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1 Introduction

When solving systems of conservation laws, either by �nite di�erence or �nite volume techniques,

it is usual to employ an approximate Riemann solver which it is hoped captures the main features

of the Riemann problem solution whilst avoiding the complexity of the exact solution, even if

available. Approximate solvers have developed due to the costly nature of the iterative exact

schemes and the need to approximate certain areas. There are several such solvers available for

this purpose, for example Roe, Osher-Solomon, HHL, HHLC, and so on. The aim of this study

is to review some of the most popular approximate schemes and highlight their stengths and



2 Fluid Dynamics and the Riemann Problem

The science of uid dynamics concerns itself with the motion of uids, that is liquids and gases, and

has a wide range of applications including tra�c ow and weather predictions. The foundations of

uid dynamics are the conservation laws, speci�cally those of conservation of mass, momentum and

energy. For the purposes of testing approximate Riemann solvers, we concern ourselves with the

Euler equations, those that govern inviscid ow. This section will introduce the Euler equations

and their notation, before carrying on to introduce the Riemann problem itself. Following this

speci�c test cases will be introduced that will be used to test solvers for potential weaknesses in the

schemes. All equations will be presented in their one-dimensional form only, as further dimensions

are beyond the scope of this investigation.

2.1 Euler Equations

The Euler equations govern inviscid ow; a uid that is assumed to have no viscosity. They are

concerned primarily with the conservation of mass, momentum and energy and correspond to the

Navier-Stokes equations with zero viscosity and heat conduction terms. The equations are written

in two di�erent forms: conservation form and non-conservation form. We need only concern

ourselves with the conservation form for this project, which emphasise the physical interpretation

of the equations as conservation laws through a control volume �xed in space. Computationally,

there are advantages to expressing the governing equations in terms of conserved variables: mass

density �, the x-velocity component u and the total energy per unit mass E. These lead to

numerical methods described as conservative methods [20]. To begin, we state the equations

in terms of the conserved variables with the assumption that quantities involved are su�ciently

smooth to allow for di�erentiation. Later we will remove the constraint to consider solutions

containing discontinuities, such as shock waves.

�t + (�u)x = 0; (2.1)

(�u)t + (�u2 + p)x = 0; (2.2)

Et + [u(E + p)]x = 0: (2.3)

Here E is the total energy per unit volume

E = �
�

1
2V2 + e

�
(2.4)
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where
1
2V2 = 1

2V �V = 1
2u

2

is the speci�c kinetic energy and e is the speci�c internal energy. The conservation laws (2.1)-(2.3)

can be expressed in compact notation by de�ning a column vector U of conserved variables and

the ux vector F(U) in the x directions. So (2.1)-(2.3) now read

Ut + F(U)x = 0; (2.5)

with

U =

266664
�

�u

E

377775 ; F =

266664
�u

�u2 + p

u(E + p)

377775
9>>>>=>>>>; (2.6)

The ux vector F = F(U) equations are to be regarded as functions of the conserved variable

vector U.

2.2 The Riemann Problem

The Riemann problem consists of a conservation law together with piecewise constant data having

a single discontinuity. Here we will discuss the problem for a linear system, and then discuss how

the Riemann problem for the Euler equations, addressing speci�c problems that will be focused

on during comparisons of schemes.

The initial state of the system is de�ned as

u(x; t = 0) =

8<:uL for66



made, which will be discussed further in the following section. First this subsection will consider

various types of Riemann problems which will be used to test the approximate Riemann solvers.

2.3 Speci�c Riemann Problems

To discuss speci�c Riemann problems we must �rst introduce some concepts: shocks, rarefactions

and contacts. These are all types of discontinuities which we can describe using the example of

tra�c ow. A shock wave is where density increases and velocity decreases very suddenly, for

example, drivers moving fast through light tra�c applying their breaks suddenly. A rarefaction

wave occurs where the uid is becoming more rare�ed as the density decreases, for example, as cars

move out of a congested region, they accelerate smoothly and density in turn decreases smoothly.

Contact discontinuities are surfaces that separate zones of di�erent density and temperature, they

are in pressure equilibrium and no gas ows across. We look for speci�c known problems containing

the types of discontinuities mentioned in order to test the e�ectiveness of the approximate Riemann

solver schemes considered.

2.3.1 Sod’s Shock Tube

Sod’s shock tube problem [15] is a common test for the accuracy of Riemann solvers and therefore

invaluable to this study. The tests consists of a one-dimensional Riemann problem with the

following parameters 0BBBB@
�L

pL

uL

1CCCCA =

0BBBB@
1:0

1:0

0:0

1CCCCA ;

0BBBB@
�R

pR

uR

1CCCCA =

0BBBB@
0:125

0:1

0:0

1CCCCA : (2.8)

This problem can be described using the Euler equations for its time evolution. This leads to three

characteristics describing the propagation speed of the di�erent regions of the system. These

are the rarefaction wave, the contact discontinuity and the shock discontinuity. Solving this

numerically it gives information on how well a scheme captures and resolves shocks and contact

discontinuities and how well the correct density of the rarefaction wave is reproduced. This will

be used as the main test for the schemes.
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2.3.2 Blast Wave

The Blast Wave Problem we use here was presented by Woodward Collela [22] and represents

the pressure and ow resulting from the deposition of a large amount of energy in a small very

localised volume. For the purposes of this study we will split the blast tube problem into two: left

hand and right hand sides, as it is easier to �nd the exact solution this way. The parameters for

this equation are as follows

�(x; 0) = 1; p(x; 0) =

8>>>><>>>>:
1000 if 0 < x < 0:1;

0:1 if 0:1 < x < 0:9;

100 if 0:9 < x < 1;

and u(x; 0) = 0: (2.9)

This is a very severe test problem, the left half containing a left rarefaction, a contact and a right

shock, and the right half containing a left shock, a contact discontinuity and a right rarefaction.

