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Abstract

Coral reef systems such as the Great Barrier Reef are fundamental to the food industry,
tourism revenue and coastal protection of tropical regions. Due to recent human activity,
the health of these coral reefs is under threat. It is therefore necessary to design marine
reserves in order to protect and help sustain coral populations. An understanding of the
connectivity between reefs or systems of reefs can help decide on the size and spacing of
marine reserves.

To follow the paths of coral eggs released from reefs in simple domains, a particle tracking
algorithm is developed in conjunction with a current hydrodynamic model of the Great Bar-
rier Reef. The hydrodynamic model makes use of the PNC

1 − P1 finite element formulation
which is presented. Particle positions are updated by means of the Lagrangian algorithm.

This study suggests that the construction of connectivity matrices for reef systems should
take into account both short and long range dispersal strategies by considering different
species of coral and how their mechanisms of reproduction affect the dispersal time of their
larvae.
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Introduction



Figure 1: Map of locations of threatened corals reefs and sites that show signs of promise.
Image taken from Bryant et al. (1998).

Fishing, tourism and economic resources of tropical areas are all built upon healthy coral
ecosystems. Worldwide, the food, tourism revenue, coastal protection (barrier coral reefs
protect shorelines from erosion and storm damage) and new medications that the reefs pro-



Figure 2: Map of locations of protected reef areas. Image taken from Bryant et al. (1998).

Carr 2003). The currents therefore control the transport of coral eggs between reefs, and
hence determine the connectivity of reef populations. So what can be gained from inves-
tigating the connectivity between reef populations? Due to the damage inflicted to coral
reefs by the various different processes described above, marine reserves must be designed
to protect coral reef populations. Bryant et al., 1998, found that at least 40 countries did
not have any marine protected areas for conserving their coral reef systems. A map of
marine protected areas is given in Figure 2. The size and spacing of these reserves is not
only critical to the sustainability of the protected populations but can also greatly influ-
ence unprotected populations outside of the reserves (Shanks et al., 2003). It is therefore
important to have an understanding of how populations of corals in reefs or islands are
being sustained. Is a reef or island self-replenishing or does it rely on the transport of coral
eggs from other reefs and islands? To what extent does a reef or island replenish other
populations? The answers to these questions can help determine how large marine reserves
are made and how far apart they should be. Understanding the connectivity between coral
reefs can help to identify which reefs or systems of reefs should be protected in order to
enhance other unprotected populations.

The purpose of this study is to develop a tool for use in conjunction with a current hy-
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included in the model. The results of this study are in the form of connectivity matrices
produced for each domain.
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Chapter 1

An unstructured-mesh

hydrodynamic model of the GBR

The model provided by Emmanuel Hanert is presented in [1] as a model that solves the
discretized shallow water equations (SWEs) on a fully unstructured mesh of approximately
850,000 triangular elements. The model domain covered most of the GBR from the Great
Keppel Island to the Forbes Island in the North[1]. In this study, the model will run
on the much smaller, simpler domains mentioned earlier that only contain a few islands.
This chapter will outline the main features of the model and give examples of the output
generated.

1.1 The shallow water equations and boundary conditions

1.1.1 The shallow water equations

The SWEs are comprised of the continuity equation and the horizontal momentum equa-
tions, they are presented below using the same notation as in [1]:

∂η

∂t
+
∂(Hu)
∂x

+
∂(Hv)
∂y

= 0, (1.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
=

1
H

(
∂

∂x
(νH

∂u

∂x
) +

∂

∂y
(νH

∂u

∂y
)
)

+
τx

ρH
− g‖u‖
C2H

u,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
=

1
H

(
∂

∂x
(νH

∂v

∂x
) +

∂

∂y
(νH

∂v

∂y
)
)

+
τy

ρH
− g‖u‖
C2H

v,
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1.2 Criteria for the mesh

The model is based on an unstructured mesh, and so the size and shape of the triangular



(c) Fine mesh resolution around islands and
course mesh resolution in open waters, image
taken from [1]

(d) Fine mesh resolution around islands and open
boundaries. Images courtesey of Emmanuel Han-
ert

Figure 1.1: Model resolution

the solution is calculated using a 3rd order Adams-Bashforth time marching scheme. The
main features of these methods are described below.

