )� max (Q)

n� 1X

i =0

j� k j2i ;

(5.104)

� T
max [B 1=2

n� 1X

i =0

(HM i +1 )T HM i Q1=2]� max = �� k
q
N

p
� max (B )� max (Q)

n� 1X

i =0

j� k j2i ;

(5.105)

where (5.104) refers to blockA1;2 and (5.105) refers to blockA2;1. To represent

the emerging summation arising from the �rst row and column blocks,
n � max�

N

p

� max (
p



We write the summation that encompasses the main block diagonal,
n+1P

i;j =2
Ai;j for i=j while excluding the �rst block, as

q
N

� 2
q� max (CQ)

nX

i =1

n� iX

j =0

j� k j2j : (5.110)

For the remaining blocks, we examine the sub and super diagonals that sequentially

emanate from the main diagonal, which exclude the �rst block row and column

since they have been computed above,

A1;1 A1;2 A1;3 : : : A1;n+1

A2;1 A2;2 A3;2 : : : A2;n+1

A3;1 A3;2 A3;3 : : : A3;n+1

... . . . . . . . . . ...

An+1 ;1 : : : : : : : : : An+1 ;n+1

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

.

A geometric progression inM and M T manifests itself, which when computing

the Rayleigh quotient presents a geometric progression in the eigenvalues ofM ,

similar to that in Section 5.1 equation (5.17). This can be seen in the �rst terms

of the super and sub diagonals (5.108), (5.109) respectively. Summing together



computation (5.98) is equal to (n + 1), we have

R eSp
(Vmax ) =

q
N (n + 1)

1
� 2

o

�
� 2

b� max (CB )
 k + � 2
q� max (CQ)! k + � b� q

q
� max (CB )� max (CQ)� k

�
;

(5.113)

which by the bounds of the Rayleigh quotient, Theorem 3.4.7 gives,

R eSp
(Vmax ) � 1 +

q
N (n + 1)

1
� 2

o
(� 2

b� max (CB )
 min + � 2
q� max (CQ)! min

+ � b� q

q
� max (CB )� max (CQ)� min ); (5.114)

establishing the lower bound.

For the upper bound we recognise that for a circulant matrixC 2 RN � N as in

De�nition (3.3.7), the following is always true:

jjCjj 1 = jjCjj 1: (5.115)

The upper bound in Theorem (5.2.2) becomes

� (Ŝp) � 1 +
max

�
� 2

b� max (CB ); � 2
q� max (CQ)

	

� 2
o

 
nX

k=0

jjM jj k
1

! 2

; (5.116)

which completes the proof, as required.�

In both the upper and lower bounds the contribution of the eigenvalues and norm

of M are in
uential. Thus the e�ect of the assimilation window length still exists in

both bounds, and the lower bound has a further dependency on the eigenvalues of

M . The lower bound operators
 , ! and  all depend on the assimilation window

length and the size of the smallest eigenvalue ofM , all multiplied by either the

largest eigenvalue of the background or model error covariance matrices. The

upper bound is much clearer in that it quadratically depends on the in�nity-norm

of M . Therefore the only de�nitive message we can deduce here is that bounds

suggest that the assimilation window length will increase the condition number.

The bounds also suggest that the condition number ofD no longer a�ects � (Sp).

We instead have the ratio
max f � 2

b � max (CB );� 2
q � max (CQ )g

� 2
o

now in
uencing both bounds.
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In a bid to extract more meaningful information we now deduce bounds using the

1D advection model.

Theorem 5.2.4 In addition to the assumptions in Theorem 5.2.2, we assume the

model operatorM i;i � 1 2 RN � N represents the matrix presented by the discretisation

of the advection equation using the upwind scheme, (3.71) withM i;i = I . Then

for Courant number � 2 (� 1; 0) the following bounds on the condition number of

Ŝp therefore hold:

1 +
q

N (n + 1)
1
� 2

o

�
� 2

b � max (CB )
 adv
min + � 2

q � max (CQ )! adv
min + � b� q

q
� max (CB )� max (CQ )� adv

min

�

� � (Ŝp) � 1 +
max

�
� 2

b � max (CB ); � 2
q � max (CQ )

	

� 2
o

(n + 1) 2 (5.117)

where


 adv
min =

1 � j 1 + 2� j2(n+1)

1 � j 1 + 2� j2
; (5.118)

� adv
min =

nX

i 9738 Tf 5.89.962 0 Td [(�)]TJ.240422 11.50+1�i32.883 0 Td e hold:



We substitute � min (M ) = 1 + 2 � , into the lower bound expression presented in

Theorem 5.2.3 and compute the values of
 min , � min and ! min :


 adv
min =

nX

i =0

j1 + 2� j2i =
1 � j 1 + 2� j2(n+1)

1 � j 1 + 2� j2
; (5.125)

and

� adv
min =

nX

i =1

n� iX

j =0

j1 + 2� j2j :(2(1 + 2� ) i ) =
nX

i =1

(2(1 + 2� ) i ):
�

1 � j 1 + 2� j2(n� i +1)

1 � j 1 + 2� j2

�
;

(5.126)

and

! adv
min =

2X

l=1

nX

i = k

n� iX

j =0

j1 + 2� j2j :(2Re(1 + 2 � )(l � 1)i � 1); (5.127)

=
nX

i =1

n� iX

j =0

j1 + 2� j2j +
nX

i =2

n� iX

j =0

j1 + 2� j2j :(2(1 + 2� ) i � 1);
nX:
� 1 + 2�

j

2(n �



5.2.1 Numerical Results

The parameter settings for the experiments in this section are identical to the



(a) L (CQ ) = � x=2, while L (CB ) varies. (b) L (CB ) = � x=2, while L (CQ ) varies.

(c) L (CB ) and L (CQ ) varying.

Figure 5.6: Graph (a) and (b) � (Ŝp) (black line) and theoretical bounds (red dotted lines)�



Figure 5.1. We also see that the bounds for� (Ŝp) are a good estimate of the

condition number.

5.2.1.2 Experiment 2: Assimilation Window Length and Observation

Density

We now examine the e�ects of varying observation density and assimilation window

length on the condition number ofŜp.

(a)

Figure 5.7: � (Ŝp) (blue surface) and theoretical bounds (red-mesh surfaces) with assimilation
window length, n, and number of spatial observations,q.

Figure 5.7 shows that the condition number of̂Sp grows as the assimilation window

length increases and as the number of spatial observations at every assimilation

step is increased. This is not dissimilar from the unpreconditioned problem

as shown in Section 5.1.3, Figure 5.5. The bounds in Theorem 5.2.3, show a
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dependence on the assimilation window length, the upper bound shows a potential

quadratic in
uence on the assimilation window length, which becomes much clearer

in the upper bound of Theorem 5.2.4. Examining Figure 5.7 further, we see a

quadratic increase of the actual condition number of� (Ŝp) for example with 500

observed points atn = 50, � (Ŝp) = 2026, and at n = 100 � (Ŝp) = 8056.

In this section we have demonstrated the bounds derived in Section 5.2 of the

preconditioned Hessian̂Sp.

5.2.2 Summary

We have shown through numerical experiments that the original exhibited

sensitivity of the unconditioned HessianSp to D has been greatly reduced. The

absence of� (D) can be seen in Theorems 5.2.1, 5.2.2 and 5.2.3 when compared to

the bounds derived for the unconditioned Hessian in Section 5.1. The numerical

experiments in Figure 5.6 compared to Figure 5.1 also con�rm the alleviation of

the sensitivity of � (Sp) to � (D), since the rise in correlation length-scale increases

� (D) (shown in Figure 5.1).

The preconditioner chosen in this thesis does not address any ill-conditioning

which could arise from the second term ofSp. We see that Sp and Ŝp both

exhibit sensitivities to the length of the assimilation window and the spatial

observation density through the theory (Theorems 5.2.2 and 5.1.2) and in Figures

5.7 and Figure 5.5 in Section 5.1.3. This is an inherent trait ofSp as well as the

preconditioned Hessian̂Sp.

We also notice in the experiments that the lower bound is usually poorer than the

upper bound. The Rayleigh quotient was used to obtain the lower bound, while

the Courant Fischer theorem (Theorem 3.4.2) was used to obtain the upper bound.

