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Abstract

In this dissertation we derive and solve numerically a partial differential equation
(PDE) for the value of a weather derivative. We use historical data to suggest a
stochastic process that describes the evolution of temperature and cumulative heat-
ing degree days, and then use this process to derive a convection-diffusion PDE for
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A Itô’s Lemma in Integral Form 53

iii



List of Figures

1.1 Payoff diagram for a purchased HDD put option . . . . . . . . . . . . .



List of Abbreviations

CDD Cooling Degree Day(s)

EUR Euro(s)

EWMA Exponentially Weighted Moving Average

HDD Heating Degree Day(s)

PDE Partial Differential Equation

SDE Stochastic Differential Equation

WMO World Meteorological Organisation

v



Glossary of Notation

K Strike
cap Payment cap
tick Tick size
t Time from start of contract period
T Length of contract period
τ T − t
r Risk-free interest rate
e−r(T −t) Discount factor applicable from time T to time t
S Cumulative Heating Degree Days (HDD)
X Temperature
P Option payoff
V Option value
E Expected value
dW Standard Wiener process
µ Drift rate
σ Volatility
m Mean
s Standard deviation
N(m, s) Normal distribution with mean m, standard deviation s

vi



Chapter 1

Introduction

1.1 Background

A derivative is a financial instrument whose value depends on the value of other, more
basic underlying variables. For a weather derivative, the underlying variables are mea-
sures of the weather, for example precipitation or snowfall levels, wind speed or, most
commonly, temperature.

Weather derivatives are used to control the risks of naturally-arising exposures to
weather. Businesses subject to weather risk, and therefore likely to benefit from
weather derivatives, include energy producers and consumers, supermarket chains,
the leisure industry and agricultural industries.

The first transaction in the weather derivatives market took place in the US in 1997.
Many companies then decided to hedge their seasonal weather risk after experiencing
a serious loss of earnings during the very severe El Niño winter of 1997-98. Since then
the market for weather derivatives has expanded rapidly, largely driven by companies
in the energy sector. Although the market is still in its early stages, and is currently
not very active, the number of players and volume of trades continues to increase.

The most common type of weather derivative is a ‘Heating Degree Day’ (HDD) or
‘Cooling Degree Day’ (CDD) option. This contract provides the holder with a payoff
at the end of the contract period (at ‘expiry’) dependent on the excess of the period’s
cumulative Degree Days (HDD or CDD) over the ‘strike’ (for a ‘call’ option), or the
excess of the strike over the cumulative Degree Days (for a ‘put’ option). We define
these Degree Days and set out the precise form of the payoff for each type of contract
in the next section.

1.2 Definitions

The Heating Degree Days (HDD) on day i are defined by

HDDi = max(18−Xi, 0),

where Xi = Xmax
i +Xmin

i

2 is the average temperature measured on day i in degrees Cel-



respectively on day i.

Similarly, we define the Cooling Degree Days (CDD) on day i by

CDDi = max(Xi − 18, 0).

Suppose we have a contract period, 0 ≤ t ≤ T , consisting of N days. Then the
cumulative number of HDD and CDD for that period are

HN =
N∑

i=1

HDDi and

CN =
N∑

i=1

CDDi respectively.

If we denote the strike level by K and the ‘tick size’ (the monetary value paid out per
degree Celcius) by tick, then the payoff for an uncapped HDD call or put option is

Pcall = max(HN −K, 0)× tick or
Pput = max(K −HN , 0)× tick respectively,

and similarly for an uncapped CDD call or put option.

We will work with a purchased HDD put option as an example. We will now use S to
represent cumulative HDD, to be consistent with stock options, where the underlying
share price is usually represented by S. In addition, we will introduce a ‘payment cap’,
cap



1.3 An Example Contract

We illustrate the previous definitions by setting out the indicative terms and condi-
tions of a real-life HDD put option contract. The contract below was prepared by
ABN Amro, but not actually traded. We shall attempt to value this example contract
using various methods in later chapters.

Contract Period: 1 November 2002 up to and including 31 March 2003.

Payment Cap: EUR 1,000,000.

Weather Unit: On each day during the Contract Period, HDD rounded
to the nearest 0.1 degrees Celcius calculated as follows:
The Base Temperature for calculation of HDD is 18
degrees Celcius. If the Daily Average Temperature is

degrees Celcius.9 11.955 l
Sgrees Celcius calculated as follows:



with the payoff satisfying (1.1).

1.4 Possible Valuation Methods

In order to determine a reasonable price which should be paid to acquire the weather
derivative, we need to be able to value the contract at time t = 0 (the contract start
date).

The traditional method for valuing options is via the Black-Scholes model. Unfor-
tunately, this model is based on certain assumptions that do not apply realistically to
weather derivatives, the most fundamental of these being the assumption of a tradeable
underlying commodity. The underlying variables for weather derivatives, for example
temperature, are not themselves tradeable in a market, and so the theory applied in
the derivation of the Black-Scholes formula (see Black and Scholes [3]) is not valid.

Degree Day weather options tend therefore to be valued by developing models for
either temperature or cumulative Degree Days, and then running simulations based
on Monte Carlo methods or on historical data (Burn Analysis).