1.3.1 The P NC
1 − P1 finite element formulation

Let’s remind ourselves of the equations we wish to solve:

∂η

∂t
+ ∇ · (Hu) = 0, (1.2)

∂u
∂t

+ u · ∇u + fk × u + g∇η =
1



where Ω̄ is the closure of Ω. Now let ∂Ωe be the boundary of each element Ωe, and let the
outward unit normal to ∂Ωe be ne. Let Γ be the collection of all the interelement boundaries
Γl = ∂Ωe ∩ ∂Ωf with e > f so that:

Γ̄ =
NΓ⋃
l=1

Γ̄l and Γl ∩ Γm = ∅ for l 6= m,

where NΓ is the number of elements in Γ. Each Γl ∈ Γ is associated with a unique normal
vector n which point from Ωe to Ωf . The finite element method uses the weak formulation
of equations (1.2) and (1.3). This form is built in such a way that the solution for the ele-
vation is continuous everywhere whereas the solution for the velocity can be discontinuous
between elements. It therefore needs constraints to impose the continuity of the velocity
between the elements. The weak form of the SWEs, obtained by taking the dot product of
equations (1.2) and (1.3) with test functions η̂ and û respectively, is as follows:

Find η(x, t) ∈ E and u(x, t) ∈ U such that

NE∑
e=1

∫
Ωe

(
∂η

∂t
η̂ −Hu · ∇η̂

)
dΩ +

NE∑
e=1

∫
∂Ωe

Hη̂u · ne dΓ = 0 ∀η̂ ∈ E, (1.4)

NE∑
e=1

∫
Ωe

(
∂u
∂t

· û − (∇ · (uû)) · u + f(k × u) · û + g∇η · û − 1
H

(∇ · (νH∇u)) · û

− τ

ρH
· û +

g‖u‖
C2H

u · û
)

dΩ +
NE∑
e=1

∫
∂Ωe

(uu · ne) · ûdΓ +
NΓ∑
l=1

∫
Γl

[u] · [a(û)]dΓ

= 0 ∀û ∈ U, (1.5)

where [s] = s|Ωe
− s|Ωf

is the jump of s on an interior edge of Γl, s|Ωe
denotes the restriction

of s on Ωe, and E and U are suitable function spaces[3] to which η̂ and û belong. The
function a satisfies the previously mentioned continuity constraint while maintaining the
weak formulation of the differential equations. The function a satisfies:

a(û) =

{
u · n(λ− 1/2)û on Ωe,

u · n(λ+ 1/2)û on Ωf ,

where λ ∈ [−1/2, 1/2]. The choice of λ



by choosing λ = 1
2sign(u(x) · n(x)). Choosing the upwind parametrization that is usually

selected (Houston et al., 2000; Hanert et al., 2004), with some standard algebra (Houston
et al., 2000; Hanert et al., 2004) the weak formulations (1.4) and (1.5) can be rewritten as:

Find η(x, t) ∈ E and u(x, t) ∈ U such that

NE∑
e=1

∫
Ωe

(
∂η

∂t
η̂ −Hu · ∇η̂

)
dΩ +

NΓ∑
l=1

∫
Γl

(〈Hu · n〉 [η̂] + [Hu · n] 〈η̂〉 dΓ

= 0 ∀η̂ ∈ E, (1.6)

NE∑
e=1

∫
Ωe

(
∂u
∂t

· û − (∇ · (uû)) · u + f(k × u) · û + g� · 7



(Hanert et al., 2005).



Figure 1.3: Position of elevation and velocity nodes on an element

(1.6) and (1.7) is performed:∫
Γl

〈
Huh · n

〉
[φi] dΓ︸ ︷︷ ︸

=0

+
∫

Γl

[Huh · n] 〈φi〉 dΓ ≈ 0. (1.8)

(Note that where previously H = h+η, in (1.8) η has been replaced with the finite element
approximation ηh giving H = h+ ηh).

The first term in (1.8) vanishes because of the continuity across the P1 shape functions
- there is no jump in the elevation shape function, i.e. [φi





where
Fn

η = −∇ · (Hun),

and

Fn
u = −un · ∇un − fk × un − g∇ηn +

1
H

(∇ · (νH∇un)) +
τ

ρH
− g‖un‖

C2H
un.

Rearranging again to leave ηn+1 and un+1 on the left hand sides of our equations gives:

ηn+1 = ηn +
∆t
12

(23Fn
η − 16Fn−1

η + 5Fn−2
η ),

un+1 = un +
∆t
12

(23Fn
u − 16Fn−1

u + 5Fn−2
u ).

