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Abstract

Data assimilation aims to produce initial conditions for a weather forecast that are as
close as possible to reality. The Ensemble Kalman Filter (EnKF) is a data assimilation
method that forecasts a statistical sample of state estimates using a linear or nonlinear
model. This forecast state is then updated with observations according to given errors in
the observations and the forecast state. This update is the best estimate of the state of the
system, called the analysis. Various formulations of the EnKF are discussed, which di�er
in the analysis step. The ETKF has been chosen for implementation.
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Chapter 1

Introduction

1.1 What is data assimilation?

Data assimilation incorporates observational data into a numerical model to produce a
model state that aims to be as close as possible to reality. In order to produce a weather
forecast initial conditions are required in the numerical model. Numerical weather predic-
tion (NWP) would not function properly by just inserting measured observations into a
model. One main reason is that there are too few observations to determine the state of
the system everywhere. Some regions are data rich such as Eurasia and North America,
but others are poorly observed (Kalnay, 2003). In modern NWP the number of degrees of
freedom of a model is of O(107). But the number of conventional observations that can
be inserted directly into a model is O(104) (Kalnay, 2003). Many types of data such as
satellite and radar observations are indirect, meaning they cannot be simply inserted into
a model. In NWP it is necessary to have a complete �rst guess estimate of the state of the
atmosphere at all the grid points in order to generate the initial conditions for the forecasts
(Bergthorsson and Doos, 1955). This is done by updating a prior estimate of the state of
the atmosphere (Background state) with current observations to produce a best estimate
of the state of the system (Analysis state) (Kalnay, 2003).

Data assimilation methods are either sequential, variational or both. Sequential refers
to the time behaviour of the scheme. This means that the analysis is solved by updating
a forecast by assimilating available observations at each time-step in a time-window (Ban-
nister, 2007). An example is the Kalman �lter (Kalman, 1960). Variational methods mean
that iterations are used to minimize a cost function. The cost function is a function of
the model state and is a measure of the di�erence between the background state and the
observations. The model state that minimizes the cost function is used as the analysis state
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(Bannister, 2007). An example of a variational method is 4D-Var (Dimet and Talagrand,
1986). Variational methods are most commonly used in operational NWP but are not the
subject of this report.

1.2 Background

This report focuses on a sequential form of data assimilation called the Ensemble Transform
Kalman smoother (Evensen and van Leeuwen, 2000). This is one of the more recent of a
series of modi�cations of the Kalman �lter (KF), introduced by Kalman [1960]. The KF
uses an initial single analysis state estimate. This is forecasted to the next time-step using
a linear model. Then the forecast is updated by assimilating the observations at that time,
to produce the analysis state. A weighting is given to the observations by a Kalman gain
matrix, according to a ratio between estimated errors in the forecast and estimated errors
in the observations. The estimate of the errors in the forecast and analysis states are also
updated at each time-step using the forecast model and the Kalman gain matrix. This step
by step process is repeated until the latest analysis step reaches the end of the time window.
The KF is not used in operational NWP since it cannot process non-linear models and is
computationally very expensive (Burgers et al., 1997). More detail on the KF and the
KF equations are given in section 2.2. The Ensemble Kalman Filter (EnKF, section 2.3),
Ensemble Square Root �lter (EnSRF, section 2.4) and the Ensemble Transform Kalman
Filter (ETKF, section 2.5) all use an ensemble of state estimates. Each ensemble member is
forecast individually. A ratio between the ensemble forecast covariances and the observation
covariances are used in the Kalman gain to assimilate the observations in the analysis
stage. The ensemble mean analysis state and the analysis ensemble perturbation matrix
are calculated from this single gain matrix. The ensemble analysis can then be calculated
from the mean and the perturbations. Although there is added expense in updating an
ensemble of state estimates rather than just one, overall they are more computationally
e�cient than the KF since you only have to store each ensemble member, not the full error
covariance matrix. They can also use non-linear forecast models and are more suited to
parallel processing. These features make them more desirable for operational NWP.

Smoothing di�ers from �ltering in that future observations are assimilated in the anal-
ysis step (Ravela and McLaughlin, 2007). This would imply that the smoothed analysis
would be more accurate than the �ltered analysis since the smoothed analysis is assimi-
lating extra observations (Ravela and McLaughlin, 2007). Smoothing can be divided into
two types, �xed-interval and �xed-lag. Fixed-interval smoothing uses all the observations
in a time interval to update all the analysis states. Fixed-lag smoothing only updates a
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�xed number of states prior to the current observation time, which saves computational
cost (Cohn et al., 1994). The �xed-lag Ensemble Transform Kalman Smoother 2 (ETKS2,
see section 2.9.2) introduced in this report is based on the linear smoothing method of
Jazwinski [1970] and the �xed-lag method of Cohn et al. [1994]. The implementation is
similar to the implementation of the ETKF by Livings [2005].

A schematic showing the comparison between a �lter and a �xed-interval smoother is
shown in Figure 1.1. In the schematic the smoothed solution (black curve on smoother
diagram) is closer to the truth than for the �lter (black curve on �lter graph). A speci�c
analysis time tk is highlighted to show that the �lter analysis uses only past and present
observations while the �xed-interval smoother analysis uses all the observations in the time
window at each step. Also the �lter analysis curve tends towards the true solution as
more observations are assimilated. The �xed-interval smoother analysis curve oscillates at
approximately equal distance from the true solution over time, since all the observations
are used in the time window at each step. The �xed-lag smoother diagram (Figure 1.2)
shows that some of the future observations are used at analysis time tk. In this case the
lag = 1 meaning the �rst closest future observation is assimilated. Thus the solution is less
accurate than the �xed-interval smoother but more accurate than the �lter. Experiments
using smoothing methods such as the �xed-lag Kalman Smoother of Cohn et al. [1994] and
the �xed-lag Ensemble Square Root Smoother (see section 2.8) of Whitaker and Compo
[2002] have been compared with the KF and EnSRF respectively and show an improvement
in accuracy.

The ETKF forecast model implemented by Livings [2005] uses the swinging spring
equations with a pseudo-random initial ensemble (see the implementation Chapter 4 for
more details). The NNMI solution is used as the true solution. Livings [2005] compared
the results for perfect and imperfect observations as well as for di�erent ensemble sizes.
The experimental part of this project aims to implement the ETKS2 and experiment with
perfect and imperfect observations, as well as di�erent ensemble sizes. The results can then
also be compared with the ETKF implementation of Livings [2005].

1.3 Goals for the project

� Implement the �xed-lag ETKS2

� Compare results of the �xed-lag ETKS2 with the ETKF for

{ Perfect/Imperfect observations

{ Di�erent lag lengths
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{ Di�erent ensemble sizes

1.4 Outline of the report

Chapter 2 describes the Kalman Filter (KF) and di�erent stochastic and deterministic
formulations of the KF. The Ensemble Square Root Filter is discussed and the Ensem-
ble Transform Kalman Filter (ETKF) is given as an alternative Square Root Filter. The
ETKF is the method used in the experiments. An introduction to smoothing and di�er-
ent smoothing types is given. The Kalman Smoother (KS) is derived, using the linear
smoothing method of Jazwinski [1970] and a Bayesian Maximum likelihood approach. The
�xed-lag Ensemble Square Root Smoother is given and the ETKS follows on from the KS
equations. An approximation to the ETKS called the ETKS2 is introduced as the method
to be used in the experiments.

Chapter 3 describes the swinging spring model to be used in the experiments, as well
as introducing the concept of initialization.

Chapter 4 gives the implementation of the ETKF and ETKS2 to be used in the exper-
iments, including algorithms. An ETKS implementation is suggested although not used.
Results from ETKF and ETKS2 experiments are discussed in chapter 5 and comparisons
made. The conclusion in Chapter 6 summarises the report, as well as suggesting some
limitations in the experiments and possible future work.
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Figure 1.1: Diagram of an analysis curve of a �lter and a �xed-interval smoother for the
variable to be measured V in a time window. Analysis at time tk, shown on the red
line shows use of just past observations for the �lter but all available observations for the
�xed-interval smoother.
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Figure 1.2: Diagram of an analysis curve of a �xed-lag smoother for the variable to be
measured V in a time window. Analysis at time tk, shown on the red line shows use of the
past and one future observation
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Chapter 2

Formulations of the Kalman Filter

This chapter describes the necessary background on �ltering and smoothing methods that
is important in order to understand the Ensemble Transform Kalman Filter (ETKF) and
Ensemble Transform Kalman Smoother 2 (ETKS2) that are used in the experimental work
for this report. The meaning of the notation introduced in each section will remain in e�ect
unless speci�ed otherwise.

