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Abstract 
 

The examination of radio waves propagating, interacting and reflecting off 

various bodies and materials is of interest in many areas of research, including 

assessing radio communications through the ionosphere, determining effects on 

soft tissue from mobile phone use and producing radar cross section estimates 

for military purposes. Analytical solutions exist for only the simplest of geometries 

where Maxwell’s equation can be solved, so to fulfil all of these diverse 

requirements numerical techniques have been developed, and one such method 

is the Finite Difference Time Domain i s  t h e  F i 5 1 8 . 7 3 3  0  T d 
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1. Introduction 
 
The generation of radio waves for the purpose of detecting objects at a distance 

from an observation point, known as Radio Detection and Ranging (RADAR), has 

been utilised since the early 20th century for both civilian and military purposes. In 



 

basic geometrical shapes is presented in the Radar Cross Section Handbook by 

Ruck [4]. This also includes methods for obtaining the RCS of complex objects 

made from superimposing a number of simple shapes together. Additionally 

analytical solutions for the RCS of non-perfectly conducting materials are 

discussed, with reference to plasmas and the analytical solution of plasma 

spheres given by Mie [10]. The book by K. S. Kunz and R. J. Luebbers [1] 

provides a detailed background in the formulation of numerical methods used to 

predict RCS and radar signatures of various objects, in particular utilising Finite 



 

Research into plasma and its interaction with electromagnetic waves has been 

ongoing for almost as long as the use of FDTD. The added difficulty when trying 

to consider real rather than theoretical perfect plasmas is the need to determine 

the accurate Total Electron Content (TEC) within a region and how it evolves with 

time. Reference [2] gives some detailed background theory on plasma behaviour. 

Due to the need of additional numerical (usually Monte-Carlo, Computational 

Fluid Dynamics (CFD)) computer codes to determine the plasma behaviour, a 

computer code to determine the RCS of a plasma object is usually de-coupled 

from the code that will generate the TEC evolution within the region of interest. 

 

From the literature examined in the course of this work, it is apparent that the 

determination of RCS values for a number of objects is well practised and 

documented. This has utilised FDTD (in various forms) to examine RCS values at 

a range of frequencies using time harmonic incident radio waves modelled in the 

computational domain. The aim of this project is to examine the use of non-time 

harmonic waves (utilised by a large number of modern, pulse compression radar 

systems in the form of a ‘chirp’ pair) to interrogate objects shielded by plasma. In 

particular, the effect of space steps on the error of the solution in modelling a 

chirped pulse is examined.  

 

The remainder of this report is structured as follows: - 

 

Section 2 discusses some general electromagnetic theory, in particular the 

Maxwell equations which govern the propagation of radio waves through a 

medium. 

 

Section 3 investigates analytical solutions of electromagnetic waves travelling in 

free space, incident on a Perfectly Electrical Conducting (PEC) surface and 

obliquely incident on a dielectric medium.  
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2. Electromagnetic Theory 
 
The propagation of electromagnetic waves is governed by four Maxwell 

equations. These describe the relations between the electric (E) and magnetic 

(H) fields and are applicable to electromagnetic wave propagation in both free 

space and in various media. 
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 fields, the total field at a point, 

the domain is constructed by the superposition of these components: - 
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zyx
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Equations (3) and (4) are contained within (5) and (6), which can be shown by 

considering the divergence of each. Firstly, we take the divergence of equation 

(5): - 
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The divergence of a curl of a vector field is zero; this is shown in Appendix A, 

Lemma 1, so we use the identity: - 

 
0=×∇⋅∇ E , (8) 

 
Therefore, returning to (7) we see that we have: - 
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This implies that the divergence of the magnetic field B is constant with time. 

Without loss of generality we set B to be zero at t = 0, and hence this implies that 

the divergence of B is zero at all times. 

 

Similarly, taking the divergence of (6) and again using Appendix A, Lemma 1: - 
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which when substituted into (12) gives: - 
 

 
, (14) 



 

3. Analytical Solutions 
 





 

and t is the time in seconds. From standard wave theory, c=fλ, where f is the 

frequency and λ is the wavelength of the electromagnetic wave. 