As ηn and un are vectors taking values over the whole domain, we obtain the following
matrix system of linear equations:(

A 0
0 B

)(
Un+1

Hn+1

)
=

(
RU

RH

)
(1.14)

where Un+1 and Hn+1 are the values of η and u on the mesh nodes, defined as

Un+1 =

(
ui

vi

)
and Hn+1 = (ηj),

where 1 ≤ i ≤ NS and 1 ≤ j ≤ NV . The matrix A on the left hand side of equation (1.14)
is diagonal. In terms of computation efficiency this is a major advantage as it means that
we do not have to invert any large matrices or ‘lump’ any terms. The matrix B is not
diagonal, and so here the ‘lumping’ technique is required to put the off diagonal terms onto
the diagonal. With both the spatial and time discretization the elements of the matrices A
and B are:

Aij =
∑

e

∫
Ωe

ψiψj dΩ (1.15)

Bij =

(∑
e

∫
Ωe

φiφk dΩ

)
δij . (1.16)

Equation (1.16) can be interpreted as adding all of the terms
∫

Ωe
φiφk dΩ to entry Bij when

i = j.
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2.1 Choosing an advection-diffusion algorithm

2.1.1 Eulerian or Lagrangian?

The tracking of a group or cluster of particles in a flow could be done by either:

• considering a group of particles as a passive tracer and monitor its concentration c

(Eulerian formulation), or

• following each particle individually and, given its velocity, update its position at each
time step (Lagrangian formulation).

In a 2-D approach, the concentration c of a passive tracer is governed by the Eulerian
equation

∂(hc)
∂t

= −∇ · (uhc− hk∇c) (2.1)

where t, h(> 0) and k(> 0) denote time, water depth and the horizontal diffusivity re-
spectively ([6]), and u is the depth averaged velocity. According to [6], accurate numerical
simulations of (2.1) are not easy to obtain due to difficulty in finding accurate Eulerian
discretizations of the advective operator −∇ · (uhc). Thus the Lagrangian algorithm is of-
ten used to predict the fate of water-borne propagules near coral reefs, for example sewage,
coral eggs and larvae, plankton, fish and crown-of-thorn starfish (Sammarco & Andrews
1988, 1989, Wolanski et al., 1989, 1997, Black et al. 1990, 1991, Dight et al. 1990, Oliver
et al. 1992, Black 1993), [6]. For this reason, this study will use the Lagrangian approach.
The Lagrangian algorithm, as given in [6], reads:
At time tn = n∆t (n = 1, 2, 3, ...), where ∆t is a suitable time increment, the position
xn = (xn, yn) of a water-borne propagule is updated by:

xn+1 = xn + v∆t+
Rn√
r

√
2k∆t (2.2)

where the velocity v is set to u, Rn is a vector of zero mean random numbers with variance
r and k is the horizontal diffusivity. It is believed that the concentration of particles, which



2.2 Integration of the advection-diffusion algorithm with the

model

Before the advection-diffusion model can be written, some work needs to be done in order



Figure 2.1: Each edge of a triangle splits 2-D space in half, image from [11]

product of the vectors (B − A) and (P − A) gives a vector pointing in to the page.
Conversely, taking the cross product of (B − A) and (Q− A) gives a vector pointing
out of the page.

• Moreover, taking the cross product of (B − A) with the vector from A to any point
above the line AB results in a vector pointing out of the page, while using any point
below AB produces a vector pointing into the page. So all that is needed to distinguish
which side of a line a point lies on is the appropriate cross product.

• Now all that is needed to be done is to work out which direction the cross product
should point in. To caclulate this, a reference point that is always on one side of the
line is needed. The third vertex of the triangle will do nicely.

Figure 2.2: How do we mathematically determine which point is in the triangle? Image
from [11]

Any point P where (B−A)×(P−A) does not point in the same direction as (B−A)×(C−A)
isn’t inside the triangle. If the cross products do point in the same direction, then P needs
to be tested with the other lines as well. If the point is on the same side of AB as C and is
also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

The Barycentric technique

The Barycentric technique is another conceptually simple technique for determining whether

19



a point is in a triangle or not, it requires slightly more algebra than the ‘same side technique’
but computes faster. This is the technique that will be employed in the model.