In this dissertation, we will develop new valuation methods based on the numerical
solution of partial differential equations (PDE’s) and use these to value the example
contract in the previous section. We start in Chapter 2 by analysing the relevant
historical temperature data, and from this, make some conclusions on the distribution
of the HDD and temperature data. In Chapter 3, we use these conclusions together
with expectation theory to derive a formula for our contract value. In Chapter 4, we
again use the results from Chapter 2, this time to derive a partial differential equation
(PDE) satisfied by the option value. Chapters 5, 6, 7 and 8 are concerned with the
numerical solution of this PDE. In Chaper 9, we demonstrate the results of Monte
Carlo simulations and Burn Analysis, to enable a final comparison with our previous
methods.
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Chapter 2

Analysis of Historical
Temperature Data for the
Example Contract

2.1 Introduction

Although an active or ‘liquid’ market does not yet exist for weather derivatives, we do
have access to extensive historical weather data. This means that weather derivative
models tend to be calibrated to past data. To be able to value our example contract
described in section 1.3, we therefore need to analyse the relevant historical tempera-
ture data.

We have accessed the last fifty years’ daily maximum and minimum temperatures
for Vlissingen, The Netherlands, (the weather station of the example contract in
section 1.3) from the Royal Netherlands Meteorological Institute website1. From this
data we have calculated the daily average temperatures and Heating Degree Days
(HDD) for each day in our contract period (1 November to 31 March inclusive), for
each of the last fifty years.

We have then developed and tested various hypotheses about the distribution of the
average temperature and HDD data, the results of which we will use in later chapters
when we develop models for valuing our weather derivatives contract.

2.2 Hypotheses and Results

Hypothesis 1: The cumulative HDD for the contract period are normally distributed.

This hypothesis is claimed to be valid in McIntyre [11]. In our case, we have cal-
culated the cumulative HDD for the contract period for the last fifty years, prorating
the values by one day for leap years. We have then tested our hypothesis by performing
a χ2 test at the 5% level. The result of this test is that the observed distribution of

1www.knmi.nl
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cumulative HDD is consistent with the normal distribution. We can see the closeness
of fit of the observed distribution to the normal distribution from Figure 2.1.

Figure 2.1: Cumulative HDD distribution for Vlissingen

We have calculated the mean (m) and standard deviation (s) of this cumulative HDD
distribution for use in later chapters. We obtain

m = 1966.4 ( ◦C) and
s = 188.5 ( ◦C).

Hypothesis 2: The daily increments in average temperature are normally distributed.

We have tested this hypothesis by performing Jarque-Bera tests (at the 5% level)
for goodness of fit to a normal distribution, using Matlab. (This is computationally
more efficient than χ2 tests since we are performing the test for each of 151 daily
increments). The results of these tests are that our hypothesis can not be rejected
for 88% of the days in the contract period. Since such a high proportion of the daily
increments have distributions consistent with the normal distribution, we will make
the approximation that all daily increments in average temperature are normally dis-
tributed, that is, we assume that our hypothesis is true.



We calculate the standard deviation of the (N + 1)th daily increment by

sN+1 =

√√√√ 1∑N
i=1 λN−i

N∑
i=1

λN−i(xi −m)2

'

√√√√(1− λ)
N∑

i=1

λN−i(xi −m)2



Figure 2.2: Mean daily increments in average temperature for Vlissingen

Hypothesis 3: The daily increments in cumulative HDD are normally distributed.

As for Hypothesis 2, we have performed Jarque-Bera tests (at the 5% level) for good-
ness of fit to a normal distribution, using Matlab. In this case, we find that our
hypothesis can not be rejected for 78% of the days in the contract period. Although
this percentage is not as high as for the temperature increment test, we still consider
this to be sufficiently high a proportion that we can assume all daily increments in



Figure 2.3: Scattergram of cumulative HDD increments for Vlissingen: 30-31 March

Figure 2.4: Arithmetic mean daily increments in cumulative HDD for Vlissingen

2.3 Problems with the Analysis of Historical Tem-
perature Data

We note here some general issues with the collection and analysis of historical temper-





Chapter 3

An Expectation-Based
Formula

3.1 Introduction

In this chapter, we derive a similar result to that quoted in McIntyre [11], for the value
of an HDD put option. The derivation makes the assumption, consistent with the re-
sults of the temperature analysis in the previous chapter, that the cumulative Heating
Degree Days (HDD) over the life of a contract are normally distributed. The value of
the option is then calculated as being the expected payoff of the option, appropriately
discounted to account for the time value of money.

After proving this result, we apply the formula to the example contract in section
1.3, to obtain a value for this option at the contract start date.

3.2 Derivation of the Formula

We consider a general HDD put option, and use the notation set out on page vi. In
addition, we define

ST = the cumulative number of HDD at time t = T (the end of the contract),

P (ST ) = the option payoff at time t = T , neglecting the tick size and payment cap,
that is,

P (ST ) = max(K − ST , 0), (3.1)

and

V = the option value at time t = 0 (the contract start date), neglecting the tick
size and payment cap.

(We will use P ?(ST ) and V ? to represent the option payoff and value when the tick
size and payment cap are taken into consideration.)

11



We assume that ST



where N(x) = 1√
2π

∫ x

−∞ e− z2
2 dz is the cumulative standard normal distribution func-

tion, and f(x) is the normal probability density function defined in (3.2).

We now recall that the actual payoff of the option, including the tick size and payment
cap is

P ?(ST ) = min {max(K − ST , 0)× tick, cap} ,

and so the actual value is

V ? = e−rT E [P ?(ST )]
= e−rT E [min {max(K − ST , 0)× tick, cap}]
= min

{
e−rT E [max(K − ST , 0)]× tick, e−rT cap

}
= min{V × tick, e−rT cap}.