 
The associated magnetic field is given by: - 

 
( kztHH −+= )ωκcos0 , (26) 

 
i.e. the magnetic fields are in phase with the electric fields, and have the same 

wavenumber (and therefore the same wavelength and frequency). Figure 2 

shows the arrangement of electric and magnetic fields in the plane wave. 

Magnetic 
field, H 

Direction of travel, 
S (Poynting vector)

Electric 
field, E 

 



 

 
 
3.2. Plane Wave Incident on a PEC Plane 

s 

mplitude of the 

cident wave. Explicitly, PEC can be characterized as follows: - 

lectrical Permittivity,

 

When examining the scattering of an electromagnetic wave off a solid object, it i

often assumed that the target being interrogated is made of Perfectly Electrical 

Conductor (PEC). Essentially this means that the target comprises of a material 

that is close to a perfect conductor, such that electromagnetic waves incident on 

the target are reflected away with no appreciable degradation in a

in

 
E  ∞→rε . 

um 

equencies incident upon them, and as such may be approximated by PEC. 

.3 Plane Wave Obliquely Incident on a Dielectric Surface 

 order 

n. 

fields, t 

enotes the transmitted wave and r denotes the reflected wave: - 

 

 

Many metals commonly used in the construction of airframes, such as alumini

and titanium, have extremely high electrical permittivities for a large range of 

fr
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We consider an electromagnetic plane wave incident on a dielectric material at 

an angle ςi to the normal of the surface. The effect of having a dielectric material 

rather than a PEC surface is that the its electrical permittivity is of a similar

of magnitude compared to the permittivity of free space, ε0, with a relative 

permittivity, εr, greater than one. Figure 3 shows this arrangement, where we 

have the electric field, Ex, perpendicular to the surface that it is incident upo

The superscript i denotes the incident wave electric and magnetic 

d
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Figure 3: Plane wave obliquely incident on a dielectric 
 
Standard theory from electromagnetics [3] is used to solve this situation to give 

expressions for the magnitude of the transmitted and reflected electric field 

component of the electromagnetic wave and the direction of travel relative to the 

normal of the material (ςt). These are known as the perpendicular Fresnel 

equations ((28) and (29)) and Snell’s laws ((30) and (31)) respectively [3]: - 
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We can also use this method to produce equations for the magnetic field in the x, 

y and z components.  
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Here, we have modified equation (3) to include a magnetic loss term (σ*H terms, 

where σ* is the magnetic conductivity), which is analogous to the electric loss 

term represented by σE in equation (36). These terms allow the possibility of the 

region in which the electromagnetic waves propagate to induce a magnetic loss. 

Equating terms in the i, j and k directions we obtain equations (41) to (43): - 
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In this project we will only be considered lo



 

size ΔxΔyΔz, where Δx, Δy and Δ
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differences to approximate the six equations (37) to (39) and (41) to (43) which 

describe electromagnetic propagation in 3 dimensions: - 
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4.3. Boundary Conditions 
 
The FDTD equations (52) to (57) are such that each of the explicit 

electric/magnetic field equations require values for the magnetic/electric field 

around (spatially) the point being considered. As such, the arrangement of the 

Yee cells within the computational grid will result in a ‘missing’ electric/magnetic 

field at the edge of the computational domain, as demonstrated in Figure 7, 

representing the y = 0 plane: - 
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Figure 8: Arrangement of incident wave relative to computational grid 
 

The incident wave will be varied such that it approaches the object from various 

angles relative to the z-direction in the grid, denoted by θ. This will allow the 

back-scattered radiation from different aspect angles to be determined, i.e. to 

give an electric field profile against aspect (viewing) angle. The incident wave will 

also be rotated about the z-axis, denoted by φ, such that the effect of the Yee 

grid, i.e. of using a series of cubes to represent a smooth object, can be negated 

by averaging over these viewing angles. We introduce three Euler angles: - 

 

ψ – a rotation of the incident beam electric and magnetic fields in the x-y plane, 

θ – a rotation of the incident beam direction in the y-z plane, 

φ – a rotation of the incident beam direction in the x-y plane. 

