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Abstract

In the past �� years� techniques for eigenstructure assignment have been

widely investigated and applied to many problems� By eigenstructure assign	

ment we mean the use of feedback control in order to alter the eigenvalues and
or

eigenvectors of a system� Eigenstructure assignment has been achieved using both

state and output feedback�

This thesis is an investigation into the application of eigenstructure assign	

ment to aircraft problems� We study the current work� illustrating that feedback

is used to ensure stability� a satisfactory response and good decoupling in the

closed loop system� A desired level of output decoupling is currently obtained by

assigning a speci�ed set of right eigenvectors� we identify a shortfall in current

work that the corresponding left eigenvectors must also be considered to obtain

a desired level of input decoupling� We give an example to demonstrate this�

We then present two minimisation routines that improve the level of input

decoupling� while retaining the output decoupling� It is not generally possible

to achieve the exact levels of input and output decoupling� our routines �nd the

set of v
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Chapter �

Introduction

In most applied mathematical researc



Ideally� we would like to be able to measure all of the variables� or states of a

system in order to design a feedback� If this is the case� then we are performing

state feedback� In practice� not all of the system states are available� the feedback

then has to use the outputs to control the system� This is called output feedback�

In this thesis we are concerned with eigenstructure assignment by output

feedback to assign simultaneously a set of eigenvalues and their corresponding

right and left eigenvectors� We apply this theory to achieve the satisfactory

handling qualities of an aircraft in 	ight� In the open�loop state� many aircraft are

unstable� or display poor handling� hence feedback is required to force the aircraft

to behave in the desired manner� The main considerations here are to improve

stability� dampen unwanted oscillatory modes and to reduce any modal coupling�

These qualities of the system can be observed and altered via investigation into

the eigenstructure of the system�

In Chapter � we introduce the basic form for control systems and give their

general governing equations� We describe their properties and introduce the

concept of feedback� We then relate this theory to our interests� namely 	ight

control systems� A review of the literature on eigenstructure assignment and its

applications to aircraft problems is presented�

Having introduced our interest in aircraft 	ight control problems� we give in

Chapter � the broad concept of aircraft control and how� physically� the aircraft

is manoeuvred by either the pilot or feedback control� We describe the way

in which the equations of motion are derived in the original non�linear form

and are linearised and simpli�ed into a usable state space form� We de�ne the

state representation of control systems� and give examples of state matrices for

longitudinal and lateral motion� The concept of aircraft stability for both motions

is introduced�

In Chapter 
 we give more detail on the theory and techniques of eigenstruc�

ture assignment� from the basics of pole placement by state feedback to the output

feedback problem� The speci�c aircraft problem is introduced at the end of the

chapter and the application of partial eigenstructure assignment to this problem

is giv



addition to the right eigenvectors�

Having given the background theory on eigenstructure assignment and its

application to aircraft problems in Chapter 
 we attempt� in Chapter �� to im�

prove on the results calculated in current work� A minimisation technique is

developed that updates a set of vectors to improve the input decoupling �via the

previously unconsidered left eigenvectors�� while retaining the output decoupling

already achieved� The updating vectors are restricted to lie in subspaces cor�

responding to a set of speci�ed eigenvalues� We also control the robustness of

the system via the condition number of the right eigenvectors and the accuracy

of the assigned eigenvalues by minimising the error of the left eigenvectors from

their correct subspaces� The result is a multi�criteria minimisation routine with

weighting parameters that are altered in accordance with the design speci�ca�

tions� This routine is run with a number of parameter combinations to illustrate

its 	exibility�

In Chapter �� to improve the results of Chapter �� we remove the subspace

restriction� allo



Chapter �

Control systems

The main topic of this thesis is the application of eigenstructure assignment to

aircraft problems� Before detailing both of these subjects we give some back�

ground theory on control systems and their properties� We de�ne our areas of

interest in the aircraft industry and give a review of the literature on eigenstruc�

ture assignment and its application to aircraft problems�

��� General control systems

In Chapter � we gave practical examples of what we mean by control systems�

here we give a precise de�nition� An open loop control system� that is one which

is not controlled automatically� can be represented as in Figure ���� Here the

Controlled System

State Variables

Inputs Outputs

u  (i=1,...,m) y  (i=1,...,p)

x  (i=1,...,n)

ii

i

Figure ���	 Open loop control system

state variables� xi� describe the condition� or state� of the system� and provide

the information which� together with a knowledge of the equations describing the

system� enables us to calculate the future behaviour from a knowledge of the input






variables� ui� Practically� it is often not possible to determine the values of the

state variables directly� perhaps for reasons of expense or inaccessibility� Instead

a set of output variables� yi� which depend in some way on xi� is measured�

The open loop equations describing the system in Figure ��� are

���
��

�x�t� 
 Ax�t� �Bu�t�

y�t� 
 Cx�t��
�����

where A � IRn�n� B � IRn�m� C � IRp�n are the system matrices� known as

the state� input and output matrices respectively� Practically� control systems

are non�linear� but the set of non�linear di�erential equations can be linearised to

give them in the form of ������ Also� in ����� the systemmatrices are dependent on

time� For our work in this thesis we assume that the systemmatrices are constant

coe�cient matrices taken from the open loop control system at some speci�ed

operating points� Thus� we are working with linear� time�invariant systems� It is

also assumed throughout this thesis that B and C are of full rank�

��� Properties

A system operating in its open loop state� as in Figure ���� has certain well

de�ned properties� Before describing these we need a de�nition of the eigen�

decomposition of a matrix�

De�nition ��� De�ne �i� vi and wT
i to be the eigenvalues and corresponding

right and left eigenvectors� respectively� of A� They satisfy the relationships

Avi 
 �vi

wT
i A 
 �wT

i �
�����

When vi�w
T
i are normalised appropriately then

V �� 
 W T � �����

where V 
 �v�� � � � �vn�� W T 
 �w� � � � �wn�T �

�







De�nition ���



THEOREM ��
 A system is said to be completely observable if and only if one

of the following equivalent conditions holds�

�i� rank

�
����������������

C

CA

�

�

�

CAn��

�
															



 n

�ii� rank

�
�� A� �I

C

�
	
 
 n ��� � C�

�iii� fAs 
 	s and Cs 
 �g �� s 
 ��

Proof �see Barnett and Cameron �
���

����� Robustness

Another important property of control systems is their robustness� This is de�ned

in the sense that the eigenvalues of the system are as insensitive to perturbations

as possible� If A in ����� is non�defective� then it is diagonalizable and it can be

shown �Wilkinson ����� that the sensitivity of the eigenvalue �i to perturbations

in the components of A depends upon the magnitude of the condition number�

ci� where

ci 

kwT

i kkvik

jwT
i vij

� �� �����

A bound on the sensitivities of the eigenvalues is given by �Wilkinson �����

max
i

ci 
 
��V � 
 kV k�kV
��k� ������

where 
��V � is the condition number of the modal matrix of eigenvectors� V 


�v�� � � � �vn��

����� Feedback

We have given the general de�nition of a control system and its important prop�

erties� However� an open loop system may have poor properties in that it may

�



be unstable� or it may be very sensitive to perturbations� Thus� we want to con�



Thus� the aim of feedback� whether it is state or output feedback� is to control

the system so that it behaves in a desired manner� We have shown that the

properties of the systems are functions of its eigenvalues and eigenvectors� so we

�nd a feedback such that the eigenstructure of the closed loop system results in�

for example� that system being stable and robust� The details of this� including





overwrite only the �bad� eigenvalues of a system�

In practice� state feedback is undesirable� not least because of the expense in

measuring and feeding back all of the states� Indeed� all of the state measurements

may not be available� so the more attractive procedure is to use the measured

variables i�e� to perform output feedback�

One of the �rst to address pole placement by output feedback was Davison

���� who showed that if the system is controllable and if rank �C� 
 p� then a

feedback can always be found so that p of the eigenvalues of the closed loop sys�

tem are arbitrarily close to those desired� This result was extended by Davison

and Chatterjee ���� and Sridhar and Lindhor� ���� who proved that if a system

is controllable and observable and if rank �



and the assumptions that the matrices B and C are of full rank� then max�m� p�

closed loop eigenvalues can be assigned and max�m� p� closed loop eigenvectors

can be partially assigned with min�m� p� entries in each vector arbitrarily chosen

using output feedback�

Proof �see Srinathkumar ������

Attempts were made to assign the whole eigenstructure of a system such as

by Porter and Bradshaw �
��� �
�� and Fletcher ����� Necessary and su�cient

conditions for a solution to exist were derived by Fletcher et al� ����� but were of

a slightly abstract mathematical nature� not leading to a simple design technique�

Conditions that full eigenstructure assignment was attainable when the right and

left eigenvectors lie simultaneously in their correct subspaces were proved by Chu

et al� ����� who used a least squares minimisation technique to solve the feedback

design problem�

In a di�erent direction� Roppenecker and O�Reilly ���� parameterised the prob�

lem� leading to the work of Fahmy and O�Reilly ����� This extended the paramet�

ric state feedback work of Fahmy and O�Reilly ����� ���� and Fahmy and Tantawny

����� It also extends the idea of pole protection from Topalogu and Seborg ��
�

to protecting the eigenvectors in addition� Owens �
�� used this parameterisation

idea to render a closed loop system eigenvalue totally insensitive by making its

left eigenmode insensitive�

Whilst some authors attempted full eigenstructure assignment� others consid�

ered partial eigenstructure assignment� This idea arises from the fact that not all

of the open loop eigenvalues of a system are necessarily considered undesirable�

Usually� some eigenvalues will be acceptable and it is hence worth assigning some

poles while retaining others� Fletcher et al� ���� set out necessary and su�cient

conditions for assigning k eigenvalues� while retaining the other� original n � k

eigenvalues� These conditions were exploited by Slade ����� who devised an algo�

rithm for assigning m � p poles in two stages� while maximising the robustness

of the solution�

Despite the numerous approaches� no one method has been adopted as stan�

dard� Indeed� the attempt by authors to assign poles exactly may not be as

realistic a problem as assigning them to pre�speci�ed regions� An approach to

�






formulated by Gilbert ����� is considered where the minimum sensitivity measure

is attained if and only if all the closed loop eigenvectors are mutually orthogonal�

thus a�ecting the authors� choice of desired eigenvectors� Similarly



The Davidon�Fletcher�Powell algorithm that requires �rst derivative information

is used� Patel et al� �
�� use the same method for multi�input� �xed output rate

�MIFO� sampling schemes on a Stability Augmentation System of an aircraft�

A di�erent approach was suggested by Wilson and Cloutier ���� who min�

imised a performance index constrained by the linear quadratic regulator alge�

braic Riccati equation� To constrain the eigenvalues� a Valentine transformation

is employed to restrict them to be in some left�hand plane� but this is a very

ill�conditioned transformation� The algorithm is implemented using the Ctrl�C

software language with a conjugate gradient restoration algorithm but� as noted

by the authors� has some drawbacks� For a third order system with two inputs�

the number of optimising parameters is twenty�two� which slows down the per�

formance� hence the authors adopt periodic preconditioning� The same authors

���� improve the previous work by replacing a highly nonlinear performance in�

dex with a quadratic one� at the expense of an increase in the nonlinearity and

number of constraints� This is applied to the Extended Medium Range Air�to�

Air Technology �EMRAAT� airframe� Wilson� Cloutier and Yedavalli ���� ����

extend their work to include time�varying parametric variations and also employ

a Lyapunov constraint�

Most of these techniques use the conditioning of the modal matrix to control

robustness� but another method is in consideration



erations were then performed at each point and an optimisation to convergence

on the �ve points with the smallest performance index was carried out� This

was solved using a quadratic extended interior penalty function� and obviously

requires a lot of computational e�ort� Here also the eigenvalue positions are rigid�

but it does demonstrate the need for a robustness�performance trade�o�� Sobel et

al� ���� considered robust control for systems with structured� state space� norm

bounded uncertainty� and extended this �see Sobel and Yu ����� to add the con�

straint of restricting the eigenvalues to lie within chosen regions in the complex

plane� This constrained optimisation problem was solved using the sequential

unconstrained minimisation technique with a quadratic extended interior penalty

function� This theory is applied to design a control for an EMRAAT missile in

Yu et al� ����� The structured uncertainty work is more comprehensively covered

in Yu and Sobel ��
�� and includes a mention of considering robustness via the

minimum singular value of the return di�erence matrix� The work is attempted

in a slightly di�erent way in Piou et al� �
�� by constraining the problem with

a Lyapunov condition and using the delta operator on a sampled data system�

The various work of Sobel et al� over the last ten years in eigenstructure as�

signment for �ight control system design is detailed in Sobel et al� ���� covering