We can therefore incorporate the tick size and payment cap in (3.4) to give a final
value for the HDD put option at time t = 0:

V ? = e−rT min
{(

(K −m)N

(
K −m

s

)
+ s2f(K)

)
× tick, cap

}
. (3.5)

�81]TJ/FF10 6.974 Tf1658 -4.114 Td[(()]TJ/F11 9.963 CTf 3.875 0 Td[(N)]TJ/FTJ/F763 Tf -201.391 -33.426 Td[(37/F159-421(c74 Tf Also9.963 Tf20(iom356-333r0 0 1 -hn)-357oric333(is)]tetrib))1(e)-e21((th)r-356-33(he)ata356-33a5 Td[(ys(n)1(orm J/F8 93 TfChaon)-tre)-42093 Tf29.963 Tward)-356-33h(c)-1fin K�TJ/623FF10 3.974 Tf1658 -4.114 Td[(()]TJ/F11 3.963 CTf 3.875 0 Td[(N)]TJ/FTJ/F763 Tf -281.213 -17.664 Td.9J/F11 9f 42.618 0 Td[(f)]TJ/i84/F159-in) K



Therefore, using formula (3.5), we obtain

V ? = e−0.05× 151
365 min

{
(((1750− 1966.4)× 0.1255) + (188.52 × 0.0011))× 5000, 1000000

}
= 58415.

This shows that our expectation-based formula values the example contract in section 1.3
at 58,415 Euros at the start of the contract.
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Here we follow the same approach, but for an HDD put option, with the underlying
cumulative HDD / temperature assumed to evolve according to the SDE (4.1). This
derivation is more general than that given in Brody et al [4], in particular with regard
to the inclusion of a generalised payoff function.

Theorem 1 Suppose that ω : R × [0, T ] → R is a twice continuously differentiable
function with bounded derivatives, satisfying the parabolic PDE

−ωτ (z, τ)− rω(z, τ) + µT −τ ωz(z, τ) +
1
2

σ2
T −τ ωzz(z, τ) = 0, (4.3)

with the initial condition
ω(z, 0) = P (z), (4.4)

where P (z) is the payoff of the option. Then

V (Ẑ, T ) = ω(Ẑ, T ). (4.5)

Proof First we integrate SDE (4.1) from 0 to t to give

Zt = Ẑ +
∫ t

0

µsds +
∫ t

0

σsdWs. (4.6)

We now define the process

ηt =
∫ t

0

σsdWs (4.7)

and the function

f(η, t) = Ẑ +
∫ t

0

µsds + η. (4.8)

Then (4.6),(4.7)and (4.8) imply that

Zt = f(ηt, t). (4.9)

Let us consider the function g of two variables, defined by

g(η, t) = e−rtω(f(η, t), T − t), (4.10)

where f(η, t) is given by (4.8) and ω(z, τ) is the function introduced in Theorem 1.

We first note that partial differentiation of (4.10) gives the following results:

gη(η, t) = e−rtωz(f(η, t), T − t), (4.11)
gηη(η, t) = e−rtωzz(f(η, t), T − t), and (4.12)

gt(η, t) = e−rt[−rω(f(η, t), T − t) + ωz(f(η, t), T − t)µt

−ωτ (f(η, t), T − t)] � ωf t) = , t).



At time t = T this becomes

g(ηT , T ) = g(0, 0) +
∫ T

0

{
gt(ηt, t) +

1
2

gηη(ηt, t)σ2
t

}
dt +

∫ T

0

gη(ηt, t)σtdWt.

Substituting for g, gη, gηη and gt from (4.10),(4.11),(4.12) and (4.13) gives

e−rT ω(f(ηT , T ), 0) = ω(f(0, 0), T ) +
∫ T

0

e−rt
{
− rω(f(ηt, t), T − t)

+ωz(f(ηt, t), T − t)µt − ωτ (f(ηt, t), T − t)
}

dt

+
1
2

∫ T

0

e−rtωzz(f(ηt, t), T − t)σ2
t dt

+
∫ T

0

e−rtωz(f(ηt, t), T − t)σtdWt.

From the definition of f in (4.8) and the fact that Zt = f(ηt, t) from (4.9), we have

e−rT ω(ZT , 0) = ω(Ẑ, T ) +
∫ T

0

e−rt
{
− rω(Zt, T − t) + ωz(Zt, T − t)µt

−ωτ (Zt, T − t) +
1
2

ωzz(Zt, T − t)σ2
t

}
dt

+
∫ T

0

e−rtωz(Zt, T − t)σtdWt. (4.14)

Taking expectations of both sides of (4.14), and using the fact that

E

[∫ T

0

φ(t)dWt

]
= 0

for a Wiener process dWt and any bounded, suitably measurable function φ(t) (see
Jäckel [10]), we deduce that

e−rT E [ω(ZT , 0)] = ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t) + ωz(Zt, T − t)µt

−ωτ (Zt, T − t) +
1
2

ωzz(Zt, T − t)σ2
t

}
dt

]
. (4.15)

Now, we know that the value of our HDD put option at time t = 0 must be equal to
the expected value of the payoff from the option, discounted back in time, that is,

V (Ẑ, T ) = E
[
e−rT P (ZT )

]
. (4.16)

We now add (4.16) ‘side by side’ to (4.15), to give

17



V (Ẑ, T ) + e−rT E [ω(ZT , 0)] = ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t)

+ωz(Zt, T − t)µt − ωτ (Zt, T − t) +
1
2

ωzz(Zt, T − t)σ2
t

}
dt

]
+E

[
e−rT P (ZT )

]
.