 

As finite differences are being used in this simulation, discontinuities in electric 

and/or magnetic fields will tend to produce spurious results and as such a wave 

that is ‘square’ (finite in size with zero values on its boundary) will propagate in 

several directions and be incoherent after a few time steps. 
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In this problem the incident wave is chosen to be a cylindrical wave, which is 

Gaussian in a radial direction and spatially along the initial wave. A schematic of 

this is shown in Figure 9: - 
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Figure 9: Schematic of incident radar pulse, showing radial and spatial amplitudes 
 
This arrangement for the incident wave is intended to reduce the spurious 

behaviour at the edge of the wave packet. The amplitude factors, α (along 

direction of travel) and β (radial from centre of
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gives the free space impedance. Combining this information with the 

transformation defined in (75) we can derive the six initial wave amplitudes in the 

x, y and z component directions: - 
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The approximation we will use in the formulation of the incident electric field wave 

can be explicitly described as: - 
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where ( ) ( ) ( zqkypjxmir )Δ+Δ+Δ= . (80) 

 
The spatial components of the wave in the initial conditions of the problem are 

given by (81) and (82), and are derived from the analytical solution of a plane 

wave travelling in free space (see section 3.1.): - 
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where ( ) ( ) ( )( ) 2
1222 zqypxmr Δ+Δ+Δ= . (83) 

 
As the FDTD is a leapfrog approach, consideration must be given to the initial 

conditions to represent this process, in this case we require the initial incident 

wave to represent the analytical plane wave solution for the electric field at time 

n=0, and the magnetic field at time n=1/2. Here, the magnetic field is negative so 
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that the correct Poynting vector is obtained such that the initial wave propagates 

from the outside of the Yee grid towards the object.  

 

When expressions (75), (81) and (82) are combined, the initial electric and 

magnetic fields are specified by: - 
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[14]. This is known as up chirping (decreasing λ with time) and down chirping 

(increasing λ with time). A schematic of these processes is shown in Figure 10: -  
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Figure 10: Schematic of a down chirp radio wave 
 
Given that the wavelength of the radio wave through the pulse can be expressed 

as: - 
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We can therefore modify equation (84) to include a chirp: - 
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4.6. Truncation Error 
 
Truncation error is the error introduced into the numerical solution caused by the 

approximation of using the scheme (in this case the FDTD method) instead of the 

analytical formula. In this case the truncation error, , is expressed 

mathematically by: - 

n
qpm ,,τ

 
 

( )

( )

( ) ( )
( ) 0,,

,,,,

2
1

,
2
1,

2
1

,
2
1,

2
1

2
1,,

2
1

2
1,,

,,

1

,,
,,

,,,,,,

−=

−≡

Δ

−
+

Δ

−

−
Δ

−
=

∂

∂
+

∂

∂
−

∂

∂
=

+

−

+

+

+

−+



 

 



 

4.7. Stability 
 
The stability condition of the FDTD is given by the Courant condition, which 

determines the maximum time step to be used given a known grid spacing [1]: - 
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In the subsequent analysis, we use the expression below for the time step: - 
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and as we will be using the same grid spacing in each axis (Δx = Δy = Δz), this 

reduces down to: - 

3
9.0 1 yct Δ

=Δ − , (103) 

 
where we have chosen to define the three grid spacings in terms of the grid 

spacing along the y-axis. 

 
4.8. Choice of Grid Spacing 
 





 

5. Plasma Theory 
 
The term plasma refers to a gas which has been excited by some method such 

that there is a dissociation of electrons from atoms and/or molecules such that 

charged (positive and negative) and neutral ions exist. The distinguishing feature 

between plasma and an ordinary ionised 
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where A incorporates the electric permittivity of the region between the electric 

charges involved. Clearly this equation is that of an oscillatory system, and as 

such a parameter known as the plasma frequency, ωf, is introduced to describe 

this motion. When considering the formation and motion of plasma, it is often 

considered that the positive/neutral ions within the plasma are stationary, and the 

electrons are the only particles which exhibit the oscillatory behaviour as 

described by (105). This is a good approximation as the mass of the electron is 

1/1836 that of a hydrogen atom (the lightest constituent of the Earth’s 

atmospheric gases), so that the electrons oscillate rapidly with respect to the 

other constituents of the plasma. 