The three points of a triangle define a plane in space. Let A be the origin of this plane.
Through combinations of the vectors (B − A) and (C − A) any point in the plane can be
reached. In particular, the point P can be described as

P = A+ u(B −A) + v(C −A)

If u or v is greater than one or less than zero then the point is outside of the triangle as it
is too far from A in one of the directions ±(B−A) or ±(C −A) . Furthermore if u+ v > 1
then the point is outside of the triangle as the combination A+ u(B − A) + v(C − A) has
taken the point past edge BC. If any of these tests fail then the point cannot be in this
triangle. P is easily found given u and v, but what is needed is to find u and v given P .
The position of P is given above as one equation in two unknowns. Two equations in two
unknowns are produced as follows.

For ease of notation let (P −A) = V0, (B −A) = V1 and (C −A) = V2 so that

P −A = u(B −A) + v(C −A)

becomes
V0 = uV1 + vV2.

To get two equations in two unknowns, take the dot product of both sides with V1 and then
with V2 to give

V0 · V1 = u(V1 · V1) + v(V2 · V1)

V0 · V2 = u(V1 · V2) + v(V2 · V2).

Solving this pair of simultaneous equations gives us u and v:

u =
(V2 · V2)(V0 · V1) − (V2 · V1)(V0 · V2)
(V2 · V2)(V1 · V1 − (V2 · V1)(V1 · V2)

v =
(V1 · V1)(V0 · V2) − (V1 · V2)(V0 · V1)
(V2 · V2)(V1 · V1) − (V2 · V1)(V1 · V2)

.

20



So given the vertices of an element and the position of a point P , whether or not P lies in
the element is worked out by simply calculating u and v as above and checking whether or
not u, v ∈ [0, 1] and u+ v < 1.

2.2.2 Using the P1 and P NC
1 weight functions to determine velocity at a

poineter



Figure 2.3: Shape functions

and so for each i there are three equations in three unknowns. For example for i = 0:

φ0(x0) = 1 = α0x0 + β0y0 + γ0

φ0(x1) = 0 = α0x1 + β0y1 + γ0

φ0(x2) = 0 = α0x2 + β0y2 + γ0.

Solving these simultaneous equations, for i = 0 for example, gives:

α0 =
y1 − y2

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,

β0 =
x2 − x1

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,

γ0 =
x1y2 − x2y1

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,

22



α1, α2, β1, β2, γ1 and γ2 are found in the same way. A general form for αi, βi and γi can
be written using the modulo operation:

αi =
y(i+1)|3 − y(i+2)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

βi =
x(i+2)|3 − x(i+1)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

γi =
x(i+1)|3 ∗ y(i+2)|3 − x(i+2)|3 ∗ y(i+1)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

where (i+ k)|3 stands for (i+ k)mod3. In this general form the φis can be calculated using
a single function that takes the position of a point (or particle) as an argument. From this
the ψis can be calculated and hence the velocity at any point in the domain.

2.2.3 Construction of the diffusion term

The Lagrangian algorithm consists of an advective and a diffusive term. So far the steps
to implmenting advective term v∆t (where v is set to u as in equation (2.1)) have been
considered. The construction of the diffusive term Rn√

r

√
2k∆t requires

• a vector Rn = (Rx, Ry) of zero mean random numbers taking values in [−1, 1],

• calculation of the variance of these random numbers

• a choice for the diffusivity parameter k.

The components of Rn are obtained using the srand and rand functions defined in the
standard C++ library. Two random numbers R1 and R2 between 0 and 200 are produced
and translated to the interval [−1, 1] using the formulae

Rx = R1/100 − 1,

Ry = R2/100 − 1,

giving 201 possible values for each of Rx and Ry.

The variance r of these 201 random variables, call them xk, is calculated using the standard
formula:

r =
k=200∑
k=0

(xk − x̄)2 = 0.33667.
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As for the choice of diffusivity parameter k, a range of values will be tested. The model only
allows particles to be released from a finite number of points around the islands, however
many particles can be released from each point. In order to find the best value to represent
the dispersion of coral eggs in the flows through the two and four island domains, values of
0.5, 1.0 and 2.0 (as used in [

k



Figure 2.4: Stommel elevation fields at various time steps

Figure 2.5: Stommel velocity fields at various time steps

Figure 2.6: Energy in the Stommel simulation
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Figure 2.7: A particle released into the Stommel simulation













Chapter 3

Results

3.1 Two island domain

In the Stommel test case, the system became steady after about 3,000,000 time steps when
energy became constant. In the case of the two and four island domains, the energy does
not become constant as the elevation is being forced on the two open boundaries. A plot of
the energy against the number of time steps reveals that the energy in the system oscillates:

Figure 3.1: Plot of the energy in the two island system against the time step

The particles are therefore released once the energy in the simulation starts to oscillate
over constant range (at 25000 time steps when ∆t is set to 2.0 seconds). The results are
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displayed to show the simulated dispersal times for the three types of coral larvae given in
Figure (2.11) - Pocilloporids (4 hours), Acroporids (24-72 hours) and Balanophyllia elegans
(3 days). Results are given in sets corresponding to diffusivity values 2.0, 10.0, 25.0 and
50.0 m2s−1. Plotted for each are the positions of particles and either the elevation or ve-
locity fields for corresponding time frame. The two sets of results that best represent the
behaviour for each time frame are given in this chapter, the rest can be found in Appendix
A. In order to consider the islands in this domain individually, the lower island will be
referred to as island one and the upper island will be referred to as island two.

3.1.1 Dispersal time = 4h (Pocilloporids)

Summary of results:

• for all values of the diffusivity the the particles stayed within the radii of the islands,

• as a result the connectivity matrices indicate that all propagules stayed within the
vicinity of the parent reef.

Figure 3.2 displays a table of the minimum, maximum and mean distances travelled from
the point of release by particles at increasing time steps.
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Figure 3.2: Minimum, maximum and mean distances dispersed from initial release points
for the two island domain initial four hour period

Dispersal time Diffusivity k Min. dispersal Max. dispersal Mean dispersal
(mins) (m2s−1) distance (m) distance (m) distance (m)

33 2.0 0.0025 0.6409 0.1336
66 2.0 0.0132 5.3517 1.0824
99 2.0 0.0239 13.7286 3.2116

132 2.0 0.0239 13.7286 3.2116
165 2.0 0.0364 24.238 6.5938
198 2.0 0.0284 22.7876 6.0714
33 10.0 0.0023 0.6076 0.1304
66 10.0 0.0095 5.3047 1.0872
99 10.0 0.0161 13.64 3.1884

132 10.0 0.0242 20.2072 5.3745
165 10.0 0.0359 23.9935 6.5632
198 10.0 0.0299 22.5723 6.053
33 25.0



3.1.2 Dispersal time = 24h - 72h (Acroporids, Balanophyllia elegans)

Summary of results:

• At low values of diffusivity the particles still stay within the radii of the islands,

• but now at higher values of diffusivity some particles start to oscillate in and out of
one of the islands.

• The two extremes are displayed, k = 2.0m



3.2 Four island domain

At this point it is necessary to consider the computational and time restraints on this study.
For the CFL condition to be satisfied for the four island domain, it is necessary to change
the time step from ∆t = 2.0s to ∆t = 0.25s, i.e. one iteration corresponds to just a quarter
of a second. As a result, the time taken for the energy to oscillate between a steady range
increases to 200,000 time steps (see Figure 3.5). The execution time for the program to reach
this point is about 44 hours. For the program to then simulate the dispersal of particles for



3.2.2 Longer dispersal times

The four island simulation was run until the end of the time allocated for this study, the
evolution of the connectivity matrix is given below. Particles are released once the system
has reached a steady state at 200,000 time steps. The final time step is 425,000 which
corresponds to a simulation of propagules in the water column for 29.5 hours.

Initially, particles start to leave the fourth island and then after some time leave the third
island:
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60 0 0 0
0 60 0 0
0 0 60 0
0 0 0 60

1CCCCCCCA
Time step = 200000

0BBBBBBB@

60 0 0 0
0 60 0 0
0 0 60 0
0 0 0 41

1CCCCCCCA
Time step = 227000

0BBBBBBB@

60 0 0 0
0 60 0 0
0 0 50 0
0 0 0 48

1CCCCCCCA
Time step = 250000

Particles then begin to leave the second island and others move in and out of the third
and fourth islands:
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After 300,000 time steps particles start to return to their parent islands:
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Particles remain at their initial islands until 370,000 time steps when a few start to move
from the first island:

0BBBBBBB@

60 0 0 0
0 60 0 0
0 0 60 0
0 0 0 60



Figure 3.3: Two islands, dispersal time ≈ 4 hours, diffusivity k = 2.0m2s−1
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Figure 3.5: Minimum, maximum and mean distances dispersed from initial release points
for the two island 24-72 hour period

Dispersal time Diffusivity k Min. dispersal Max. dispersal Mean dispersal
(hours) (m2s−1) distance (m) distance (m) distance (m)