Rearranging, we get

V (Ẑ, T ) + e−rT E [ω(ZT , 0)− P (ZT )]

= ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t)+ωz(Zt, T − t)µt−ωτ(ZT, T− t) +1

2
ωzz(ZT, T− t



4.4 Transformation of the PDE and Initial/Boundary
Conditions



Chapter 5

Accuracy and Stability of
Numerical Schemes

5.1 Possible Numerical Schemes

Here we set out various finite difference schemes which may be proposed to provide a
numerical solution to our PDE (4.20):

uτ =
1
2

σ2
T −τ uzz + µT −τ uz.

We make the approximation
un



3. Crank-Nicolson:

un+1
j − un

j

∆τ
=

1
2

{
1
2

σ2
T −τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2

σ2
T −τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
+

1
2

{
µT −τn

1
2∆z

(un
j+1 − un

j−1)

+ µT −τn+1

1
2∆z

(un+1
j+1 − un+1

j−1 )
}

. (5.3)

4. Crank-Nicolson with Downwind/Upwind Convection:

un+1
j − un

j

∆τ
=

1
2

{
1
2

σ2
T −τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2

σ2
T −τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}

+


µT −τn

1
∆z

(
un

j+1 − un
j

)
if µT −τn

> 0

µT −τn

1
∆z

(
un

j



We can see from these results that the Crank-Nicolson scheme (5.3) has the greatest
level of accuracy whilst also being unconditionally Fourier stable. This is therefore
the preferred scheme out of those listed in the previous table. In the next section, we
detail the accuracy and stability calculations for this chosen scheme, and in Chapter 6,
we demonstrate how this scheme is implemented to approximately solve our PDE.

5.3 Accuracy and Stability Calculations for the Crank-
Nicolson Scheme

5.3.1 Accuracy

We define the discrete linear operator, Lh, by

Lhun
j ≡

un+1
j − un

j

∆τ
− 1

2

{
1
2

σ2
T −τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2

σ2
T −τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
−1

2

{
µT −τn

1
2∆z

(un
j+1 − un

j−1)

+ µT −τn+1

1
2∆z

(un+1
j+1 − un+1

j−1 )
}

. (5.5)

Then the truncation error, εn
j , is defined to be

εn
j = Lhu(zj , τn)− Lhun

j

= Lhu(zj , τn), (5.6)

since Lhun
j = 0 by definition.

Combining (5.5) and (5.6), we obtain

εn
j =

1
∆τ

(u(j∆z, (n + 1)∆τ)− u(j∆z, n∆τ))

− 1
4(∆z)2

σ2
T −τn

(u((j + 1)∆z, n∆τ)− 2u(j∆z, n∆τ) + u((j − 1)∆z, n∆τ))

− 1
4(∆z)2

σ2
T −τn−∆τ (u((j + 1)∆z, (n + 1)∆τ)

−2u(j∆z, (n + 1)∆τ) + u((j − 1)∆z, (n + 1)∆τ))

− 1
4∆z

µT −τn
(u((j + 1)∆z, n∆τ)− u((j − 1)∆z, n∆τ))

− 1
4∆z

µT −τn−∆τ (u((j + 1)∆z, (n + 1)∆τ)− u((j − 1)∆z, (n + 1)∆τ)) . (5.7)

22



We expand (5.7) about (j∆z, n∆τ) using Taylor series, and collect coefficients of pow-
ers of ∆z and ∆τ to give

εn
j = (uτ −

1
2

σ2
T −τ uzz − µT −τ uz) +

∆τ

2

(
uττ −

1
2

σ2
T −τ uzzτ +

1
2

σ2′

T −τ uzz − µT −τ uzτ

+µ′
T −τ uz

)
+ (∆τ)2

(
1
6

uτττ −
1
8

σ2
T −τ uzzττ +

1
4

σ2′

T −τ uzzτ −
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8

σ2′′
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1
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1
4
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σ2

T −τ uzzzz −
1
6

µT −τ uzzz

)
+ · · · (5.8)

(using u and τ to represent u(j∆z, n∆τ) and τn respectively, and σ2′
, σ2′′

, µ′ and µ′′

to represent the first and second derivatives of σ2 and µ with respect to τ).





Chapter 6

Solution of the PDE for
Cumulative HDD

6.1 Introduction

We consider the general PDE set out in equation (4.20) of Chapter 4, and now assume
that the independent variable z represents cumulative HDD. We therefore replace z
by S, to be consistent with our previous notation, and the PDE (4.20) becomes

uτ =
1
2

σ2
T −τ uSS + µT −τ uS , (6.1)

with initial and boundary conditions

u(S, 0) = P (S), (6.2)
u(S1, τ) = erτ B1, and (6.3)
u(S2, τ) = erτ B2. (6.4)

(Here P (S) is the option payoff, and B1, B2 will be taken to be the option value at
S = S1, S = S2 respectively.)

By the definition of the option, we have

P (S) = min {max(K − S, 0)× tick, cap}

(see equation (1.1)), which completes our initial condition.

Since HDD are positive (by definition), we know that S ≥ 0 at all points in time.
Also since S is cumulative, if S ≥ K at any time during the contract, we will have
S ≥ K at expiry, and hence a zero payoff. This means that we are only required to
solve for u in the region 0 ≤ S ≤ K.