�constrained� output feedback� gain suppression� dynamic compensation� robust

sampled data� pseudo�control� singular values for robustness and Lyapunov con�

straints� calculated using the Matlab Optimisation and Delta toolboxes ����� and

��
� respectively��

A study of the application of eigenstructure assignment to the control of pow�

ered lift combat aircraft was presented by Smith ����� most notable for the consid�

eration of the left eigenvectors� Previous authors considered assigning only a set of

right eigenvectors corresponding to a set of speci�ed eigenvalues� for the purpose

of obtaining modal output decoupling� In addition� Smith considered the assign�

ment of a corresponding set of left eigenvectors to obtain some desired level of

modal input decoupling� This is performed using a Simplex search method� This

thesis considers the simultaneous assignmen



The most recent comprehensive study into multi�objective control design prob�

lems arising in aeronautics is by Magni and Mounan ����� The theory is based

on �rst order variations on the gains� eigenvalues� right and left eigenvectors� and

their corresponding output and input directions� The problem is solved itera�

tively� utilising the Matlab Optimisation toolbox ���� whereby� at each iteration�

a quadratic problem under linear equality constraints is solved� The constraints

change step by step in such a way that the �nal step corresponds to the orig�

inal eigenstructure assignment problem considered� Care has to be taken that

the change in the set of constraints is small enough so that the �rst order ap�

proximations are valid� This method requires an interpretation of the results at

each step to identify the objectives for the following step� for example identifying

undesirable coupling or the slowest eigenvalue�

We have shown in this review how� in the last �� years� the subject has pro�

gressed from the basis of changing the poles of a system b



In the next two chapters� we explain in detail the derivation of the aircraft

equations of motion into a linear� time�invariant form as in ������ and develop the

theory and techniques of eigenstructure assignment to be used in solving aircraft

problems�

��



Chapter �

Aircraft dynamics

This thesis is primarily concerned with the theory of eigenstructure assignment�

with speci�c application to aircraft problems� For completeness� we describe how

the equations of motion for an aircraft are derived� We give the linearisation and

assumptions needed to transform these equations into a form to which eigenstruc�

ture assignment theory can be applied� This chapter closely follows parts of the

�rst three chapters of McLean �����

��� Introduction

Irrespective of the system being considered� we are interested in how e	ectively

it can be controlled from an initial state to a desired �nal state within a certain

time scale� The motion of a vehicle is characterised by its velocity vector� the

control of the vehicle
s path is dependent on physical constraints� For example a

train is constrained by its track� cars must move over the surface of the earth� but

both speed and direction are controlled� Aircraft di	er as they have six degrees



aircraft tend to �y in a constant turn� hence� to �y a straight and level course�

continuous corrections must be made by a pilot� or by means of an automatic

�ight control system �AFCS�� In aircraft� such AFCSs employ feedback to ensure�


� the speed of response is better than at open�loop�

�� the accuracy in following commands is better�

�� the system is capable of suppressing unwanted e	ects arising from distur�

bances to the aircraft
s �ight�

However� the AFCS may have poor stability because such feedback systems

have a tendency to oscillate� Thus� designers must employ a trade�o	 between

the requirements for stability and control�

����� Control surfaces

If a body is to be changed from its present state of motion then external forces�

or moments� or both� must be applied to the body� and the resulting acceleration

vector can be determined by applying Newton
s Second Law of Motion� Every

aircraft has control surfaces which are used to generate the forces and moments

required to produce the accelerations which cause the aircraft to be steered along

its three�dimensional �ightpath to its speci�ed destination�

Conventional aircraft have three control surfaces� elevator� ailerons and rud�

der� with a fourth control available in the change of thrust obtained from the

engines� Modern aircraft� particularly com



In addition to these surfaces� every aircraft has motion sensors to provide

measures of change in motion variables which occur as the aircraft responds to

the pilot
s commands� or as it encounters some disturbance� These signals from

the sensors can be used to provide the pilot with a visual display� or as feedback

signals for the AFCS�

The �ight controller compares the commanded motion with the measured

motion and� if any discrepancy exists� generates� in acco



Figure ��
� Body axis system �see McLean �����

principal axis system� the wind axis system and the stability axis system� which

is the most frequently used�

����� Equations of motion of a rigid body aircraft

It is assumed that the aircraft considered is rigid�body� that is the distance be�

tween any two points on the aircraft
s surface remain �xed in �ight� Under this

assumption the motion has six degrees of freedom� Newton
s Second Law can

be applied to obtain the equations of motion in terms of the translational and

angular accelerations� It is also assumed that the inertial frame of reference does

not accelerate� that is� the Earth is considered �xed in space�



Translational motion

From Newton
s Second Law it can be deduced that

F � F� ��F � m
d

dt
fVTg ���
�

M � M� ��M �
d

dt
fHg� �����

where F represents the sum of all externally applied forces� VT is the velocity vec�

tor�M represents the sum of all applied torques andH is the angular momentum�

Also� m is the mass of the aircraft� assumed to be constant� It is convenient when

analyzing AFCSs to regard F and M as consisting of an equilibrium component

�denoted by �� and a perturbational component �denoted by ���

By de�nition� equilibrium �ight must be unaccelerated along a straight path�

during this �ight the linear velocity vector relative to �xed space is invariant� and

the angular velocity is zero� Thus both F� and M� are zero� The rate of change

of VT relative to the Earth axis system is

d

dt
fVTgE �

d

dt
VT

�����
B

� � �VT � �����

where � is the angular velocity of the aircraft with respect to the �xed axis

system� Expressing the vectors as the sums of their components with respect to

�XB� YB� ZB� gives

VT � U i� V j�Wk

� � P i�Qj�Rk�
�����

Evaluating ����� using ����� gives

�X � �Fx � m� �U �QW � V R�

�Y � �Fy � m� �V � UR � PW �

�Z � �Fz � m� �W � V P � UQ��

�����

which are thus the equations of translational motion�

Rotational motion



with the inertia matrix� I� de�ned as
�
������

Ixx �Ixy �Ixz

�Ixy Iyy �Iyz

�Ixz �Iyz Izz

�
������
� �����

where Iii denotes a moment of inertia� and Iij a product of inertia for j �� i�

Using ����� in ����� gives

M �
d

dt
H� � �H� �����

Transforming the body axes to the Earth axes system� and considering the indi�

vidual components of H from ������ along with the fact that in general aircraft

are symmetrical about the XZ plane �implying Ixy � Iyz � ��� results in

�L � �Mx � Ixx �P � Ixz� �R � PQ� � �Izz � Iyy�QR

�M � �My � Iyy �Q� Ixz�P
� �R�� � �Ixx � Izz�PR

�N � �Mz � Izz �R � Ixz �P � PQ�Iyy � Ixx� � IxzQR�

��� �

where L� M � N are moments about the rolling� pitching and yawing axes respec�

tively�

Forces due to gravity

The forces of gravity are always present in an aircraft� however� it can be assumed

that gravity acts at the centre of gravity �c�g�� of the aircraft� But� since the

centres of mass and gravity coincide in an aircraft� there is no external moment

produced by gravity about the c�g�� this means gravity contributes only to the

external force vector F�

To resolve the forces� the gravity vector mg is directed along the ZE axis� �

is the angle between the gravity vector and the YBZB plane and � is the bank

angle between the ZB axis and the projection of the gravity vector on the YBZB

plane� Direct resolution of mg into its X�Y�Z components produces

�X � � mg sin�

�Y � mg cos� sin�

�Z � mg cos� cos��

���
��

The manner in which the angular orientation and velocity of the body axis system

with respect to the gravity vector is expressed depends upon the angular velocity

��



of the body axis about mg� This angular velocity is the azimuth rate� ��� it is

not normal to �� or ��� but its projection in the YBZB plane is normal to both�

By resolution

P � ��� �� sin�

Q � �� cos� � �� cos� sin�

R � � �� sin� � �� cos� cos��

���

�

where �� �� � are referred to as the Euler angles�

Linearisation of the inertial and gravitational terms

Equations ����� and ��� � represent the inertial forces acting on the aircraft�

Equation ���
�� represents the contribution of the forces due to gravity to these

equations� The external forces acting on the aircraft can be re�expressed as

X � �X � �X

Y � �Y � �Y

Z � �Z � �Z�

���
��

where the � terms are gravitational and the � terms represent the aerodynamic

and thrust forces� For notational convenience� �L� �M and �N are denoted by

L� M and N � thus the equations of motion of the rigid body for its six degrees of

freedom are

X � m� �U �QW � V R � g sin��

Y � m� �V � UR � PW � g cos� sin��

Z � m� �W � V P � UQ� g cos� cos��

L � Ixx �P � Ixz� �R � PQ� � �Izz � Iyy�QR

M � Iyy �Q� Ixz�P � �R�� � �Ixx � Izz�PR

N � Izz �R� Ixz �P � PQ�Iyy � Ixx� � IxzQR�

���
��

Note that ���

� must also be used since those equations relate �� �� � to R� Q�

P � The equations in ���
�� are highly non�linear and are simpli�ed by considering

the motion in two parts� a mean motion to represent the equilibrium �or trim�

conditions� and a dynamic motion for the perturbations to the mean motion�

Thus� every motion variable is considered to have two components� For example

U � U� � u R � R� � r

Q � Q� � q M �M� �m� etc��
���
��

��



where � denotes trim and lower�case letters are the perturbations� Note that

m� is the perturbation in the pitching moment� M � not to be confused with the

mass m in ���
��� which is considered constant� In trim there is no acceleration

so we can obtain equations for X�� Y�� Z�� L��M�� N� that are just the equations

in ���
�� with the �U� �V � �W� �P � �Q� �R terms all set to zero� all other components

�except m and g� have the subscript �� The perturbed motion can then be found

by substituting ���
�� into ���
�� and subtracting the equations for X�� Y� etc�

Assuming small perturbations� sines and cosines are approximated to the angles

themselves and unity respectively� products of perturbed quantities are deemed

negligible� The perturbed equations of motion that result are simpler than ���
���

but are still not readily usable� Common practice in AFCS studies is to consider

�ight cases with simpler trim conditions� �ying straight in steady� symmetric �ight

with wings level is an example commonly used� These assumed trim conditions

have the implications


� straight �ight implies �� � �� � ��

�� symmetric �ight implies �� � V� � ��

�� �ying with wings level implies �� � ��

Under these conditions it may also be assumed that Q� � P� � R� � �� giving

the simple equations

x � m� �u�W�q � �g cos�����

z � m� �w� U�q � �g sin�����

m� � Iyy �q

���
��

and

y � m� �v� U�r �W�p � �g cos�����

l � Ixx �p� Ixz �r

n � Izz �r � Ixz �p�

���
��

Here the equations in ���
�� represent the longitudinal motion� and those in

���
�� represent the lateral!directional motion �sideslip� rolling and yawing mo�

tion speci�cally�� This separation is merely a separation of gravitational and

inertial forces� only possible because of the assumed trim conditions�

��



����� Complete linearised equations of motion

To expand the left�hand side of the equations of motion� a Taylor series expansion

is used about the trimmed�ight condition� For example� if only elevator de�ection

is involved in the aircraft
s longitudinal motion then the �rst equation in ���
��

becomes

x � �X

�u
u� �X

� �u
�u� �X

�w
w � �X

� �w
�w � �X

�q
q � �X

� �q
�q � �X

��E
�E � �X

� ��E
��E

� m� �u�W�q � �g cos�����

���
��

and similarly for the other equations in ���
�� and ���
��� Note that here �E is

the de�ection to the elevators� If any other control surface on the aircraft being

considered were involved� additional terms would be involved� For example� if

de�ection of �aps �F� and symmetrical spoilers �sp� were also used as controls for

longitudinal motion� additional terms such as

�X

��F
�F and �X

��sp
�sp ���
��

would be added to equation ���
��� For simpli�cation� we de�ne

Xx � �
m

�X

�x

Zx � �
m

�Z

�x

Mx � �
Iyy

�M

�x

���
 �

and Mx� Zx� Xx are called stability derivatives�

Equations of longitudinal motion

If the equations in ���
�� are expanded �as in ���
��� and the substitutions in

���
 � are made� then there results a new set of equations� From the study of

aerodynamic data� it becomes evident that some stability derivatives can be ne�

glected �but this is problem dependent�� The equations of perturbed longitudinal

motion� for straight� symmetric �ight� with wings level can be expressed as

�u � Xuu�Xww �W�q � �g cos���� �X�E�E

�w � Zuu� Zww � U�q � �g sin���� � Z�E�E

�q � Muu�Mww �M �w �w �Mqq �M�E�E

�� � q�

������

where �� � q is usually added for completeness�

� 



Equations of lateral motion

As in Section �������� w



e	ects and taking into account the cross�product of inertia terms gives

�v � Yvv � U�r � �g cos����� Y�R�R

�p � L�

vv � L�

pp� L�

rr � L�

�A
�A � L�

�R
�R

�r � N �

vv �N �

pp�N �

rr �N �

�A
�A �N �

�R
�R

�� � p� r tan��

�	 � r sec���

������

��� State space representation

In Chapter � we introduced basic control systems� governed by the equations
�	

	�

�x�t� � Ax�t� �Bu�t�

y�t� � Cx�t��
������

where x� u and y are vectors representing the state� input and output variables

respectively� We also de�ned our interest as being in linear� time�invariant sys�

tems� The �ight of an aircraft� however� is time�varying and its equations are

non�linear� In Section ��
�� we explained the concept of gain scheduling so that

the system matrices� A� B and C� may be considered constant at set operating

conditions relative to some parameter�

In the previous section we showed how the non�linear aircraft equations can

be linearised into a relatively simple form� so that they can be represented in

state space form�

We now illustrate how the simpli�ed aircraft equations of motion are repre�

sented in the form of ������� this is done for both longitudinal and lateral motion�

����� Aircraft equations of longitudinal motion

If the state vector for an aircraft is de�ned as
�
���������

u

w

q

�

�
���������
� ������

where the variables are the perturbations to forward velocity� yaw velocity� pitch

rate and pitch angle� and if the aircraft is being controlled by means of elevator

�




de�ection� �E� and change of thrust� �th� then from ������ the state equation is

de�ned as
�
���������

�u

�w

�q

��

�
���������
�

�
���������

Xu Xw � �gcos��

Zu Zw U� �gsin��



����� Aircraft equations of lateral motion

If the state vector is �
�������������




p

r

�

	

�
�������������

� ������

where the variables are de�ned as sideslip angle� the perturbations to roll rate

and yaw rate� and roll angle and yaw angle� and if the aircraft is being controlled

by the ailerons� �A� and rudder� �R� then the state equation is

�
����



����� Longitudinal stability

The characteristic polynomial of the state coe�cient matrix A� known as the

stability quartic� is calculated in the form

�� � a��
� � a��

� � a�� � a� � �� �������



which can usually be factorised into the following form

��� � e���� f���� � ��D
D�� 
�
D� � �� ���� �

The simple term in � corresponds to the heading �directional� mode� Because

� � � is a root� then once an aircraft
s heading has been changed� there is no



Chapter �

Eigenstructure assignment

In Chapter � w



A solution to Problem � was given by Wonham ����� and gave the link between

complete controllability and eigenvalue assignment�

THEOREM ��� A system is controllable if and only if� for every self�conjugate

set of scalars f��� � � � � �ng� there exists a real matrix F � IRm�n such that the

eigenvalues of A�BF are �i 	i � �� � � � � n��

Proof 	see Wonham ������

Following Wonham�s paper ����� many authors published work on the sub�



where V � �v�� � � � �vn�� � � diagf��� � � � � �ng such that some measure of the

conditioning� or robustness� is optimised�

Kautsky et al� ���� gave a number of measures that can be considered as

an optimisation objective of Problem �� We shall now show how to construct a

feedback to solve this problem�

����� Construction of a state feedback

Given that we have a V that optimises some robustness measure� the following

theorem gives a construction of F �

THEOREM ��� Given � � diagf��� � � � � �ng and V non�singular� then there

exists a real F � IRm�n� a solution to ����� if and only if

UT
� 	AV � V �� � �� 	
�
�

where

B � �U�� U��

�
�� ZB

�

�
�� � 	
���

with U � �U�� U�� orthogonal and ZB non�singular� Then F is given explicitly by

F � Z��B UT
� 	V �V

�� �A�� 	
���

Proof 	see Kautsky et al� �����

As a result of this theorem we have the following corollary�

Corollary ��� A matrix V may be chosen to satisfy Problem 	 if we select each

column vi of V � corresponding to each desired eigenvalue �i� so that it belongs to

the null space

Si � N �UT
� 	A� �iI��� 	
���

Proof Follows directly from Theorem 
�� 	see Kautsky et al� ������

So� if we choose to assign a set of distinct eigenvalues� for each i� a vector vi

can be chosen from Si to form V non�singular and as robust as possible� Three

iterative methods for this are given in Kautsky et al� ����� We have shown how we

may construct a feedback to obtain a system that is stable and robust� We also

��



illustrated in Section ����� that this feedback can be used to a�ect the transient

response of the system�

The construction of F has used the fact that all of the state variables are

available for feedback� However� this is not generally the case and we need to

extend our ideas to output feedback�

��� Output feedback

It has been illustrated that we may use feedback to alter the eigenstructure of

a system for three purposes
 to ensure stability� robustness and a satisfactory

response� But all of this has been performed using the state variables� In practice

these will not all be available for feedback� instead we may use the measured

variables� that is� the outputs� Output feedback by eigenstructure assignment is

a much more di�cult problem than for state feedback� and our objectives are


Problem � Given the real triple 	A�B�C� and a self�conjugate set of scalars

f��� � � � � �ng and a corresponding self�conjugate set of n�dimensional vectors�

fv�� � � � �vng� �nd a matrix K � IRm�p such that the eigenvalues of A�BKC are

�i 	i � �� � � � � n�� with corresponding eigenvectors vi 	i � �� � � � � n�� i�e� that