Although the Rayleigh quotient yields expressions that have aided in our analysis,

it has proven to be a poorer estimator than the Courant Fisher theorem.
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We now show results of the e�ect of the condition number sensitivities found in

this chapter on the minimisation ofJ (p) and its preconditioned counter-part.

5.3 Convergence Results: Model Error

Formulation vs Preconditioned Model Error

formulation

We begin by designing numerical experiments for both the unpreconditioned

problem J (p) and the preconditioned problem Ĵ (� z). We perform data

assimilation experiments which focus on the minimisation problemsJ (p) and

Ĵ (� z), rather than experiments on the Hessian themselves. We now discuss the

experimental design for our experiments.

5.3.1 Experimental Design



of � = 10� 10 throughout this section. The solution relative errors is calculated in

the same way as shown in Chapter 4 Section 4.1.6.

5.3.2 Experimental Results 1: Correlation Length-Scales

We now examine the e�ect of varying correlation length-scales of the background



the solution accuracies are not e�ected since we are solving to the same solution

accuracy.

We can conclude that as the condition number ofD increases, the condition

numbers ofSp and Ŝp and the number of iterations to minimiseJ (p) and Ĵ (� z)

also increase respectively. The preconditioned Hessian condition number increases

at a much reduced rate and the number of iterations of the preconditioned problem

barely increase at all.

5.3.3 Experimental Results 2: Assimilation Window

Length

We now show the e�ect of the length of the assimilation window on the

minimisation problem. From our results on the condition number both

theoretically and numerically, we know that the length of the assimilation window

increases the condition number ofSp and Ŝp. We also expect that this will increase

the number of iterations required for convergence.

The experiment parameters are identical to the previous experiment withL



We see from Table 5.2 that as the assimilation window length increases so do

the number of iterations to minimise J (p) and Ĵ (� z). We also see that the

numerical condition numbers of bothSp and Ŝp increase. The rate of increases in

the condition numbers ofSp and Ŝp di�er in that Sp increases much more rapidly,



numerical experiments using the 1D advection equation. Through the bounds, we

demonstrated the following sensitivities both theoretically and numerically:

1. Error variance ratios.

2. Correlation length-scales.

3. Assimilation window length.



problem Ĵ (� z) is no longer sensitive to the increase in correlation length-scale of

the matrices insideD, and hence the condition number ofD. The convergence rate

is much improved for the preconditioned problem̂J (� z) over the original problem

J (p). We also showed that the condition number of the preconditioned problem

is still sensitive to the length of the assimilation window and spatial observation

density, which in turn was shown to a�ect the number of iterations required to

converge.

This concludes the analysis of the Hessian condition number and convergence

rates of the wc4DVAR J (p) formulation and its preconditioned counter-part

complement. It is important to realise that these results are illustrative examples

of the behaviour we expected to see from the theory we have derived. We now

consider the alternative formulationJ (x), (2.33).
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Chapter 6

Conditioning of the State

Formulation: J (x)

The previous chapter was dedicated to the conditioning of the HessianSp. We

bounded the condition number ofSp and uncovered the parameters exhibiting

the largest sensitivities with respect to the Hessian condition number. We found

the HessianSp to be sensitive to theD matrix, containing the background and

model error correlations. We then preconditioned the Hessian using the symmetric

square root ofD which improved the condition number sensitivity characteristics

with respect to the condition number ofD. We then demonstrated the sensitivities

obtained from the bounds through numerical experiments on the condition number.

We further demonstrated the e�ect of some of these sensitivities on the number of

iterations required for convergence.
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In this chapter we bound the condition number of

Sx =

0

B
B
B
B
B
B
B
@

B � 1
0 + M T

1 Q � 1
1 M 1 � M T

1 Q � 1
1

� Q � 1
1 M 1 Q � 1

1 + M T
2 Q � 1

2 M 2 � M T
2 Q � 1

2

... ... ...
...

� Q � 1
n � 1M n � 1 Q � 1

n � 1+ M T
n Q � 1

n M n � M T
n Q � 1

n

� Q � 1
n M n Q � 1

n

1

C
C
C
C
C
C
C
A

+

0

B
@

H T
0 R � 1

0 H 0

H T
1 R � 1

1 H 1

...
H T

n R � 1
n H n

1

C
A : (6.1)

Through bounding the condition number of Sx we uncover the parameter

sensitivities and demonstrate these through numerical experiments on the

condition number. We then show that these sensitivities can also e�ect the

minimisation of J (x) by examining their e�ect on the number of iterations required

for convergence and solution accuracy.

We begin by deriving new bounds on the condition number ofSx .

6.1 Theoretical Results: Bounding the

Condition Number of Sx

The following theorem27(accura)1(-375(326(theorem27(9701 Tf  Tf 199.203 -2.53 1.143.317 -46.367 Td [(The)-326(follo)27(wing)-326(thel552 Tf 22.443 d [(S)]TJ/F33 7.33 7.9701 Tf 7.472 -1.793 Td [(x)]TJ/F331.9701f 5.265 1.794 Td [(.)]TJ
0 g 0 G
/F22 17.2154 Tf -334.387 -66.335 Td [(6.1)]TJ
0 g , G
 [-1125(Theoreti2 Td [(@)]TJ/3.88776 e� Tf 5.75T.143.317  -2g)-)-1525(the)]TJ 3349ti2 Td [(@)]9Tf 0 Tf 4.553L)50(et -1.793 Td [(x)]TJ/F15 37 Tf 4.553DTd [(()]TJ/F22 11ica683ect)-223(.)]TJ 440)]TJ/F22 11i59776 Tf 5.756 0 Td [3M)]TJ/F34 5.96se)ult 6.957 -NTd [(M)]TJ/F34 5.975 1.9 7.098 0 Td [(�d [(�)]TJ/F.2]TJ0[(C)]TJ 0 -7.6]TJ/F34 5.975hes3ect)-223+the Td [(M)]TJ/F34 5�M



Proof: We begin by bounding � min (Sx ) and � max (Sx ) using Theorem 3.4.2,

yielding

� min (LT D� 1L) + � min (HT R� 1H) � � min (Sx )

� � min (LT D� 1L) + � max (HT R� 1H� 1);

(6.3)

and

� max (LT D� 1L) + � min (HT R� 1H) �



which shows the in
uence of� (LT D� 1L), instead of just � (D) when compared to

Theorem 5.1.1. We also see that as� max (HT R� 1H) ! 0 both bounds tend to the

condition number ofLT D� 1L. Therefore the bounds in Theorem 5.1.1 show that

the condition number ofSx



where � 2 [� min (Sx ); � max (Sx )] and Sx (i;j ) refers to the block matrix on the i th

block row and j th block column. The left hand side of (6.10) forSx yields

jj (Sx (i;i ) � �I )� 1jj � 1
2 =

q



We know the eigenvalues ofSx will lie on the positive real line since it is positive

de�nite. Using (6.16) and recalling that Sx is block tri-diagonal, we have the

following Ger�sgorin circles:

j� (1;1)
1;:::;N � � j � jj Sx (1;2) jj 2; (6.18)

j� (2;2)
1;:::;N � � j � jj Sx (2;1) jj 2 + jjSx (2;3) jj 2; (6.19)

...

j� (n;n )
1;:::;N � � j � jj Sx (n;n � 1) jj 2 + jjSx (n;n +1) jj 2; (6.20)

j� (n+1 ;n+1)
1;:::;N � � j � jj Sx (n+1 ;n) jj 2; (6.21)

all or some of whichcould contain a certain number of eigenvalues ofSx



eigendecomposition structure as in Theorem 3.3.10,

jjSx (1;2) jj 2 = jj � M T Q� 1jj 2 = j � � � 2
q j:jjM T C � 1

Q jj 2;

= � � 2
q jjF � H

M � � 1
CQ

F H jj 2;

= � � 2
q

r

� max

�
(F � H

M � � 1
CQ

F H )H (F � H
M � � 1

CQ
F H )

�
;

= � � 2
q

q
j� max (C � 1

Q )j2j� max (M )j2;

= � � 2
q j� max (C � 1

Q )jj � max (M )j; (6.25)

where � M denotes the diagonal matrix containing the eigenvalues ofM . We

observe that the blocksSx (1;1) and Sx (n+1 ;n+1) will yield the same term on the

right-hand side of the block Ger�sgorin theorem. The blocksSx (i;i ) for i = 2 ; :::; n

will yield a term that is exactly twice as large.