We therefore have

S1 = 0,

S2 = K, B2 = 0.
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The value of B1 is less obvious. If S = 0 at time t = T − τ , this simply tells us that
the temperature has been greater than or equal to 18 ◦C (no HDD have occurred) up
to time t. The option payoff is greater for smaller values of S at expiry. This implies
that if S = 0 at t = t2



may be assumed to represent the value of the option at time t = T − τ , when the
cumulative HDD equals S. Therefore by solving the PDE for u(S, τ) in the region
0 ≤ S ≤ K, 0 ≤ τ ≤ T , we hope to gain information about the evolution of the option
value during the contract period, rather than achieving a value for the option at time
t = 0 only.

This is beneficial since in reality weather derivatives such as our HDD put option
tend to be traded during the contract period, and hence may need to be valued at any
time t, 0 ≤ t ≤ T . Mid-contract valuation is also necessary for a company to establish
the value of its option portfolio at a point in time.

6.2 Numerical Solution

We will show how we implement the Crank-Nicolson scheme analysed in Chapter 5 to
solve PDE (6.1) with initial and boundary conditions (6.5), (6.6) and (6.7).

The scheme is

un+1
j − un

j

∆τ
=

1
2

{
1
2

σ2
T −τn

1
(∆S)2

(un
j+1 − 2un

j + un
j−1)

+
1
2

σ2
T −τn+1

1
(∆S)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
+

1
2

{
µT −τn

1
2∆S

(un
j+1 − un

j−1)

+ µT −τn+1

1
2∆S

(un+1
j+1 − un+1

j−1 )
}

,

where un
j ' u(Sj , τn), Sj = j∆S, τn = n∆τ .

If we set

λn =
1
4

σ2
T −τn

∆τ

(∆S)2
, and

νn =
1
4

µT −τn

∆τ

∆S
,

the scheme becomes

un+1
j − un

j = λn(un
j+1 − 2un

j + un
j−1) + λn+1(un+1

j+1 − 2un+1
j + un+1

j−1 )

+νn(un
j+1 − un

j−1) + νn+1(un+1
j+1 − un+1

j−1 ).

This rearranges to

(−λn+1 − νn+1)un+1
j+1 + (1 + 2λn+1)un+1

j + (−λn+1 + νn+1)un+1
j−1

= (λn + νn)un
j+1 + (1− 2λnn +n

j � n νn)un
j � 1



We let j run from 0 to J , where J∆S = K. Then we can write the problem as the
(J − 1)-dimensional tridiagonal matrix system

Aun+1 = Bun + cn,

where

A =



1 + 2λn+1 −λn+1 − νn+1 0 . . . 0

−λn+1 + νn+1 1 + 2λn+1 −λn+1 − νn+1

...

0 −λn+1 + νn+1
. . . . . . 0

...
. . . . . . −λn+1 − νn+1

0 0 −λn+1 + νn+1 1 + 2λn+1


,

B =



1− 2λn λn + νn 0 . . . 0

λn − νn 1− 2λn λn + νn

...

0 λn − νn
. . . . . . 0

...
. . . . . . λn + νn

0 0 λn − νn 1− 2λn


,

and the column vectors un, un+1and cn are given by

un =



un
1

un
2
...
...

un
J−1

 , un+1 =



un+1
1

un+1
2
...
...

un+1
J−1

 , cn =


(λn+1 − νn+1)un+1

0 + (λn − νn)un
0

0
...
0

(λn+1 + νn+1)un+1
J + (λn + νn)un

J

 .

Given un, we use the boundary conditions (6.6) and (6.7) to compute cn and hence the
right hand side of the system, dn = Bun + cn. We then solve the system Aun+1 = dn

using an LU tridiagonal matrix solver. We start with u0, as given by the initial con-
dition (6.5), and step forward in increments of ∆τ , until we reach uN , where T = N∆τ .

Note that, if λn+1 ≥ |νn+1|, then

−λn+1 + νn+1 ≤ 0, and
−λn+1 − νn+1 ≤ 0,

so
| − λn+1 + νn+1|+ | − λn+1 − νn+1| = 2λn+1 < |1 + 2λn+1|,
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and therefore the matrix A is strictly diagonally dominant and hence non-singular,
implying that the system has a unique solution.

The condition λn+1 ≥ |νn+1| is equivalent to

1
4

σ2
T −τn+1

∆τ

(∆S)2
≥ 1

4
|µT −τn+1 |

∆τ

∆S
,

or

∆S ≤
σ2

T −τn+1

|µT −τn+1 |
, (6.8)

for each value of n, 0 ≤ n ≤ N − 1. This is a sufficient condition for the system to
have a unique solution.

In fact it can be shown using eigenstructure analysis that the matrix A is non-singular
for all real values of λn and νn (see Nichols [15]) and hence that the system will always
have a unique solution.

6.3 Results

We have applied the previous methodology to solve the PDE (6.1) with initial and
boundary conditions (6.5), (6.6) and (6.7) for the example contract detailed in section
1.3. We used an HDD step-length of ∆S = 17.5 (100 HDD steps, since we have
0 ≤ S ≤ 1750), and a time-step of 1 day (151 time-steps, since T = 151 days).

Figure 6.1: Numerical solution of PDE for Cumulative HDD using the Crank-Nicolson
method
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Two numerical issues are apparent from Figure 6.1:

1. It can be seen that our numerical solution contains ‘spurious oscillations’. This
is consistent with Morton [12], which shows that discretising the convection term
using central differences for PDE’s with low diffusion relative to convection can
produce solutions containing spurious oscillations.

In the case of our PDE:

uτ =
1
2

σ



Anderson [2] concludes that when this condition is violated (as in our case), the
numerical solution produced by the standard central-difference approximation
will be oscillatory. This is consistent with the behaviour of our solution apparent
from Figure 6.1. To satisfy the cell-Peclet condition for this scheme, that is to
enforce ∆S ≤ 0.82, is not feasible in practice due to limited computer resources.
We will examine alternative methods of dealing with this problem in the next
chapter.