Walls are present at either side of the domain for this test case, so we would want to use reecting

boundary conditions. The boundary conditions will be discussed in the next section.

2.3.3 The 123 Problem

The next problem is known as the 123 problem and was presented by Einfeld et al. [5], with the

following parameters,

�(x; 0) = 1; p(x; 0) = 0:4; and u(x; 0) =

8<:�2 if x < 0:5;

2 if x > 0:5:
(2.10)

The solution of this problem consists of two strong rarefactions and a trivial stationary contact

discontinuity. The intermediate state pressure p� is very small, close to vacuum, and this can lead

to di�culties in the iteration scheme to �nd p� numerically.

2.3.4 Other Problems

The last test is made up of right and left shocks emerging from the solution to the left and right



�(x; 0) = 5:99924; p(x; 0) =

8<: 460:894 if x < 0:5

46.0950 if x > 0:5
; and u(x; 0) =

8<: 19:5975 if x < 0:5;

- 6.19633 if x > 0:5:
(2.11)

The solution of this represents the collision of these two strong shocks and consists of a left facing

shock travelling slowly to the right, a right travelling contact discontinuity and a right travelling

shock wave.
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3 Godunov’s Method

The original concept of ux algorithms based on exact or approximate solutions of the Riemann

problem was �rst developed by Godunov [6]. In this paper, Godunov introduced utilising the

solution of the local Riemann problem at each cell face as the basis for determining the ux F
i� 1

2

in the integral form of the Euler equations

Un+1
i = Un

i �
1

�x

Z tn+1

t

(F
i+

1
2
� F

i� 1
2

)dt: (3.1)

Firstly we can think of the solution Ui for i



4 Approximate Riemann Solvers

This chapter will briey introduce some concepts needed for approximate Riemann solvers. It will

also provide useful information on the structure of approximate programs, how time step size is

chosen and so on.

4.1 Courant Coe�cient

At this stage it is necessary to introduce the Courant or CFL coe�cient, a ratio that will prove

invaluable when seeking accuracy from the solvers. The CFL condition is a necessary condition

that must be satis�ed by any �nite volume or �nite di�erence method in order to provide stability

and hence convergence to the solution of a di�erential equation as the grid is re�ned. Leveque

summarised the condition as

CFL Condition



that no wave present in the solution of all Riemann problems travels more than a distance �x in

time �t. For the time-dependent, one dimensional Euler equations, we can estimate Snmax as

Snmax = max
i

�����SLi+ 1
2

���� ; ����SRi+ 1
2

����� ; (4.3)

for i = 0; :::;M , where SL
i+

1
2

, SR
i+

1
2

are the wave speeds of the left and right non-linear waves

present in the solution of the Riemann problem R
�
Un
i ;U

n
i+1

�
. The Riemann problem generates

three waves; non-linear waves, which can be shocks or rarefactions and are the fastest waves. For

rarefaction waves we select the speed of the head and for shock waves we select the shock speed.

It is important to note that when sampling the wave speeds we must include the boundaries, as

these may generate large wave speeds. By using (4.3) to �nd Snmax and thus �t of (4.1) we have

a simple and reliable procedure [20].

4.3 Boundary Conditions

Boundary conditions are needed at the boundaries x = 0 and x = L for a domain [0; L] discretised

into M computing cells of length �x. In addition, the boundary conditions provide the numerical

uxes F 1
2

, and F
M+

1
2

. We require these in order to apply the conservative formula (3.5) to update

the extreme cells I1 and IM to the next time level n+ 1, and they may result directly in F 1
2

and

F
M+

1
2

. We can also force �ctious data values in the �ctious cells I0 and IM+1, adjacent to I1

and IM . By doing this, boundary Riemann problems are solved and the corresponding Godunov

uxes are computed [20].

We consider two types of boundary conditions in this study, reective and transparent conditions.

4.3.1 Reective boundaries

Reective boundaries refer physically to walls at either side of the domain. We can think of it as

a boundary x = L then the physical situation is modelled creating a �citious state W(M + 1)n to

the right of the boundary and de�ning the boundary Riemann problem as R(W (
Mn);W(M + 1)n).

This �ctitious state is de�ned from the state Wn
M inside the computational domain, in other words

�nM+1 = �nM ; u
n
M+1 = �unM ; pnM+1 = pnM : (4.4)

The exact solution of this depends on the value of unM , if it is greater than zero the solution consists

of two shock waves. If it is less than or equal to zero there are two rarefaction waves. For both

18
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5 Approximate Riemann Solvers

These approximate Riemann solvers are introduced in chronological order.

5.1 Roe (1981)

The Roe solver, devised by Roe [12], is an approximate Riemann solver based around the Godunov

scheme and works by looking for an estimate for the intercell numerical ux or Godunov ux

F
i+

1
2

at the interface between two computational cells Ui and U
i+

1
2

on a discretised space-time

computational domain.