The eigenvalue� max (Sx ) is bounded above by the edge of the Ger�sgorin circle

furthest from the origin on the positive real line. So the quantity we are interested

in for the upper bound is

� max (Sx ) � max

8
>><

>>:
jj (Sx (i;i ) � �I )� 1jj � 1

2 +
nX

i 6= j
6= j;2);2) �

jj(S<

<

>>i;i ) � �I ) 1jj � 1
2 +

nXi;i �I ) j i;i> max





and
nX

i =2

yH
i

�
Q� 1 + M T Q� 1M + H T R� 1H

�
yi

= ( n � 1)
�

� max (Q� 1) + � b(M T Q� 1M ) + � � 2
o

q
N

�
; (6.37)

and �nally

yH
n+1

�
Q� 1 + H T R� 1H

�
yn+1 = � max (Q� 1) + � � 2

o
q
N

; (6.38)

where � a; � b 2 R are some arbitrary eigenvalues ofM T Q� 1M . Therefore,

f 1 = � max (B � 1) + � a(M T Q� 1M ) + � max (Q� 1) + 2 � � 2
o

q
N

+ ( n � 1)
�

� max (Q� 1) + � b(M T Q� 1M ) + � � 2
o

q
N

�
: (6.39)

We now computef 2. Notice that due to our choice of~y, the �rst constituent of y,

namely y1 is the only vector that is di�erent to the other yi for i = 2 ; :::; n + 1, so

the �rst term in the sum f 2 is

yH
2 (� Q� 1M )y1 = 0 ; (6.40)

since we chose the vectors iny to be orthonormal. The remaining constituent

vectors ofy are all identical, and will therefore yield non-zero terms,

f 2 =
nX

i =2

yH
i +1 (� Q� 1M )yi = �

nX

i =2

� �� max (Q� 1)� c(M )
�
yH

i +1 yi ;

= � (n � 1)(� max (Q� 1)� c(M )) ; (6.41)

where � c(M ) 2 C is some arbitrary eigenvalue ofM and �� max (Q� 1) = � max (Q� 1)

sinceQ is a symmetric positive-de�nite matrix. Similarly for f 3, we have

f 3 =
nX

i =2

yH
i +1 (� M T Q� 1)yi = � (n � 1)(� max (Q� 1) �� c(M )) ; (6.42)

which when combined withf 2 gives us

f 2 + f 3 = � 2(n � 1)� max (Q� 1)Re(� c(M )) ; (6.43)

whereRe(� c(M )) denotes the real part of� c(M ) 2 C. Combining f 1, f 2 and f 3,

we have the following expression for the Rayleigh quotient (6.33),

R Sx (~y) =
1

n + 1

h
(n � 1)

�
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To obtain a bound on� max (Sx ) we recall the bounds of the Rayleigh quotient from

Theorem 3.4.7,

� max (Sx ) � 1
n+1

�
(n � 1)

�
� max (Q� 1)(1 � 2Re(� c(M ))) + � b(M T Q� 1M ) + � � 2
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�

+ 2 � max (C � 1
Q )Re(� min (M )) +

� 2
q

� 2
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� max (C � 1
B )

�
: (6.45)

We also do a similar calculation for� min (Sx ) by choosing~y in a similar fashion

to (6.32). So y i 2 RN for each i = 1; :::; n + 1 is chosen such thaty1 is the

orthonormal eigenvector corresponding to� min (B � 1) and y i for i = 2; :::; n + 1 is

the orthonormal eigenvector corresponding to� min (Q� 1). This gives us

� min (Sx ) �
1
� 2

o

q
N

+
1
� 2

q

1
n + 1

�
n

�
� min (C � 1

Q ) + � max (M T C � 1
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�

+ 2 � min (C � 1
Q )Re(� max (M )) +

� 2
q

� 2
b

� min (C � 1
B )

�
: (6.46)

Combining the bounds on the lowest and largest eigenvalues ofSx , we divide (6.45)

by (6.46) to obtain the lower bound on the spectral condition number ofSx

� (Sx ) �
� 2

q
� 2

o

q( n +1)
N + n
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� 2
q

� 2
b

� min (C � 1
B )

;

(6.47)

which completes the proof.�

The bounds obtained here are quite complex and require analysis before any

de�nitive conclusions can be drawn about the nature of the sensitivities of the

condition number of Sx . We now analyse theSx matrix and condition number

bounds further and discuss interpretations of the bounds.

6.2 Discussion

We begin by highlighting some simple points by inspectingSx under simpli�ed

assumptions. We make simplistic assumptions in addition to the assumptions
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made in Theorem 6.1.2:M = I N , B = � 2
bI N , Q = � 2

qI N , R = � 2
oI N and HH T = I q,

thus

Sx =
1
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C
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Examining (6.48) we can clearly see the parameters governing both the �rst and

second term of the Hessian. The �rst term depends on the ratio of� b=� q, arising

from D. This is di�erent from Sp since the �rst term of Sp is D� 1 and the bounds



The lower bound in Theorem 6.1.2 shows that� 2
o is tied to the ratios � q=� o and

� b=� o. We also see that changes in�
2
q

� 2
o

will not a�ect the overall size of the lower

bound, since it is present in both the numerator and denominator of the lower

bound with identical coe�cients. Whereas if � 2
q

� 2
b

changes then the bound could

increase ifCB is ill-conditioned, which is highly likely in an operational NWP

context.

We now turn our attention to the upper bound of Theorem 6.1.2, where we have

used a novel approach in an attempt to uncover the condition number sensitivities

of Sx . We see three separate things here:

1. the model error variance� 2
q;

2. the largest eigenvalue of the main diagonal blocks ofSx ;

3. the denominator of the upper bound, the minimum eigenvalue ofL T D � 1L.

We see that as� q ! 1 the upper bound will increase since� max
�
Sx (i;i )

�
will

increase. We also see that as� q ! 0, the upper bound will increase because

of the term 2� � 2
q � max (C � 1

Q )� max (M ). Therefore the upper bound shows that the

condition number ofSx will �

qx



We now examine the eigenvalue spectrum ofL T D � 1L to understand the impact

of � min (L T D � 1L) on the upper-bound. Note that

L T D � 1L =

0

B
B
B
B
@

B 0+ M T
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:

(6.51)

In addition to the assumptions at the beginning of this section, we assume� o = 1

and let � b > � q since it is intuitive that the variance of the errors in the previous

forecast will be larger than the variance of the model errors in a single time step.

Therefore,

L T D � 1L = � � 2
q

0

B
@

((
� q
� b

)2+1) I � I

� I 2I � I
... ... ...

� I 2I IL
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wherev 2 Rn is an eigenvector such that

v =

 v1
v2

...
vn +1

!

; (6.56)

with corresponding eigenvalue� . We can rewrite the eigenvalue equation as a

recurrence relation

� vk� 1 + 2vk � vk+1 = �v k ; (6.57)

where

v0 = 0 ; (6.58)

vn+2 = vn+1 : (6.59)

We introduce the appropriate auxiliary equation

x2 � (2 � � )x + 1 = 0 ; (6.60)



Using boundary condition (6.59) on (6.66) yields

(xn+1
1 � xn+1

2 )A = ( xn+2
1 � xn+2

2 )A; (6.67)

which, with some manipulation becomes,

(1 � x1)xn+1
1 = xn+1

2 (1 � x2); (6.68)

we then substitute (6.63) into the right hand side of (6.68) obtaining,

(1 � x1)xn+1
1 = xn+1

2 (1 �
1



Since the squared sine function is bounded between 0 and 1, the eigenvalues� k(P )

are bounded between 0 and 4 as the assimilation window length,n, grows. The

extreme eigenvalues tend to their limits (0 and 4) at a rate of 4=n2. The possibility

of a 0 eigenvalue as the assimilation window grows implies that� (P ) ! 1 as

n grows. The analysis in this simpli�ed scenario shows that a major source of

ill-conditioning of Sx can arise from the smallest eigenvalue of theLT D� 1L term

as the assimilation window length,n, grows.