 
Plasma is characterised by its Total Electron Content (TEC), which describes the 

number of free electrons within a given volume, and the collision frequency 

between ions. The TEC can be used to estimate plasma frequency, using the 

expression [2]: - 
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where ωf has the units of radians per second, Ne is TEC, me is the mass of an 

electron, e and ε0 are fundamental constants (electron charge and permittivity of 

free space respectively). 

 
To determine the effect of an electromagnetic wave incident on a plasma, we 

must quantify the plasma using the complex permittivity [3], εc
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where 1−=i . 
 
The real part of the complex permittivity, ε’(r), gives the effect of the plasma on 

the polarisation of the propagating electromagnetic wave, i.e. it gives the relative 

permittivity of the medium, εr. The imaginary part, ε’’(r), describes how the 

amplitude of an incident electromagnetic wave varies as it propagates through 

the medium, and is related to the conductivity, σ, by: - 

 

( ) ( )
ω
σε rr =′′ , (108) 

 
where ω is the frequency of the wave incident on the plasma, expressed in 
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and as discussed above only the real part of the complex permittivity is 

considered.  

 

5.2. Group and Phase Velocity in Plasma 
 
A characteristic, and somewhat surprisi



 

not subject to any external magnetic fields, the dispersion relation for the wave is 

given by [2]: - 

 
2222 kcf +=ωω . (113) 

 
This equation says that for an electromagnetic wave of a known frequency, ω, 

incident on plasma, the wave number, k, will reduce as the plasma frequency, ωf, 

increases. Ultimately, as the plasma frequency increases and surpasses the 

frequency of the incident wave, the plasma no longer allows the wave to 

propagate (k becomes 0 at ωf = ω, then imaginary as ωf increases further). 

Therefore plasma whose plasma frequency is greater than that of the incident 

wave appears opaque to the incident wave. 

 
In section 7 we shall examine the variation of the wavelength of a radar pulse in 

plasma, so for ease of use we rearrange (113) to give the wavelength, λp, in the 

plasma in terms of the plasma frequency: - 

 

( ) 2
122

2

f

p
c

ωω

πλ
−

= . (114) 

 
 
 
 
 
 

  39 
  



 

6. Numerical Results from Time Harmonic Problem 
 
6.1. Plane Wave in Free Space 
 
Firstly, we examine the case of an electromagnetic wave propagating through 

free space and analyse the numerical solution for the evolution of our radar pulse 

within the computational grid, with the permittivity being equal to ε0 (εr = 1) 

everywhere in the domain. We examine this case as the analytical solution is 

known for the whole domain; explicitly that the amplitude, wavelength and spatial 

extent of the wave will remain constant as it propagates forward. 

 

We take the grid spacing Δx = Δy = Δz = 0.2 m, the wavelength λ = 3 m 

(100MHz) along with a pulse width, Pw, of 10 m and pulse length, P, of 6 m. 

Examining the amplitude of the numerical solution for the electric field as time 

progresses: - 

 

  
Figure 13: Amplitude of numerical approximation of the electric field of a wave in 
free space as time progresses 
 
The numerical amplitude reduces with time, and has a rate of change of the order 

-6.23 x10-5 Vm-1ps-1. This would imply that the initial wave would tend to zero 

amplitude after 64 ns, i.e. after approximately 190 time steps. Increasing the 

pulse width of the initial radar pulse region to 15 m: - 
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Figure 15: Gaussian distribution schematic 



 

In effect this causes the wave to travel not only in the intended direction (in this 

case perpendicular to the z-direction) but also to disperse in both the positive and 

negative z directions as time progresses.  

 
6.2. Plane Wave Incident on a Dielectric Medium 
 
The second case considered is when a radar pulse described by a plane wave is 

incident on an ‘infinite’ (extending throughout the whole computational domain in 

the x-z plane) dielectric medium, described by a constant electric permittivity εr. 