2. Another feature of our numerical solution as shown in Figure 6.1 is that a dis-
continuity exists between the boundary condition S = 0 and the solution for
S > 0. This is due to the fact that the boundary condition u(0, τ) is not smooth



Chapter 7

Resolution of Numerical
Issues for Cumulative HDD
PDE

7.1 Spurious Oscillations

7.1.1 Downwind/Upwind Scheme

As per Morton [12], it is the discretisation of the convection term using central differ-
ences that has produced the spurious oscillations in Figure 6.1. This suggests that we
should be able to resolve this numerical issue by discretising the convection term using
a downwind/upwind scheme. We will therefore implement the Crank-Nicolson scheme
with downwind/upwind convection, analysed in Chapter 5. We note from section 5.2
that this scheme is only first order accurate in τ and S. We shall therefore need to use
more grid-points for each variable to achieve the same significant figures of accuracy
as that in the previous chapter. In addition, this scheme is not unconditionally sta-
ble. From section 5.2, we require maxτn

|µT −τ



Following the same approach as in section 6.2, if we set

λn =
1
4

σ2
T −τn

∆τ

(∆S)2
, and

νn = µT −τn

∆τ

∆S
,

our problem becomes

Aun+1 = Bun + cn,

where

A =



1 + 2λn+1 −λn+1 0 . . . 0

−λn+1 1 + 2λn+1 −λn+1

...

0 −λn+1
. . . . . . 0

...
. . . . . . −λn+1

0 0 −λn+1 1 + 2λn+1


,

B =



1− 2λn − νn λn + νn 0 . . . 0

λn 1− 2λn − νn λn + νn

...

0 λn
. . . . . . 0

...
. . . . . . λn + νn

0 0 λn 1− 2λn − νn
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,

and

cn =


λn+1un+1

0 + λnun
0

0
...
0

λn+1un+1
J + (λn + νn)un

J

 ,

with un and un+1 defined as before.

Note that in this case we have

| − λn+1|+ | − λn+1| = 2λn+1 < |1 + 2λn+1|,

and therefore the matrix A is always strictly diagonally dominant and hence non-
singular, implying that the system has a unique solution.

We have used the same method as in section 6.2 to solve this tridiagonal system. We
used the same HDD step-length (∆S = 17.5) and time-step (1 day) as in section 6.3.

We can see from Figure 7.1 that the spurious oscillations have been eliminated, as
desired.
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We use a grid, as before, with un
j ' u(Sj , τn), where Sj = j∆S, τn = n∆τ . To

construct a semi-Lagrangian scheme, we begin by assuming that the solution is known
at τ





cn
j = αn

j un
i+1 + βn

j un
i ,

and

dn =


λn+1un+1

0 + λnun
0

0
...
0

λn+1un+1
J + λnun

J

 ,

with un and un+1 defined as before.

Note that, as for the downwind scheme, the matrix A is always strictly diagonally
dominant and hence non-singular, implying that the system has a unique solution.

We have used the same method as in sections 6.2 and 7.1.1 to solve this tridiagonal
system, with the same HDD step-length (∆S = 17.5) and time-step (1 day).



However, it is well known that the accuracy of the semi-Lagrangian scheme can be

increased by using monotone cubic interpolation rather than linear interpolation. (See

Garcia-Navarro and Priestley [7]). The cubic polynomial is required to be monotone

to avoid problems at large gradients. (See Priestley [16]).

Garcia-Navarro and Priestley [7] suggests the use of a Hermite cubic polynomial u n

d = p
( S d ) = c 1 ( S d − S i ) 3 + c 2 ( S d − S i ) 2 + c 3 ( S d − S i ) + c 4 ,

where the coefficients are c 1 =
d i

+1 + d i − 2∆ i



Figure 7.4: Numerical solution of PDE for Cumulative HDD using the semi-Lagrangian
method with monotone cubic interpolation

7.1.3 Accuracy Testing

Since the order of accuracy of the downwind and semi-Lagrangian (with linear/cubic
interpolation) schemes is not apparent from the numerical solution graphs in Figures
7.1, 7.3 and 7.4, we have used the numerical results to perform some accuracy testing.
We have chosen four representative points on the S − t grid, and for each scheme,
calculated the average value of ω at these points when the number of cumulative HDD
steps J = K

∆S = 8, 16, 32 and 64 (using ∆τ=1 day). From the previous theory, the
semi-Lagrangian scheme with monotone cubic interpolation should be the most ac-
curate. We have therefore taken the average value of ω produced by this scheme for
J=64 to be the ‘exact’ solution, and hence calculated a representative absolute error
of the solution produced by each scheme for J=8, 16, 32 and 64.

Figure 7.5 shows the natural logarithm of the representative absolute error ε plot-
ted against the natural logarithm of the cumulative HDD step-length ∆S for each
scheme. For a scheme that is pth order accurate in S, we should find that

ε ∝ (∆S)p,

and hence that
ln(ε) = p ln(∆S) + c,

where c is a constant. This implies that the gradients of the lines in Figure 7.5 should
approximate the order of accuracy in S of the respective schemes.