We now make the link between the sensitivity of� min (LT D� 1L) and the previous

analysis in (6.49). If the number of observations were to equal the number of

states, the dependence of the condition number ofSx on � (LT D� 1L) term will

no longer be an issue. This is because the second term ofSx , HT R� 1H, will be

full rank and the condition number ofSx will not be vulnerable to the minimum

eigenvalue ofLT D� 1L, since the lowest eigenvalue ofSx will be bounded by � � 2
o .

This also implies that if there were a full set of observations, long assimilation

windows will not a�ect the conditioning of Sx , since the minimum eigenvalue of

LT D� 1L is no longer an issue.

We now demonstrate the bounds and verify sensitivities of the condition number

of Sx discussed here.

6.3 Numerical Results

The aim of this section is to numerically demonstrate the sensitivities of the

condition number ofSx . We organise this section as follows.

In the �rst part of this section we demonstrate the uses of the Ger�sgorin circle

theorem both in scalar and block forms for estimating the condition number ofSx ,

since this was used to obtain the upper bound in Theorem 6.1.2.

The second part is solely dedicated to the demonstration of the bounds on the

condition number ofSx , and the sensitivities obtained from the theoretical analysis

160



in the previous sections. We demonstrate the following sensitivities of the condition

number of Sx , which were obtained from the theory in this chapter:

1. the model error variance� 2
q;

2. correlation length-scales;

3. the length of the assimilation window with the number of spatial observations

per assimilation step.



6.3.2 Experiment 1: Ger�sgorin’s Circles



We note that we could not utilise either of the Ger�sgorin circle theorems for the

lower bound, sinceSx is positive de�nite, and the lower bounds shown in Figures

6.1 and 6.2 are negative. The condition number is relatively high due to the high

correlation length-scale for the model error covariance matrix. This does not hinder

the Ger�sgorin theorem from estimating the whereabouts of the eigenvalues. We

can see from Figures 6.1 and 6.2 that the block Ger�sgorin circle theorem is at least

as good as the Ger�sgorin circle theorem and that it gives a far better indication

as to the whereabouts of the eigenvalues ofSx in this particular case. The same is

also observed in [23], where the authors showed the block analogue of Ger�sgorin’s

theorem to be at least as good as the scalar Ger�sgorin circle theorem in general.

We also observe� max (Sx ) = 1 :956� 106 and that the upper bound estimated by

the block Ger�sgorin circle theorem is 1:976� 106 compared with the upper bound

scalar Ger�sgorin estimate of 2:218� 106. We conclude that both bounds are good

and the block Ger�sgorin circle theorem provides a tighter upper bound in this

particular situation.

We now demonstrate the e�ects of the model error variance� 2
q on the condition

number of Sx

6.3.3 Experiment 2: Model Error Variance

The experiment parameters remain as stated in Section 6.3.1 with the exception

of the following. The model error covariance matrix correlation length-scale is

reduced toL (CQ) = � x = 0 :01 and the observation standard deviation� o = 0 :5.

We also reduce the number of equally spaced spatial grid-points observed to 10

out of the N = 50 grid-points per assimilation step. These settings are arbitrarily

chosen to ensure that the only source of ill-conditioning will be from� q.
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(a) � q varying. (b) � q=� o ratio.

(c) � b=� q ratio.

Figure 6.3: Log-scale graphs of� (Sx ) (black line) with bounds from Theorem 6.1.1 (green
dotted lines) and Theorem 6.1.2 (red dotted lines) as a function of� q (a), � q=� o (b) and � b=� q

(c).

As the parameter � q varies, so do the ratios� b=� q and � q=� o, prompting us to

study the behaviour of the condition number ofSx with respect to these ratios

as well as� q. Figure 6.3 demonstrates that the upper bounds of both Theorems

6.1.1 and 6.1.2 resemble the behaviour of the condition number ofSx , whereas the



Sx . We see a minimum condition number value for� b=� q = � q=� o = 2 or � q = 0 :5,

but the condition number of Sx continues to rise as� q ! 0; 1 . This con�rms the

sensitivity of the condition number ofSx to the model error variance, which we

obtained from the bounds in Theorem 6.1.1.

We have demonstrated the bounds and con�rmed the sensitivity ofSx to � q.

6.3.4 Experiment 3: Correlation Length-Scales



Figure 6.5: Log-scale surface plot of� (Sx ) (blue surface) and lower bound (red mesh).
Horizontal axes are the background error correlation length-scaleL(CB ) and model error
correlation length-scaleL(CQ ). Vertical axis measures condition number on a log scale.

Figures 6.4 and 6.5 demonstrate the sensitivity of the condition number ofSx to

correlation length-scales in the background and model error covariance matrices.

We see the upper bound is a good estimate of the condition number ofSx in Figure

6.4, while the lower bound is uninformative. However, Figure 6.5 shows that the

behaviour of the lower bound is similar to the behaviour of the condition number

of Sx on a log-scale.

Comparing this to the behaviour shown in the previous chapter [Section 5.1.3,

Figure 5.2], the condition number ofSx is far more sensitive than� (Sp) to changes

in the correlation length-scales ofCB and CQ and hence� (D), rising to a condition

number range of 5000� 7000 forL
and



We have demonstrated the sensitivity of the condition number ofSx to correlation

length-scales in the background and model error covariance matrices, along with

the bounds. We now investigate the sensitivity of the condition number ofSx to

observation density and assimilation window length.

6.3.5



Figure 6.6: Surface plot of � (Sx ). Vertical axis measures condition number. The non-vertical
axes measure spatial observation densityq and assimilation window length, n.

Figure 6.6 demonstrates the sensitivity of the condition number ofSx to increasing

assimilation window length as the number of spatial observations per assimilation

step decreases belowq = N=5. Interestingly, we see that the rise in assimilation

window length has no e�ect on the condition number ofSx if there are a good

number of spatial observations, more thanq = N=2. This con�rms our �ndings

in the discussion in Section 6.2, that as the termHT R� 1H approaches full rank,

the condition number of Sx becomes less dependent on the condition number of

LT D� 1L.

168





6.4 Convergence Results



� q � q=� o � b=� q No. of iterations Condition number Solution relative error

0.11 0.11 9.09 220 4824 0.29

0.21 0.21 4.76 139 1351 0.30

0.31 0.31 3.23 115 641 0.29

0.41 0.41 2.44 98 385 0.28

1.81 1.81 0.55 101 367 0.23

2.81 2.81 0.36 126 882 0.25

3.81 3.81 0.26 151 1619 0.25

5.81 5.81 0.17 183 3762 0.29

7.81 7.81 0.13 208 6796 0.28

Table 6.1: Standard deviation ratios, number of iterations to convergence and the solution
relative error of J (x), and the condition number of Sx . Standard deviations � b = � o = 1.

We see here that when� q tends to zero or increases from 2, the condition number

of Sx , the number of iterations to convergence and the solution relative error all

increase. The other ratios involving� q are the underlying reason for the changes

seen in the minimisation characteristics in Table (6.1). As the ratios move away

from � 2, the condition number ofSx , number of iterations and relative solution

error all increase.

6.4.2 Experiment 2: Correlation Length-Scales

We now investigate to the sensitivity of the minimisation problem to correlation

length-scales. We preserve the settings from the previous experiment, Section

6.4.1 and we vary the correlation length-scales ofCB and CQ, remembering that

� (CLAP ) is less sensitive than� (CSOAR ) to identical changes in the correlation

length-scales.
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L (CB ) No. of iterations Condition number

0.01 86 134

0.05 608 43,637

0.10 978 492,394

0.15 1301 2,203,292

0.20 1687 6,537,759

L (CQ) No. of iterations Condition number

0.01 86 134

0.05 361 65,670

0.10 491 560,326

0.15 572 1,924,374

0.20 596 4,563,487

Table 6.2: Tables of convergence and condition number values with varying correlation
length-scales. Table on the leftL (CB ) = � x, while L (CQ ) varies. Similarly the right table
L(CQ ) = � x, while L (CB ) varies.

Table 6.2 shows the e�ects of correlation length-scale on the minimisation problem

presented byJ (x). Both tables con�rm the sensitivity of the condition number

of Sx to the correlation length-scales ofCB and CQ, also shown in Section 6.3.4

Experiment 3. We have also shown the adverse a�ect this has on the number of

iterates.