2.1 Background information

2.1.1 The forecast model

The forecast model of the system that is being estimated is described here and applies to all
formulations of the Kalman Filter (KF). Let n be equal to the state space dimension and
p be equal to the observation space dimension. The state vector at time tk is represented
by xk. The observation vector at the same time is represented by y

k
. Let the true state

of the system xtk be related to the dynamical model operator m (such that m : <n ! <n) by

xtk = mk(xtk�1) + �k�1:

Here mk can be linear or non-linear and �k�1 (a vector of dimension n) is the random
model error, which is unbiased.

2.1.2 Statistics

Estimating the model errors and the forecast, analysis and observational error covariance
matrices are essential to all the formulations of the KF. The random model error �k�1 is
normally distributed asN(0; Qk�1), whereQk�1 is the covariance matrix. Qk�1 is a measure
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of the error correlation between di�erent variables in the modelled state (mk(xtk�1)) and
can be written in the form

Qk�1 =
〈
�k�1�

T
k�1

〉
; (2.1)

where the angle brackets represent the expected value. The normal distibution (or Gaussian
distribution) of the error (�) should be symmetric about zero. This means that the error
is expected to average to zero and h�i = 0, which means that � is unbiased. The variance
is the measure of the spread around the expected value. A narrower distribution of errors
around the expected value means a smaller variance. The covariance measures the error
correlation between two variables:

cov(�1; �2) = h(�1 � h�1i)(�2 � h�2i)i : (2.2)

An error covariance matrix relates errors in the state vector components. The diagonal
represents the variances and the covariances are the o�-diagonal elements of the matrix.

In deriving the Kalman Smoother in section 2.7 it is important to know the following



yk = Hxk + �k;

where �k (of length p) is the random observational error and is assumed to be unbiased.
The observations have an error covariance matrix Rk (of dimension (p� p)). Assuming the
observation error does not vary with time then

〈
�k�

T
k

〉
= R: (2.4)

in the KF.

2.2.2 Forecast equations

In the Kalman �lter the current forecast state xfk (of length n), is a forecast of the previous
analysis xak (of n) using the linear model M . For simplicity, it will be assumed that the
model is perfect. Firstly an initial analysis state xa0 and an initial analysis error covariance
matrix P a0 (of dimension n � n) are estimated. Then the linear forecast model M is used
to produce the forecast at the next time step. The forecast state xfk is de�ned as

xfk �

R: Pf



where R is the observational error covariance matrix. This equation for K comes from
minimising the following cost function to �nd the analysis:

J(x) = (x� xf )T (P f )�1(x� xf ) + (y �Hx)T (R)�1(y �Hx): (2.9)

The �rst term gives the distance between the model state x and the forecast state (xf )
weighted according to the inverse of the forecast error covariance (P f ). The second term
gives the distance between the model state and the observations y weighted according to
the inverse of the observational covariance matrix R. The minimiser of J is the analysis
state and satis�es the analysis equation 2.10 (Kalnay, 2003).

2.2.4 Analysis equations

In the analysis step, the Kalman gain is used to assimilate the observations to update the
forecast. The analysis xak (of length n) is de�ned as

xak = xfk +Kk(yk �Hx
f
k); (2.10)

where yk of dimension p is the vector of observations. The Kalman gain is also used to
update the forecast error covariance to produce the analysis error covariance P ak . This is
discussed in Burgers et al. [1997].

P ak is de�ned as
P ak =

〈
(xak � xtk)(xak � xtk)T

〉
(2.11)

Firstly, the analysis (equation 2.10) is substituted into equation 2.11 and K(Hxtk�ytk) = 0
is added to give

P ak =
〈

(xfk � x
t
k +Kk(yk � y

t
k
�Hxfk +Hxtk))(x

f
k � x

t
k +Kk(yk � y

t
k
�Hxfk +Hxtk))

T
〉
:

(2.12)
Factorising out (xfk � x

t
k)(x

f
k � x

t
k)
T and (y

k
� yt

k
)(y

k
� yt

k
)T gives

P ak = (I �KkH)
〈

(xfk � x
t
k)(x

f
k � x

t
k)
T
〉

(I �KkH)T +Kk

〈
(y
k
� yt

k
)(y

k
� yt

k
)T
〉
KT
k

Note that there are no cross-product terms since it is assumed that (y
k
� yt

k
)(xfk �x

t
k) = 0.

Substituting in P fk and R respectively gives

P ak = (I �KkH)P f (I �HTKT
k ) +KkRK

T
k : (2.13)
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Expanding out the brackets and re-arranging then gives

P ak = P f �KkHP
f � P fHTKT

k +Kk(HP fHT +R)KT
k

= (I �KkH)P fk : (2.14)

2.2.5 Advantages and Disadvantages of the KF

The Kalman �lter is a good method in that it produces unbiased analysis and forecast state
updates and hence their covariances are exact. Also the �lter is optimal since the Kalman
gain is produced from minimizing a cost function to �nd the optimal solution. However,
the Kalman �lter is not currently used in operational weather forecasting. One reason is
that the Kalman �lter can only be used for linear systems but NWP models are non-linear.
Also, it is very computationally expensive to implement (Ehrendorfer, 1992), mostly due
to its propagation of large forecast error covariance matrices using the model. In NWP
models, the number of state variables is O(107) (UKMO, 2009). Hence the corresponding
error covariances will have O(107�107). Observations of O(106) (UKMO, 2009) must then
be assimilated at each analysis step. This requires too much storage to be practical. On
top of this the Kalman gain requires the inversion of a large matrix, which is expensive and
ine�cient.

2.2.6 Summary of the KF

To summarise, the Kalman �lter uses a linear forecast model to produce a forecast (equa-
tion 2.5), which is updated by giving a weighting to the observations according to a ratio
between forecast and observational error covariances. This is done using the Kalman gain
(equation 2.8). This updated forecast is the analysis (equation 2.10). The forecast co-
variance matrix is also updated using the linear forecast model (see equation 2.7). The
analysis covariance matrix (equation 2.14) comes from updating the forecast covariance
matrix using the Kalman gain.

The KF is not currently used in NWP as it is too expensive to implement and can only
be used for linear systems.

2.3 The Ensemble Kalman �lter (EnKF)

The Ensemble Kalman Filter was introduced by Evensen [1994]. Much of the following
developments of the EnKF are discussed in Evensen [2003]. The EnKF uses many of the
ideas of the KF but can can be applied to non-linear systems. While the KF uses a single
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state estimate, the EnKF uses a statistical sample of state estimates, called an ensemble.
Like with the KF there is a forecast step and an analysis step. In the forecast step the
sample mean and error covariances are calculated from an ensemble of forecast states.
These are used to calculate a single Kalman gain matrix. This Kalman gain matrix is used
to assimilate the observations in to the forecast ensemble state and produce the analysis
ensemble state.

2.3.1 EnKF terms and notation

The following equations 2.15 to 2.19 come from Evensen [2003], but using a new notation.
Firstly, assume that an ensemble of state estimates of size N will be used. Therefore xi
(of length n) represents the state vector for each ensemble member (i = 1; :::; N). The
ensemble mean (of length n) is:

x =
1
N

N∑
i=1

xi: (2.15)

De�ne the ensemble error covariance Pe (of dimension n� n) as

Pe =
1

N � 1

N∑
i=1

(xi � x



The forecast state xfi at time tk is de�ned as

xfi;k = m(xai;k



The observation ensemble di (of length p) has ensemble members i = 1; :::; N . Here �i
is pseudo-random observation errors normally distributed as N(0; R) (with mean zero and
covariance R). An observation state matrix De can be de�ned with columns di, i = 1; :::; N .
An observation ensemble perturbation matrix D analogous to equation 2.18 (of dimension
p � N) has columns d0i, i = 1; :::; N . Also the observation ensemble covariance matrix is
now de�ned as

Re = DDT : (2.26)

The new Kalman gain has Re in place of R:

Ke = P fe H
T (HP fe H

T +Re)�1: (2.27)

The EnKF analysis step is similar to the KF, but uses the ensemble Kalman gain and the
observation ensemble matrix as follows

xai = xfi +Ke(di �Hx
f
i ): (2.28)

for i = 1; :::; N . The ensemble mean can then be calculated as

xa = xf +Ke(d�Hxfe ): (2.29)

Here d is replacing the actual observation d. This can be accepted as it is, considering that
d tends to d as the ensemble size increases. However, imposing the constraint � = 0 on the
vectors will ensure d = d (Evensen, 2003). The ensemble perturbation matrix is

Xa = (I �KeH)Xf +KeD: (2.30)

Thus

P ae = (I �KeH)P fe + (I �KeH)XfDTKT
e +KeD(Xf )T (I �KeH)T (2.31)

The �rst term in this expression is the desired result. Evensen [2003] discusses how this
desired result can be achieved, but uses a di�erent notation. As long as the distributions
used to generate the model state ensemble and observation state ensemble are independent
then the random vectors �i are independent of xfi � xf . This implies that XfDf T and
hence the second and third terms tend to zero as the ensemble size increases. Equation
2.31 can be left as it is, but in order to make the 2nd and 3rd terms vanish altogether
then the constraint (xf � xf )�T = 0 can be imposed. Information on how to minimize the
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calculation of large covariance matrices in the analysis step when implementing the scheme
is also discussed in Evensen [2003].