5.1.1 The Original Roe Method

To determine the Godunov method we need to �nd the average eigenvalues ~�i, the corresponding

averaged right eigenvectors ~K(i) and averaged wave strengths ~�i. In the 1981 paper [12] an

averaged Jacobian matrix ~A, the Roe matrix, is found and from which ~�i, ~K(i) and ~�i follow. In

the matrix ~A the properties (A)-(C) are enforced.

Property (A): Hyperbolicity of the system. ~A is required to have real eigenvalues ~�i = ~�i(UL;UR),

which we choose to order as

~�1 6 ~�2 6 ::: 6 ~�m (5.1)

and a complete set of linearly independent right eigenvectors

~K(1); ~K(2); :::; ~K(m): (5.2)

Property (B): Consistency with the exact Jacobian

~A(U;U) = A(U): (5.3)

Property (C): Conservation across discontinuities

F(UR)� F(UL) = ~A(UR�UL) (5.4)

Property (C) is the crucial property, as it narrows choices for ~A. Roe showed that the existence of

a matrix ~A satisfying property (C) is assured by the mean value theorem [12]. To �nd the vector

20



~A, Roe introduced the idea of a parameter vector Q, such that both the vector of conserved

variables U and the ux vector F(U) could be expressed in terms of Q. That is

U = U(Q); F = F(Q): (5.5)

This is followed by two important steps. First the changes

�U = UR �UL; �F = F(UR)� F(UL) (5.6)

can be expressed in terms of the change �Q = QR �QL. And secondly, averages are obtained in

terms of simple arithmetic means of Q. We now illustrate the technique as applied to the Euler

equations in one dimension.

The Euler equations Here we present the Roe Riemann solver as applied to the Riemann

problem for the x-split one dimensional time dependent Euler equations for ideal gases.

The exact x-direction Jacobian matrix A(U) is

A =

26660 ]TJ2937(0215 -176.635  [(problem)-3~.9626 Tf 46.769 0 T-0.36551)-333(is15tio6(H.9626 Tf 8.383 1.49[(p01600)]TJ/F15 9.9626 T1 9.963 0 Td [(U)]TJ/F10 u.9626 7 8.607 -1.45.703d [616J 0 -17.5356 Tf 6.089 0 Td [6d [- [616J 0 -115 9.9626 T1 9.963 0 Td [(U)]TJ/F10 a.9626 7 8.607 -1.45.266d [616J 0 -17.5356 0.9.9626 Tf [(c97[- [616J 0 -115503.9626 Tf 8.383 1.49[1.))]TJ/F11 9.9626 T1 9.963 0 Td [(U251)-333(is15t626 Tf 5.694 0 Td [71251)]TJ/F11 9.9626 Tf 3.874 0 Td [(:)]TJ/F8 9u9626 Tf 11.429 0 Td9.7.8]TJ/F8 9~.9626 Tf 46.769 0 T-0.36551)-333(is15t9626 7 8.607 -1.4-144.0424-14p01)-333(9.962
ET
q
)]TJ0 1 2684  40 [(=2 cm
[]0 dJ0  0 .3.8]w]TJ0 md [97)]TJl S
Q
B626 7 8.607 -1.42684  395.446J 0 -17.5356 Tf 5.964 1.495 1 Td3.436J/F8 9u9626 Tf 71.177 0 Td.364d [0x)]]TJ/F11 7.5356 0.9.9626 Tf  [(5Td 8.�]TJ/F15 9.9626 Tf 3.874 0 Td [(:)]TJ/F8 9is15t9626 Tf 8.383 1.49(c92600)]TJ/F15 9.9626 8 9.963 0 Td [(U251)-333(311 9.9626 Tf 3.874 0 Tdd [(Q)]TJ/F10 H.9626 Tf 8.383 1.49[1.30500)]TJ/F15 9.9626 T1 9.963 0 Td [(U)]TJ/F10 a.9626 7 8.607 -1.45.266d [616J 0 -17.5356 f 46.769 0 Td.4x)]d.450Td [8.�]TJ/FH.9626 Tf 8.383 1.49[1.30500



Roe then chooses the parameter vector

Q �

26664
q1

q2

q3

37775 � p�
26664

1

u

H

37775 ; (5.13)

in which every component ui of U and every component fi of F(U) in (??)-(??) is a quadratic in

the components qi of Q. In other words, u1 = q2
1 and f1 = q1q2, and so on. In fact, the property

is valid for the components of the G and H uxes for the full three-dimensional Euler equations.

The jumps �U and �F can be expressed in terms of the jump �Q via two matrices ~B and ~C.

Roe [12] gives the following expressions

~B =

26664
2~q1 0 0

~q2 ~q1 0
~q3


�1
 ~q2

~q1


37775 (5.14)

and

~C =

26664
~q2 ~q1 0

�1
 ~q3

�1
 ~q2

~q1


0 ~q3 ~q2

37775 : (5.15)

The Roe matrix is then given by

~A = ~B~C�1: (5.16)

The eigenvalues of ~A are

~�1 = ~u� ~a; ~�2 = ~�3 = ~�4 = ~u; ~� = ~u+ ~a (5.17)

and the corresponding right eigenvectors are

~K(1) =

26664
1

~u� ~a

~H � ~u~a

37775 ; ~K(2) =

26664
1

~u
1
2 ~u2

37775 ; ~K(3) =

26664
1

~u+ ~a

~H � ~u~a

37775 : (5.18)

The symbol ~r in (5.17), (5.18)denotes a Roe average for a variable r. The relevant averages are

given as follows

~u =
p
�LuL +

p
�RuRp

�L +
p
�R

;