We now examine the e�ect of observation density and assimilation window length.

6.4.3 Experiment 3: Assimilation Window Length and

Observation Density

In this experiment we examine the sensitivity of the minimisation problem

presented byJ (x) to the length of the assimilation window and the observation

density simultaneously. We will discuss three tables in this section; number of

iterates, solution accuracy and condition numbers.

We aim to show that increasing assimilation window length rendersSx

ill-conditioned, as discussed in Section 6.2 for low observation densities. We also

show that as we increase the number of spatial observations per assimilation step

the condition number ofSx becomes less e�ected by the rise in assimilation window

length. This due to the second term of the HessianHT R� 1H approaching full rank

as the observation density increases.
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No. of spatial observations

50 25 10 5 2 1

1 19 24 32 38 48 50

11 20 26 49 83 165 193

21 19 26 51 93 215 271

31 19 25 51 97 230 349

41 18 25 50 97 230 420

51 18 24 49 98 241 460

61 17 24 49 98 240 429

71 17 24 49 97 241 459

81 17 23 49 96 239 460
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91 16 23 49 94 241 465

Table 6.3: No. of iterations

No. of spatial observations

50 25 10 5 2 1

1 0.26 0.27 0.30 0.30 0.27 0.35

11 0.09 0.09 0.12 0.22 0.51 0.58

21 0.05 0.05 0.06 0.11 0.40 0.64

31 0.04 0.04 0.04 0.07 0.26 0.57

41 0.03 0.03 0.03 0.05 0.17 0.48

51 0.02 0.02 0.02 0.03 0.12 0.37

61 0.02 0.02 0.02 0.03 0.09 0.28

71 0.02 0.02 0.02 0.02 0.08 0.24

81 0.01 0.01 0.02 0.02 0.07 0.19
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91 0.01 0.01 0.01 0.02 0.05 0.16





experiments using the 1D advection equation. Through the bounds, we showed

the sensitivities of the condition number ofSx to the following:

1. the model error variance� 2
q;

2. correlation length-scales in the background and model error covariance

matrices;

3. assimilation window length and observation density.

More speci�cally we showed

1. The condition number ofLT D� 1L heavily in
uences the condition number of

Sx , shown in Theorem 6.1.1. We highlight this sensitivity further through the

condition number of the background and model error covariance matrix,D,

which is sensitive to correlation length-scales and the� b=� q ratio. The theory

suggests thatSx is potentially more vulnerable to the condition number ofD

than Sp. This was shown theoretically in Section 6.2 and also demonstrated

numerically in Section 6.3.4, Experiment 3.

2. The sensitivity of the condition number ofSx to assimilation window length.

This is di�erent to Sp, which sees an increase in its condition number

(as shown in Chapter 5) as the observation density increasesand as the

assimilation window increases.

(a) The minimum eigenvalue of the �rst term of theSx Hessian has the

potential to converge to 0 as the assimilation window grows. The upper

bound in Theorem 6.1.2 shows that as the assimilation window increases,

� min (LT D� 1L) decreases and therefore increasing� (Sx ). We showed this

through examination of the �rst term of Sx when reduced to theP matrix

(as discussed in Section 6.2).

(b) As the observation density decreases the condition number ofSx

grows at a faster rate as the length of the assimilation window increases.



becomesimmune to increasing assimilation window length (as discussed in

Section 6.2).

(c) Decreasing observation accuracy (increasing� o) reduces the

contribution of the second term ofSx and puts greater emphasis on the

�rst term of Sx , which is sensitive to assimilation window length and the

condition number ofD. This is shown through the analysis of the bounds in

Theorem 6.1.1 in the discussion in Section 6.2, equation (6.49).

These sensitivities were shown through theoretical analysis of the bounds and

numerical demonstrations of the theory on the condition number ofSx . We showed

further that these sensitivities also re
ect in the minimisation characteristics,



Chapter 7

Weak-Constraint 4DVAR:

Lorenz95 Model

In this chapter, we show an example where it is possible for the theory established

in the previous chapters to provide valuable insight for applications in a wider

context. We explore the application of the wc4DVAR algorithms discussed in this

thesis on the non-linear chaotic model known as Lorenz 95, described in Chapter

3, Section 3.5.2. This model possesses error growth characteristics similar to that

of weather prediction models. It is also one of the models used by the ECMWF



7.1 Lorenz 95 Model Example

The purpose of this chapter is to put the theory in the previous chapters into

wider context. We do this by testing if the parameters, which were found to be

responsible for ill-conditioning in the theory on linear models, also have the same

e�ect the solution process of wc4DVAR when applied to a non-linear model. The

speci�c sensitivities we investigate are:

1. the observation density and assimilation window length;

2. the correlation length-scales in the background and model error covariance

matrices.

The theory showed that as the observation density and assimilation window length

increase, the condition number ofSp and hence the number of iterations for

the model error formulation also increase. The theory also showed that as the

number of observationsdecreasesand the assimilation window length increases

the condition number ofSx and the number of iterations of the state formulation

to converge, also increase. We also found a particular special case where if the

state domain was fully observed, the increase in assimilation window lengthno

longer a�ected the condition number of Sx or the number of iterations required

for convergence. We also saw that as the correlation length-scales growSp and Sx

become more ill-conditioned, whereSx showed potential of being more sensitive

to this than Sp.

Both wc4DVAR algorithms implemented on the Lorenz 95 model have been tested

and veri�ed in the same manner as for the implementation of the wc4DVAR



7.1.1 Experimental Design

The model parameters used for the Lorenz 95 are explained in Chapter 3, Section

3.5.2, but we restate the parameter settings here for clarity. The variables are

treated as points on a latitude circle, therefore the spacing between each of the

N = 40 variables is � x = 1=N = 0 :025. Throughout this chapter we use a

time-step of � t = 0 :025, which is equivalent to 3 hours. We use the Polak-Ribiere

non-linear conjugate gradient technique as described in Chapter 3, Section 3.2.3,

to minimise the objective functions. The iterative minimisation stopping criterion

used is described in Chapter 3, Section 3.2.4, where we set the tolerance to� = 10� 3

for all experiments unless otherwise stated. The solution errors and relative errors

are all calculated as in previous chapters, as shown in Chapter 4, Section 4.1.6.

The model parameters chosen here remain unchanged throughout our experiments.

The assimilation parameters are as follows. The background covariance matrix

is such that B = � 2
bCSOAR with � b = 0 :1 and L (CB ) = 0 :005 = � x=5. The

model error covariance matrix is such thatQ = � 2
qCLAP with � q = 0 :05 and

L (CQ) = 0 :005 = � x=5. The observation error covariance matrix isR = � 2
oI

with � o = 0 :05. It is important to note that for all our experiments, the data

assimilation parameters used to generate the truth are identical to the assimilation

parameters.

We use the Polak-Ribiere code used is as described in Secion 3.2.3, written by

C.E. Rasmussen, to minimise the objective functionals. The Polak-Ribiere code is

written such that it requires the code for the procedure which evaluatesJ (p) and

J (x) and their respective gradients.

We now present our experimental results.
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7.1.2 Experiment 1 (i): Assimilation Window Length and

Observation Density

In this section we examine the sensitivity of the model error and state

formulations to the length of the assimilation window and the observation density

simultaneously. We now present the number of iterations needed for both

formulations to achieve the minimisation tolerance� .

No. of spatial observations



the increasing length of the assimilation window. The results in Table 7.2 agree

with �ndings in Chapter 6, Section 6.3.5, Experiment 4. We can also see the

special case in Table 7.2, where the state is fully observed (�rst column, where

observationsq = 40), agreeing with Chapter 6, Section 6.3.5, Experiment 4.

Comparing the number of iterations of the two formulations, we see that the model

error formulation generally performs better than the state formulation, unless the

state is half (q = 20) or fully ( q = 40) observed. The assimilation runs in Tables 7.1

and 7.2 show that with enough observations, the state formulation out-performs

the model error formulation and has the unique property of not being a�ected

by the assimilation window length with a fully observed state. This agrees with

�ndings in Chapter 6.