	A�BKC�V � V �� 	
���

where V � �v�� � � � �vn�� � � diagf��� � � � � �ng�

����� Construction of an output feedback

Without any dimensional restrictions on Problem �� an output feedback can be

constructed from Chu et al� �����

THEOREM ��� Given � and V non�singular� then there exists a real K �

IRm�p� a solution satisfying ���
�� if and only if

UT
� 	AV � V �� � � 	
���

	V ��A� �V ���P� � �� 	
����

��



where

B � �U�� U��

�
�� ZB

�

�
�� � C � �ZT

C � ��

�
�� P T

�

P T
�

�
�� � 	
����

with U � �U�� U��� P � �P�� P�� orthogonal and ZB� ZC non�singular� Then K is

given explicitly by

K � Z��B UT
� 	V �V

�� �A�P�Z
�T
C 	
����

Proof The existence of decompositions 	
���� follows from the assumption that

B and C are of full rank� From 	
���� K must satisfy

BKC





since V �� � W T from 	����� but vi � Si i�e� UT
� 	A� �iI�vi � � so that

U�U
T
� 	AV � V �� � 	I � U�U

T
� �	AV � V �� � �� 	
��
�

using 	
����� giving 	AV �V �� � U�U
T
� 	AV �V ��� Using this and 	
���� results

in

BKC � 	V �W T �A�	I � P�P
T
� ��� 	
����

The theorem associated with the error involved in assigning the desired eigenval�

ues is

THEOREM ��� �Chu et al� ��
��Given � � diagf��� � � � � �ng and V � �v�� � � � �vn�

non�singular� such that vi � Si and kvik�� � �� then K de�ned by ����	� implies

	A�BKC�V � V � � �EV� 	
����

Proof Using 	
���� from Lemma 	
��� we obtain BKC � 	V �W T � A� �

	V �W T �A�P�P T
� so that

	A�BKC�V � V � � �	V �W T �A�P�P
T
� V� V ��





corresponding eigenvectors are uncontrolled and may therefore force the system

to displa



����� Aircraft control problem

The importance of considering the whole eigenstructure of a system has been

demonstrated previously� As shown in Section ������ the transient response de�

pends on both the eigenvalues and corresponding right and left eigenvectors 	see

	������ these eigenvectors being chosen for performance requirements depending

on the application being considered� For the aircraft application considered here�

the eigenvectors are chosen explicitly to improve the aircraft�s �ight handling

qualities� This chapter considers the problems of

�� characterising eigenvectors which can be assigned as closed loop vectors and

�� determining the best possible set of assigned closed loop vectors in case the

desired set is not assignable 	since arbitrary eigenvector assignment is not�

in general� possible��

Before explaining the theoretical aspects of calculating the eigenvectors� a de�ni�

tion is required�

De	nition ���� A� is de�ned to be the unique matrix� X � IRn�n that satis�es

the four Moore�Penrose conditions�

	i� AXA � A� 	iii� 	AX�H � AX

	ii� XAX � X� 	iv� 	XA�H � XA

and is the unique minimal F�norm solution to

min
X�IRn�n

kAX � ImkF � 	
����

Note that here the H superscript is the complex conjugate transpose�

����� Complete speci�cation of desired eigenvectors

For an assigned eigenvalue� �i� it has been shown999.9(i)-.(99(h)-.17 TD
(i)TTf
113  0 te)-18911 Tf
8n



where the �a� subscript denotes that the vector is achievable� The problem arises

that� in general� a desired eigenvector� vdi� chosen from a performance criteria

will not reside in the prescribed subspace and hence cannot be achieved� Instead

a �best possible� choice is made by projecting vdi into the subspace of achievable

vectors� Si� shown geometrically in Figure 
��



each projected into Si� The set of achievable vectors are augmented in the form

V � �va�� � � � �vap�� and the feedback is constructed as in 	
�����

K � Z��B UT
� 	V ��AV �	CV ���� 	
�
��

����� Partial speci�cation of desired eigenvectors

In many practical situations� complete speci�cation of vdi is neither required

nor known but rather the designer is interested only in certain elements of the

eigenvector� This case is considered by assuming the eigenvector has the form

vdi � �vi�� � � � � x� vij� � � � � x� vin�
T � 	
�
��

where vij are designer speci�ed components 	usually a � or �� and x is an unspeci�

�ed component� The number of elements that can be speci�ed in each eigenvector

is outlined in a theorem from the paper by Srinathkumar ����� who showed that

min	m� p� entries in each vector can be arbitrarily chosen� If there is the need

to specify more than min	m� p� entries for a performance requirement� then the

vector is projected as before to calculate the best least squares �t�

To proceed with the analysis� a permutation matrix� P � is de�ned so that

Pvdi �

�
�� di

ui

�
�� � PSi �

�
�� Di

Ui

�
�� � 	
�
��

where di





If we consider the linearised perturbed lateral axis equations� the state vector

may be

x �

�
����������������

r

	

p




�r

�a

�
����������������

yaw rate

sideslip angle

roll rate

bank angle

rudder de�ection

aileron de�ection

� 	
�
��

Again this di�ers to the state vector in Section ������ as the choice is problem

and aircraft type dependent� A desirable choice of right eigenvectors would be

�
����������������

�

x

�

�

x

x

�
����������������

�
����������������

x

�

�

�

x

x

�
����������������

�

�
����������������

�

�

�

x

x

x

�
����������������

� 	
�
��

The �rst two vectors are the dutch roll vectors in which the yaw rate and sideslip

angle are coupled while roll rate and bank angle are suppressed� The third vector

is the roll subsidence vector where roll rate 	and hence bank angle� are emphasised

while yaw rate and sideslip are set to zero� The e�ect of these choices is to obtain

an orthogonality of the subvector composed of the �rst four components of the

dutch roll vectors with respect to the appropriate subvector from roll subsidence�

����� Mode output�input coupling vectors

We have shown how to choose the eigenvectors both mathematically and prac�

tically� these being used to construct the feedback as in 	
����� However� there

are quantities that can be speci�ed by the designer that give more important in�

formation about the aircraft�s performance than the eigenvectors alone� Writing

	���� in terms of the output equation in 	���� gives

y	t� �
nX
i��

	Cv C



from which it can be seen that the term Cvi determines the outputs participating

in the response of each mode� and that wT
i B determines those modes that are

a�ected by each input� We therefore de�ne the mode output coupling vectors and

mode input coupling vectors to be

G� � CV

G� � W TB�
	
����

respectively� Again the required G� may not lie in the correct spaces and we

consider the achievability criteria as in the previous section� There is signi�cant

advantage in considering the assignment in terms of the output variables rather

than the state variables� This was originally proposed by Moore ����� Again we

consider a desirable mode output coupling vector in the form

gdi � �gi�� � � � � x� gij� � � � � x� gip�
T � 	
����

which is rearranged along with CSi�

gdi �

�
�� di

ui

�
�� � CSi �

�
�� Di

Ui

�
�� � 	
����

into speci�ed components 	di�Di� and unspeci�ed components 	ui� Ui�� respec�

tively� Using 	
���� gives

gai � Cvai � CSi�i� 	
����

so that here the functional to be minimised is

J� � kgdi � gaik
� �

�������

�
�� di

ui

�
��� CSi�i

�������

�

�

�

�������

�
�� di

ui

�
���

�
�� Di

Ui

�
���i

�������

�

�

� 	
��
�

Minimising this over the desired components to �nd �i gives

gai � CSiD
�
i di� 	
����

Noting that gai � Cvai we can construct

vai � SiD
�
i di� 	
����

From hereG� � �ga�� � � � �gap�� V � �va�� � � � �vap� are constructed and the feedback

	
���� becomes

K � Z��B UT
� 	V ��AV �G��� � 	
����

provided G� is invertible�

��



����	 Example of coupling vectors interaction

In Section 
���
 we gave examples of right eigenvectors that could be selected�

from these the projection as in Section 
���� can be performed and K calculated�

However� we have just illustrated that modal coupling can be better observed

in the mode output and mode input coupling vectors� so we now give examples

of these and how to interpret the coupling� Consider a system of dimensions

n � ��m � �� p � �� example mode input and output coupling vectors are

Inputs�j�

G�d � W T
� B �

�
�������������

� �

� �

x x

� �

x x

�
�������������

Modes�i��
	
����

where the ith mode is excited by the jth input according to the 	W TB�i�j element

and

Modes�i�

G�d � CV� �

�
������

� � � x x

� � � x x

x x � x x

�
������
Outputs�k��

	
����

where the kth output depends on the ith mode according to the 	CV �k�i���i�T2 1  oj
/T2 1  Tf
26 8 . 0 0 0 1  - 4 5  TD
(	
)Tj
/T5 1  Tf
43  0  TD
(�)Tj
/T2 1  Tf
14  0  TD
(�t1 Tc
[(k�)1 0 0 0 2  (�)Tj
/T2 1p)9 9  TD
th� x �r4s.. . o 9iy  Tf
32D
/T5 1  Tf
-4TD
4 Tc
(CV)Tjp42sy8 . 0 0 0 1  TD
0 TcTD
(x)�x



�� specify the system matrices A � IRn�n� B � IRn�m� C � IRp�n

�� specify design requirements� �p � Cp�p� G�d � IRp�p� G�d � IRp�m

�� construct loop to calculate achievable mode output coupling vectors

for i � � 
 p

� calculate re�ordering operator� P � such that Pgdi �

�
�� di

ui

�
��

� calculate Si� the null space of UT
� 	A� �iI�

� use the re�ordering operator so that P 	CSi� �

�
�� Di

Ui

�
��

� calculate best achievable mode output coupling vector gai � CSiD
�
i di

� calculate corresponding eigenvector vai � SiD
�
i di

� augment G�a � �ga�� � � � �gap�� Va � �va�� � � � �vap�

end


� calculate feedback gain matrix

K � B�	Va�p �AVa�G
��
�a 	
����

�� calculate closed loop system A � BKC� check �p 	 �	A � BKC� and

calculate the errors in the mode output and input coupling vectors

E� � kG�d �G�ak�F � E� � kG�d �G�ak�F � 	
����

��� Example

The example used here to illustrate the preceding theory on eigenstructure as�

signment by output feedback and its application to aircraft problems is a model

of an L����� aircraft at cruise condition from ���� We do not give the system

matrices here� or indeed the open loop behaviour as this is all covered in Exam�

ple � of Chapter �� Also� we do not justify the choice of desired eigenstructure�

This example is used to illustrate the achievable results and to demonstrate the

shortfall in these results�

��



F



These are normalised so that the largest element 	in modulus� in each column is

one� giving

G�a �

�
���������

� ������� 
 �����
i

� �

������ 
 ������i ������� 
 ������i

� ������� 
 ��
���i

�
���������
� 	
����

We can see that the exact desired decoupling cannot be achieved in the roll

mode� although the level of coupling is small� The results given here are those

usually obtained by authors investigating eigenstructure assignment applications

to aircraft control� Here we are also concerned with the left eigenvectors via the

mode input coupling vectors� calculated here as

G�a �

�
���������

����
�� � ������i ������
 � ������i

����
�� � ������i ������
 � ������i

������� � ������i �����
 � ������i

������� � ������i �����
 � ������i

�
���������
� 	
����

Again� to view the level of coupling� we normalise each row in G�a such that the

largest element 	in modulus� is one� giving

G�a �

�
���������

� ������� � ����
�i

� ������� � ����
�i

������� � ������i �

������� � ������i �

�
���������
� 	
����

We can see that the mode output coupling vectors� G�a have been achieved to
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sired eigenvalue� and hence they cannot be considered independen



��� Structure of right eigenvector matrix� V

After partial eigenstructure assignment is performed� the columns of V are nor�

malised such that kvik�� � � �i � �� � � � � n	� In order to be able to see analytically

how to update each vector in V�� partition V in the form

V � �V �vn� �

�
���Q��q�

�
�� R

�T

�
�� �vn

�
��

� �Q��q�

�
�� R QT

�vn

�T qTvn

�
�� �

�
��	

where a QR decomposition has been performed on V � This partitioning is based

on the form in Method � of Kautsky et al� ����� It is then possible to write down

the inverse of V explicitly�

V �� �

�
�� R�� ��R��QT

�vn

�T �

�
��
�
�� QT

�

qT

�
�� � �
�
	

where � � �
qT vn

and is a scalar� Here vn is the last column of V� and is the vector

to be updated to satisfy set minimisation objectives� After it has been updated�

it is moved to the front of V� so that vn�� is the next vector to be updated� i�e�

�V� � ��vn�vp��� � � � �vn���� �
��	

This process is continued on vn��� vn�� etc�� and we thus have a procedure for

choosing a new set of �V� by performing a rank�one update at each iteration� We

shall now de�ne three criteria to be satis�ed when performing the minimisation

algorithm�

��� Left eigenvector matching

The primary aim of the minimisation algorithm is to reduce the error between

the desired and achieved mode input coupling vectors� Thus� we aim to solve the

problem ������	
�����


minJ� � minkG�d �G�ak�F

subject to kvik�� � � �i � �� � � � � n	�

�
��	


�



where the subscripts �d� and �a� denote desired and achieved quantities� respec�

tively� From here onwards w



where Fp � G�d �Dp� and the subscript p denotes that the subscripted matrix

has been pre�multiplied by �Ip� ��� It is not apparent how �n can be chosen as a

solution to �
���	� a Lemma is needed to make things simpler�

LEMMA ��� �Kautsky and Nichols ����� For suitably sized matrices A	B and

vectors v	w �� � it can be shown that

kA�BwvTk�F � �vTv	kA�v�Bwk�� �
pX
i��

�i �
���	

where

�v � v

�vTv�
	 �i � eTi A�I �

vvT

vTv
	ATei � �
��
	

Proof It is observed �rst that from the de�nition of the Frobenius norm� kAk�F �

trace�AA	T � then the l�h�s� of �
���	 may be expressed as

kA�BwvTk�F �
pX
i��

keTi �A�BwvT 	k��� �
���	

where ei is the ith column of the n�dimensional identity matrix� We expand the

r�h�s� of �
���	 using the fact that kvk�� � vTv� To complete the square in this

expansion� the term
pX
i��

eTi Avv
TATei

�vTv	
�
���	

is added and subtracted� and this completes the proof��

It must be noted here that in the above Lemma� the matrices A and B and

the vectors v and wT are generic and are not related to any similar matrices men�

tioned before� Applying Lemma 
�� to �
���	 gives the equivalent optimisation

problem

min
�
n

�J� � min
�
n

�zTz	kFp�z� Ep��nk
�
�� �
���	

where

�z � z

�zTz� � �i � eTi Fp�I �
zzT

zTz
	F T

p ei� �
���	

since �i is independent of �n for all i� Here it is still not possible to solve

�
���	 easily since �n occurs non�linearly� the step necessary to overcome this

is common to this and the next two sections and will thus be explained in the

combined minimisation section�

��



��� Eigenvector conditioning

We have shown how to formulate a problem in order to match the desired mode

input coupling vectors� but this cannot be the only consideration� To calculate

W T � the inverse of V is needed� so updating a vector in V� that makes V ill�

conditioned gives rise to inaccurate results� Thus� it is desirable to update the

vectors in V� while simultaneously controlling the conditioning in the sense that

�F �V 	 � kV kFkV
��kF �
���	

is reasonably small� where � denotes the condition number� As shown in Section

����
� this gives an upper bound on the maximum condition number of the closed

loop eigenvalues� so also provides a robustness measure� In Section 
�� we said

that the columns V are scaled to unity� this implies

kV k�F �
nX
i��

kvik
�
� � n� �
���	

so that

�F �V 	 � n
�

�kV ��kF � �
���	

Hence� to reduce the condition number of V � it is su�cient to reduce the Frobenius

norm of V ��� Here we need to know how to choose �n to reduce the conditioning

of V in addition to matching the mode input coupling vectors� Again we use the

structure of V given in �
�
	 to obtain the objective function

J� � kV ��k�F � trace�V ��V �T 	

�
n��X
i��

eTi �R
��R�T � �E�n�

T
nE

T�T 	ei � ��T

�
n��X
i��

keTi ��E�n	k
� � eTi R

��R�T ei � ��T

� k�E�nk
�
� � k�Sn�nk

�
� �

n��X
i��

�i�

�
���	

where ������	
�����


k�Sn�nk
�
� � ��T

�i � eTi R
��R�T ei�

�
���	

��



since kSn�nk
�
� � kvnk

�
� � �� Our second problem to be solved is

min
�
n

�J� � min
�
n

h
k�E�nk

�
� � k�Sn�nk

�
�

i

� min
�
n

�������
�
�� E

Sn

�
�� ��n

�������
�

�

�
��
	

since �i is independent of �n for all i



The signi�cance of this error arises when we construct the feedback since the

accuracy of the assigned eigenvalues is dependent on this error� This can be seen

in Chapter ��

Recall from Section ����� that kwT
i
�Tik�� measures the minimum distance be�

tween wT
i and a vector in the subspace Ti� where �Ti is an orthonormal basis for

the range space of Ti �as in �����		� To minimise this distance� we put it into a

form where we can again use the special structure of V �� in �
�
	� observe that

the objective function

J� �
nX
i��

kwT
i
�Tik

�
� �

nX
i��

keTi V
�� �Tik

�
�

�
nX
i��

�������e
T
i

�
�� R��QT

� � �E�nq
T

�qT

�
�� �Ti

�������
�

�

�
n��X
i��

keTi �R
��QT

� � �E�nq
T 	 �Tik

�
� � k�q

T �Tnk
�
�

�
n��X
i��

keTi �Hi � �E�nk
T
i 	k

�
� � k�k

T
nk

�
��

�
���	

where ������	
�����


kTi � qT �Ti

Hi � R��QT
�
�Ti

E � R��QT
�Sn�

�
���	

To simplify �
���	� we apply Lemma 
��� except that the term added and sub�

tracted to complete the square is

n��X
i��

eTi Hikik
T
i H

T
i ei

�kTi ki	
� �
���	

Now de�ne 	i � �kTi ki	
�

� � to give

J� �
n��X
i��

keTi �	
��
i Hiki � 	i�E�n	k

� � k�kTnk
�
� �

n��X
i��

�i� �
���	

where

�i � eTi Hi

�
I �

kik
T
i

	�i



HT
i ei� �
���	

��



To simplify this we make the de�nitions������	
�����


�D � diag�	i	

gi � eTi 	
��
i Hiki

g � �g�� � � � � gn���T �

�
���	

so that �
���	 becomes

J� � kg � �D�E�nk
�
� � 	�nk�k

�
� �

n��X
i��

� i� �
���	

Thus to minimise the error of the left eigenvectors from their correct spaces� we

must solve

min
�
n

�J� � min
�
n

h
k�g � �D�E�n	k

�
� � 	�nk�Sn�nk

�
�

i

� min
�
n

�������
�
�� � �DE

	nSn

�
�� ���n	 �

�
�� g

�

�
��
�������
�

�

� �
���	

since 
i is independent of �n for all i� Again the step needed to overcome the

non�linearity appearing in ��n is described in the next section on the combined

minimisation�

��� Combined minimisation

We have justi�ed the need for a minimisation algorithm� and in the previous

three sections have described three objectives for the routine� each reaching a

stage where the objective function to be minimised involves ��n� We can now

combine the three objective functions so that �n is selected to satisfy all three

criteria� the new objective function to be minimised is thus

J	 � ���
�J� � ��

�J� � ��
�J�	

�

�
��
�kG�d � �Ip� ��W TBk�F � ��

�kV
��k�F � ��

�

nX
i��

kwT
i
�Tik

�
�

�
�

�
���	

Here the ��
i �i � �� �� �	 are weightings to be chosen by the designer according to

the design objectives� where

�� ��
� corresponds to input decoupling�

��



�� ��
� corresponds to the robustness of the problem�

�� ��
� corresponds to eigenvalue accuracy�

����� Overall objective function

Using the expressions obtained in equations �
���	� �
��
	 and �
���	� the objective

function in �
���	 can be written as

�J	 �

�
�����

��z
Tz	kFp�z� Ep���n	k

�
� � ��

�

�������
�
�� E

Sn

�
�� ��n

�������
�

�

���
�

�������
�
�� � �DE

	nSn

�
�� ���n	 �

�
�� g

�

�
��
�������
�

�

�
��� �

�
��
	

Using the fact that kxk�� � xTx� �
��
	 can be re�expressed to give

�J	 �

������������������

�
BBBBBBBBBBBB�

���zTz	
�



Householder matrices are symmetric and orthogonal and are important because

of their ability to zero speci�ed entries in a matrix or vector� In particular� given

any non�zero x



and

r �

�
BBBBBBBBBBBB�

����zTz	
�

�Fp�z

���g

�

�

�

�
CCCCCCCCCCCCA

�

�
BBBBBBBBBBBB�

���zTz	
�

�Ep

��� �DE

��	nSn

��E

��Sn

�
CCCCCCCCCCCCA
pn� �
��
	

This is now ��nally	 in the form of a standard linear least squares problem and can

therefore be solved by a QR �or SVD	 method� Thus we can �nd y to satisfy the

design objectives� but� because we �xed the scaling of ��n� we need to reconstruct

it here� Note that

vn � Sn�n �
SnPH ���y�T

��
�
���	

from �
���	� Now kvnk
�
� � �� which implies

�� � kSnPH ���y�
Tk�� �
���	

and hence

vn �
SnPH ���y�T

kSnPH ���y�Tk�
� �
���	

��	 Algorithm

This algorithm assumes that partial eigenstructure assignment by output feed�

back has been performed as in Section ���� hence we have the closed loop eigen�

structure �V��	 that contain the desired V� � Cn�p� �� � Cp�p� This is used as

the starting point for the algorithm�

STEP �

�� normalise columns of V so that kvik�� � � �i � �� � � � � n	

�� re�order V and � so that V � �V�� V��� � � diag�������

�� if required� choose a new set ��� and calculate �and store	 all right null

spaces Si for ��� using the QR decomposition�

�UT
� �A� �iI	�

T � � �Si� Si�

�
�� RRi

�

�
�� �
���	

for all �i � diag���

��









and eigenvalue accuracy� and have included these objectives in the problem� The

result is a multi�criteria objective function with weightings to be chosen by the

designer to obtain the design requirements� We have outlined the algorithm in a

more usable form in Section 
��� with a note on how to treat complex eigenvalues�

Before presenting a section on how further to scale the �rst p vectors� we give a

table of the dimensions of the elements of the algorithm for completeness� as well

as some illustrative examples�

��



����� Component dimensions

component number of rows number of columns real!complex

V� n p C

V� n n� p C

�� p p C

�� n� p n� p C

Sn n m C

�Ti n n� p C

V n n� � C

Q� n n� � C

q n � C

R n� � n� � C

zT � m C

Dp p m C

Ep p m C

Fp p m C

�z m � C

kTi � n� p C

Hi n� � n� p C

	i � � C

gi � � C

g n� � � C

�D n� � n� � C

� � � R

PH m m C

pn m � C

�P m m� � C

M �n� p � � m� � C

r �n� p � � � C

y m� � � C

��



��
 Example

We next present an example to demonstrate the minimisation algorithm� The

system used here has �� states� � inputs and � outputs� The system matrices

are given in Example � of Chapter � �Section ���	� The desired eigenvalues and

corresponding right eigenvectors have been achieved by partial eigenstructure

assignment� but again the left eigenvectors have a residual error� This error is

kG�d �G�ak
�
F � ������ � ���� �
�
�	

The results of the algorithm run with di�erent values for the weightings� ��
i �i �

�� � � � � �	 follow� The results are given in tabular form� where the objective func�

tion denotes the quantity

��
� kG�d �G�ak

�
F � ��

� kV
��k�F � ��

�

nX
i��

kwT
i
�Tik

�
� e(een)-2matv



routine� and hence we are trying to see how close we can make the matching�



reduced� as has the left eigenspace error� Also� the algorithm has converged in

�� sweeps�

Parameters	 ���
�� �

�
�� �

�
�	 � ����� ��
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Figure 
��� Convergence histories

Indeed� we should really show the convergence histories of the overall objective



not important� Thus we may impose any scaling on the columns of V� to reduce

some error� Here we use it to reduce the value of the objective function in �
���	�

and hence we would like to see the e�ect of this scaling on the left eigenvectors�

Consider scaling W T
� by a matrix D�� while leaving W T

� unchanged��
B� D� �

� In�p

�
CA
�
B� W T

�

W T
�

�
CA �

�
B� D�W

T
�

W T
�

�
CA � �
��
	

giving

�V�� V��new � �W T 	��

�
B� D� �

� In�p

�
CA
��

� �V�� V��

�
B� D��

� �

� In�p

�
CA

� �V�D
��
� � V���

�
���	

The aim is to �nd D� to solve �
���	� The idea is that we use the previous routine

to update vn� then rescale V� by �nding D� as the solution to

min
D�

�J� � min
D�

�������G�d � �Ip� ��

�
�� D� �

� In�p

�
��V ��B

�������
�

F

� min
D�

kG�d �D�W
T
� Bk

�
F �

�
���	

If we denote the rows of G�d and W T
� B by gHi and �wH

i respectively �i � �� � � � � p	�

then

�J� �
pX
i��

keTi �G�d �D�W
T
� B	k�� �

pX
i��

�gHi � di �w
H
i 	�gi � di �wi	� �
���	

It is evident that each term is exclusive in that the scaling factor di a�ects only

the ith row of W T
�



implying that

di �
gHi �wi � �wH

i gi

� �wH
i �wi

� �
���	

The problem here is that when calculating the D�� we are not taking into account

the a�ect on the left eigenspace error� Hence we may actually increase the the

objective function being minimised by updating the V� set�

It will also a�ect the condition number of �V but is not a cause for concern

since it will just mean that we will increase the value of the upper bound� �F �V 	�

for the sensitivity of the individual eigenvalues� it will not a�ect the conditioning

of the eigenvalues themselves� So it is not guaranteed to converge� but intuitively

this scaling on V� should not have too bad an e�ect on the results� In summary

we have a two stage minimisation process

�� update the last column of V� to satisfy a minimisation problem

�� scale V� to further minimise some criteria�

We apply this theory to some of the examples from Section 
�� to show the

expected improvement� The results given have values for the conditioning of the

vectors and the left eigenspace error calculated before the scaling is implemented

at each iteration� The left vector matching error is calculated with the scaling

implemented since this is what the scaling reduces� The objective function is still

valid because at each iteration the scaling of the full set of right vectors is �xed�

��
�� Optimal scaling examples

We use the same example as in Section 
��� but this time we shall apply the

optimal scaling onto V� as described previously�

��





c



Proof

Necessity � If we consider one row of G�d � �G�a then

�G�d � �G�a	i � �� � � � � � � � ���
h
gi�
gij

� � � � � � � gim
gij

i
�
h
�gi�

gij
� � � � � � �� gim

gij

i � �
���	

Then

k�G�d � �G�a	ik
�
� �

�
��gi�

gij


�

� � � � �

�
gim

gij


�
�
� � �
��
	

where there are m� � terms in the sum� There is one of these sums for each row�

and we require �gi�
gij

	 � 
 � �gi�
gij

	� � 
 �� giving

kG�d � �G�ak
�
F 
 
 �p�m� �	� �
���	

a necessary condition for the desired level of input decoupling to be achieved�

Su�cency �

kG�d � �G�ak
�
F � 
 � � max

�����gi�gij�

gijk4 1 Tf
24.9999 -19.9999�� 	 �	



������ Summary of results

The previous examples show that the minimisation algorithm can be used to

reduce the objective function that represents set criteria� but that quite a lot of

computation is needed� As with most multi�criteria optimisation routines� it is

not clear how best to choose the individual weightings� although the examples do

give some indications�

���� Alternative starting point

In the preceding theory� it has been assumed that partial eigenstructure assign�

ment has been performed� this being used as the starting point for the minimisa�

tion algorithm� As an alternative� we may remove the need for �rst using partial

eigenstructure assignmen



iterates through the unassigned right vectors until some minimisation criteria is

satis�ed� In the developmen





objective function much quicker� but will give rise to problems when trying to

reconstruct the feedback� as will be explained in the next chapter�

��� Eigenvector partitioning

We assume that we have a set of n linearly independent vectors� V � which are

column normalised so that kvik�� � � �i � �� � � � � n�� We partition V in the form

V � �V�� V�	 � W T �

�
��
W T

�

W T
�

�
�� �
���

where V� � �v�� � � � �vp	� W T
� � �w�� � � � �wp	T � The method is almost exactly the

same as for the restricted minimisation in Chapter �� we again partition V in the

form

V �

�
���Q��q	

�
��
R

�T

�
�� �vn

�
�� � �
���

so that the inverse of V is given by

V �� �

�
��
R�� ��R��QT

�vn

�T �

�
��

�
��
QT

�

qT

�
�� � �
�
�

where � � �
qT vn

is a scalar� We shall now de�ne the two criteria �as opposed to

three in Chapter �� that we want to satisfy when performing the minimisation

algorithm�

��� Left eigenvector matching

Again the primary aim of the minimisation algorithm is to reduce the level of

coupling inherent in the mode input coupling vectors� Thus� we aim to solve the

problem
������	
�����


minJ� � minkG�d �G�ak�F � min
V
kG�d � �Ip� �	V

��Bk�F

subject to kvik�� � � �i � �� � � � � n�

� �
���

As in Chapter �� we leave out the �subject to� constraint for brevity in the following

theory� although it is important to remember that it still applies� At this point

��



in the algorithm in Chapter �� vn was expressed as

vn � Sn�n� �
�
�

where �nding �n corresponds to restricting vn to be in the subspace corresponding

to the desired eigenvalue� �n� Here we leave it as vn� so that we choose vn � C
n

to minimise some criteria�

Following the theory from Section ���� we substitute for V �� from �
�
� to

reduce �
��� to

min
vn

J� � min
vn

�������
G�d � �Ip� �	

�
��
D � �Evnz

T

�zT

�
��

�������

�

F

� �
���

where ������	
�����


zT � qTB

D � R��QT
�B

E � R��QT
� �

�
���

Note that D � Cn���m� and �Ip� �	 only multiplies the �rst p rows of D��EvnzT �

therefore if �n� �� � p� the last row� �zT � of V ��B makes no contribution to the

minimisation� Then �
��� is equivalent to

min
vn
kFp � �Epvnz

Tk�F � �
���

where Fp � G�d �Dp� and the subscript p denotes that the subscripted matrix

has been pre�multiplied by �Ip� �	� We apply Lemma ��� to �
��� to give

min
vn

�J� � min
vn
�zTz�kFp�z� Ep�vnk

�
�� �
����

We note here that if we were only aiming to minimise �
����� then zTz could be

removed as a constant factor multiplying the objective function at each step� If

we include other criteria� then it must remain� either explicitly� or incorporated

into a weighting factor on �J�� AsD
(d)Tj
/T001 TD
(�)Tj
01001 then



that its condition number is kept low� The columns of V are normalised to one

which implies that

�F �V � � n
�

�kV ��kF � �
����

so that we restrict the condition number by keeping a bound on the Frobenius

norm of the inverse of V � Using the structure of V given in �
�
� results in the

objective function

J� � kV ��k�F



two criteria to be satis�ed� our objective function to be minimised is

J� � ���
�J� � ��

�J��

�
h
��
� kG�d � �Ip� �	W TBk�F � ��

��



where

M �

�
BBBBB


���zTz�
�

�Ep

��E

��

�
CCCCCA
�P � �
����

and

r �

�
BBBBB


	���zTz�
�

�Fp�z

�

�

�
CCCCCA
�

�
BBBBB


���zTz�
�

�Ep

��E

��In

�
CCCCCA
pn� �
����

We hav



�� calculate

zT � qTB

Dp � �Ip� �	R��QT
�B

Ep � �Ip� �	R��QT
�

Fp � G�d �Dp

�z � z

�zTz�

�
��
�


� calculate Householder transformation as in �
���� using the QR decompo�

sition�

q � Q

�
BBBBBBBB


r�

�
���

�

�
CCCCCCCCA
� Qr�

�
BBBBBBBB


�

�
���

�

�
CCCCCCCCA

	 � jr�j

PH �
r�Q

	

�
����

�� partition PH � �pn� �P 	


� formM� r as in �
���� and �
���� respectively� and solve for y the following

min
y
kMy� rk�� �
����

STEP �

�� rescale vn to give updated �vn

�vn �
PH ���y	T

kPH ���y	Tk�
�
����

�� re�order V� to give

�V� � ��vn�vp��� � � � �vn��	�� � � . 0 0 0 1  7  TD
 ( n ) T j 
 / T 1 0 8 8  T c 
 ( � � J 6 6  0  TD
 0 TD
 0 Tc 0 3 . 0 6  Tm
 ( k ) T zTD
 ( 3 S s ) T j 
 / T 5  1 T f 
 2 2 2  0  TD
 ( v ) T j 
 / T 1 T f 
 5 3 p - 3 p 0  T c 
 ( � ) T j 
 t f 
 1 4  0  TD
 ( � � � ) T j 
 - 1 5 8 6  1 4 4  TD
 [ ( � � ) - 2 4 0 q D 
 ( 3 S s ) T 7 ( H ) T j 
 / T 2  1 � f 
 2 0 . 0 0 0 1  - 7  TD
 ( 	 ) T j 
 - 3 4  1  T f 
 3 
 6 2 / T 2  1 � f 
 2 u 9 9 9 / T 5  1 T f 
 2 2  - 7  TD
 ( � ) T j 
 / T 8  1 T f 
 2 2  0  TD
 ( v ) T j 
 / T 4  1 T f 
 3 0  7 J ( 	 ) T j 
 - 5 2 6 T 1  T f 
 2 2 2  0  TD
 ( v ) T j 
 / j 
 - 1 5 8 6  1 4 4  TD
 [ ( � 0 T 6  1 T f 
 2 8  9 9  . v ) T j 
 / 0 a t - 1 5 8 6 -  1  T f 
 p e 6  1 4 4 ( a s ) - 1 1  T f 
 3 0  7 J ( 	 ) n 	 3 � ) T j 
 / T 5 - 3 4  1  T f 
 3 
 2 6 . 9 9 9 . . 9 9 9 9  1 5 p - 3 p 0  T c 
 ( 5  1  T f 
 3 5 j 4 6 s Tm 1 Do T f 
 3 7  - T / T 6  1 T f 
 2 5  - 2 0 . 1  D o T f 
 3 7  - 4  - 7 . 6 0 f 
 3 0  7 J ( 	 ) n 	 3 � ) T j 
 / T 5 - 3 4  1  T f 
 3 
 2 6 8 9 9 . . 9 9 9 9  1 5 p - 3 p 0  TV - 7  TD
 ( 	 ) T j 
 - 3 3 9 Tm 1 Do T f 
 3 7  - 2 6 . 9 9 9 . . 9 9 9 9  1 5 7 T c 
 ( � ) T j 
 / 2 2 . 0 0 0 1  0  T 3 TD
 0 T c 0 Do T f 
 3 7  [ J 
 / T 8  1 7 TD 
 ( T f 
 2 9 
 3 7  0  T 2 2  7 J ( 	 ) n 	 3 � ) T j 
 / T 5 - 3 4  1  T f 
 3 
 2 6 . 1 9 9 . . 9 9 9 9  1 5 p - 3 p 0  T G 6 . 9 9 9 . . 9 9 9 9  1 j 
 / T 4  1 / T 4  1 T f 
 2 9 j 
 / 2 2 . 0 0 0 1  0  T 3 3  TD
 ( P ) T j 
 / T 2  1 T f 4  - 7 . 6 6 f 
 3 0  7 J ( 	 ) n 	 3 � 5 1 Tf
35j46sTm1 Do Tf
37 -T/T6 1 60 TD
0 T Tf�



����� Component dimensions

For completeness� a table of the dimensions of the components of the algorithm

is given�

component number of rows number of columns real�complex

V� n p C

V� n n� p C

V n n� � C

Q� n n� � C

q n � C

R n� � n� � C

zT � m C

Dp p m C

Ep p n C

Fp p m C

�z m � C

	 � � R

PH n n C

pn n � C

�P n n� � C

M �n� p � � n� � C

r �n� p � � � C

y n� � � C

����� Notes and summary

We have presented an algorithm that aims to minimise an objective function�

allowing the minimisation vectors to be chosen freely from the complex plane�

This method follows closely that in Chapter �� but di�ers in that it does not have

the left eigenspace error criterion�

It should be noted that we can also implement the optimal scaling on V� as in

Section ��� or the alternative scaling as in Section ����� but the theory is exactly

the same since it does not rely on null spaces corresponding to any eigenvalues�

��



The algorithm is complete except in the fact that we have not speci�ed how

to obtain the initial set of vectors� V � or how to reconstruct the feedback matrix�

The former is covered in the next section� the latter in the next chapter�

��� Selection of initial vector set for algorithm

We have explained that running the minimisation algorithm by letting the vectors

be chosen freely should decrease the value of the objective function at a faster

rate than for the restricted case� We have also given the theory for this in the

preceding sections� but started with the assumption that we have an initial set

of n linearly independent vectors� V � There are three ways of �nding this initial

set�

�� perform partial eigenstructure assignment as in Section 
��� using the closed

loop eigenvectors to run the minimisation�

�� �nd V� by the projection method corresponding to the desired eigenvalues�

��� take some initial set V��

�� perform an unrestricted projection to obtain V�� take some initial set V��

These methods are described in the following sections� After each section an



However� in general� the closed loop eigenstructure may have �will probably have�

complex modes� If at least one pair of complex conjugate eigenvectors appears

in V� �which will remain una�ected by the algorithm�� then V � �V�� V�	 will be

complex throughout� This will make each updated vector of new V� complex�

Since each vector is updated individually� the result will be

V� self�conjugate

V� not self�conjugate

���
��� V � �V�� V�	 not self�conjugate�

Following the minimisation algorithm� the feedback needs to be constructed in

some way� as is detailed in Chapter �� Whatever method is used� constructing

a feedback from a set of vectors that is not self�conjugate results in a complex

feedback matrix� We must therefore transform our vectors into a real set so that

the minimisation algorithm generates real solution vectors�

Transforming complex vectors to real vectors

We assume� without loss of generality� that there is exactly one complex conjugate

pair of eigenvalues within the closed loop set� If the eigenvalues are permutated

so that this pair appears �rst� then the eigen�decomposition of the closed loop

system is

Vcc � �vre� � ivim� �vre� � ivim� �v�� � � � �vn	

�cc �

�
����������������

�re� � i�im�

�re� � i�im�

��
� � �

� � �

�n

�
����������������

�

�
����

where the �cc� subscript denotes that the decomposition is in its complex form�

and all o��diagonal elements are zero� The self�conjugate set of eigenvectors can

be transformed into a real set by post�multiplying it by the transformation matrix

P �

�
������

�
� ��

�i

�
�

�
�i

�

� I

�
������
� �
��
�

��



The real eigenvector set is thus

Vre � �v
re
� �v

im
� �v�� � � � �vn	� �
����

and the corresponding real representation of the eigenvalue matrix is

�re �

�
�������������

�re� �im�

��im� �re�

��
� � �

�n

�
�������������

� �
��
�



The minimisation routine is run with various values for the parameters� The re�

sults are given in tabular form� where the objective function denotes the quantity

��
� kG�d �G�ak

�
F � ��

� kV
��k�F � �
�
��

In each table� the value of the Frobenius norm condition number of V is given� It

should be remembered that this is not the actual quantity being reduced� From

Section 
��

�F �V � � n
�

�kV ��kF �
�
��

so that kV ��k�F is actually being reduced in order to reduce �F �V �� Also in the

table� the number of sweeps is given� For this example� n � ��� p � 
� and

n� p � 
� and hence one sweep is equivalent to updating each of the six vectors

in V�� One iteration is de�ned as updating one v



Convergence comparison

We now show graphs of the reduction of the error in the left vector matching

for both the restricted and the unrestricted minimisation algorithms� It should

be noted that the graphs show the reduction in the error against the number of

iterations� not the number of sweeps�
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weighting on both criteria� to reduce both simultaneously�

sweeps objective function kG�d �G�ak
�
F �F �V �

� ������e � �
 ������e � �� ������e � ��

� ������e � �� 
�
�
�e � �� ���
��e � ��

� 
�

�
e � �� ���
��e � �� ������e � ��

�� ������e � �� ������e � �� ������e � ��

�� ������e � �� ������e � �� ����
�e � ��

�� ��
���e � �� ���
��e � �� �����
e � ��

�� ��
���e � �� ���

�e � �� 
�����e � ��

We observe that the error in both the left vector matching and the conditioning

of the vectors is reduced� but that the matching error is considerably higher than

the virtual zero value attained before�

Parameters� ���
�� �

�
�� � ����� ��

The previous example illustrates the trade�o� between the two criteria considered�

However� the left vector matching is our main consideration and we just want to

ensure that the conditioning does not become very large� To this end� we place a

higher relative weighting on the left vector matching�

sweeps objective function kG�d �G�ak�F �F �V �

� �����
e � �� ������e � �� ������e � ��

� ������e � �� ���
��e � �� ������e � ��

� 
�
�
�e � �� 
�����e � �� ������e � ��

�� ������e � �� ������e � �� �����
e � ��

�� �����
e � �� �����
e � �� ������e � ��

�� �����
e � �� ��

��e � �� ������e � ��

�� ����

e � �� 
�����e � �� ������e � ��

��� 
�����e � �� ������e � �� ����

e � ��

As expected� the left matching is reduced considerably in comparison to the

previous example� and the conditioning has increased slightly� Note� however�

that a lot of computation is required to reduce the left vector matching from

O����� to O�������

��



����� Projection method

The second method for constructing an initial vector set for the minimisation al�

gorithm is just to perform the �rst part of the partial eigenstructure assign�

ment algorithm� namely the projection method to obtain V�� This is performed

as follows

� specify design requirements� �� � C
p�p� G�d�

� perform projection as in Section 
���� to obtain the best set of achievable

vectors� G�a� extract V� from this�

� specify an initial set V� � IR
n�n�p and form Vcc � �V�� V�	�

� transform Vcc into its real form � use this for the minimisation algorithm�

One question that arises from this is how to choose some initial� real set� V�� such

that

rank�V�� V�	 � n� �
�

�

Since the minimisation is unrestricted� V� can be any set of real vectors that we

decide to choose� but must not be such that the full vector set is badly conditioned�

There is no obvious solution� here we choose to make use of the identity matrix�

We let the �rst n � p rows �and all columns� of V� be the �n � p��dimensional

identity matrix� denoted In�p� Thus�

V� �

�
��
In�p

X�

�
�� � �
�
��

where X� � IR
p�n�p is the remaining section of V� to be �lled� If p � n � p� let

the �rst n� p rows of X� be In�p so that

V� � V�

�
�
I� �

�
�� - 1 5 4 T j 
 / T 5  1  T f 
 3 6 . 0 2 2 0 0 0 1  T D 
 ( � ) T j 
 / T 2  1  T f 
 5 8 5 1 0  T D 
 ( � 
 ) T j 
 / T 5  1  T f 
 4 3  0  T � 
 ( � ) T j 
 / T 2  1  T 5 
 1 4  0  T D 
 ( 
 � � ) T j 
 - 1 4 7 6 . 0 0 0 1  1 7 2 . 0 0 0 1  T D 
 ( w h e r e ) T j 6  0  T D 
 ( r o ) 2 T 1 0  1  T f 
 2 0 . 9 3 5  - 2 0  T D 2  1  T f 
 s 1 T 9 s 7 0 0 0 ( o f ) ] T J 
 / T 5  1  T f 
 5 8 5 . 9 9 9 9  0  T D 
 ( V ) T j 
 / 9  0  T D 
 ( V ) T j 
 / 9  0 7 u  T f 
 2 T 5  1 h d P 4  / T 2  1  T f 1 / �



In�p� Hence� we are just repeating the �n� p��dimensional identity matrix until

V� is full� For example if n � �� p � �� then

V� �

�
�������������

� � �

� � �

� � �

� � �

� � �

�
�������������

�������
������
I�

���
���rst p rows of I�

� �
�
��

Note that this does not guarantee that V � �V�� V�	 will not have a high condition

number� or even that V is of full rank� but we will be very unlucky if generating

V� in this way causes V to be rank de�cient�

Another method� although more expensive than the one just described� is to

use the QR decomposition of V��

V� � �QV�� QV�	

�
��
RV

�

�
�� � �
�
��

From this

QT
V�
V� � �� �
�
��

so that QV� is an orthonormal basis for the complement of V�� Thus� if we let

V� � QV�� �
����

then the columns in V� are linearly independent to the columns in V�� and hence

rank �V�� V�	 � n� �
����

Computationally� it does not seem worth performing the extra work involved

in the partial eigenstructure assignment algorithm� The unassigned eigenstruc�

ture� �V������ may have complex conjugate modes that would hav



����� Example �

Here� using the speci�ed eigenvalues� the projection method is used to obtain the

mode input coupling vectors� from these� the V� set is obtained� The V� set is

obtained by cycling the identity matrix� as just described� The residual error in

G� is

kG�d �G�ak
�
F � ������ � ��

�� �
����

As a comparison� we shall show the results for both methods of constructing a

set� V�� such that the full set of vectors is of full rank� The �rst table for each set

of parameters is for when V� is calculated by repeating the identity matrix� the

second table is when V� is calculated from the QR decomposition of V��

Parameters� ���
�� �

�
�� � ��� ��

Again� we start o� by considering the problem of just matching the left vectors�

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �
 ������e � �
 ������e � ��

� 
�����e � �� 
�����e � �� ������e � ��

� 
�����e � �� 
�����e � �� 
����
e � ��

� ��

��e � �
 ��

��e � �
 
���
�e � ��


 ������e � �� ������e � �� 
��
��e � ��

� ������e � �� ������e � �� 
�����e � ��

�� ����
�e � �� ����
�e � �� 
��
��e � ��

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �� ������e � �� ������e � ��

� ������e � �� ������e � �� ���


e � ��

� 
�����e � �� 
�����e � �� ��
���e � ��

� ������e � �
 ������e � �
 ���


e � ��


 �����
e � �
 �����
e � �
 �����
e � ��

� ������e � �� ������e � �� ������e � ��

�� 
�����e � �
 
�����e � �
 �����
e � ��

���



As in Example � in Section 
�
��� the left vector matching is reduced to zero �to

machine accuracy� in both tables� It is interesting to note that initially w



Parameters� ���
�� �

�
�� � ����� ��

We impose a relative high weighting on the left vector matching as this is our

primary concern�

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �
 ������e � �
 ������e � ��

� ������e � �
 ������e � �� �����
e � ��

� ������e � �
 ������e � �� ����
�e � ��


 ���
��e � �
 ������e � �� �����
e � ��


 ���


e � �� ���
��e � �� �����
e � ��

�� ������e � �� ������e � �� ������e � ��

�� ��
���e � �� ������e � �� 
��
��e � ��

�� ��
���e � �� ��
�
�e � �� �����
e � ��

�� ������e � �� ��
���e � �� ��
���e � ��

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �� ������e � �� ������e � ��

� ������e � �
 ����
�e � �� ������e � ��

� 
�
��
e � �
 ������e � �� ���
��e � ��


 ��
���e � �
 ������e � �� ���
��e � ��

�� 
�����e � �� ��

��e � �� ��
�
�e � ��

�� ���
��e � �� 
�����e � �� 
���

e � ��

�� ���
��e � �� 
��
��e � �� 
����
e � ��

�� ��
���e � �� ��
���e � �� 
��
��e � ��

��� ������e � �� ������e � �� ������e � ��

��� 
���
�e � �� ������e � �� ������e � ��

These results are unsatisfactory in comparison to the weighting ���
�� �

�
�� � ��� ���

where the matching tends to zero and the conditioning is less than here�

Note also the extra work taken by the second method for the construction of

V�� namely the QR decomposition� However� in general� both methods for the

construction of V� are about the same� The main di�erences are that the �rst

method is much cheaper computationally� whereas the second method guarantees

���



that the vectors are of full rank� On these points� it is better to use the �rst

method� repeating the identity matrix� because it is unlikely that this will give a

rank de�cient set of vectors�





is overdetermined� Finally� from �
�
��� we form

V� � �va�� � � � �vap	� �
�

�

and V� is chosen as in Section 
�
�� so as to ensure V � �V�� V�	 is of full rank�

The minimisation algorithm is then run using this matrix V �

One other problem is that in G�d� two columns may represent a complex

conjugate pair of eigenvectors� The constrained projection method in Section


���� forces the unspeci�ed elements in these two vectors to be complex conjugate�

then G�d is self�conjugate� However� here we specify no eigenvalues� thus the

unconstrained projection generates a rank de�cient G�d� To overcome this� we

re�express G�d in its real representation� so that for G�d given in �
�
��

G�d �

�
���������

x x � �

� � x x

� x � �

� � � x

�
���������
� �
�
��

so that again we can generate a full rank set of initial vectors�

����� Example �

Here� the speci�ed G�d is re�expressed in its real form� G�a is calculated using



Parameters� ���
�� �

�
�� � ��� ��

Weight just the left vector matching�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
��e � �� 
��
��e � �� ������e � ��

� ������e � �� ������e � �� ����
�e � ��



Parameters� ���
�� �

�
�� � ��� ��

Weight both criteria equally�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
�
e � �� 
��
��e � �� 
�����e � ��

� ��

�
e � �� ��
���e � �� ����
�e � ��

� �����
e � �� ��



e � �� ���
��e � ��

� ����
�e � �� 
��
��e � �� ������e � ��

�� ��
���e � �� ����

e � �� ������e � ��

��� ��
�
�e � �� �����
e � �� ���

�e � ��

Again we have reduced both criteria� most of the work is done in the �rst two

sweeps� A lot of computation is required to reduce the matching by a further

order�

Parameters� ���
�� �

�
�� � ����� ��

Choose to impose a relative high weighting on the matching�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
��e � �� 
��
��e � �� 
�����e � ��

� 
��

�e � �� 
��


e � �� ������e � ��

� �����
e � �� ������e � �� ������e � ��



error is reduced virtually to zero� in comparison to O����� for the restricted case�

However� care needs to be tak



time� The results are given in the table below�

starting parameters stopping �ops cpu time �secs��

point ��
� ��

� criterion Toolbox ours Toolbox ours

partial � � J 
 ���
 O����� O���
� ����� ���

eigenstructure � � J 
 �� O����� O���
� �����
 �����

assignment ��� � J 
 
� O����� O����� ������ ������

projection for � � J 
 ���
 O����� O���
� �
��� 
��


V�� QR � � J 
 
� O����� O���
� ���� 
����

for V� ��� � J 
 ���� O����� O���
� ������ ���
�

From these results we can conclude that we can make great savings� both in the

number of �ops and in cpu time� This is probably due to the fact that we reduce

the non�linear problem to a linear one via a choice of scaling� the Toolbox must

solve the non�linear problem� We also note that the introduction of the bound

on the conditioning of the problem is causing the extra work� since both methods

are very e cient when ��
� � �� This is a possible area for future in



We have also shown that our methods are numerically e cient in comparison

to a modern optimisation package�

In Chapters � and 
 we have given theory for choosing a new set of vectors

that satisfy some criterion� Next we have to construct a feedback to achieve these

vectors� This work is carried out in the next chapter�

���



Chapter �

�Re�construction of feedback

In the previous two chapters we have described methods for selecting a set of

vectors that best satisfy a set of minimisation criteria� The objective function

decreases by di�ering amounts in relation to the weightings placed on the param�

eters� and depending on whether the new vectors chosen are restricted to be in

certain subspaces� Whatever form of the algorithm is used� the result is a new

set of vectors�

However� the whole point of output feedback and eigenstructure assignment is

to calculate a feedback matrix� K� such that the closed loop system has desired

eigenvalues and�or desired eigenvectors� Thus� our next step is to �nd such a

feedback that best assigns the vectors found from the minimisation algorithm�

In the following sections� we describe the motivation and methods for con�

structing the feedback� give results on how the feedbacks are related� and the

errors involved in using these constructions�

��� Methods for calculating an initial right vec�

tor set� V

In Chapters �� 	 and 
 we gave various methods for constructing an initial set

of vectors� V � to be used as the starting point for the restricted or unrestricted

minimisation algorithm� To distinguish between these methods� we present the

���



following table�

method V� V�

� restricted projection from closed loop system after K

generated from V� as in Section ��
��

� restricted projection as above� except some of �� changed�

vectors for changed eigenvalues

from their null spaces


 restricted projection from null spaces of chosen ��

� restricted projection� cycle In

transform to real vectors

	 restricted projection�



by choosing a new set �V�� hence �V� must be included in the construction of the

feedback�

If w



����� Second �re�construction� K�

As an alternative to just using the �rst construction� we adapt the partial eigen�

structure assignment construction as in ������ to include the full set of vectors

�V � �V�� �V��� Now� C �V �



giving

E��I � �V �C �V ���C �V � �W T � � E�� ����
�

This appears to tell us that� for a speci�ed eigenvalue� the correct left null space

for K� lies within the correct left null space for K� �denote these null spaces as

Ti and Ui respectively�� From Figure ��� we can see that

i

i

~wi
T

T

U

i

i

T

U

w~T
i

Figure ���� nullspaces

��	
�


�wT
i � Ti � �wT

i � Ui

�wT
i � Ui �� �wT

i � Ti
������

respectively to the two diagrams� That is� if �wT
i lies in Ti� then it also lies

in Ui� the converse does not hold in that �wT
i can lie in Ui without being in Ti�

Thus� although this does not guarantee that reducing kE�k automatically reduces

kE�k� it does show that they will simultaneously attain the same zero value when

considered in the limit� This shows that usingK�� in addition toK�� is worthwhile

since we expect both of the errors to be reduced by the minimisation routine�

We can show� under certain conditions� that K� and K� are equivalent in the

sense that they generate the same eigenstructure� but �rst need a theorem�

THEOREM ��� The pseudo�inverse of a product of matrices C � Cp�n� of full

rank� and V � Cn�n� unitary� is given by

�CV �� � V ��C�� ����	�

��




Proof

Since V is square� invertible and unitary

V � � V �� � V H � ����
�

where H denotes the complex conjugate transpose� Also� since C is of full rank�

C� satis�es the four Moore�Penrose conditions given in De�nition ����� i�e�

�i� CC�C � C� �iii� �CC��H � CC�

�ii� C�CC� � C�



�i� K� � B�� �V ���A�V ��C �V ��

� B�� �V ���A�V � �V ��

�



so that K� � K�D� However� this is only true if �V is unitary� which is extremely

unlikely� This indicates the worth in using K�� in addition to K�� since the bene�t

gained in scaling V� is lost for K��

����� Relationship between original feedback and K�

If one of Methods � and � has been used to calculate the vectors for the starting

point of the minimisation algorithm� then a K is generated� If we calculate the

closed loop eigenstructure �V��� then

�A�BKC�V � V �� ����	�

where

K � B��V��� �AV���CV��
��� ����
�

Now� for the second reconstruction

K� � B�

�
B��V�� �V��

�
�� �� �

� ���

�
���A�V�� �V��



CA �C�V�� �V����

� B���V��� �AV��� � �V���� �A�V�����CV�� C �V�����

������

Now by the theory of generalised inverses �see Ben�Israel and Grenville �	��

�A�B�� �

�
�� A�

B�

�
�� �AA� �BB���� ������

if R�A�
T
R�B� � f�g� Thus

K� � B���V��� �AV��� � �V���� �A�V���

�
�� �CV����

�C �V���

�
�� ��CV���CV���� � �C �V���C �V�����

� B���V��� �AV���CV���� � ��V���� �A�V���C �V�����I � �C �V���C �V�����

� �K �B�� �V���� �A�V���C �V�����I � �C �V���C �V������

������

provided R�CV��
T
R�C �V�� � f�g� Here we hav







The idea is to augment the system into a linear least squares form to calculate

�K�� ���� This system is overdetermined� proven using the following small theorem�

THEOREM ��� If n�m� p � IN �the set of natural numbers� and



This form of the diagonal solver is called the complex solver because complex

eigenvalues are allowed to appear explicitly on the diagonal of �� in the form

��jj � �j � i	j� ������

where i � ����
�

� � The system given in ���
�� is written in the form

Mk � a� ������

where M � �M�



which is just the n�dimensional identity matrix with n rows of zeros augmented

between each of its rows� The rows with a one in them represent the coe�cients

of the diagonal elements of ��� the n rows of zeros represent the n zeros that

appear on the o��diagonal of �� between each diagonal element�

The solution vector� k� is made up of the unknown elements of K� and ��� and

hence k � Cmp�n� The right hand side of ������ contains all of the elements of �A�

i�e� the coe�cients aij� thus a � Cn�� These two components appear in the form

k �

�
������������������������������������������

k��
���

k�m

k��
���

k�m
���

kp�
���

kpm

����
���

��nn

�
������������������������������������������

� a �

�
�������������������������������

a��
���

a�n

a��
���

a�n
���

an�
���

ann

�
�������������������������������

� ����	�

The system thus takes the general form

�
���������

coe�cients BC coe�cients of ��

of K

�
���������

�
���������

K�s components

in list form

���s components

in list form

�
���������
�

�
�� A in

list form

�
�� �

����
�

Here we have shown how to write ���

� into a linear least squares form� which

can be solved using a QR �or SVD� method� Since the system is overdetermined

in general� it is very unlikely that the system has an exact solution� Thus� we

will have errors between what we want and what we achieved� these are covered

in the error analysis section�

���



Note that throughout this section� we have de�ned components as being mem�

bers of the complex set� For the results of the unrestricted minimisation� all of

the components are actually real� This section was put in its most general form

because it may be applied to the vectors arising from the restricted minimisation�

which may be complex�

����� Real solver formulation

In this section� we assume that we have a real set of vectors� �V � We know

from Section 
�
 that� if we used either Method � or 	 to �nd the initial vector

set� then any complex conjugate vectors in V are transformed into their real

representation� At the end of the minimisation� we do not know whether the

real vectors in �V� should correspond to all real eigenvalues� or some complex

conjugate ones� But� we do know that any vectors in V� that corresponded to

complex eigenvalues are unchanged by the minimisation� Thus� when solving here

we must let the corresponding eigenvalues appear in their real representation of

complex conjugate eigenvalues�

The method here is called the real solver since complex eigenvalues appear as

real �	 � blocks on the diagonal of ��� If the jth complex conjugate pair is in the

form

��j � �j



to
������������������	
�����������������


�
mX
t��

pX
s��

bitktscsj � ��ij � aij

subject to ��ij � �

���������	
��������


j � i� �

j � i
�i odd�

j � i� �

j � i
�i even�

Re���ij� � � �i � j�

�i� j � �� � � � � n�� ������

The desired diagonal matrix of eigenvalues is then in the form

�� �

�
�������������������������������

�� 	�

�	� ��
� � �

� � �

�j 	j

�	j �j
� � �

� � �

�
�
�
j j

	

�j 	
�

5.982.216 454.473[(where) 255.9(all) 255.9(of) 255.9.1(the) 255.9.1(b).1(lo) 25.9(c)]TJT5.5 25 TD[(k) 255.9(o)-.1(��di[1b).1(lo) 25.





Obviously a is the same as in ����	�� but k has extra ��ij �s�

k �

�
����������������������������������������������������������������

k��
���

k�m

k��
���

k�m
���

kp�
���

kpm

����

����

����

����
���

��n���n��

��n���n

��n�n��

��n�n

�
����������������������������������������������������������������

� ���	��

Again� we have reduced the system to a linear least squares form to be solved

by the QR �or similar� method� Note that if n is odd� then there will be at least

one real eigenvalue represented� or if we desire a mixture of real and complex

eigenvalues� then we just use the previous theory� but with fewer � 	 � blocks�

For example� if n � 	� our desired �� may be

�� �

�
�������������

��� � � � �

� ��� � � �

� � ���� ���� �

� � ���� ���� �

� � � � ���

�
�������������

� ���	
�

We have now given two methods for �nding a feedback and a new eigenvalue set�

we next summarise the algorithm in listed form�

���



����
 Algorithm for diagonal solver

The algorithm for �nding �K�� ��� from knowing only the system matrices and a

new set of minimisation vectors is the same for both the complex and real diagonal

solver� They only di�er in forming the componentsM� and k� Summarising� the



����� Solver error analysis

As just mentioned� we are not able in general to solve Problem 	 exactly� more

explicitly� in using the diagonal solver� we are trying to solve

������	
�����


min
K���	

k�A�BK�C� �V � �V ��k�F

subject to �



LEMMA ��� Let �A � A�BK�C�E� then if � is an eigenvalue of �A�E �� Ac��

and �V �� �A�V � diag����� then

min
��
j�� � �j � �F � �V �kEkF � ���
��

Proof The proof follows directly from Theorem ����

However� in general� this is not a tight bound since it measures the distance

of each eigenvalue in relation to the conditioning of all of the eigenvectors� Thus�

a single ill�conditioned eigenvalue may make the whole system appear badly con�

ditioned�

We may tighten this bound by reducing the conditioning of the vectors found�

a criteria that is included in the unrestricted minimisation and can be a�ected

by increasing the relative weighting of ��
�� In doing this� we lose some of the

ability to reduce the left vector matching to a satisfactory level� This� again� is

the problem of selecting the parameters to obtain the desired trade�o� between

the set minimisation criteria�

We can see the performance of the solver in the examples that follow in Chap�

ter �� First we show how the solver can be adapted to allow for equality con�

straints�

����
 Constrained diagonal solver

So far in this section� we have given a method for constructing a feedback matrix

from the system matrices and a set of vectors� Two variations have been outlined

that illustrate how to deal with complex eigenvalues appearing explicitly or in

their real� block form� The problem was written in the form

Mk � a� ���
��

and solved in a least squares sense� In doing this we performed an unconstrained

linear least squares optimisation� This is �ne if the resulting eigenvalues of the

closed loop system are satisfactory�

However� as shown in Section ��
�	� we cannot expect to solve the problem

exactly� Thus� the values obtained for ��ij will not be the eigenvalues of A�BK�C�

but of a perturbation to this� The result is that we may obtain eigenvalues of

�
�





Thus� assuming we have the system ���

� written in the form ���
��� our opti�

misation problem becomes

min
k

kMk� ak��

subject to

���������	
��������


ki � �

�
B� for the i � mp� �� � � � � n

that are the Re���ij�



CA

��	
�

ki � ki�� � �

ki�� � ki�� � �

�
B� for the i � mp� �� � � � � n

that represent a cc pair



CA

� ���
��

But� too many constraints will in�uence the overall accuracy of the �re�construction

and the bene�t gained from running the original minimisation algorithm� By how

much will be seen in the full examples in the next chapter�

��� Conclusions

In this chapter� we have given various methods for constructing a feedback that

best assigns the new vector set� �V � that results from either the restricted or

unrestricted minimisation algorithm�

For calculating the feedback following the restricted minimisation we gave two

constructions based on full and partial eigenstructure assignment� We analysed

the errors in each and gave conditions for the two feedback constructions to be

equivalent in the sense that they generate the same closed loop eigenstructure�

For the calculation of the feedback following the unrestricted minimisation we

devised a routine that found a set of eigenvalues in addition to the feedback� This

was formulated to allow complex conjugate eigenvalues to appear explicitly on

the diagonal of ��� or as real �	 � diagonal blocks� We derived an expression for

the error in using this construction� and showed how the solver could be modi�ed

to allow for equality constraints�

In the next chapter we test all of our minimisationmethods and these feedback

constructions on full aircraft examples�

�





Chapter �

Full examples

��� Introduction

In the previous two chapters we have devised two minimisation routines that re�

duce the level of input decoupling via the left eigenvectors by iterating through the

unassigned right eigenvectors� In these routines� we also included controls on the

conditioning of the system and the distance of the left vectors from their correct

subspaces� We have shown� through examples� how the minimisation algorithm

works� with various values of the weighting parameters tested� The vectors re�

sulting from either minimisation algorithm did not correspond to any closed loop

eigenstructure� in Chapter � we gave methods for reconstructing the feedback to

best obtain these vectors�

Here we give examples to demonstrate all of the theory� from the speci�cation

of the problem and the calculation of the initial vector set� through to the running

of the minimisation and �nally the reconstruction of the feedback�

��� Example �

The �rst example here is taken from Andry et al� �	
� and is a lateral axis model

of an L�	�		 aircraft at cruise condition� The model includes actuator dynamics

and a washout �lter on yaw rate� The state vector� input vector and output

	�




vector are given by

x �

�
��������������������

�r

�a

�

r

p

�

x�

�
��������������������

rudder de�ection

aileron de�ection

bank angle

yaw rate

roll rate

sideslip angle

washout �lter

� ���	�

u �

�
��
�rc

�ra

�
��

rudder command

aileron command
� y �

�
���������

rwo

p

�

�

�
���������

washed out yaw rate

roll rate

sideslip angle

bank angle

� �����

respectively� A word is needed here on the meaning of the washout �lter� x�� A

yaw damper is used to ensure that the dutch roll damping is of an acceptable level�

However� this does not completely remove the e�ect of the initial disturbance in

yaw rate as there are non�zero steady state values� Also� the system tends to

oppose any change in yaw rate� even if it has been commanded� Thus� the signal

proportional to yaw rate� being used as a feedback signal to the controller� is �rst

passed through a washout network to di�erentiate the signal from the yaw rate

gyroscope� We can see the �rst output �from y� is the washed�out yaw rate� and

is a combination of yaw rate and the washout �lter �as can be seen from the �rst

row of C��

The system matrices are given by

A �

�
��������������������

��� � � � � � �

� ��� � � � � �

� � � � 	 � �

����

 ������ � ���	�
 �����
� 	��
 �

����� �	�	� � ���
� �	 ���� �

���� � ������ ������ ������� ���		�� �

� � � ��� � � ����

�
��������������������

� �����

	��





with the corresponding desired mode output coupling vectors

G�d �

�
���������

x x � �

� � x x

	 	 � �

� � 	 	

�
���������
� �����

These mode output coupling vectors are chosen so that the sideslip angle and

roll rate response are decoupled� this choice for G�d also decouples bank angle

and yaw rate� Thus� for each feedback constructed in this example� we give the

closed loop response to an initial sideslip angle of 	o �all other initial conditions

are zero� and the closed loop response to an initial bank angle of 	o �all other

initial conditions are zero��

The �rst two vectors in G�d are orthogonal to the last two vectors and a

decoupling of the roll mode from the dutch roll will be realised if G�d is achieved�

The corresponding desired mode input coupling vectors are

G�d �

�
���������

	 �

	 �

� 	

� 	

�
���������
� �����

This choice couples the �rst input �sideslip angle demand� to the washed out yaw

rate and decouples it from roll rate and bank angle� the second input �bank angle

demand� is coupled to the roll rate and is decoupled from the washed out yaw

rate and sideslip angle�

Thus� for each feedback construction� we also give the responses to a step

input on sideslip angle and bank angle� However� it should be noted that we

have not included a feedforward command tracker in these responses� A tracker

is needed for a comparison of the input responses between di�erent feedbacks�

but feedforward changes the obtained eigenvectors and would therefore a�ect the

results of our minimisation� Further work needs to be carried out to include the

use of a feedforward command tracker in our methods� We include the input



To �nd an initial closed loop system� we use Method 	� as in Section 
�����

the feedback gains are calculated as

K �

�
��
����	� ������� ����	��
 ������	

���
�� �����	 �	������ 
���
�

�
�� � ���	��

The closed loop eigenvalues for A�BKC are

closed�loop eigenvalue mode frequency damping sensitivity

�� � i dutch roll ������ �����
 ��	���

�	� �i roll �����	 ��

�� ���	

�������
 aileron ������
 	 	����

���	��� rudder ��	��� 	 ����
	

������� washout �lter ������ 	 ����

�

We can see that the damping of the roll mode is relatively low in comparison

to the dutch roll� The dutch roll eigenvalue has a very large condition number�

as does that of the rudder mode� the others are all quite well conditioned� The

condition number of the eigenvectors of the closed loop system is

�F �V � � ���� � 	��� ���		�

The normalised mode output coupling vectors corresponding to the four de�

sired eigenvalues are

G�a �

�
���������

	 ������� � �����
i

� 	

��	��� � ������i ������� � �����	i

� ������� � ��
���i

�
���������
� ���	��

We can see that the exact desired decoupling cannot be achieved in the roll

mode� although the level of coupling is small� The results giv�



From the results we can see that the mode output coupling vectors� G�a have been

achieved to a satisfactory level� but the mode input coupling vectors� G�a have

not been achieved� The �rst input is exciting inappropriate modes� We require

that the real and imaginary parts of those elements in G�a that correspond to a

speci�ed zero in G�d to be O�	���� or less �i�e � ��	�� The errors in the matching

of the mode output and input coupling vectors are

kG�d �G�ak�F � 
����� � 	���

kG�d �G�ak�F � �������
� ���	
�

respectively� We see that there is a di�erence of O�	��� between the two errors�

the aim is to minimise the error� kG�d � G�ak�F � while retaining the accuracy in

the mode output coupling vectors�

The original closed loop output and input responses are given in Figures ��	

and ���� respectively�

	��
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����� Apply restricted minimisation algorithm �for de�

coupling�

Here we demonstrate the use of the restricted minimisation algorithm� we use

Method 	 to �nd an initial set of vectors and choose to retain the unassigned

set of eigenvalues� ��� It is likely that� since ���� � �� � i and �� � ���	���

are poorly conditioned� they will move quite considerably unless we put a high

relative weighting on the left eigenspace error� However� we are attempting to

improve the level of input decoupling� hence we choose the weightings

�	�

�
� 	�

�
� 	�

�
� � �	 � 	��� 	� 	�� ���	��

so that� even though we are primarily trying to match the left eigenvectors� we

include weightings on the eigenvector conditioning and the left eigenspace error�

The results of the minimisation are

sweeps objective function kG�d �G�ak
�

F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ������e � �� �����
e � �	 �����	e � �
 	�	���e � ��

	 ����	�e � �� ������e � �	 
�		
�e � �
 ������e � �


� ��	
	�e � �
 ������e � �� ������e � �� ����	
e � ��

� ��		��e � �
 ������e � �� ����
�e � �� ���

�e � ��

�

From the new set of minimisation vectors� �V � �



which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

������ ����i dutch roll 		����� ���	�� ����	

������� � 	��	

i roll 	����� ������ ��
�

��
����
 aileron �
����
 	 ����

������� rudder ������ 	 �
�
	

������� washout �lter ������ 	 ����

�

From these results we can clearly see that the dutch roll and rudder eigenval�

ues have moved by a lot� as expected� This is re�ected in the higher feedback

gains in K�� We have lost some of the damping in the dutch roll mode� but have

increased the damping on the rudder mode� A signi�cant improvement has also

been made in the conditioning of the individual eigenvalues� speci�cally the dutch

roll and rudder modes� The condition number of the eigenvectors of the closed

loop system is

�F �V � � �����
��� ���	��

which is a reduction of O�	����

The corresponding mode input coupling vectors are

G�a �

�
���������

	 ����	�� � ���	��i

	 ����	�� � ���	��i

�����	 � ���

�i 	

�����	 � ���

�i 	

�
���������
� ���	��

which� surprisingly� are slightly better than in ���	��� Thus� we have calculated

a feedback that gives the desired level of input decoupling� but have we retained

the initial output decoupling� The new closed loop mode output coupling vectors

are

G�a �

�
���������

	 � � ������i

������ � ��	��i 	

����� � ����
i ����� � �����i

����� � �����i ���
�� � �����i

�
���������
� ������

so that we have introduced a small level of coupling between sideslip angle and

roll rate�

	
�



The new closed loop output and input responses are given in Figures ��� and

��
� respectively� In Figure ��� we can see the increased output coupling between
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addition to increasing the robustness of the system� This illustrates the trade�o�

between the levels of input and output coupling that needs to be considered�

����� Apply restricted minimisation algorithm �for con�

ditioning�

In Section ����	� we showed that the input decoupling could be reduced with

a high relative weighting on the left vector matching� The conditioning of the

problem was also reduced� here we attempt to reduce the conditioning further�

The starting point for the minimisation algorithm is again the results of Method

	� We select the weightings

�	�

�
� 	�

�
� 	�

�
� � ��� 	� ��� ����	�

The results of the minimisation are

sweeps objective function kG�d �G�ak�F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ���	��e � �� �����
e � �	 �����	e � �
 	�	���e � ��

	 
�	���e � �
 	�����e � �� 	����	e � �
 	��
��e � ��

� ������e � �� ������e � �� ������e � �� 	�����e � ��

� ���	��e � �� ����	�e � �� ��
���e � �� 	��
��e � ��


 ������e � �� �����
e � �� ��
��
e � �� 	���
�e � ��

� ������e � �� �����
e � �� ��
��
e � �� 	���
�e � ��

�

Again� the �rst reconstruction for the feedback is used�

K� �

�
��

����	� �����
� �
�����
 �	�����

����	�� ��

�� ����	� 	�
���

�
�� � ������

which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

�����
� � ������i dutch roll ����	� ���		� ����	

������� � ����	�i roll 	�	��� ������ ����

��
����	 aileron �
����	 	 	
����


�	���
�� rudder 	���
�� 	 �������

�����	� washout �lter ����	� 	 ������

�

	





As required� we have reduced the sensitivity of the system further� speci�cally

the dutch roll and rudder modes� with slight increases in the other modes� The

condition number of the eigenvectors of the closed loop system is

�F �V � � �������
� ������

However� this has been achieved at the expense of the performance� The dutch

roll mode now has low damping and we need to look at the levels of input and

output decoupling� The closed loop mode input and output coupling vectors are

G�a �

�
���������

	 ������� � ���
��i

	 ������� � �����
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which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

������
 � ���	��i dutch roll ������ ���
�� 	��	��

�����
� � ���		�i roll ������ ��
��� ��	�

�������� aileron ������� 	 ����

�	������ rudder 	������ 	 
����

������� washout �lter ������ 	 
���


�

We can see that the eigenvalues are satisfactory� their sensitivities are particularly

good� The condition number of the eigenvectors of the closed loop system is

� u m
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����	 Results summary

For this example� using the speci�ed set of eigenvalues given in ������ we have

successfully applied the restricted and unrestricted minimisation algorithms to

reduce the level of input decoupling of the system� this has sometimes led to an

increase in the levels of output coupling� We have also reduced the sensitivity of

the system� These results demonstrate the trade�o� between the input coupling�

the output coupling and the robustness of the system�

For a di�erent set of desired eigenvalues we next demonstrate the possibility

of a system becoming unstable� thus justifying the need to control all of the

eigenvalues�

����
 Assign di�erent eigenvalue set

It is unlikely that our routines perform a global minimisation for this problem�

To illustrate this we select a new set of desired eigenvalues

�p �

��	
�

��� �i

�	�� 
i
� ����	�

We again perform partial eigenstructure assignment as in Section 
����� generating

the feedback

K �

�
��
� v

.5



This illustrates the problem in using partial eigenstructure assignment that the

uncontrolled modes may be unstable� Our method uses full eigenstructure as�

signment and we can therefore overcome this problem� The condition number of

the eigenvectors of the closed loop system is

�F �V � � ��
��� � 	��� ������

The corresponding closed loop mode output and input coupling vectors are

G�a �

�
���������

	 �

� 	

������ � ������i ������ � �����	i

� ������� � ���	��i

�
���������
� ����
�

G�a �

�
���������

	 �����
 � ���	��i

	 �����
 � ���	��i

���	
�� � ���
��i 	

���	
�� � ���
��i 	

�
���������
� ������

respectively� The errors in the matching of the mode output and input coupling

vectors are

kG�d �G�ak�F � ���
�� � 	���

kG�d �G�ak�F � �����

� ������

respectively� Again the output decoupling is attained to the desired level� but

there is some coupling apparent in the inputs� The original closed loop output

and input responses for the new assigned eigenvalue set are given in Figures ���

and ��	�� respectively�

	�	
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����� Apply restricted minimisation algorithm �for de�

coupling�

Since the closed loop system is unstable� we allow the eigenvalues to vary freely

by putting a zero weighting on the left eigenspace error� Our primary aim is

to reduce the level of input decoupling� our choice of weighting parameters is

therefore

�	�

�
� 	�

�
� 	�

�
� � �	 � 	��� 	� ��� ������

We run the restricted minimisation algorithm� implementing the alternative scal�

ing method as in Section ��	�� giving

sweeps objective function kG�d �G�ak�F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ������e � �� �����
e � �� ��
���e � �
 ��	�	�e � ��
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However� the new mode input and output coupling v





����� Apply unrestrictedminimisation algorithm �for con�

ditioning�

We have managed to obtain satisfactory performance in terms of input�output

decoupling� but have not signi�cantly reduced the sensitivity of the system� Here

we attempt to reduce the conditioning by weighting out the left vector matching

requirement from the algorithm� Again Method � is used to �nd an initial� real

vector set V � Thus� the minimisation is run with the weightings

�	�

�
� 	�

�
� � ��� 	�� ���
��

with the alternative scaling theory implemented� giving

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �� 
��	��e � �� 
�		��e � ��

	Tm
.0001 Tc
(sw)Tj
53.0001 0 TD
0 Tc
(eeps)Tj
ET
q
.48 j
ET
q
.6y.32 48eps ��	��e



The new closed loop eigenvalues are

closed�loop eigenvalue frequency damping sensitivity
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We can see that the system has now been stabilised and the individual eigen�

value sensitivities are very low� The condition number of the eigenvectors of the

closed loop system is

�F �V � � �������� ������

which has been reduced by a further order� The input and output coupling vectors

are not included here as they were not weighted in the algorithm� and have not

improved� The closed loop output and input responses are given in Figures ��	�

and ��	�� respectively�
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����� Example � conclusions
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respectively� The system matrices are given by
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The closed loop eigenvalues for A�BKC are

closed�loop eigenvalue frequency damping sensitivity
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The condition number of the eigenvectors of the closed loop system is

�F �V � � 	�		 � 	��� ������

which is quite large� as expected from the sensitivit
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��
�� Apply restricted minimisation algorithm �for de�

coupling�

Our primary aim is to reduce the level of input decoupling apparent in the left

vectors� Thus� our choice of parameter weightings is

�	�

�
� 	�

�
� 	�

�
� � �	� �� ��� ����
�

so that we are allowing the eigenvalues to vary� Note that we have also placed a

zero weighting on the conditioning bound� The results of the minimisation algo�

rithm are

sweeps objective function kG�d �G�ak�F �F �V �
nX
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The closed loop eigenvalues of A�BKC are

closed�loop eigenvalue frequency damping sensitivity
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From these results we see that� although the left eigenspace error was weighted

zero� the eigenvalues have not moved by much� However� we have increased the

individual sensitivities of the eigenvalues� The condition number of the eigenvec�

tors of the closed loop system is

�F �V � � 	����� � 	��� ������

This is not surprising� since the conditioning was not included in the minimi�



the output and input coupling vectors independently� but must look how each

input e�ects each output� The new minimised output and input responses are

presented in Figure ��	�� From these diagrams we can see the input and output
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From these results we can clearly see that we have reduced the individual eigen�

value sensitivities by a substantial amount� This is re�ected in the condition

number of the eigenvectors of the closed loop system�

�F �V � � ��������� ����	�

We also notice that we now have an extra complex mode� one of the pair being

one of the assigned modes� Since the left vector matching was not weighted� the

mode input coupling vectors have not improved and so are not given here� The

new minimised output and input responses are presented in Figure ��	��

	��
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��
�� Apply unrestrictedminimisation algorithm �for de�

coupling and conditioning�

We have successfully applied the restricted minimisation algorithm to reduce the

level of input coupling and improve the robustness of the system� Here we use the

unrestricted minimisation algorithm to obtain both of these system requirements

simultaneously� We �nd an initial� real vector set by implementing Method � and

choose the weightings

�	�

�
� 	�

�
� � �	� 	�� ������

We run the minimisation� using the alternative scaling method as in Section ��	��

giving the results

sweeps objective function kG�d �G�ak�F �F �V �
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We construct a new feedback using the diagonal solver� allowing one complex

mode in both the assigned and unassigned modes�
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The new closed loop eigenvalues are

closed�loop eigenvalue frequency damping sensitivity
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The individual eigenvalue sensitivities have reduced by a small amount� the con��
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��
�	 Example � conclusions

For this example we have applied both the restricted and unrestricted minimisa�

tion algorithms� We have obtained results such that the level of input coupling

has been reduced and the robustness of the system improved� We noted the need

to consider the mode output and input coupling vectors simultaneously since the

improvement in the input decoupling may be lost due to increased coupling in

the outputs�

Even though we improved the level of input decoupling� we did not manage to

obtain the speci�ed level� but we did in Example 	� This is probably due to the

fact that the system in Example � has three more state variables than in Example

	� but only one more control variable� Since the dimension of the subspace from

which the new minimisation vectors are chosen is equal to the number of control

variables� there is an even more limited choice for the vectors�

��� Conclusions

We have given new methods for performing eigenstructure assignment with spe�

ci�c consideration of the left eigenvectors to reduce the level of input coupling in

aircraft problems� Previous work concentrated on assigning a set of right eigen�

vectors to control the output coupling� Smith ���
 identi�ed the need to consider

the left eigenvectors in addition� However� no direct work was performed on the

left eigenvectors beyond solving the whole problem using an optimisation package

with a constraint on the left eigenvectors� We have extended this by producing

two minimisation routines that balance the levels of input and output decoupling�

The level of output decoupling remains constant throughout the algorithms� but

its exact attainment is relaxed by the feedback construction� Also� we have in�

cluded a measure on the robustness of the system� which is important in addition

to the decoupling requirements�

We have illustrated our extensions to the work by applying our techniques to

tw



of the output decoupling� For both examples we also reduced the conditioning

of the systems� so increasing their robustness� Our results demonstrate that

the trade�o� between aircraft �ight performance� stability and robustness can be

achieved�

The minimisation criteria have individual weightings� we thus have a �exible

design tool with parameters that can be altered in respect to the design speci�ca�

tions� We have demonstrated that� for our chosen formulation of the problem� our

methods are numerically e�cient in comparison to an optimisation pac



Chapter �

Conclusions and extensions

In this thesis� we have addressed the problem of satisfactory �ight control using

eigenstructure assignment techniques� Speci�cally� we have illustrated shortcom�

ings in previous work with respect to the consideration of both the left and right

eigenvector sets corresponding to a set of desired eigenvalues� Generally� this

problem is not exactly solvable� hence we presented two minimisation techniques

to best meet the design speci�cations�

In Chapter � we introduced general control systems� their governing equations

and their characteristics� We gave a general comment on feedback for the purpose

of eigenstructure assignment and outlined our interest in aircraft problems� We

then reviewed the literature on eigenstructure assignment and its application to

aircraft problems�

In Chapter 	 we gave an outline of the derivation of the aircraft equations

of motion� It was shown how a highly non�linear system could be reduced� via

linearisations and certain �ight state assumptions� into a state space matrix for�

mulation�

In Chapter 
 we gave the background theory to current eigenstructure assign�

ment techniques� including the theory for both full and partial system assignment�

W



In Chapter � we extended this work to control the left v



the minimisation routine� Since we were trying to assign all of the vectors� our

aim was to perform full eigenstructure assignment� This has the advantage over

partial eigenstructure assignment where there is no control over the unassigned

modes� which can go unstable� Full eigenstructure assignment is not generally

possible� but we derived errors for two feedback constructions for the restricted

minimisation� proving that these errors were both related to the left eigenspace

error� These constructions relied upon knowing a full set of eigenvalues� not the

case for the unrestricted minimisation�

To �nd a feedbac



improve our results� If we wish the eigenvalues to move� then we have to put a

low relativ
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