~H =
p
�LHL +

p
�RHRp

�L +
p
�R

;

~a = ( � 1)
h

~H � 1
2 ~u2
i
:

9>>>>>>=>>>>>>;
(5.19)

To determine the Roe numerical ux F
i+

1
2

it is neccessary to have the wave strengths ~�i. These

can be obtained by projecting the jump �U onto the right, averaged eigenvectors (5.18), that is

�U =
5X
i=1

~





Figure 5.1: Approximate HLL Riemann solver. Solution in the Star Region consists of a single state Uhll

separated from data states by two waves of speeds SL and SR

For a review of the Godunov method, we can refer back to Section 3. We recall the Godunov

intercell numerical ux

F
i+

1
2

= F(U
i+

1
2

(0)); (5.24)

where U
i+

1
2

(0) is the exact similarity solution U
i+

1
2

(x=t) of the Rieman problem

Ut + F(U)x = 0

U(x; 0) =

8<:UL if x < 0;

UR if x > 0;

9>>>>=>>>>; (5.25)

evaluated at x=t = 0. The solver devised by Harten, Lax and van Leer [7] sets out to �nd direct

approximations to the ux function F
i+

1
2

. They put forward the following approximate Riemann

solver

~U(x; t) =

8>>>><>>>>:
UL if

x
t 6 SL;

Uhll if SL 6 x
t 6 SR;

UR if x
t > SR;

(5.26)

where Uhll is the constant state vector given by

Uhll =
SRUR � SLUL + FL � FR

SR � SL
; (5.27)

and the speeds SL and SR are known values. If we consider imaginary graph 5.1, which shows the

structure of this approximate solution, we can see that it consists of three constant states separated

by two waves. The Star Region consists of a single constant state; all intermediate states separated

by intermediate waves are lumped into the single state Uhll. It is important to make note that we

do not take Fhll = F(Uhll). The area of interest is the subsonic case SL 6 0 6 SR. Substituting

Uhll in (5.27) yields

Fhll = FL + SL(Uhll �UL); (5.28)
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or

Fhll = FR + SR(Uhll �UR): (5.29)

Use of (5.27) on (5.28) and (5.29) results in the HLL ux

Fhll =
SRFL � SLFR + SLSR(UR �UL)

SR � SL
: (5.30)

Which can be used to produce the corresponding intercell ux for the approximate Gudonov

method

Fhlli+1 =

8>>>><>>>>:
FL if 0 6 SL;

SRFL�SLFR+SLSR(UR�UL)
SR�SL

; if SL 6 0 6 SR;

FR if 0 > SR:

(5.31)

We will discuss the calculation of SL and SR after the discussion on the HLLC solver, in Section

5.2.2, but given those speeds we can use (5.31) in the conservative formula (5.23) to get an approx-

imate Godunov method. In their paper, Harten, Lax and van Leer [7] showed that this Godunov

scheme converges to the weak solution of conservation laws and proved that the converged solution

is also the physical, entropy satisfying, solution of the conservation laws [20]. The requirements

for this include that an approximate solution �U(x; t) is consistent with the integral form of the



Figure 5.2: Approximate HLLC Riemann solver. Solution in the Star Region consists of two constant states

separated by a middle wave speed of S�.

sponding to the multiple eigenvalue �2 = �3 = �4 = u. The integral form of the conversation laws

does not change from (5.33) even with variations of the integrand across S�. With this addition,

the consistency condition 5.32 becomes e�ectively the condition (5.33), and thus by splitting the

left-hand side of (5.33) into two terms we obtain

1
T (SR�SL)

Z TSR

TSL

U(x; T )dx = 1
T (SR�SL)

Z TS∗

TSL

U(x; T )dx

+ 1
T (SR�SL)

Z TSR

TS∗

U(x; T )dx

(5.34)

And the integral averages are de�ned as

U�L = 1
T (SR�SL)

Z TS∗

TSL

U(x; T )dx;

U�R = 1
T (SR�SL)

Z TSR

TS∗

U(x; T )dx:

9>>>=>>>; (5.35)

Substituting (5.35) into (5.34) and using (5.33), The Consistency Cona9738 Tf 285.659 738 T19738 Tf 211.J 0 -2.989d.962 -nto





5.2.2 Wave-speed estimates

To allow for the calculation of the uxes in both the HLL and HLLC schemes it is necessary

to have algorithms for computing wave speeds. We just require speeds SL and SR for the HLL

scheme, but require the additional middle wave speed S� for the HLLC scheme. We will look at

two ways of estimating SL, SR and S�: direct estimates and pressure-velocity estimates.