No. of spatial observations

40 20 10 8 5 4 2 1

1 0.004 0.008 0.008 0.009 0.008 0.009 0.008 0.008

6 0.005 0.009 0.011 0.009 0.011 0.011 0.012 0.012

12 0.006 0.013 0.019 0.021 0.022 0.028 0.028 0.029

18 0.006 0.013 0.028 0.037 0.041 0.046 0.061 0.052

24 0.007 0.015 0.032 0.032 0.049 0.051 0.065 0.081

30 0.007 0.022 0.033 0.040 0.099 0.090 0.082 0.106

36 0.007 0.020 0.048 0.034 0.415 0.066 0.172 0.110
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the Taylor series of the non-linear objective functionals. Therefore the condition

number alone may not be responsible for the increase in iterations and solution

relative error.

In Table 7.4 we see a clear trend of increased relative errors in the solution with

the increase of assimilation window length. We also see that as the observation

density decreases, the relative errors in the solution increase, which is consistent

with the increase in iterations shown in Table 7.2. The increase of relative errors

with assimilation window length is evident for all numbers of observations except

when the state is fully observed,N = 40. We also see many cases of divergence of

the solution, where the solution relative error of the state formulation is� 1. This

emphasises the sensitivity of the state formulation to observation density, where

if there are not enough observations, the solution relative error can be� O (102)

larger than errors in the model error formulation solution.

Tables 7.3 and 7.4 show that the accuracy of the model error formulation is clearly

superior to the state formulation. The increased non-linearity ofJ (x) over J (p)

could be the reason for the di�erence in solution relative errors. In Table 7.4 for

n = 48 and q � 10, we see an example where the state formulation solution has

diverged. This may be due to the increase in non-linearity of the state formulation

objective function or the inadequacy of the stopping criterion.

We now examine the condition numbers.

No. of spatial observations

40 20 10 8 5 4 2 1

1 1.49E+05 5.44E+07 4.96E+07 4.36E+07 3.56E+07 4.45E+07 1.26E+07 2.73E+07

6



The condition numbers in Table 7.5 are incredibly high, however we do see

the general trend that the condition number ofSp increases with the length of

the assimilation window for any number of observations. We also see that the

condition number of Sp increases as the number of observations increase, which

is in agreement with the iterations in Table 7.1 and the trend of solution relative

errors in Table 7.3. This also agrees with our �ndings in Chapter 5.

No. of spatial observations

40 20 10 8 5 4 2 1

1 1.00 2.83E+06 1.13E+07 1.22E+07 1.52E+07 1.43E+07 1.42E+07 1.57E+07

6 1.00 3.36E+07 1.50E+14 4.20E+16 2.40E+17 5.23E+17 7.14E+17 4.08E+18

12 1.00 8.04E+07 4.33E+14 2.31E+16 2.31E+21 3.25E+21 3.45E+21 1.06E+28

18 1.00 1.28E+09 7.68E+12 2.65E+17 7.92E+20 2.14E+21 5.08E+21 2.76E+26

24 1.00 9.44E+07 2.25E+14 2.22E+15 5.70E+20 1.46E+21 3.00E+21 5.33E+21

30 1.00 6.27E+07 7.19E+11 5.83E+13 8.73E+20 1.52E+21 2.77E+21 1.44E+22

36 1.00 2.86E+07 1.29E+13 9.88E+15 3.80E+21 3.65E+21 1.31E+22 1.99E+22

42 1.00 4.90E+07 1.44E+13 2.20E+16 7.21E+21 1.28E+22 6.27E+21 4.27E+21
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48 1.00 2.68E+07 1.36E+12 2.46E+15 2.97E+22 7.96E+20 1.91E+21 7.70E+21

Table 7.6: Condition number values of Sx . n = 48 is equivalent to 6 days.

The condition numbers forSx in Table 7.6 show that if the state is fully observed,

the condition number ofSx is consistently 1, which agrees with the lower number

of iterations in the same column in Table 7.2 and also the low relative error in

Table 7.4. We also see the as the number of observations decreases, the condition

numbers ofSx rise very rapidly, reaching a plateau at around 5 observations.

As mentioned previously, the condition number is not the only in
uential factor

for the poor solution accuracy of the state formulation as seen in Table 7.4, the

increasing non-linearity ofJ (x) may also be a contributor. Evidences of increasing

non-linearity of J (x) can be seen in the large number of iterations, poor solution

relative errors (to the extent that it looks to have diverged in some cases) and

very low condition numbers in comparison to the condition number of the Hessian

of J (p). Another possibility is that the iterative minimisation stopping criterion





The values of the variablesX i are represented by their colour. These variables

can be any atmospheric quantity, for example, temperature [62]. The vertical axis

represents time, thus the plot shows us the temporal evolution of these atmospheric

quantities with respect to their position.

(a) J (p ) (top) and jjrJ (p )jj (bottom). (b) J (x ) (top) and jjrJ (x )jj (bottom).

Figure 7.2: Respective objective function and gradient norm values with the number of
minimisation iterations.

We see here in Figures 7.2(a) and (b) that the model error formulation requires

O(103) more iterations than the state formulation to converge to the same

tolerance. We now examine the relative errors in the solutions.

Figure 7.3: Solution relative errors throughout the assimilation window, J (p) (blue line) and
J (x) (red line).

Figure 7.3 shows the errors are spread in a similar manner, with the range of errors
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exhibited by the solution to the J (p) problem being slightly larger than J (x).

This is con�rmed by the total solution relative error of both the model error and

state formulations, which are 0:017 and 0:012 respectively.

The results in this experiment show that for long assimilation windows with



equal � 2
b = � 2

q = � 2
o = 1 to ensure that the only source of ill-conditioning will arise

from the correlation length-scales being varied.

L(CB )

0.01 0.03 0.05 0.07 0.09 0.11

0.01 18 31 47 89 155 239

0.03 25 46 76 79 146 214

0.05 42 45 57 102 140 201

0.07 49 56 60 100 170 202

0.09 77 79 83 123 212 221

L
(C

Q
)

0.11 102 110 100 135 162 277

Table 7.7: Number of iterations for J (p ).

L(CB )

0.01 0.03 0.05 0.07 0.09 0.11

0.01 61 176 370 685 891 1128

0.03 174 191 420 695 967 1497

0.05 348 508 385 742 1343 1108

0.07



are consistently larger than the model error formulation. In a speci�c example

where L (CB ) = 0 :05 and L (CQ) = 0 :11, the solution relative error of the

state formulation is almost one order of magnitude higher than the model error

formulation. So it is clear that the model error formulation is less sensitive

to correlation length-scale and provides consistently more accurate solution in

comparison to the state formulation.

L (CB )

0.01 0.03 0.05 0.07 0.09 0.11

0.01 6.11E+18 5.02E+18 7.16E+18 1.90E+19 3.74E+19 2.45E+20

0.03 5.70E+18 9.42E+19 3.46E+19 5.70E+20 5.01E+20 6.41E+19

0.05 3.39E+20 1.12E+19 1.15E+20 1.44E+20 5.55E+19 1.26E+20

0.07 1.21E+19 2.53E+20 1.48E+20 8.32E+21 9.83E+20 8.40E+20

0.09 2.73E+21 3.44E+21 2.86E+19 1.57E+20 2.48E+20 2.72E+20

L
(C

Q
)

0.11 9.35E+18 1.56E+20 5.22E+20 3.53E+21 4.42E+20 2.34E+21

Table 7.11: Condition number values for Sp .

L (CB )

0.01 0.03 0.05 0.07 0.09 0.11

0.01 2.18E+19 1.81E+19 6.50E+19 2.42E+19 7.28E+21 1.18E+19

0.03 4.18E+20 1.41E+19 7.30E+18 8.48E+20 2.72E+18 1.72E+19

0.05 8.08E+19 1.17E+19 9.92E+18 6.99E+18 1.95E+19 1.13E+19

0.07 1.51E+19 5.39E+19 6.06E+19 1.67E+19 3.58E+20 6.93E+19

0.09 3.08E+19 5.45E+19 1.17E+20 8.44E+20 1.38E+20 1.38E+19

L
(C

Q
)

0.11 1.17E+20 7.82E+19 2.92E+20 1.44E+21 4.03E+22 2.28E+20

Table 7.12: Condition number values for Sx .

The condition numbers in Tables 7.11 and 7.12 for both formulations are very

similar which was not expected based on the results obtained in Chapters 5 and 6.