2.3.4 Advantages and Disadvantages of the EnKF

The EnKF is able to use non-linear models, which is necessary in NWP. Using an ensemble
of state estimates should improve the quality of the forecast provided that the members
have been sampled properly. For example, care must be taken to ensure that the size
of the sample is statistically representative of the model (Kalnay, 2003). Many problems
can develop from undersampling, some of which have been investigated by Petrie [2008].
Inbreeding is one such problem. This means that the analysis error covariances are system-
atically underestimated after each of the observation assimilations. The obvious expense
from the EnKF comes from maintaining the ensemble of state estimates. However, the
covariance matrices are no longer evolved using the forecast model like they are in the
KF, which is cheaper to implement. Also, a single Kalman gain is applied to each state
estimate, which is less expensive than if separate Kalman gains were used for each member.

2.3.5 Summary of the EnKF

To summarise, The EnKF uses a statistical sample of state estimates that are forecasted
forewards in time using a non-linear forecast model (equation 2.20). Unlike the KF, the
forecast ensemble covariance matrix is not updated using the forecast model, but is updated
using the matrix square of the forecast ensemble perturbation matrices (equation 2.21). In
order that the analysis error covariance matrix can be calculated correctly observation
perturbations are introduced (equation 2.25). Filters such as the EnKF that use perturbed
observations are called stochastic �lters. The forecast ensemble can then be updated using
a single Kalman gain matrix (equation 2.27) to produce the analysis (equation 2.28). The
desired result for the analysis error covariance matrix can be achieved by imposing the
constraint (xf � xf )�T = 0. This means that the last term on the right hand side of
equation 2.31 vanishes.

Unlike the KF the EnKF can use non-linear models, necessary for NWP. Also an en-
semble of state estimates should improve the quality of the forecast over one state estimate
provided that the members have been sampled properly. The EnKF has added expense in
maintaining an ensemble of state estimates instead of one for the KF. However, calculating
the Kalman gain matrix and error covariance matrices are less expensive in the EnKF.
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2.4 The Ensemble Square Root Filter

The Ensemble Kalman Square Root Filter (EnSRF) presented here uses the formulation in
Tippett et al. [1999]. The EnKF is an example of a �lter that uses perturbed observations.
This implies that the observation ensemble is created by adding random vectors to the
actual observations for each member. Therefore the EnKF is called a stochastic �lter.
Filters that do not use perturbed observations are called deterministic �lters (Hamill, 2006).
The EnSRF is a deterministic �lter and di�ers in the analysis step to the EnKF (section
2.3).

2.4.1 The observational ensemble perturbation matrix

Since the EnSRF is deterministic, the observational ensemble perturbation matrix Y is
di�erent than for the EnKF (section 2.3). The state members (xi) can be mapped to
observation space by

y





these problems are eliminated when the square root analysis algorithm is used as it does
not use perturbed observations (Evensen, 2004). Square root �lters (SRFs) have also been
shown to be computationally more e�cient and less expensive (Hamill, 2006). This is partly
because they do not calculate the forecast error covariance matrix, only the ensemble state
perturbations (Hamill, 2006).

2.4.5 Summary of the EnSRF

To summarise, the EnSRF is a deterministic �lter, which means it does not use perturbed
observations. This implies the observational ensemble perturbation matrix Y can be written
in terms of the ensemble state perturbations in equation 2.33. Like for the EnKF, a
statistical sample of state estimates are forecasted forwards in time using a non-linear
forecast model. The forecast error covariance matrix is updated using the forecast ensemble
perturbation matrices (equation 2.21). The Kalman gain used in the analysis stage now
contains the EnSRF version of Y and the observational error covariance R is the same R
used for the KF (equation 2.4). The analysis error covariance (see equation 2.39) can now
be updated using the analysis perturbation matrices. The analysis perturbation matrix
(equation 2.40) is updated using the square root matrix T (equation 2.41).

Unlike the EnKF, the EnSRF does not use pertubed observations, which can introduce
sampling errors. SRFs such as the EnSRF have also been shown to be more e�cient and
less expensive than the EnKF (Hamill, 2006).

2.5 The Ensemble Transform Kalman Filter (ETKF)

2.5.1 The ETKF equations

The Ensemble Transform Kalman Filter was introduced by Bishop et al. [2001]. It is a
form of square root �lter. It is the chosen �ltering method to be used in experimental work
in this report (see the implementation section 4). The ETKF uses the identity

I � (Y f )TS�1Y f = (I + (Y f )TR�1Y f )�1: (2.43)

This can be veri�ed as follows. Firstly multiply I � (Y f )TS�1Y f by (I + (Y f )TR�1Y f )

I � (Y f )TS�1Y f � (I + (Y f )TR�1Y f )

= I � (Y f )TS�1Y f + (Y f )TR�1Y f � ((Y f )TS�1Y f )((Y f )TR�1Y f )
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and then replacing S by equation 2.36 to give

I + (Y f )T (Y f (Y f )T +R)�1
[
�Y f + (Y f (Y f )T +R)R�1Y f � Y f (Y f )TR�1Y f

]
= I + (Y f )T (Y f (Y f )T +R)�1

[
�Y f + Y f (Y f T )R�1Y f + Y f � Y f (Y f )TR�1Y f

]
= I + (Y f )T (Y f (Y f )T +R)�1 � 0

= I:

This is important since calculating R�1 is usually simpler than calculating S�1, since R is
usually diagonal while S has a more complicated structure. An eigenvalue decomposition
can then be calculated by

Y f TR�1Y f = U�UT ; (2.44)

where U is orthogonal and � is diagonal. The identity in equation 2.43 can now be written
as

I � (Y f )TS�1Y f = U(I + �)�1UT : (2.45)

The �nal term UT is required here to make the �lter unbiased (Livings et al., 2008). Hence
the square root is given by

T = U(I + �)�
1
2 : (2.46)

This T is the square root that gives the ETKF. This is more e�cient to compute than the
square root in the EnSRF (matrix square root of 2.41) since (I + �) is diagonal, making
the calculation of (I + �)�1 simple. According to Hamill [2006] the ETKF was veri�ed to
be faster to compute than the EnSRF of Whitaker and Hamill [2002].

2.5.2 Summary of the ETKF

To summarise, the ETKF is a form of square root �lter that uses the identity I�(Y f )TS�1Y f =
(I +



observations in use, then theoretically the smoothed analysis at the end of the window
is the same as the �ltered analysis at the end of the window since in both cases all the
observations have been assimilated. However, the analysis in the middle of the window will
not be the same since the �lter will only use the observations in the �rst half of the window
while the smoother will use observations in both the �rst and second half of the window.
Thus at all points inside the window you would expect to get more accurate analyses for
the smoother than for the �lter. However, a great deal more work will be required to get
this since past, present and future observations in the window will have to be assimilated
at each step for the smoother, as opposed to just past and present observations for the
�lter (Ravela and McLaughlin, 2007).

The following descriptions of di�erent types of smoothing methods come from Ravela
and McLaughlin [2007]. There are two types of smoothing, �xed interval and �xed lag
smoothing. Fixed interval smoothing updates all desired states within a time interval [0,T]
using all the available observations. Fixed lag smoothing only updates a �xed number of
states prior to the current observation time. Therefore it only requires updates in a lag
window W (where W < T ) before the most recent measurement. Fixed lag smoothing
and their applications have generally proven to be computationally faster, since fewer prior
model states are updated using the current observations. Fixed lag smoothing can be a good
approximation for long interval smoothing problems. For example, �xed lag smoothing
methods have been tested for the Goddard Earth Observing System (GEOS). It has been
tested both for retrospective analysis of climate and for short term forecasting (Zhu et al.,
1999).