Direct wave speed estimates The direct wave speed estimates are the most simple methods

providing minimum and maximum signal velocities. The most simple of these is provided by

Davis [2]

SL = uL � aL; SR = uR + aR (5.47)

and

SL = min fuL � aL; uR � aRg ; SR = max fuR + aR; uR + aRg : (5.48)

Because of the simplicity of these estimates, it is necessary to look at more complex estimates. We

can also make use of the Roe [11] average eigenvalues, that we use in the Roe Riemann scheme,

for the left and right non-linear waves

SL = ~u� ~a; SR = ~u+ ~a; (5.49)

where ~u and ~a are the Roe-average particle and sound speeds respectively, given as

~u =
p
�LuL +

p
�RuRp

�L +
p
�R

; ~a =
�
( � 1)

�
~H � 1

2
~u2

�� 1
2
; (5.50)

with the enthalpy H = (E + p)=� approximated as

~H =
p
�LHL +

p
�RHRp

�L +
p
�R

: (5.51)

More information about the Roe solver and scheme are given in the previous chapter. The Rusanov

ux can be obtained by, is taking a positive speed S+, setting SL = �S+ and SR = S+ in the

HLL ux (refeq:10.21), as observed by Davis [14]
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which is bounded by [20]

:

S+ = max fjuLj+ aL; juRj+ aRg :
(5.54)

Both are considered and investigated in Section 7. Finally we consider the Einfeldt eigenvalues [4],

which are motivated by the Roe values

SL = ~u� ~d; SR = ~u+ ~d; (5.55)

where

~d2 =
p
�La

2
L +
p
�Ra

2
Rp

�L +
p
�R

+ �2(uR � uL)2 (5.56)

and

�2 =
1
2

p
�L
p
�R�p

�L +
p
�R
�2 : (5.57)

Comparisons of the results given by these various wave speeds can be seen in (the following section).

Pressure-velocity based wave speed estimates Finding wave speed estimates by estimating

the pressure p

�2



The approximations given in 5.60 and 5.61 can be used in (5.58) - (5.59) to obtain wave speed

estimates for the HLL and HLLC schemes. There are other ways to approximate p� and u�, such

as the Two-Rarefaction Riemann solver, but due to time restraints these were not investigated

(see Toro sect 9.4.1).

5.3 Osher-Solomon (1982)

The �nal scheme being considered in this study is the Osher-Solomon scheme, devised as an upwind

�nite di�erence approximation to systems of nonlinear hyperbolic conservation laws [9]. It is an

attractive scheme due to the smoothness of the numerical ux; proving to be entropy satisfying

and in practical computations it is seen to handle the sonic ow well [20]. This chapter will look

at how to apply the Osher-Solomon method to nonlinear hyperbolic conservation laws, looking

speci�cally at the Euler equations, and will describe the two-di�erent methods of ordering the ux

for computation.

5.3.1 Osher-Solomon for the Euler equations

In this section we take the time-dependent Euler equations and develop the Osher-Solomon scheme

for them, with both P and O orderings. We consider �rst the one-dimensional case

Ut + F(U)x = 0 (5.62)

U =

266664
�

�u

E

377775 ; F(U) =

266664
�u

�u2 + p

u(E + p)

377775 : (5.63)

Where we have considered the details of these equations in Chapter 2. The explicit conservative

formula requires us to have an expression for the intercell ux F
i+

1
2

Un+1
i = Un

i +
� Fi8y9010 6.9626 Tf 5.722 1.493015ux F

i+7:FU



and right eigenvectors

K(1) =

266664
1

u� a

H � ua

377775 ; K(2) =

266664
1

u

1
2u

2

377775 ; K(3) =

266664
1

u+ a

H + ua

377775 : (5.66)

Figure 5.3: Possible con�guration of integration paths Ik(U), intersection points U 1
3

, U 2
3

and sonic points US0,

US1 in physical space x− t for a 3 by 3 system

5.33548n(system)]T -1.107 Td 4ws701 Tf



the intersection points U 1
3

and U 2
3

are approximations [20]. The underlying assumption here

though is that both nonlinear waves are rarefaction which corresponds to the Two-Rarefaction

approximation TRRS (see [20] section 9.4.1). By using (5.67) across the left wave we get

u� +
2a 1

3

 � 1
= u0 +

2a0

 � 1
(5.69)

and similarly using (5.68) across the right wave

u� �
2a 2

3

 � 1
= u1 �

2a1

 � 1
(5.70)

where u� is the common particle velocity for U 1
3

and U 2
3

. We also know that the pressure p� is

also common

u 1
3

= u 2
3

= u� = constant; p 1
3

= p 2
3

= p� = constant. (5.71)

Applying the isentropic law, that entropy is constant, to the left and right waves gives

a 1
3

= a0(p�=p0)z; a 2
3

= a1(p�=p1)z; (5.72)

with

z =
 � 1

2
: (5.73)

Using (5.69) and (5.72) we get

u� = u0 �
2a0

 � 1

��
p�

p0

�z
� 1
�
: (5.74)

And by using (5.70) and (5.72)

u� = u1 +
2a1

 � 1

��
p�

p1

�z
� 1
�
: (5.75)

Solving for p� and u� we obtain

p� =
�
a0 + a1 � (u1 � u0)( � 1)=2

a0=pz0 + a1=pz1

� 1
z
; (5.76)

u� =
Hu0=a0 + u1=a1 + 2(H � 1)( � 1)

H=a0 + 1=a1
; (5.77)

with

H = (p0=p1)z:

The values for the densities � 1
3

and � 2
3

equate to

� 1
3

= �0

�
p�

p0

� 1

; � 2

3
= �1

�
p�

p1

� 1

: (5.78)

And thus the complete solution for U 1
3

, U 2
3

is given by (5.76) - (5.78). In order to compute the

sonic points US0 and US1 we �rst enforce the sonic conditions �1 = u�a = 0 and �3 = u+a = 0
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and then by applying the Generalised Riemann Invariants [20]. The solution for the left sonic

point becomes

uS0 = �1
+1u0 + 2a0

+1 ; aS0 = uS0;

�S0 = �0

�
aS0
a0

� 2
�1

; pS0 = p0

�
�S0
�0

�
:

9>=>; (5.79)