24 2.0 0.0058 2.195 0.2774
32 2.0 0.0332 15.6949 3.9506
40 2.0 0.0462 14.2177 3.7792
48 2.0 0.0039 4.8538 0.547



Figure 3.6: Two islands, dispersal time ≈ 24-72h, diffusivity k = 2.0m2s−1
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Figure 3.7: Two islands, dispersal time ≈ 24h-72h, diffusivity k = 50.0m2s−1
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Figure 3.8: Energy in the four island system
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Figure 3.9: Four islands, dispersal time ≈ 4h, diffusivity k = 10.0m2s−1
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Chapter 4

Discussion of results and

conclusions

4.1 The two island domain

4.1.1 The four hour simulation



the model is simulating this, it must be noted that the method of using radii inside which
particles are assumed to settle is purely hypothetical, and so this is of course speculation.

4.1.2 The 24-72 hour simulation

In the 24-72 hour simulation, corresponding to the dispersal times for Acroporids (24-72
hours) and Balanophyllia elegans (72 hours), whether or not particles left the vicinity of
the islands depended on value of the diffusivity k. At a value of k = 50m2s−1 particles
started to leave the lower island. However, having left the vicinity of the island they then
proceeded to return, leave again and then slowly return by the end of the 72 hour time
frame. This oscillating behaviour can also be seen for all of the other values of k in the
table given in Figure 3.6. For dispersal times up to 40 hours, the maximum and average
dispersal distances increase but then drop at 48 hours. For the remaining 24 hours the
maximum and average disperal distances rise and fall as the particles move back and forth.

So do the model simulations represent the behaviour of either Balanophyllia elegans larvae
or Acroporids larvae? The distances travelled by the particles indicate that the simulations
are closer to that of the Acroporids larvae. Of course the dispersal distances for this larvae
are only really relevant to the regions where the data was sourced from (Rib Reef, Pandora
Reef and Myrmidon Reef in the Great Barrier Reef, Australia, Sammarco and Andrews
(1989)), not necessarily the simple two island domain in this study! A further study could



4.2 The four island domain

4.2.1 The four hour simulation



4.3 Summary of conclusions

Factors that could be taken into account when building a connectivity matrix for the Great
Barrier Reef could be:

• The type of coral larvae being dispersed. The species of corals with the highest
population in each island or reef could be simulated.

• The different dispersal strategies - both the long range and short range strategies
could be taken into account, this would require a model that simulates a the dispersal
of coral larvae over a long period of time (> 300h or even as far as a yearly dispersal
distance) while keeping track of species of larvae that only disperse short distances.
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Chapter 5

Further work

In addition to the suggestions made in Chapter 4, further work that could be done directly
on this project is summarised in the sections that follow.

5.1 The modified Lagrangian algorithm

In this study the Lagrangian algorithm was used to update the position of particles:

xn+1 = xn + v∆t+
Rn√
r

√
2k∆t (5.1)

This algorithm assumes a constant diffusivity k and depth h. This is not ideal for the
domains studied as the depth changes with the elevation and the bathymetry of the islands,
and the diffusivity will vary according to how far the particles are from the islands (i.e.
how far they are from the turbulent features such as eddies in the wake of islands). An
algorithm could be implemented to include varying h and k. It is noted in [6] that when
h or k is not constant the Lagrangian algorithm (5.1



as
∂(hc)
∂t

= −∇ · [(u + kh−1∇h)hc− k∇(hc)]. (5.3)

Equation (5.3



5.4 Different species of Coral

The coral species mentioned in this study all have small dispersal distances and times rel-
ative to the distances and times that would be considered when thinking about designing
marine reserves. Shanks et al. (2003) mentions two evolutionary stable dispersal strate-
gies: dipsersal < 1km with propagules spending less than 100 hours in the water column,
or > 20km with propagules spending over 300 hours in the water column. Much longer
simulations could be run in order to investigate corals whose larvae travel distances over
20km.



Appendix A

Included in this appendix are the remaining plots of particle positions for the two island
four hour and 72 hour simulations.
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Figure 5.1: Two islands, dispersal time ≈ 4h, diffusivity k = 25.0m2s−1
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Figure 5.2: Two islands, dispersal time ≈



Figure 5.3: Two islands, dispersal time ≈ 24-72h, diffusivity k = 10.0m2s−1
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Figure 5.4: Two islands, dispersal time ≈ 24-72h, diffusivity k = 25.0m2s−1
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