Since order of accuracy is an asymptotic result, we are really interested in the gradient
of the lines for very small ∆S. However, in practice, we are unable to obtain the
numerical solution of the PDE for small ∆S, as we are restricted by the availability of
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may expect uτττ and higher derivatives to be large in the same region. This means
that the Taylor series expansion of the truncation error for the Crank-Nicolson scheme
(see equation (5.9)) does not decrease term by term, and so we cannot neglect higher
order terms. This is also the case for the Taylor series expansions of the truncation
error for the downwind and semi-Lagrangian schemes. It is therefore possible that all
of these schemes will lose accuracy in this region.

One possible approach to resolving this issue would be to refine our grid (decrease
the cumulative HDD step-length and the time-step) around the point (S = 0, t = 32)
and also around the ridge that runs from (S = 0, t = 32) to (S = 1750, t = 151).
However since this ridge is not fixed in S or t, an irregular grid of this form would be
very difficult to construct in practice. (See section 10.3.) Also, as mentioned in the
previous section, decreasing the time-step beyond one day would require interpolation
of the historical temperature data, which is not within the scope of this dissertation.

We could also consider using an irregular grid where the ridge running from (S =
0, t = 32) to (S = 1750, t = 151) was taken to be one of the grid lines. However this is
complicated by the fact that the drift µt and volatility σt change on each time-step,
so the ridge itself is not a straight line. (See section 10.3.)

Figure 7.6: Boundary condition u(0, τ) for Cumulative HDD PDE
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Chapter 8

Solution of the PDE for
Temperature

8.1 Introduction

We again consider the general PDE set out in equation (4.20) of Chapter 4, but this
time assume that the independent variable z represents temperature. We therefore
replace z by X, and the PDE becomes

uτ =
1
2

σ2
T −τ uXX + µT −τ uX . (8.1)

To be consistent with the PDE for cumulative HDD, we would like our initial condition
to take the form

u(X, 0) = P (X),

where P (X) is the option payoff. However, the option payoff at expiry does not depend
on the temperature X at the expiry date; instead it depends on the cumulative HDD at
expiry. We therefore need to include the variable S (cumulative HDD) in our solution
for u



2. As X → +∞, the contract period is assumed to be so warm, and hence the
cumulative number of HDD, S, so small that (K − S) × tick > cap, and so the
payoff from the option will be the payment cap. This implies that the value of
the option at time t = T − τ must be e−rτ cap.
Therefore we have X



2. At the current daily sampling point, the value of S is updated. If Sn is the
cumulative number of HDD at day n, from definition (8.5), we have

Sn = Sn−1



u(X, S + max(18−X, 0), τ) = u(X, Si, τ) +
{ (

u(X, Si+1, τ)− u(X, Si, τ)
Si+1 − Si

)
×(S + max(18−X, 0)− Si)

}
.

This linear interpolation can be shown to be accurate to O((∆S)2) for smooth
u. This is consistent with the second order accuracy in X and τ achieved by the
Crank-Nicolson scheme (see Chapter 5).

4. We repeat this process as necessary to arrive at the value of our option at time
t = 0 (τ = T ). Since we are solving the PDE on a three-dimensional grid
(X ×S× τ), we can not use this method to provide graphical information about
the evolution of the option value (we would require a four-dimensional surface).
However, since we know that at time t = 0 we must have S = 0 (S is cumulative),
by setting S = 0, we can obtain the value of the option at t = 0 in terms of the
initial temperature X0.

In solving this PDE numerically, we calculate the temperature volatility and drift,
σT −τ and µT −τ respectively, by applying the same method as that used to calculate
the cumulative HDD volatility and drift in Chapter 6. We use the approximation of
equation (4.2):

Xt+∆t −Xt ∼ N(µt∆t, σt

√
∆t), (8.8)

combined with our analysis of historical daily temperature increments in Chapter 2.

For ∆t = 1 day, equation (8.8) becomes

Xt+1 −Xt ∼ N(µt, σt).

This tells us that
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the next section). As remarked in section 6.3, condition (6.8) is equivalent to the cell-
Peclet condition, which when violated, causes the numerical solution produced by the
standard central-difference approximation to be oscillatory. Therefore, by satisfying
this condition, we should be able to prevent spurious oscillations from occurring in our
solution.

8.3 Results

We have applied the previous methodology to solve PDE (8.1) with initial and bound-
ary conditions (8.2), (8.3) and (8.4) for the example contract in section 1.3. We used
a temperature step-length of ∆X = 0.2 (500 temperature steps, since we are assuming
−50 ≤ X ≤ 50), a cumulative HDD step-length of ∆S = 4 (2567 HDD steps, since we
have 0 ≤ S ≤ 10268) and a time-step of 1 day (151 time-steps, since T = 151 days).

Figure 8.1: Numerical solution of PDE for temperature: t = 0, S = 0

From our historical temperature data, the mean (over the last fifty years) of the aver-
age temperatureean (omp ofeang[(t)]Tcav265 0 cmB[stob; Sffilee



The following table shows the effect of refining the temperature and cumulative HDD
step-length (for a time-step of 1 day):

∆X (◦C) ∆S ( ◦C) Option value (Euros)

0.2 4 57,524

0.2 2 57,189

0.2 1 57,096

0.1 2 57,566

0.1 1 57,475

For a fixed number of daily sampling points, we know that the combination of our
Crank-Nicolson method and linear interpolation should result in a global discretisation
error of

O((∆τ)2) + O((∆X)2) + O((∆S)2).