Similarly, for the right sonic point

uS1 = �1
+1u1 � 2a1

+1 ; aS1 = �uS1;

�S1 = �1

�
aS1
a1

� 2
�1

; pS1 = p1

�
�S1
�1

�
:

9>=>; (5.80)

Integration along partial paths. For the Osher-Solomon intercell ux we use

F
i+

1
2

= F0 +
Z U1

U0

A�(U)dU;





Next, we �nd the sonic points US0 and US1 by �rst connecting U0 and U 1
3

via the right Riemann

Invariant

uS0 =
2aS0

 � 1
+ u [(34 [(U)]TJ/F7 6.9738 Tf 10.01 -1.062 Td [(1)]TJ
ET
q
1 0 0 1 437.725 727.374 cm
[]0 d 0 63 0 Td [(u)]TJ/F7 6.9738 Tf 5.703 (u)]TJ/F7 6.9738 Tf 5.1T
/357 6.9738 Tf 5.273 0 Td [(0)]TJ
ET
q11 0 0 1 301.5 67.494 cm
[]0 d 0 J 0.398 w 0 0 Tf 301.5 687.169 Td61.286015)]TJ/F14 9.9626 Tf 7.925 0 Td [(�)]TJ/F8 9.9626 Tf 9.963 0 Td [(61.286018.39 6.834 Td [(+)]TJ/F11 9.9626 Tf 9.963 0 Td [(u)]TJ/F7 6.9738 Tf 5.703 -1.494 Td [( [Tf 9.963 0 Td [6.176(U)]TJ/F7 6.:TJ/F7 6.9738 Tf 5.-267.00TJ/53.21/F7 6.Then)-333Td [(U)]T333Tenforc)]T333T8.814334.494 Td 333Tcondition S038 Tf 5.703 -1>=

2 +u [0 T1 [(u)]TJ/F75.665.-5.5592a+S038 Tf 53  0 1 >uxJ]TJ725 727.374 cm
F16.1727FTJ/898 w 0 0F
q
1 0.494 Td [(=)].32092-ET
q60 Td [i(2)]TJ/F11 9.9626 001
via the



u0 + a0 > 0 u0 + a0 > 0 u0 + a0 6 0 u0 + a0 6 0

u1 + a1 > 0 u1 � a1 6 0 u1 � a1 > 0 u1 + a1 6 0

u� + a 1
3

6 0 F0 � FS0 + FS1 F0 � FS0 + F1 FS1 F1

u� + a 1
3

> 0; u� 6 0 F0 � F 1
3

+ FS1 F0 � F 1
3

+ F1 FS0 � F 1
3

+ FS1 FS0 � F 1
3

+

F1

u�



numerical ux at the interface of two states UL, UR is

FLF
i+

1
2

= FLF
i+

1
2

(UL;UR) =
1
2

[F(UL) + F(UR)] +
1
2

�x
�t

[UL �UR] : (6.2)



Minmod

�sb(r) =

8>>>>>>><>>>>>>>:

0; r 6 0;

2r; 0 6 r 6 1
2 ;

1; 1
2 6 r 6 1;

min f2; �g + (1� �g)rg ; r > 1:

(6.10)

Superbee

�vl(r) =

8>>>><>>>>:
0; r 6 0;

2r
1+r ; 0 6 r 6 1;

�g + 2(1��g)r
1+r ; r > 1:

(6.11)

van Leer

�vl(r) =

8>>>><>>>>:
0; r 6 0;

r; 0 6 r 6 1;

1; r > 1:

(6.12)

De�ning the total energy q � E and setting

rL
i+

1
2

=
�q

i� 1
2

�q
i+

1
2

; rR
i+

1
2

=
�q

i+
3
2

�q
i+

1
2

: (6.13)



7 Comparison of Schemes

All schemes required tweaking of CFL for each test case. In all tests, data consists of two constant

states WL = [�L; uL; pL]T and WR = [�R; uR; pR]T with a discontinuity in the middle of the

states at position x = x0. Numerical solutions are presented with exact solutions and are found



Figure 7.1: Roe Riemann solver applied to Test 1 of Table 7.1. Numerical (dash) and exact (line) solutions

compared at time 0.2

Figure 7.2: Roe Riemann solver applied to test 2 of Table 7.1. Numerical (dash) and exact (line) solutions

compared at time 0.15

Test 2 consists of two symmetric rarefaction waves and a trivial contact wave, with the star



Figure 7.3: Roe Riemann solver applied to test 3 of Table 7.1. Numerical (dash) and exact (line) solutions

compared at time 0.012

Figure 7.4: Roe Riemann solver applied to test 4 of Table 7.1. Numerical (dash) and exact (line) solutions

compared at time 0.012





wave speed estimates were, therefore it was discarded and the results are not shown here. If we

consider Figures 7.6 to 7.11 we can see that there is little deviation in precision, but considering

the Figures 7.8 and 7.9 we can see that the Roe eigenvalue estimates (5.49) provide disappointing

results, as do the Davis estimates (5.53) and these were also not considered. The simpler estimates

(5.47) and (5.48), shown in Figures 7.6 and 7.7 respectively, gave fairly accurate results for their

computational simplicity, but ultimately Einfeldt’s estimate (5.55) shown in Figure 7.10 was more

accurate, and simple enough, so this was chosen as the wave speed estimate for all following tests

using the HLL scheme. The �nal wave speed estimate, the PVRS estimate, was shown in Figure

7.11 to be as precise as Einfeldt, thus su�cient for the HLLC scheme that requires the pressure

value for the star region.