A schematic of a �lter analysis (black curve in �lter diagram) and a smoother analysis
(black curve on smoother diagram) is shown in Chapter 1 in Figure 1.1. The analysis time tk
is highlighted to show that the �lter uses just past and present observations while the �xed-
interval smoother uses all available observations. The �xed-lag smoother analysis is shown
in Figure 1.2 and only assimilates one (lag





The observation distribution is

p(y
k+1:k+l

jxk) =
l∏

i=1

N(HMk!k+ixk; R): (2.51)

Substituting equations 2.50 and 2.51 into 2.49 and taking logs gives the cost function

1
2

(xk � xak)TP ak �1(xk � xak) +
l∑

i=1

(y
k+i
�HMk!k+ixk)

TR�1(y
k+i
�HMk!k+ixk): (2.52)

Using one future observation time l = 1, the minimizer of equation 2.52 satis�es

xsk = xak +Ks
kjk+1(y

k+1
�HMk!k+1x

a
k); (2.53)

where xsk is the smoothed analysis. Note that the �ltered analysis must have already been
calculated and stored before calculating 2.53. Here Ks

kjk+1 is the Kalman gain at time tk
using observations up to tk+1.

Ks
kjk+1 = P akM

T
k!k+1H

T (HMk!k+1P
a
kM

T
k!k+1H

T +R)�1 (2.54)

and
P sk = (I �Ks

kjk+1HMk!k+1)P ak : (2.55)

Now consider the smoothed solution using two future observations, l = 1; 2. The minimizer
of equation 2.52 now satis�es

xsk = xak +Ks
kjk+1(y

k+1
�HMk!k+1x

a
k)

+ Ks
kjk+2(y

k+2
�HMk!k+2(xak +Ks

kjk+1(y
k+1
�HMk!k+1x

a
k))) (2.56)

Now consider the solution using L future observations, l = 1; 2; :::L for the general �xed-lag
smoother. The same notation for the �xed-lag smoother of Cohn et al. [1994] is introduced.
The smoothed analysis will now be represented by xakjk+l, where the subscript kjk + l

notation represents the value at time tk using observations up to tk+l. Thus xakjk+l is
calculated from

xakjk+l = xakjk+l�1 +Kkjk+l(yk+l
�HMk!k+lx

a
kjk+l�1): (2.57)
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Here Kkjk+l is the Kalman gain at time tk using observations up to tk+l



covariance matrix can be computed from

(HP fak+l;kjk+l�1)T = Xa
kjk



that sampling error in the estimate of the forecast-analysis error cross covariance matrix
(P fak+l;kjk+l�1) increases with l. This means a larger ensemble is required to take advantage
of observations further removed from the analysis time. This is consistent with the fact
that the quality of the analysis starts to degrade as the lag is increased beyond a certain
point. This point is higher for more ensemble members (Whitaker and Compo, 2002).

2.8.2 Summary of the EnSRS

The EnSRS of Whitaker and Compo [2002] uses the �xed-lag method of Cohn et al. [1994].
The �xed-lag ensemble smoothed solution for l � 1 is the ensemble smoothed analysis state
at time tk using observations up to tk+l. The Kalman gain (see equation 2.60) uses a cross
covariance matrix between the forecast for the Kalman �lter update equation for time k+ l

and the lag l�1 Kalman smoother analysis for time k. This is derived from a least squares
sense (see Cohn et al. [1994]) and is used to produce the smoothed analysis ensemble. The
cross-covariance and Kalman gain are also used to update the analysis covariance matrix
P akjk+l (see equation 2.65). Experimental results by Whitaker and Compo [2002] from the
40-dimensional model of Lorenz and Emanuel [1998] have shown that as expected ensemble
mean errors for the EnSRS are less than for the the EnSRF and lower for more ensemble
members and higher lags. However, results suggested that sampling error in the estimate
of the forecast-analysis error cross covariance matrix (P fak+l;kjk+l�1) increases with l. Thus
larger ensemble sizes are required to o�set this increase in sampling error for higher lags.

2.9 The Ensemble Transform Kalman Smoother and an ap-

proximation

2.9.1 ETKS using a smoothed forecast state (ETKS)

The Kalman Smoother equations in section 2.7 can be modi�ed to produce the Ensemble
Transform Kalman Smoother. The ETKS method described here follows on from the ETKF
of Bishop et al. [2001] using the �xed-lag smoother method of Cohn et al. [1994]. It is very
similar to the smoothing method used in the experimental work for this report (section
2.9.2) and could be a useful method to investigate in the future.

Consider time tk to be the current smoothing time and l to be the lag time. The solution
for the smoother ensemble mean is equivalent to equation 2.62 in section 2.8. However,
the Kalman gain is now written in a similar form to the KS. The only di�erence being
that the forecast model is evolved in the same way as for the �xed-lag smoother of Cohn
et al. [1994], from tk+l�1 to tk+l instead of from tk to tk+l for the KS. M is now short for
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Mk+



Thus equations 2.68, 2.73 and 2.74 give the equations for the l-step �xed lag ETKS.

2.9.2 ETKS using a �xed square root matrix (ETKS2)

The ETKS2 described here is an approximation of the ETKS method described in section
2.9.1. The ETKS2 is the method used in the experimental work for this report (see imple-
mentation in section 4.2.1). The innovation vector used in the smoothing of the ETKS2
uses the original forecast states from the ETKF. In other words, the innovation vector in
the ETKS2 is written as

(y
k+l
�Hxfi;k+l) (2.75)

Note that the T matrix is calculated from the original forecast perturbations of the ETKF.
T is the matrix square root of

Tk+lT
T
k+l = I � (Y f )Tk+lS

�1
k+lY

f
k+l: (2.76)

S = Y f
k+l(Y

f )Tk+l +R: (2.77)

Here
Y f
k+l = HXf

k+l (2.78)

where Xf
k+l is the original forecast perturbation matrix calculated in the ETKF. In other

words, it is not the updated forecast perturbation matrix calculated by forecasting the
smoothed analysis from the previous lag (Xf

k+ljk+l�1).

2.9.3 Expected di�erences in ETKS and ETKS2 results

The innovation vector of the ETKS2 (equation 2.75) and the T matrix do not use the



terms of the square root matrix T Tk+ljk+l�1 de�ned by equation 2.41 in the EnSRF section
2.4. The ensemble analysis perturbation matrix can then be updated using the T matrix
(equation 2.73).

The ETKS2 method di�ers from the ETKS in that it does not use the forecast from
the smoothed analysis in the innovation vector and the square root T matrix. The ETKS2
would therefore be expected to be less expensive to implement but less accurate for the lag
l > 1.
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Chapter 3

The Swinging Spring model

The swinging spring model is the forecast model that will be used for the ETKF and ETKS2
experiments in this report. This chapter begins by describing the swinging spring model
and equations from Lynch [2002]. After a brief de�nition of initialization and its rlevance
in data assimilation, the application of normal mode initialization to the swinging spring
model will be demonstrated using the implementation and results of Livings [2005].

3.1 The Swinging Spring

The Swinging Spring model of Lynch [2002] is illustrated by the following Figure (3.1)
showing coordinates and forces for the swinging spring. The �gure is based on the �gure
from Livings [2005].

A mass m is suspended from a �xed point in a uniform gravitational �eld, g by a light
unstretched spring with length l0 and elasticity k. The bob is constrained to move in the
vertical plane and the string may stretch along its length but cannot bend. The bob is
located using polar coordinates (r,�). The spring length r is measured from the suspension
point and the angle � is measured from the downward path. The generalised momenta are
radial momentum pr = m _r and angular momentum, p� = mr2 _�. The motion is assumed
to be simple harmonic (SHM). The following Hamiltonian of the system gives the sum of
potential and kinetic energies:

H =
1

2m
(p2
r +

p2
�

r2
) +

1
2
k(r � l0)2 �mgrcos� (3.1)
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Figure 3.1: Coordinates and forces for the swinging spring. Coordinates are given by angle
�, radius r and bob mass m. The gravitational force is given by mg and the elastic force is
given by k(r � l0) where k is elasticity and r is unstretched length.

From 3.1 one can derive the following equations of motion:

_� =
p�



and (r; pr). The angular motion satis�es

�� +
g

l
� = 0: (3.10)

The elastic motion satis�es
�r0 +

k

m
r0 = 0 (3.11)

where r0 = r � l. These are SHM equations and have angular frequencies

!� =
√
g

l
(3.12)

and

!r =

√
k

m
: (3.13)

The ratio of frequencies is:

� =
!�
!r

=
√
mg

kl
=

√
l � l0
l

: (3.14)

For the purposes of this work, parameters were used such that � << 1. The rotational mode
represents low frequency Rossby waves and contains the slow variables (�; p�). The elastic
motion represents high frequency gravity waves and contains the fast variables (r; pr). The
slow and fast variables will interact for �nite oscillations. Following the parameters used
by Lynch [2002]:

m = 1

g = �2

k = 100�2

l = 1

This gives motions with cyclic frequency f� = w�
2� = 0:5 and fr = !r

2� = 5. Therefore � = 0:1.
The initial conditions are (�; p�; r; pr) = (1; 0; 1:05; 0). Using these initial conditions and
the equations of motion, the Matlab programme by Livings [2005] was implemented using
the numerical method described in section 3.2. The graphs in Figure 3.2 show the motion
of the fast and slow variables. It is clear that most of the energy is concentrated around
f = f� for the slow variables and most of the energy for the fast variables is concentrated
at f = fr. But there is a clear sign that the slow and fast variables have interacted in the
peak in the fourier transforms of r and p



non-linear nature of the system in that energy is being transferred from the fast variables
to the slow ones.