We consider εr to take a value of 2, which by using the Snell’s laws and Fresnel 

equations ((28) to (31)) allows a comparison between the analytic to numerical 

results. The reflected wave when the incident wave is normal to the plane (ςi = ςt 

= 0) will have peak amplitude: - 

 
 
 
 
 
 
. (117) 
 



 

 
 



 

From the figure it can be seen that although there is some agreement between 

the shape of the electric field for the numerical and analytic solutions, it appears 

that there has been some reduction in the wavelength and amplitude of the 

reflected wave. The change in wavelength that has occurred in the numerical 

solution was assessed to be λ=2.8m (c.f. 3.0 m wavelength incident), this is 

shown in Figure 19: - 

 

 
 
Figure 19: Analytical solution (blue) with λ = 2.8m compared to numerical solution 
(red) of reflected electric field normally incident on a dielectric (εr =2) material. 
 
From this we conclude that the wavelength of the reflected wave off a dielectric is 

not modelled correctly in the numerical solution. This may be due to the use of 

the Gaussian function to truncate the radar pulse and is discussed further in 6.3. 

 

The absolute error between the numerical and analytic solution is quantified in 

Figure 20: - 
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Figure 20: Modulus of absolute error between analytic and numerical solution of 
reflected electric field 
 
Therefore from this analysis the absolute error of the peak of the wave from the 

analytical solution is 1.68 x10-8 Vm-1, which equates to approximately 30% of the 

peak amplitude. Additionally the wavelengt



 

Again it is seen that the wavelength and amplitude of the wave is different for the 

analytic and numerical solution. The amplitude of the wave in the numerical 

solution is 44 % below that of the analytical solution. Performing a Fourier 

Transform (FFT) on the data, we can extract the frequencies that comprise the 

wave solutions: - 

 

 
Figure 22: FFT of electric field numerical solution (red) against analytic solution 
(blue) 
 
From Figure 22 we can see that the numerical solution has higher frequencies 

within the solution than the analytic solution predicts, with a peak at ~ 116 MHz 

(0.41 m reduction in wavelength) compared to the input frequency of 100 MHz. 

To examine this further we halve the grid spacing, Δy, to 0.1 m. 
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Figure 23: FFT of electric field numerical solution (red) against analytic solution 
(blue) 
 

In this case there is a peak at the 118 MHz frequency, which equates to a 

reduction in wavelength of 0.45 m. Therefore reducing the grid spacing has not 

reduced the error in wavelength of the reflected wave, and therefore may suggest 

that some aspects of the numerical modelling appear not to be affected by the 

grid spacing. 
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7. Numerical Results from non-Time Harmonic Problem 
 
The problem considered in this section is that of the radar signature of an object 

surrounded by plasma when interrogated by non-time harmonic electromagnetic 

waves. In particular this will examine the use of a chirped radar pulse to extract 

information regarding the plasma and object arrangement.  

The use of chirp techniques by radar is an attempt to extract additional Doppler 

information from an observed target [14], and to reduce the vulnerability of the 

radar to jamming techniques such as chaff. The general arrangement to be 

considered is shown in Figure 24: - 

Up / down-chirp 
incident pulse 

‘PEC’  object 
εr

�0



 

7.1 Incident Wave Representation 
 
The radio wave will have the form of a radar pulse (as described in section 4.4. 

and utilised in section 6) which is Gaussian shaped both along and perpendicular 

to the Poynting vector of the electromagnetic fields in the pulse. For the purposes 

of this section, the wave is now taken to be non-time harmonic with an up-chirp 

(frequency increases linearly with time within the pulse see section 4.5.). The 

number of grid points used within the computational grid will be investigated and 

the effect on the solution (compared to expected behaviour) analysed. Initially a 

150 MHz wave with an up-chirp of 250 MHz through the pulse length is 

considered.  