We can see from the previous table that the option value only changes by 49 Euros
in going from the coarsest to the finest grid. This implies that the absolute value
of our global discretisation error is not unduly significant for a fixed time-step ∆τ .
Investigation of refining the time-step is beyond the scope of this dissertation. (See
section 10.3.)
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Chapter 9

Monte Carlo Simulations and
Other Valuation Methods

9.1 Monte Carlo Simulations

‘Monte Carlo’ is a computer-based technique for generating random numbers, which



forward in time increments of ∆t = 1 day using equation (9.1). Since (9.1) implies
that

Xt+1 −Xt ∼ N(µt, σt),

we calculate µt as being the (EWMA) mean of the daily temperature increment
Xt+1−Xt and σt as being the (EWMA) standard deviation (using the historical tem-
perature data). We compute ε by taking a random drawing from the standard normal
distribution. Using these inputs we construct a temperature path for the length of the
contract.

We have run 50, 000 such simulations, for each one calculating the daily HDD and
hence the cumulative HDD and payoff at expiry. We have averaged these payoffs and
discounted the average to give a value for our option at time t = 0. Figure 9.1 shows
five of these simulations.

Figure 9.1: Monte Carlo temperature simulations

The above method gives the option value at time t = 0 to be 55, 630 Euros. This
supports the results obtained using the expectation and PDE approaches in Chapters
3 and 8 respectively.

9.2 Other Valuation Methods

9.2.1 Burn Analysis

This method values the weather derivative based on the payoff that would have been
obtained if the contract had been held in the past. (See Nelken [14]). After collection
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Chapter 10

Conclusions and Further
Research

10.1 Summary of Results

We have shown that, if the daily increments in cumulative HDD and average tem-
perature are assumed to be normally distributed (which appears reasonable from our
analysis of historical temperature data), we can formulate an SDE and use this to
derive a convection-diffusion PDE with time-dependent coefficients for the value of an
HDD put option. When the underlying process is cumulative HDD, we have found
this PDE to be convection-dominated. In this case our preferred numerical solution
technique is the semi-Lagrangian method with monotone cubic interpolation. Also in
this case, we have found that, if we assume cumulative HDD themselves to be nor-
mally distributed (consistent with our historical data analysis), we can use expectation
theory to derive a valuation result which can be applied as a boundary condition for
the PDE. When the underlying process is temperature, we have found the PDE to
have convection and diffusion terms of similar magnitude, and discovered that we can
solve this numerically as a discretely-sampled Asian option, using the Crank-Nicolson
scheme between sampling points.

The table below summarises the results obtained for the value of our example contract
in section 1.3, from the numerical solution of our PDE as well as from more traditional
methods.

Method Option value (Euros) at the contract start date

PDE
-for cumulative HDD 1 58,415
-for temperature 2 57,475



With the exception of Burn Analysis, which we know is very simplistic and likely
to be inaccurate, the above methods give very similar results for the value of our HDD
put option at the contract start date. This demonstrates that the numerical solution
of our PDE can be used to give reasonably accurate results for the value of our weather
derivative.

10.2 Benefits and Limitations of our PDE Method

The numerical schemes used to solve the PDE all introduce a degree of error (although
so too does the discretisation used in the Monte Carlo simulation). The accuracy of
our numerical solutions has also been restricted by the fact that our historical tem-
perature data and therefore our drift and volatility parameters are only defined on a
daily basis, and so, without performing interpolation of the daily historical data, we
have not been able to use a time-step of less than one day. In addition, the value of
the option at the contract start date using the PDE for cumulative HDD is just that
given by expectation theory, and the numerical solution of the PDE for temperature
is extremely sensitive to the initial temperature of the contract period.

However, we have hypothesised that the solution of our PDE for cumulative HDD
represents the evolution of the option value. Hence it appears that this method may
be used to gain information about the value of the option during the contract period.
This is a distinct advantage of the PDE method over traditional methods which tend
to value the derivative at one point in time only.

10.3 Further Research

Further work would be required to establish that the solution of our cumulative HDD
PDE does indeed represent the evolution of our option value. We could also improve
this solution by local grid refinement or the use of an irregular grid, to resolve the
numerical issue of the discontinuity discussed in section 7.2.

It would be beneficial to examine methods of interpolating the daily historical tem-
perature data, to enable time-steps of less than one day to be used in the numerical
schemes. Assuming that an interpolation method of a sufficiently high order of accu-
racy could be used, this would increase the accuracy of our numerical solutions.

In addition we could consider developing, analysing and solving numerically PDE’s for
more physically realistic stochastic temperature processes, such as the mean-reverting
processes proposed in Brody et al [4] and Alaton et al [1].



Appendix A

Itô’s Lemma in Integral Form

We quote the version of Itô’s Lemma given in Neftci [13]. This is applied in the deriva-
tion of the PDE in section 4.2.

Let F (St, t) be a twice-differentiable function of t and of the random process St:

dSt = µtdt + σtdWt, t ≥ 0, (A.1)

where dW is a standard Wiener process and µt, σt are well-behaved drift and diffusion
parameters.

Alternatively, in integral form, the random process can be written as

St = S0 +
∫ t

0

µudu +
∫ t

0

σudWu.

Then Itô’s Lemma states that

dF =
∂F

∂St
dSt +

∂F

∂t
dt +

1
2

∂2F

∂S2
t

σ2
t dt. (A.2)

Substituting for dSt from equation (A.1), equation (A.2) becomes

dF =
(

∂F

∂St
µt +

∂F

∂t
+

1
2

∂2F

∂S2
t

σ2
t

)
dt +

∂F

∂St
σtdWt. (A.3)

Integrating both sides of (A.3), we obtain

F (St, t) = F (S0, 0) +
∫ t

0

[
Fsµu + Fu +

1
2

Fssσ2
u

]
du +

∫ t

0

FsσudWu. (A.4)
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