However, Tables 7.11 and 7.12 show that as the correlation length-scales ofB and

Q increase, then so do the condition numbers ofSp and Sx , which is compatible

with the iteration results in Tables 7.7 and 7.8. These results do not complement

the iteration number �gures in Tables 7.7 and 7.8, which indicates that the higher

order terms of the Taylor expansion of both objective functions may be large.

To summarise, we see that the results related to the number of iterations in
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Tables 7.7 and 7.8 strongly agrees with our �ndings in Chapter 5, Section 5.2.1.1

and Section 5.1 and Chapter 6, Section 6.3.4 and Section 6.4.2. The number

of iterations of both the model error and state formulations both rise as both

correlation length-scales increase, with an increased sensitivity toL (CB ) as we

expected. The state formulation also exhibits a much more visible increase in

iterations in comparison to the model error formulation, which was also to be

expected. The relative solution errors in Tables 7.9 and 7.10 were also to be

expected, since the experiments in Chapter 5 and Chapter 6 showed that the

solution errors of both formulations did not rise with correlation length-scale.



In Experiment 2 we showed that both formulations exhibit an increase in the

number of iterations (Tables 7.7 and 7.8) and Hessian condition numbers (Tables

7.11 and 7.12) as the condition number of the background and model error matrix

D increases. We increased the condition number of the background and model

error matrix by increasing the correlation length-scales of the background and

model errors. Additionally, the increased sensitivity of the state formulation

over the model error formulation to the background and model error correlation

length-scales was also seen in Table 7.7 and Table 7.8.

We now conclude the thesis.
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Chapter 8

Conclusions

The weak-constraint 4DVAR problem is a variational data assimilation technique,

which unlike the conventional sc4DVAR method, accounts for model error,81cR43].ue,



both problems can change dramatically. We found that the formulations were both

sensitive to observation density, error variances and the length of the assimilation

window. We also found that even when using identical settings for the generated

truth and assimilation, both wc4DVAR solutions consistently under-estimated the

true model error variance slightly.

We then examined the model error formulation more closely in Chapter 5,

by bounding the condition number of the �rst-order Hessian under simpli�ed

assumptions and examining the bound expressions for sensitivities of the solution

to speci�c input parameters. We found that the model error formulation Hessian

condition number was sensitive to the background and model error covariance

matrix. This implied that the Hessian condition number is sensitive to both

the correlation length-scales of the background and model errors, and the ratio

of the background and model error variances. We also found that the Hessian

condition number of the model error formulation to be sensitive to the observation

accuracy, observation density and assimilation window length. We then examined

the preconditioned model error formulation showing that the condition number

and convergence rates are much improved.

An examination of the condition number of the �rst-order Hessian of the state

formulation followed in Chapter 6. We found that, under simpli�ed assumptions,

the state formulation shared certain sensitivities with model error formulation.

One of these was the sensitivity to the background and model error error covariance

matrix, however this was more pronounced for the state formulation than for the

model error formulation. We also found the state formulation to be sensitive

to the observation density and assimilation window length, although there were

some unique di�erences. The state formulation Hessian condition number becomes

ill-conditioned as the observation densitydecreases, which also ampli�es its

sensitivity to the assimilation window length. If the state is fully observed, then

the state formulation is no longer sensitive to the assimilation window length.

This is an interesting advantage, however, a fully observed state is unrealistic in

operational applications.
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We �nally explored the wider-scope application of the theoretical results on a

non-linear, chaotic Lorenz 95 model in Chapter 7. We found that the sensitivities

of both formulations also show in speci�c experiments for the observation density,

assimilation window length and correlation length-scales.

The following points were covered in the thesis:

� In Chapter 4 we detailed the practical implementation of the wc4DVAR

formulations on the 1-dimensional linear advection model, which highlighted

clear di�erences in the minimisation characteristics of both formulations

based on changes in experimental parameters. We also observed in several

experiments that a general trait of both wc4DVAR formulations is that the

model errors are under-estimated.

� The condition number of the Hessian of the sc4DVAR problem is bounded

above by the condition number of the Hessian of the model error formulation,

Sp, shown in Appendix A.

� We identi�ed and demonstrated the following sources of ill-conditioning of

the Hessian of the model error formulation. We did this both theoretically

and complemented it with numerical experiments to show similar e�ects on

the rate of convergence in Chapter 5:

� The condition number of the background and model error covariance

matrix, D.

- As the ratio of the background and model error variance increases

or decreases away from 1,D becomes ill-conditioned and therefore

so doesSp.

- As the correlation length-scales of the background and model error

covariance matrix increases,Sp becomes more ill-conditioned.

� Increasing the assimilation window length increases the condition

number of Sp at a potentially quadratic rate.
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� The ratio of the largest of the background and model error variance

to the observation error variance also rendersSp ill-conditioned if

it increases or decreases from 1. This means increasingobservation



minimisation characteristics of both the model error and state formulations

applied to the non-linear chaotic Lorenz 95 model. We showed:

� Increasing the correlation length-scales of the matrices composingD

increases the number of iterations required for the model error and

state algorithms to converge, where the state formulation exhibits a

larger increase in iterations than the model error formulation.

� An increase in the number of observations and assimilation window

length increases the number of iterations for the model error algorithm

to converge.

� Decreasing the number of observations for any length of assimilation

window increases the number of iterations required for the state

algorithm to converge.

� For a fully observed state, increasing the assimilation window length

does not a�ect the number of iterates required for the state algorithm

to converge.

From the research shown in this thesis we can draw a few general conclusions.

The sensitivities shared by both formulations are: background and model error

covariance matrix correlation length-scales, error variance ratios, observation

density and assimilation window length. These sensitivities are shared but they

have di�erent e�ects on each wc4DVAR formulation, as we have discussed in this

chapter. It is interesting and worth noting however that the state formulation is

not a�ected by assimilation window length if the state is fully observed. Although

a fully observed state is unrealistic, this suggests that there is a way of enabling

the state formulation to be more stable. We also see throughout the thesis that the

state formulation exhibits increased sensitivity in comparison to the model error

formulation, with regards to the parameters which in
uence its condition number.

We conclude that the model error formulation is not as ‘fragile’ as the state

formulation to its own sensitivities and therefore the model error formulation is the
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more stable of the two wc4DVAR algorithms to use until a suitable preconditioner

for the state formulation is found.

We now discuss avenues for further work before bringing the thesis to a close.

8.2 Further Work

The work in this thesis establishes a theoretical basis for the conditioning of

the model error and state estimation wc4DVAR problems. However, the theory

established in this thesis is limited to the simple assumptions made to derive the

theorems. We assumed that observations were taken of the state directly, which

allows for a simple observation operator. In reality however, observations may be

obtained from satellite radiances for example, which means that the observation

operator would be some form of the radiative transfer equation. The radiative

transfer equation has the potential of being highly non-linear and quite di�cult to

deal with, [65].

We could also relax the assumption of uncorrelated observation errors. Observation

error spatial correlations are typically ignored in data assimilation while the

error variances are over-in
ated to compensate for the lack of information on

correlations. While this assumption is not realistic, observation correlations

are ignored because it makes the implementation of 4DVAR easier in general.

Studies into the known sources of observation error have narrowed it down to four

sources; measurement error, observation operator errors, quality control errors

and representativity errors, [87]. The latter three sources of error are believed

to be correlated in space, while it has been suggested that observation errors are

potentially temporally correlated, [79]. Incorporating correlated observation errors

has only begun to be operationally implemented by the Met O�ce, [90], while there

are still problems with the conditioning of 4DVAR, [89].

Another assumption we made to obtain the theory was that the background, model

and observation errors were not time-correlated. It is common practice in NWP to
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ignore time correlations because it is simply too computationally expensive to deal

with. However, there have been studies to show that, for example, model error

can be correlated with time, [26], and also observation errors in remote sensing for

example, are correlated in time, [80].

The work in Chapter 7 could have been complemented with using the

Gauss-Newton ‘incremental’ wc4DVAR technique. We could also employ the

preconditioned model error algorithm using both the incremental technique

and the non-linear Polak-Ribiere conjugate gradient technique, to see if the

preconditioning has similar e�ects to those shown in Chapter 5 on the linear

advection equation. Comparing the di�erences in convergence rates and solution

errors of the Polak-Ribiere and incremental approach would be interesting. We

would expect the incremental approach to at least as good as the iterative

minimisation performance of the Polak-Ribiere technique, if not better.