Figure 3.2: Coordinates and their fourier transforms of slow and fast variables for an
uninitialized swinging spring. Parameter values give rotational and elastic frequencies of
f� = 0:5 and fr = 5 respectively. Initial conditions are (�; p�; r; pr) = (1; 0; 1:05; 0).
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3.1.1 Summary of the swinging spring system

The swinging spring models the motion of a mass m suspended from a swinging spring
using the method of Lynch [2002]. The equations of motion are given by equations 3.2 to
3.5. Linearising about a stable equilibrium point when the bob is at rest gives equations
which split the motions of the spring into high frequency (equation 3.11) and low frequency
(equation 3.10). Using the method described in the following section (3.2) the motions of
the swinging spring were plotted for both high and low frequency variables. The plots
revealed that there was some interaction between the high and low frequency motions,
indicating the non-linearity of the system.

3.2 Numerical method of integration for the swinging spring

The following information about the implementation of the swinging spring in Matlab
comes from the description given in Livings [2005] and the implementation was validated
by Livings [2005]. The swinging spring equations could be integrated using the standard
Matlab ode45 function. This uses an explicit Runge-Kutta (4,5) pair with a changeable step
size. This means that a 5th order Runge-Kutta scheme is used to integrate the equations
and the di�erence between this and a 4th order scheme is an estimate of the truncation
error.

The error tolerance can be used to determine a limit on the step size. Let Reltol

and Abstol represent the relative tolerance and absolute tolerance for each state space
coordinate. If y(j) is the jth component of the solution vector and e(j) is the corresponding
error component from the Runge-Kutta pair, then the step size must be minimized such
that:

je(j)j � max(Reltol� jy(j)j;Abstol):

A primary aim was to keep the truncation error small compared with the observation er-
ror. This was done by using 10�3 for Reltol and 10�6 for every component of Abstol.
The parameter MaxStep acts as an upper bound on the step size. This can be used to
ensure stability of the numerical method. For information on stability of Runge-Kutta
methods with relation to linear systems see Lambert [1991], section 5.12. Using the Runge-
Kutta(4,5) scheme the maximum step size h for stability is h � 0:3. This is explained in
Livings [2005], section 4.3. Since the period of a general harmonic oscillator is T = 2�,
taking the upper bound MaxStep of the step size to be T

20 for an arbitrary harmonic
oscillator ensures stability for the system (see Livings [2005]). For the swinging spring
system, in the case of no initialization the low frequecy motion has period T� = 2 and the
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high frequency motion has period Tr = 0:2. Therefore taking the maximum step-size to be
MaxStep= Tr

20 = 0:01 ensures stability. Using this step-size the solution (Figure 3.2) is
evidently stable.

3.3 Normal mode oscillations

3.3.1 Initialization

A form of initialization called normal mode initialization (NMI) will be applied to the
swinging spring system in section 3.3.2. Firstly, it is important to understand the concept
of initialization. The atmosphere consists of a range between very fast changing systems
with cycles lasting less than a minute, such as localized pressure variations and very slow
changing systems lasting millenia such as climate change (Kasahara, 1976). Weather fore-
casters are often not interested in the very fast systems. For example, pressure variations
with cycles less than a minute are not going to help predict the arrival of a low pressure
system at least 24 hours away. The useless high-frequency changes are called noise. If noisy
observations are incorporated into the basic equations in NWP the forecast may contain
spurious large amplitude high frequency oscillations (Lynch, 2002). The elimination of this
noise can be achieved by adjusting the initial �elds in a weather forecast, a process called
initialization (Lynch, 2002).

In data assimiltation it is important to ensure that the forecast of the previous analysis
does not allow large gravity waves to develop. Constraints in the analysis step can be made
to ensure that this does not happen.

3.3.2 Normal mode initialization (NMI) of the swinging spring system

The following implementation of NMI to the swinging spring system comes from Lynch
[2002]. Both linear and non-linear normal mode initialization are applied. Suppose it is
known that high frequency oscillations are not present in the motion of the swinging spring,
yet they are still present in the numerical solution due to observational errors. How can we
adjust the initial conditions to get rid of the high frequency noise? Linear Normal Mode
Initialization (LNMI) aims to get rid of the high frequency oscillations by setting their
initial amplitude to zero. Nonlinear Normal Mode Initialization (NNMI) instead sets the
initial rates of change of the fast variables to zero. Using the same parameters as for the
uninitialized swinging spring (section 3.1), in this experiment LNMI is imposed by setting
r(0) = l and p



LNMI the initial conditions are (�; p�; r; pr) = (1; 0; 1; 0). For NNMI, to calculate _pr(0) = 0
set pr(0) = 0 in equation 3.4. For _pr(0) = 0, we �rst calculate _�(0) from equation 3.2. This
can be substituted in to equation 3.5 and re-arranged to give:

r(0) =
l(1� �2[1� cos�(0)])

1� ( _�(0)=!r)2
(3.15)

Also, to ensure that _�(0) used in 3.15 is consistent with 3.2 and the new value of r(0) we
must set:

p�(0) = mr(0)2 _�(0) (3.16)

Figure 3.3 shows the coordinates and fourier transforms of the swinging spring variables
for LNMI. Compared with the uninitialized case (Figure 3.2) the high frequency oscillations
have been largely supressed (r and pr scales are one-tenth those in Figure 3.2). However,
it is clear that the slow variables are exciting the fast variables as there is a large peak at
f = 5, although the amplitudes are much smaller than in Figure 3.2).

The �gure showing the NNMI case (Figure 3.4) is even better (pr is 1
4 the size than in

Figure 3.3) since high frequency oscillations have been massively damped. There is a peak
in the fourier transforms in both the LNMI and NNMI graphs at f = 1 = 2f�. This is
because the spring is stretched twice per angular cycle at the bottom of the swing. This is
called ’balanced fast motion’.

3.3.3 Summary of the numerical integration of the swinging spring and

NMI

The swinging spring equations were integrated using the standard Matlab ode45 function,
as done by Livings [2005]. This uses an explicit Runge-Kutta (4,5) pair with a changeable
step-size. It was important to choose a small enough step-size to ensure stability. As
discussed by Livings [2005] this had to be smaller than T

20 , where T is the period of the
harmonic oscillator.

Initialization aims to prevent unwanted high-frequency noise from developing in a so-
lution. Linear Normal Mode Initialization (LNMI) aims to get rid of the high frequency
oscillations by setting their initial amplitude to zero. Nonlinear Normal Mode Initialization
(NNMI) instead sets the initial rates of change of the fast variables to zero (Lynch, 2002).
Both were imposed for the swinging spring equations using the method and initial condi-
tions described by Lynch [2002]. It was discovered that NNMI was better at supressing the
high-frequency oscillations due to the non-linear nature of the system.
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Figure 3.3: Coordinates and their fourier transforms of slow and fast variables for a swinging
spring with linear normal mode initialization. Parameter values give rotational and elastic
frequencies of f� = 0:5 and fr = 5 respectively. Initial conditions are (�; p�; r; pr) =
(1; 0; 1; 0).
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Figure 3.4: Coordinates and their fourier transforms of slow and fast variables for a swinging
spring with nonlinear normal mode initialization. Parameter values give rotational and
elastic frequencies of f� = 0:5 and fr = 5 respectively. Initial conditions are (�; p�; r; pr) =
(1; 0; 0:99540; 0).
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Chapter 4

Implementing the ETKF, ETKS

and ETKS2



then the eigenvalue decomposition is

(Ŷ f )T Ŷ f = U�UT (4.3)

where U is an N �N orthogonal matrix. It is possible to avoid performing (Y f )TY f and
use a simpler matrix in the analysis equation, which is more e�cient to compute. It also
reduces the errors in the smallest eigenvalues (Golub and Van-Loan, 1996). This is done
by using the Singular Value Decomposition (SVD) of Golub and Van-Loan [1996]:

(Ŷ f )T = U�V T (4.4)

Here, � is the N � p diagonal matrix satisfying � = ��T and V is an p � p orthogonal
matrix. The ensemble perturbation matrix is updated by

Xa = XfT = XfU(I + �)�
1
2UT (4.5)

The matrix UT has been added to the version in (Livings, 2005) to make it unbiased
(Livings et al., 2008). The ensemble Kalman gain can now be written as

Ke = Xf (Y f )T (Y f (Y f )T +R)�1

= Xf Ŷ f
T

(Ŷ f (Ŷ f )T + I)�1R�
1
2

= XfU�(�T� + I)�1V TR�
1
2 : (4.6)

The product vector
z = �(�T� + I)�1V TR�

1
2 (y � yf ) (4.7)

is built from right to left. This avoids storing the large Ke matrix. Also, it involves the



error over the time window should be less for the ETKS2. Both the ETKS and ETKS2
implementations have loops which perform a re-analysis process. Firstly it is important
to have calculated the analyses and forecasts for the ETKF in the time interval, as this is
used as initial data. The implementation for the ETKF is given in the previous section 4.1.