Figure 7.6: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.48). Numerical (dash)

and exact (line) solutions compared at time 0.20
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Figure 7.7: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.49). Numerical (dash)

and exact (line) solutions compared at time 0.20

Figure 7.8: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.53). Numerical (dash)

and exact (line) solutions compared at time 0.20
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Figure 7.9: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.54). Numerical (dash)

and exact (line) solutions compared at time 0.20

Figure 7.10: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.55). Numerical

(dash) and exact (line) solutions compared at time 0.20
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Figure 7.11: HLL Riemann solver applied to Sod’s shock tube, using wave speed estimate (5.58). Numerical

(dash) and exact (line) solutions compared at time 0.20

7.2.2 Test problems

To test the HLL scheme, modi�ed versions of the problems described in Section 2.3, outlined

in Table 7.2. Numerical solutions are computed with M = 100 cells. Boundary conditions are

transparent with the exception of the blast wave tests, which use reective boundaries, due to

walls being present at either side of the domain.

Test �L uL pL �R uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1

2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0 1.0 0.0 0.01

4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

5 1.0 -19.5975 1000.0 1.0 -19.5975 0.01

6 1.4 0.0 1.0 1.0 0.0 1.0

7 1.4 0.1 1.0 1.0 0.1 1.0

Table 7.2: Data for test problems for the HLL and HLLC schemes

These tests were �rst presented by Toro [20] in order to assess speci�c parts of the schemes. All

were conducted as ideal gases with  = 1:4, with two constant states separated by a discontinuity

at x = x0. The exact and numerical solutions are found in the domain 0 � x � 1, and the

numerical solutions were computed with M = 100 cells and the CFL was kept at 0.5. Boundary
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Figure 7.14: HLLC Riemann solver applied to Test 2 of Table 7.2. Numerical (dash) and exact (line) solutions

compared at time 0.15 and x0 = 0:5

Figure 7.15: HLL Riemann solver applied to the left-hand side of the Blast Wave problem, Test 3 of 7.2. Numerical

(dash) and exact (line) solutions compared at time 0.012 and x0 = 0:5

Test 2’s solution concerns itself with two symmetric rarefaction waves and a trivial contact wave.

Between the linear waves, the star region is close to vacuum, making the problem a good test for

assessing the performance of the approximate Riemann solvers for low-density ows. The �rst

point to note is that the HLL solver was not robust enough to produce satisfactory results for this

test, and has therefore not been plotted. The HLLC solver, shown in Figure 7.27, produced fairly

accurate results, but broke down when dealing with the internal energy of the system.
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Figure 7.16: HLLC Riemann solver applied to Test 3 of Table 7.2. Numerical (dash) and exact (line) solutions

compared at time 0.012 and x0 = 0:5

Figure 7.17: HLL Riemann solver applied to Test 4 of Table 7.2. Numerical (dash) and exact (line) solutions

compared at time 0.012 and x0 = 0:4

Accuracy and robustness is tested using test 3, the solution of which consists of a strong shock

wave, a contact surface and a left rarefaction wave. The strong shock wave is of Mach number

198, where the Mach number is the speed of an object moving through a uid divided by the

speed of sound in that uid for its particular physical conditions, including those of temperature

and pressure, it is a dimensionless quantity. We can see in Figure 7.29 that the HLL scheme is

fairly robust, but struggles somewhat to represent accurate density, this result is unexpected as

we would expect it to perform better than the HLL solver.
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Figure 7.18:



Figure 7.20: Density pro�les for the HLL and HLLC Riemann solvers applied to tests 6 and 7, with wave speed

estimate Einfeldt (5.55). Numerical (dash) and exact (line) solutions compared at time 0.20

The solution of test 5 consists of a right-travelling shock wave, a left rarefaction wave and a

stationary contact discontinuity. Looking at Figure 7.19, we can see that the HLL Riemann solver

di�uses the contact wave to less precise levels. This should highlight the advantage of HLLC over

HLL in the resolution of slowly-moving contact discontinuities, however we were unable to produce

a satisfactory result with the HLLC scheme. This observation is however emphasised by Tests 6 and

7. Tests 6 and 7 shown in Figure 7.20 show the likely performance of the HLL and HLLC solvers

for contacts, shear waves and vortices. Speci�cally the �gure shows the results for an isolated



7.3 Osher

The Osher-Solomon scheme proved to be very elaborate to code. Despite numerous attempts

to produce a working scheme in FORTRAN-95, we could not escape wild uctuations at the

discontinuities. The scheme, like others, was aimed to be subject to several tests, presented in

Table 7.3.