Another practical aspect worth considering would be to investigate the validity

of the conditioning theory in this thesis on larger systems such as the ECMWF

Object-Orientated Programming System (OOPS), or even the University of

California’s operational Regional Ocean Modeling System (ROMS). Testing the

theory on bigger systems to investigate the sensitivity of both minimisation

algorithms to the input parameters discovered to be sensitive in this thesis would

be the next logical step.

In this thesis we preconditioned the model error formulation using the symmetric

square root ofD, which we showed to improve the conditioning and minimisation

properties considerably. We could also consider the preconditioning of the state

formulation, which was shown to bevery sensitive to the condition number ofD.

As a �rst step we could precondition the state formulation using the symmetric

square root ofD to understand if it improves its stability. M. Fisher and S. G�urol

have established an alternative saddle point formulation of the state formulation,

which has the advantage of avoiding the need to invertD, [27], [25]. In [27] the

authors identi�ed that the Hessian of the state formulation can be preconditioned

using an approximation of the wc4DVAR model propagator,L. However they also
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Appendix A

General Upper Bound: The

Strong-Constraint 4DVAR

Hessian Condition Number

We write the sc4DVAR Hessian,S 2 RN � N as

S = B � 1
0 + Ĥ T R� 1Ĥ; (A.1�Tf 6.58 Td t.9 -4..563 Td [(S)wher]TJ 0 80.342 -257 4Td [(^)]TJ/F32 11.9552 Tf -3.035 -3.022 Td [(H)]TJ/F33 11.9552 Tf 139..943 Td [(=)]TJ/F32 81.9552 Tf 12.425 6.49684d [(�)]TJ/F33 11.9552 Tf -39368-4.49684d [(�]TJ/F33 7.9701 Tf 10.622 3.936 7d [(T)]TJ/F22 7.9701 Tf 6.-0.9247.892 Td [(0)]TJ/F15 11.9552 Tf -357  60956 5d [(0)]TJ/F15 11.9552 Tf 135.2 11Td [((A.TJ/F33 11.9552 Tf -393553 Td [(=)HTJ/F22 7.9701 Tf 6.496991.91793d [(1)]TJ/F15 11.9552 Tf -3937 11.1793d [(1)MTJ/F22 7.9701 Tf 6..953 0 .91793d [(1)]TJ/F15 7.9701 Tf 104.2311Td [(�;TJ/F22 7.9701 Tf 6.2.3 Tf0d [(0)]TJ/F15 11.9552 Tf 14937 31.1793d [(1)5Tf 6.5815 7.9701 Tf 104.2 Tf936 7d [(T)]TJ/F22 11.9552 Tf 6.605 44.936 7d [(0)]TJ/F15 11.9552 Tf 135.2 51Td [((A.TJ/F33 11.9552 Tf -393552 Td [(=)HTJ/F22 7.9701 Tf 6.496991.91793d [(1)2TJ/F15 11.9552 Tf -3937 11.1793d [(1)MTJ/F22 7.9701 Tf 6..953 0 .91793d [(1)2TJ/F15 7.9701 Tf 104.2311Td [(�;TJ/F22 7.9701 Tf 6.2.3 3f0d [(0)]TJ/F15 11.9552 Tf 14937 21.1793d [(1)5Tf 6.5815 7.9701 Tf 104.2 Tf936 7d [(T)]TJ/F22 11.9552 Tf 6.605 54.936 7d [(0)]T-167(:T-166(:T-167(:T-167(]TJ/F15 11.9552 Tf 1326.221Td [((A.TJ/F33 11.9552 Tf -393553 Td [(=)HTJ/F22 3.9701 Tf 6.496991.91793d [(1)nTJ/F33 11.9552 Tf -3535 61.1793d [(1)MTJ/F22 3.9701 Tf 6..953 0 .91793d [(1)n;TJ/F22 7.9701 Tf 6.797 f0d [(0)]TJ/F15 11.9552 Tf 14937 31.1793d [(1)5Tf 6.5815 7.9701 Tf 104.2 Tf936 7d [(T)]TJ/F22 81.9552 Tf 6.605 54447 Td [(Ge02)36.5815 7.9701 Tf 104.68-4.42556d [(T)]TJ/F22 11.9552 Tf 6.8.5 3..892 60 [(0)]TJ/F15 11.9552 Tf 135379 3 Td [((A.1�Tf 6.58 Td t.9 44..563 Td [(S)notic-322(;)that6.58 619695.022 Td [(^)]TJ/F32 11.9552 Tf -3.035 -3.022 Td [(H)]TJ/F33 11.9552 Tf 139..94 Td [(�is322(;)iden7(V)tic)-37278)-31(o37278)-h-322(;)�rst37278)blo3727(c7(V)k322(;)column322(;)ofTJ/F22 11.9552 Tf 6.19828 60Td [(=)HLTJ/F36 7.9701 Tf 10.8.5 3.339 Td [(as00)]TJ/F30 7.9701 Tf 6.586 0 Td [(1)]TJ -33 11.9552 Tf 1382854.339 Td [(asin322(;)the37278)w7(V)ea31(k-cstrain)31(V)t6.58 Td03.86-4.419669d [(Hessian)-375(scmatr)-37527050A.425031(5Tf .TJ 0 -44360559d [(W)82(e)-32476)no)28)w72476)presen7(8)-32476)a32475(geral)-37475(result,50013)whic7(V)h37475(sho7(V)ws37475(the37475(eigen7(V)v)57(V/5lu7475(eissain)31.(V)3459)tifTJ/F22 11.9552 Tf 6.19)R�ltrong-Cons5(scm8tr)-37527050A.4459 6.19)60Hessian,)]TJ/F32 11459 3727)60HbJ/F224.83ed27)60HbJl)-y27)60H7(V/5l59 75(eissain)31.(V)345959 fTJ/F22 11.9552 60H6.19)59 7(V/5l60H527050A.4459 6.1ng-Cons5(scm)28)w721(V)tssian8)]TJ/832 11.96(form(V)tulaer)]TJ/96(-4436032[(W)82(e)1 Tf 125. 60Td [(=)HLTJ/F-375den98tr)-37Stroremd [(Gen.0.12(e)1 Tf 125. 65 1 [(=)HLTJ/F9den3552 Tf 14T(V/5l59 c)50H631(er)]TJl59 numb)50H



Proof: We prove this by showing that the largest and smallest eigenvalues ofS

can be obtained by taking an appropriate Rayleigh Quotient ofSp. To illustrate

this we denote the spectrum ofS by [� N ; � 1], where � N is the smallest eigenvalue

and � 1 is the largest eigenvalue ofS. Similarly we let the interval [� N (n+1) ; � 1]

denote the spectrum ofSp. Since we know the bounds of the Rayleigh Quotient

from Theorem 3.4.7, we aim to show

� N (n+1) � � N � � 1 � � 1: (A.4)

Note this does not mean that an eigenvalue ofS is necessarily an eigenvalue ofSp.

Consider the Rayleigh Quotient ofSp

R Sp (w) = wT (D� 1 + L� T HT R� 1HL� 1)w; (A.5)

wherew 2 RN (n+1) is such that

w =

 v1
0
:
:
:
0

!

; (A.6)

wherev1 is an eigenvector ofS corresponding to the largest eigenvalue.

We compute the �rst part of the Rayleigh Quotient of Sp,

wT D� 1w = vT
1 B0v1: (A.7)

Computing the second part yields

HL� 1w = Ĥv1: (A.8)

The transpose of this statement is also true. Therefore the second term yields

wT (L� T HT R� 1HL� 1)w = vT
1 Ĥ T R� 1Ĥv1: (A.9)

The Rayleigh Quotient ofSp is then

R Sp (w) = vT
1 B0v1 + vT

1 Ĥ T R� 1Ĥv1 = R S(v1) = � 1; (A.10)

as required. The largest eigenvalue of the Hessian of the strong-constraint problem

exists in the eigenvalue interval of the Hessian of the weak-constraint problem

(2.32).
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The same argument can be made for the smallest eigenvalue� N of S
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