4.2.1 Description of the ETKS and ETKS2 algorithms

The time interval is [0; T ] with I steps. Assume H does not vary with time. The subscript
i represents the ensemble members i = 1; 2; 3



For the ETKS algorithm the new forecast ensemble members are then updated using the
smoothed analysis as





Calculate the singular value decomposition (SVD) of Y f
k+ljk+l�1:

(U;�; V ) =



over 100 runs. The ensemble mean averaged over 100 runs is given as xa
k;100

(the i subscript
is no longer there). The analysis ensemble mean averaged over 100 runs and averaged over
the time-interval is given by xa

k;100
, where k is the average over the time-interval. xa

k;100

gives a single value in each coordinate.
The analysis ensemble mean absolute error is de�ned as

eak = (jxak � x
t
kj): (4.15)

Using the same notation as xa
k;100

, the ensemble mean absolute error averaged over 100 runs
and averaged over the time interval is ea

k;100
and gives a single value in each coordinate.

Statistical signi�cance

The statistical signi�cance of the analysis ensemble mean error averaged over 100 runs was



to calculate the expensive Kalman gain matrix. The ETKS and ETKS2 algorithms use
the ETKF �lter run as initial conditions. Then the analyses are smoothed using future
observations. The implementaion for the smoothing process uses the features of the ETKF
implementaion to make it more e�cient, such as he tproduct vector. The key di�erence
between the ETKS and ETKS2 algorithms is that the ETKS algorithm updates the fore-
cast states from the smoothed analyses. This is important in calculating the smoothed
innovation vector and square root matrix. The ETKS 2 uses the original �ltered forecast
state in the innovation vector and square root matrix.



Chapter 5

Results

The methodology described in chapter 4 is now applied to the Ensemble Transform Kalman
Filter (ETKF - see section 4.1) and the Ensemble Transform Kalman Smoother 2 (ETKS2
- see section 4.2.3). The ETKS2 di�ers from the ETKS (section 4.2.2) in that it does not
smooth the forecast state in the innovation vector and square root matrix T but instead
uses the �ltered version. The NNMI trajectory from section 3.3 is used as the true tra-
jectory. The model used in the forecast step is the same as the model used to generate
the true trajectory. The ETKS2 is validated by checking the �nal ensemble values for a
seeded initial distribution are equivalent to the �nal ensemble values of the ETKF. Also
the ensemble mean error averaged over the time interval should be smaller for the ETKS2.
The experiments di�er in the analysis step, the ensemble size and whether the observations
are perfect (noise free) or imperfect. The �xed-lag smoother ETKS2 is also tested with
di�erent lags.

5.1 Comparison of the ETKF with �xed-interval ETKS2 us-

ing perfect observations

5.1.1 ETKF

The following application of the ETKF uses the programme created by Livings [2005].
Firstly, the results using the ETKF will be observed for frequent, perfect observations
on all four coordinates (�; p�; r; pr). The �rst observation is at time 0.1 and all subsequent
observations have intervals of 0.1. Since the observations are perfect, the actual observation



true solution. The covariance matrix R is also used in generating the initial ensemble. An
ensemble of pseudo random vectors is drawn from a normal distribution with the given
covariance matrix as its covariance matrix and the true initial state as its mean. This
ensemble is then translated slightly so that the ensemble mean coincides exactly with the
initial state. This translated random ensemble is used as an initial ensemble (Livings,
2005).

For a fair comparison between the ETKF and ETKS2 it is necessary to use an identical
(seeded) initial ensemble distribution for both runs. The result of an experiment with
ensemble size N = 10 is shown in Figure 5.1. The graph shows the di�erence between the
ETKF analysis and the truth for all four coordinates. Error bars show the observations
(centred on the true solution) with the radius representing the standard deviation passed
to the �lter. The observations follow the truth since they are perfect. There is a decrease
in the amplitudes of the �lter error over time for most of the ensemble members, most
signi�cantly over the �rst few seconds. This is expected since the analysis becomes more
accurate (close to the true solution) as more observations are assimilated. The values of the



Ensemble member � p� r pr

1 -0.0170 0.0413 0.0004 -0.0001
2 0.0029 -0.0181 0.0000 -0.0004
3 -0.0083 0.0051 0.0001 0.0022
4 -0.0045 0.0083 0.0001 -0.0004
5 0.0038 0.0049 0.0001 0.0005
6 0.0055 -0.0080 0.000 -0.0001
7 0.0076 -0.0299 -0.0001 -0.0012
8 0.0050 -0.0001 0.0000 -0.0012
9 -0.0021 0.0191 0.0001 0.0017
10 0.0001 0.0116 0.0001 -0.0013



Experiment (perfect obs) � p� r pr

ETKF ek;100
a 9:40� 10�3 2:53� 10�2 2:01� 10�4 1:43� 10�3

95% con�dence �1:11� 10�4 �2:81� 10�4 �4:30� 10�7 �3:44� 10�5

ETKS2 ea
k;100

4:77� 10�3 1:34� 10�2 7:71� 10�5 7:48� 10�4

95% con�dence �7:31� 10�5 �2:09� 10�4 �1:43� 10�6 �1:70� 10�6

Table 5.4: Time averaged errors of the ensemble mean � the 95% con�dence range. Com-
puted from 100 runs of the ETKF and ETKS2 with di�erent random initial conditions and
perfect observations.

5.1.2 Fixed-interval ETKS2

The following application of the ETKS2 uses the implementation in section 2.9.2 and
smoothes using all the available obervations, hence it is �xed-interval. The ETKS2 uses the
ETKF �lter runs calculated in the programme created by Livings [2005]. A new section of
the programme calculates the smoothed analyses. Using the same seeded distribution as
used for the ETKF in 5.1, the results for the ETKS2 run are shown in Figure 5.3. Clearly
the initial errors for the ETKS2 are much less. Also there is no general trend in the mag-
nitude of the errors in the time window. The magnitudes of the errors for one ensemble
member (blue line) appear to increase over the time interval but this is an isolated case. At
the end of the time window the ETKS2 errors for each ensemble member are the same as
the ETKF errors. This is shown by comparing table 5.2 with table 5.5. This is the expected
result since both the �nal analysis of the ETKF and the �nal analysis of the ETKS2 are
calculated from the same forecast state and observations.

The standard deviation of the analysis ensemble for the ETKS2 averaged over 100 runs
was averaged over the time interval for all four coordinates. The values are shown in table
5.3. Compared with the ETKF standard deviations in table 5.3 these are at least an order



averaged errors of the ensemble mean for the ETKS2 are smaller than for the ETKF in all
four coordinates. The ETKS2 errors are all approximately half the size of the ETKF errors.
Thus the ETKS2 solution is smoother and more accurate on average than the ETKF one.

Ensemble member � p� r pr

1 -0.0170 0.0413 0.0004 -0.0001
2 0.0029 -0.0181 0.0000 -0.0004
3 -0.0083 0.0051 0.0001 0.0022
4 -0.0045 0.0083 0.0001 -0.0004
5 0.0038 0.0049 0.0001 0.0005
6 0.0055 -0.0080 0.000 -0.0001
7 0.0076 -0.0299 -0.0001 -0.0012
8 0.0050 -0.0001 0.0000 -0.0012
9 -0.0021 0.0191 0.0001 0.0017
10 0.0001 0.0116 0.0001 -0.0013

Table 5.5: Errors of the ETKS2 10 ensemble members for the seeded distribution at t=6
using perfect observations.