Test �L uL pL �R uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1

2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0 1.0 0.0 0.01

4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

6 1.0 2.0 0.1 1.0 -2.0 0.1

Table 7.3: Data for �ve Riemann problem tests



Figure 7.21: Osher Riemann solver applied to Test 1 of Table 7.3, with P-ordering. Numerical (dash) and exact

(line) solutions compared at time 0.2

Figure 7.22: Osher-Solomon Riemann solver applied to test 2 of Table 7.3, with P-ordering. Numerical (dash)

and exact (line) solutions compared at time 0.15
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Figure 7.23: Osher-Solomon Riemann solver applied to test 4 of Table 7.3, with P-ordering. Numerical (dash)

and exact (line) solutions compared at time 0.012

7.4 The tests

Here we use the tests originally presented in Section 2.3. We recap on these tests in Table 7.4

Test �L uL pL �R uR pR

1 1.0 0.0 1.0 0.125 0.0 0.1

2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0 1.0 0.0 0.01

4 1.0 0.0 0.01 1.0 0.0 100.0

5 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

Table 7.4: Data for �ve Riemann problem tests

While we used modi�ed versions of these for each solver, we now use the unmodi�ed versions on

all schemes, with the exception of the Osher-Solomon scheme, for comparison.
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7.4.1 Test 1

Test 1 is the mildest test, and is known as the Sod test problem.It consists of a left rarefaction, a

contact and a right shock. Pro�les were taken at time t = 0:25 and initial position x0 = 0:5. All

schemes are adept at handling this problem.

Figure 7.24: HLL Riemann solver applied to test 1 of Table 7.4, with Einfeldt wave speed. Numerical (dash) and

exact (line) solutions compared at time 0.25

Figure 7.25: HLLC Riemann solver applied to test 1 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.25
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Figure 7.26: Roe Riemann solver applied to test 1 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.25

7.4.2 Test 2

Test 2 is otherwise known as the 123 problem. Consisting of two strong rarefactions and a trivial

stationary contact discontinuity. Pro�les were taken at time t = 0:15 and initial position x0 = 0:5.

The HLL scheme did not produce su�cient results to enable plotting of a graph, with the scheme

breaking down early. One of the most notable points is that none of the schemes very su�ciently

give accurate results for the speci�c internal energy.

Figure 7.27: HLLC Riemann solver applied to test 2 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.15
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Figure 7.28: Roe Riemann solver applied to test 2 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.15

7.4.3 Test 3

Test 3 represents the left-hand side of the blast wave problem.

Figure 7.29: HLL Riemann solver applied to test 3 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.012
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7.4.4 Test 5

Recall that test 5 is made up from right and left shocks emerging from the solution of the blast

wave problem of tests 3 and 4. The solution of test 5 represents the collision of two strong shocks

and consists of a left facing shock travelling slowly right, a right travelling contact discontinuity

and a right travelling shock wave [20]. Pro�les were taken at time t = 0:012 and initial position

x0 = 0:8.

Figure 7.32: HLL Riemann solver applied to test 5 of Table 7.4, with Einfeldt wave speed. Numerical (dash) and

exact (line) solutions compared at time 0.012
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Figure 7.33: HLLC Riemann solver applied to test 5 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.012

Figure 7.34: Roe Riemann solver applied to test 5 of Table 7.4. Numerical (dash) and exact (line) solutions

compared at time 0.012
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7.5 Second Order Results

It is desirable to produce higher order results for the schemes as this signi�cantly improves the

accuracy. In this section the results of the method described in Section 6 as applied to the

Riemann solver of Roe are presented. Each test was performed using Sod’s shock tube (2.8), with

the discontinuity at x0 = 0:5 to demonstrate how much more accurate the scheme is at second

order. For all tests the one-dimensional time dependent Euler equations were used as ideal agses

with  = 1:4. The exact and numerical solutions are found in the spatial domain 0 � x � 1. The

numerical solutions are computed with M = 100 and the CFL is 0.5.

Figure 7.35: Flux Limiter Scheme for second order with Roe Riemann solver and Superbee applied to Sod’s shock

tube problem (refeq:sod). Numerical (dash) and exact (line) solutions at time t= 0.25

Figure 7.36: Flux Limiter Scheme for second order with Roe Riemann solver and van Leer applied to Sod’s shock

tube problem (refeq:sod). Numerical (dash) and exact (line) solutions at time t= 0.25
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Figure 7.37: Flux Limiter Scheme for second order with Roe Riemann solver and Minmod applied to Sod’s shock



8 Discussion

This section aims to clarify what is shown in the results section and expand on how the study can

be further improved. We will look at the results given in Section 7 separately and hollistically to

compare and contrast the various Riemann solvers presented. We will also discuss how these tests

may be extended and improved upon for future study.

To �rst consider the Roe Riemann solver and the tests performed in Section 7.1, we have found

some notable faults in the scheme. One fault is that Test 2 showed the failure of the scheme near



One of the most unfortunate parts of this study was the failure to reach a working code for the

Osher-Solomon scheme. Perhaps, if nothing else, this demonstrates how impratical the scheme is,

as the large tables of comparison to choose ux lead to computational and time expense. In order to

evaluate ux any code must work through 16 cases for the one-dimensional Euler case. In fact, it is



could then be tested, leading to some very interesting three-dimensional models with perhaps

more pratical implications. Reviews of higher-order and multi-dimensional methods can be found

in comprehensive texts such as LeVeque [8] and Toro [20].
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9 Conclusion

In this paper, we have presented three high-resolution schemes and applied them to approximate

Euler equations. Several test cases were used to test the numerical schemes and highlight their

strengths and weaknesses. We highlighted how Roe’s scheme performed well, however it failed at

low-density ows. Overall it was shown to be a robust scheme, performing to exact standards at

second order. We then showed how the simple HLL scheme produced good results, a very desirable

scheme due to the simplicity-to-accuracy ratio, however it lacked accuracy at some forms of contact

discontinuities. We then showed how the HLLC scheme improved on this, however due to some

errors we were unable to demonstrate some of its desirable properties and it su�ered more di�usion

than Roe’s scheme. We then looked at the Osher-Solomon scheme, a very expensive and complex
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