5.2 Comparison of the ETKF with the ETKS2 using imper-

fect observations

5.2.1 ETKF

The following imperfect method for the system is equivalent to the method implemented by
Livings [2005]. So far in the experiments, the observations have been noise-free, frequent
and made on all four coordinates of the system. For the next experiment, these assumptions
are relaxed so as to see the e�ect on the ensemble statistics. For the next experiment the
time interval between observations has been increased to 0.37. Not only is this larger
than the previous interval of 0.1 but it has been chosen as it is not a sub-multiple of the
oscillation periods T� = 2 and Tr = 0:2. Instead of observing all four coordinates only � is
observed. The observation error standard deviation added to the �lter for � is 0.1 as before,
but now errors of this magnitude are really added to the observations. The initial ensemble
is generated using a diagonal covariance matrix corresponding to the standard deviations
in table 5.7. The standard deviation for � is the same as that used for observations.
The standard deviations for the other coordinates are equivalent to the amplitudes of the
uninitialised oscillations in Figure 3.2. The idea is that the initial ensemble is not in
uenced
by these coordinates. The initial ensemble is generated using pseudo-random vectors as
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with the perfect observations. However, there is no �nal translation to make the ensemble
mean coincide exactly with the true initial state.

Firstly an ETKF run with a seeded initial ensemble distribution will be looked at for 10
ensemble members. This seeded distribution is the same used for the perfect case (Figure
5.1). It is shown in Figure 5.5. It is obvious when comparing �gure 5.5 with 5.1 that
the amplitudes of the errors are much larger for the imperfect case. Also, the errors do
not decrease over time in the fast coordinates as they do for the perfect case, instead
they continue to oscillate at a similar magnitude. In the slow coordinates there is a slight
decrease in the errors over time. The timescale for the fast coordinates is also much slower
in the imperfect case than the perfect case.

The time averaged analysis ensemble standard deviation over 100 runs for the ETKF
using imperfect observations is shown in table 5.3. Compared with the ETKF using perfect
observations the standard deviations of all four coordinates are higher. The higher standard



Coordinate Standard deviation
� 0.1
p� 3
r 0:06
pr 1:5

Table 5.7: Observation error standard deviations passed to the �lter in experiments with
imperfect observations. These standard deviations are also used to generate the initial
ensemble.

5.2.2 Fixed-interval ETKS2

Using the seeded initial distribution, the ETKS2 was run using imperfect observations.
The ETKS2 run in Figure 5.7 shows no signi�cant change in the error magnitudes over the
time window. The errors are also smaller across all 4 coordinates than for the ETKF run
in Figure 5.5.

Figure 5.8 shows the absolute value of the error over time using the ensemble mean
smoothed analysis averaged over 100 �lter runs for the ETKS2 for the imperfect obser-
vations. Comparing Figures 5.8 and 5.6 it is noticeable that the ETKS2 errors are only
signi�cantly better than the ETKF errors for the slow coordinates. This would make sense
sinse the slow coordinate � is the only variable being observed. Hence the smoothing pro-
cess in ETKS2 is going to be more bene�cial in the slow coordinates since actual future
observations are being assimilated. However, the acccuracy of the slow variables will have
some in
uence on the accuracy of the fast variables in the equations of motion (section
3.1). Comparing Figure 5.8 with Figure 5.4 shows that the ETKS2 has also lost a lot of
accuracy when using imperfect observations instead of perfect ones. Table 5.6 shows that
the time averaged errors of the ensemble mean for the ETKS2 are smaller than for the
ETKF in all four coordinates when using imperfect observations. However, as discussed
this is only signi�cant for the slow coordinates.

5.2.3 Ensemble error of the ETKF and ETKS2 using di�erent ensemble

sizes with imperfect observations

Table 5.8 shows the time averaged errors of the ensemble mean (averaged over 100 runs)
in all four coordinates of the ETKF for 2-10 ensemble members. The ETKS2 version is
shown in table 5.9. As expected the ETKS average errors are smaller than the ETKF ones.

Both the ETKF and ETKS2 errors in all four variables decrease signi�cantly when
increasing the ensemble size from two to four. When the ensemble size is too small in
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relation to the model problems can develop in the �lter. The ensemble must adequately
span the model subspace. The smaller the ensemble is, the greater the chance of sampling
errors and underestimated forecast error covariances or imbreeding (Ehrendorfer, 2007).
Thus increasing the number of ensemble members from two to four improves the accuracy
in the four-dimensional swinging spring model. However, the errors decrease less when
increasing the size from four to six and when increasing the ensemble size further than 6
the average errors in all four coordinates are generally getting worse (see tables 5.8 and
5.9). Thus increasing the ensemble size above the number of model variables eventually
increases the error. The following reasons given come from (Nichols, 2009). The state
of the system lies in an n-dimensional space. The estimate of the state obtained by the
ensemble method lies in the p-dimensional space spanned by the ensemble members. When
p > n , then you have spanned the full space in which the states lie. As you increase the
number of ensembles, you are adding dependent vectors to the basis for the space in which
the state estimate lies. It is possible therefore that you end up using a very poor selection
of vectors from the basis (nearly dependent) to form your new state estimate. The more
vectors added to the basis (the larger the number of ensembles) the more likely this is to
happen. This e�ect is exacerbated by the round-o� errors introduced in the calculations.
These mean that your computation of the state estimate can be very poor, even if the basis
is not a linearly dependent set, but is close to being dependent. Round-o� error can also
cause the basis derived from the ensembles to become dependent before you have reached
the point where p > n, even though in exact arithmetic this should be independent.

As well as measuring the a�ect of increasing the ensemble size on the error, it is im-
portant to see if the ensemble standard deviation is behaving as it should be. However,
this was only looked at for the ETKF. Using the Matlab programme of Livings [2005]
it was possible to calculate the fraction of analyses having an ensemble mean within one
standard deviation of the truth for each coordinate, averaged over 100 runs. For unbiased,
normally distributed analysis errors with standard deviation equal to the ensemble stan-
dard deviation, this fraction should be about 0.68 (see Kreyszig, 1999 Appendix 5, table
A7). If the fraction is below 0.68 this suggests that the standard deviation could be too
small. Table 5.10 shows that this fraction increases signi�cantly for larger ensemble sizes
and goes from being well below 0.68 in all coordinates to being well above this fraction in
all 4 coordinates. However, the very large fractions of 1.00 seen in the fast coordinates may
be due to ignorance of the imperfect ETKF in the fast coordinates as the fast coordinates
are not observed (Livings, 2005). It is above 0.68 in all coordinates for ensemble sizes of 6
or larger.
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Ensemble size � p� r pr

2 0.1183 0.3464 0.0580 1.8381
4 0.0592 0.1823 0.0411 1.3073
6 0.0584 0.1795 0.0382 1.2170
8 0.0589 0.1818 0.0398 1.2672
10 0.0703 0.2124 0.0348 1.0880
50 0.0604 0.1873 0.0427 1.3580

Table 5.8: Time averaged errors of the ensemble mean for di�erent ensemble sizes. Ensem-
ble mean averaged from 100 runs of the ETKF with di�erent random initial conditions.

Ensemble size � p� r pr

2 0.1156 0.3122 0.0553 1.7489
4 0.0406 0.1103 0.0395 1.2478
6 0.0390 0.1055 0.0355 1.1707
8 0.0391 0.1066 0.0394 1.2484
10 0.0425 0.1201 0.0336 1.0589
50 0.0392 0.1047 0.0426 1.3529

Table 5.9: Time averaged errors of the ensemble mean for di�erent ensemble sizes. Ensem-
ble mean averaged from 100 runs of the ETKS2 with di�erent random initial conditions.

5.2.4 ETKS2 with varying lags using imperfect observations

So far, the ETKS2 experiments have been of �xed-interval type, smoothing the analyses
using all available observations in the time window. Now the ETKS2 will be run for
varying lags. Figure 5.9 is a graph plotted with one quarter the lag of the �xed-interval
problem. In other words the analyses for the ETKS2 will be smoothed using a maximum of
4 future observations instead of a maximum of 16 observations (all observations available)
in the �xed-interval problem. The graph shows that the errors are signi�cantly higher in
the slow coordinates at the beginning of the time window, but are more even in the fast
coordinates. This is expected since the forecast is carrying forward less information from
� observations from the past earlier in the time-window. The e�ect is less noticeable in
the fast coordinates since they are not observed. Table 5.11 shows the absolute value of
the error over time using the ensemble mean smoothed analysis averaged over 100 runs for
the di�erent lags. Halving the lag from 16 to 8 increases the average error, except in the �
component. Decreasing the lag further increases the error in all four coordinates. This is
expected since less observations are being assimilated at the beginning of the time-window
for lower lags.
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Ensemble size � p� r pr

2 0.282 0.281 0.0678 0.0679
4 0.640 0.634 0.530 0.530
6 0.699 0.690 0.785 0.786
8 0.722 0.717 0.906 0.906
10 0.0701 0.700 0.954 0.954
50 0.754 0.764 1.000 1.000



than about 6 could mean the standard deviation is too small for the ETKF. However, the
very large fractions of 1.00 seen in the fast coordinates for large ensemble sizes may be due
to ignorance of the imperfect ETKF in the fast coordinates as the fast coordinates are not
observed (Livings, 2005)

Decreasing the lag for ETKS2 caused the average errors to increase. This is expected
since the forecast is carrying forward information from less observations in the analysis step
near the beginning of the time window.
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Figure 5.1: ETKF, perfect observations, 10 ensemble members. Coordinates are plotted
relative to the truth. Lines showing individual ensemble members are superimposed on
observations plotted as error bars. Radius of error bars equals standard deviation of �lter.
The error bars form a vertical grid centred on zero since the observations are frequent and
perfect.
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Figure 5.2: ETKF, perfect observations, absolute error trajectory of the ensemble mean
(N = 10), averaged over 100 �lter runs. Coordinates are plotted relative to the truth.
Lines showing individual ensemble members are superimposed on observations plotted as
error bars. Radius of error bars equals standard deviation of �lter. The error bars form a
vertical grid centred on zero since the observations are frequent and perfect.
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Figure 5.3: ETKS2, perfect observations, 10 ensemble members. Coordinates are plotted
relative to the truth. Lines showing individual ensemble members are superimposed on
observations plotted as error bars. Radius of error bars equals standard deviation of �lter.
The error bars form a vertical grid centred on zero since the observations are frequent and
perfect.
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Figure 5.4: ETKS2, perfect observations, absolute error trajectory of the ensemble mean
(N = 10), averaged over 100 smoothed runs.
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Figure 5.5: ETKF, imperfect observations, 10 ensemble members. Coordinates are plotted
relative to the truth. Plotting conventions as for 5.1. Note that only the � component has
error bars since this is the only variable observed.
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Figure 5.6: ETKF, imperfect observations, absolute error trajectory of the ensemble mean
(N = 10), averaged over 100 smoothed runs. Plotting conventions as in Figure 5.2. Only
the �rst graph shows error bars since only the �rst coordinate is observed.
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Figure 5.8: ETKS2, imperfect observations, absolute error trajectory of the ensemble mean
(N = 10), averaged over 100 smoothed runs. Plotting conventions as in Figure 5.2. Only
the �rst graph shows error bars since only the �rst coordinate is observed.
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Figure 5.9: ETKS2-lag 4, imperfect observations, absolute error trajectory of the ensemble
mean (N = 10), averaged over 100 smoothed runs. Plotting conventions as in Figure 5.2.
Only the �rst graph shows error bars since only the �rst coordinate is observed.
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Chapter 6

Conclusions and Future work

6.1 Summary and discussion

The goals for this project were to compare two di�erent sequential data assimilation meth-
ods, the Ensemble Transform Kalman Filter (ETKF) of Bishop et al. [2001] and the En-
semble Transform Kalman Smoother type 2 (ETKS2) introduced in this report (see section
2.9.2). The aim was to compare the errors of the ensemble members for the ETKF and
ETKS2 for perfect (noise-free) and imperfect observations. In the imperfect case, di�erent
ensemble sizes and di�erent lags for the smoother are looked at.

Chapter 2 introduces the Kalman Filter (KF) of Kalman [1960] and the formulations
of the KF including the ETKF that is used for experiments in this report. In a �lter
a forecast model is used to produce a forecast state estimate using the analysis (best
estimate of the system) of the previous time. This forecast state is updated to produce
the current analysis by giving a weighting to the observations according to the ratio of
estimated observation covariances and forecast covariances. Two types of ensemble �lters
are introduced, stochastic and deterministic, which di�er in the analysis step. The main
advantage of the deterministic �lter is that perturbed observations are not used, which
introduce additional noise. The Ensemble Kalman Filter (EnKF) of Evensen [1994] (see



and the square root smoother of Whitaker and Compo [2002]. The smoothing method
used in the experimental part of this report is called ETKS2 (see section 2.9.2) and di�ers
slightly from the ETKS (section 2.9) in that a �xed forecast state is used in the innovation
vector and square root matrix.

Chapter 3 discusses the two-dimensional swinging spring model. The concept of initial-
ization is introduced and normal mode initialization is implemented for the swinging spring
experiment of Lynch [2002]. Non-linear Normal Mode Initialization (NNMI) and Linear
Normal Mode Initialization (LNMI) results are compared. Due to the non-linear nature of
the system, NNMI is better than LNMI at removing the high frequency oscillations in the
fast variables.

Chapter 4 discusses the implementation of the ETKF, the ETKS and the ETKS2.
The formulations are equivalent to the formulations in Chapter 2ionsnutto the implementatioe



100 runs and averaged over the time interval. The statistical signi�cance test measured
the con�dence in the analysis errors for the 100 run average. The mean ensemble absolute
errors averaged over the 100 runs were less for the ETKS2 than the ETKF, proving that the
smoother has improved accuracy over the �lter. Also since the 100 run average standard
deviations were less for the smoother, there was less variation in the ensemble spread.
However, the ETKF is known to underestimate ensemble spread so a smaller standard
deviation is not necessarally a good thing for either the ETKF or ETKS2. Ensemble mean
absolute errors averaged over 100 runs were plotted over the time interval for both the
ETKF and ETKS2. The ETKF errors were worse at the beginning of the time window.
This was expected since the �lter error decreases as more observations are assimilated. The
ETKS2 errors were consistent over the time interval, as expected since the �xed-interval
smoother assimilates all available observations at each analysis step.

Imperfect observations were tested for both the ETKF and ETKS2 in the same way
as the perfect observations. Only the slow coordinate � was observed. The analysis errors



�xed-lag ETKS2 than the ETKF in most of the analysis states.

6.2 Limitations of the experiments

6.2.1 The Swinging Spring system

There are some limitations in the experiments in this report. Firstly, the swinging spring
system has only four parameters. In Numerical Weather Prediction the number of param-
eters p of the model is of O(107). The number of ensemble members N << p. In order
to relate the experiments for the smoother to NWP a much higher dimensional system
would be needed. For example, the square root smoother of Whitaker and Compo [2002]
gives results using a 40-dimensional model. Using this model it is discovered that sampling
errors in the cross-covariance matrix are produced by higher lags. Thus higher ensemble
sizes are needed to take advantage of observations further removed from the analysis. The
four-dimensional swinging spring does not have a large enough range of ensemble sizes for
N < p to �nd a relationship between lag, sampling errors and ensemble size.

6.2.2 Experimental work

In the experimental work in this report, only two di�erent cases were considered for the
ETKF anf ETKS2. The perfect case was �rst looked at, using noise-free, high frequency and
observations in all four parameters. Then the imperfect case looked at noisy observations
at a lower frequency and with only the � component observed. It would have been better to
look at the imperfect case with two and three parameters observed �rst to see the impact



accurate than the ETKS2 results since the square root matrix T uses smoothed forecast
states for each time step instead of using only the original �ltered forecast states. However
the extra smoothing of the forecast states would make it more expensive to implement.



spacial and time scales. However, in certain situations it may be necessary to predict high
frequency variations, such as localised mountain updraughts where the rising condensing
air could cause cloud hazardous to aircraft.

The low frequency variations that are of no interest are called noise. If noisy observations
are incorporated into the basic equations in numerical prediction the forecast may contain
spurious large amplitude high frequency oscillations (Lynch, 2002). This is because the
balance between the mass and velocity �elds is not fairly re
ected in the forecast. In
other words, the numerical model cannot cope with the high frequency variables. The
elimination of this noise can be achieved by adjusting the initial �elds, a process called
initialization. Detail on di�erent forms of initialization that can be found is in Lynch [2002].
Initialization is an important part of data assimilation. Any linear balances in a system
should be preserved with the ETKF since the ETKF takes a linear combination of the
ensemble members to create the analysis. However, a smoother would be expected to give
a smoother solution that �ts the observations better. Thus a smoother might be expected to
dampen the high frequency and high amplitude errors in the solution more than the �lter.
The relationship between initialization, the ETKS/ETKS2 and ETKF could be investigated
using the Swinging Spring model or another model by measuring the spread of the errors in
the ensemble members in the solutions. This could be done by plotting the ensemble mean
and the ensemble mean � standard deviation for the ETKS/ETKS2 and comparing the
results with the ETKF plots from Livings [2005]. Neef et al. [2005] investigate initialization
properties of a stochastic EnKF using a four-dimensional system. Perhaps the deterministic
ETKF, ETKS and ETKS2 could be applied using similar experiments.
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