 

7.2. Grid Spacing Variation 
 

When performing numerical modelling of a sine wave, it is recommended in 

various texts, such as [1], that as an engineering standard, a minimum of 10 

sampling points are required along a single wavelength in order to obtain a ‘good’ 

approximation. Using our condition (104) for minimum grid spacing for a dielectric 

material of relative permittivity εr, for the up-chirp wave that gives the 

recommended resolution of the wave at the 400 MHz (λ = 0.75 m) upper 

frequency limit the required grid spacing is: - 

 

{ ( )



 

To examine the effect of varying the sample rate of the wave on the error within 

the numerical solution, we examine the variation in wavelength of the transmitted 

pulse within the plasma. From the theory of electromagnetic waves propagating 

through a plasma (see section 5.) the wavelength of the wave will vary 

(specifically elongate), as it enters the plasma region. We will examine how the 

wavelengths predicted from the numerical solution compare to the wavelengths 

predicted from the theory for an up-chirped radar pulse. A schematic of the 

chirped incident wave is shown in Figure 25: - 

  

 
 
Figure 25: Schematic of the up-chirped incident wave 
 
 
Examination of the incident wave shows that the points A, B ,C and D are at 1.5 

m, 3.55 m, 4.65 m and 5.6 m respectively. The pulse width is kept constant at 

14.6 m, and the pulse length is 6.0 m. The time step, Δt, is constant in section of 

analysis, at 144.44 picoseconds (1.4444 x10-10 s) 

 
For this analysis, we will assume that the real part of the complex permittivity is 

constant in the plasma, taking the value 0.25. We also assume the plasma is cold 
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(the imaginary part of the complex permittivity is zero). As the relative permittivity 

is constant, we make the assumption that the plasma frequency will vary as the 

radar pulse passes into the plasma region. Therefore we determine the plasma 

frequency using: - 
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Additionally, an expression for the wavelength of the transmitted wave (λf) can be 

produced based on the wavelength of the incident wave (λ) and relative 

permittivity: 
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Given our choice of relative permittivity, in this case (1-εr)½ equals 0.5, the 

wavelength of the wave in the plasma is twice that in free space (the incident 

wavelength), i.e. λf = 2λ. Table 1 details the four points of the incident wave to be 

considered for the numerical analysis: - 

 
 Point A Point B Point C Point D 
Distance along pulse, d (m) 1.5 3.55 4.65 5.6 
Wavelength, λ (m) 2.04 1.56 1.08 0.84 
Frequency, f (MHz) 147.06 192.31 277.78 357.14 
Plasma frequency, ff (MHz) 127.36 166.55 240.56 309.29 
Wavelength in plasma, λp (m) 4.08 3.12 2.16 1.68 
 
Table 1: Details of up-chirped pulse incident on cold plasma plane 
 



 

per iteration. The numerical solution is examined to determine the wavelength of 

the pulse at points A, B, C and D, and these are compared to those wavelengths 

predicted from theory. Table 2 shows the results of this analysis: - 
 
Number of 
sample 
points at λp 
= 1.5 m 

Grid 
spacing 
Δx=Δy=Δz 
(m) 

Wavelength 
from 
numerical 
solution at 
Point A 

Wavelength 
from 
numerical 
solution at 
Point B 

Wavelength 
from 
numerical 
solution at 
Point C 

Wavelength 
from 
numerical 
solution at 
Point D 

10 0.15000 4.20 3.20 2.50 2.00 
9 0.16667 4.25 3.33 2.50 2.00 
8 0.18750 4.31 3.38 2.53 2.06 
7 0.21429 4.18 3.43 2.68 2.25 
6 0.25000 4.50 3.50 2.75 2.25 
5 0.30000 4.50 3.60 3.00 2.40 
4 0.37500 4.50 3.94 3.38 3.00 
3 0.50000 5.00 4.25 3.50 3.50 
 
Table 2: Recorded wavelengths of numerical solution of wave travelling in plasma 
 
These results are plotted in Figure 26: - 

 
Figure 26: Comparison of wavelengths of chirped pulse extracted from numerical 
solution to analytical values  
 
These results show a consistent variation of the wavelength in the chirp derived 

from the numerical solution to the theory at point D (i.e. the high frequency, low 
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wavelength end of the chirp). The slope of the chirp predicted by the numerical 

solution is consistent with the theory for grid spacing 0.15 to 0.3 m, and it can be 

seen that when the grid spacing equals 0.375 m, the chirp begins to lose its 

shape (the gradient of the wavelength varies from the incident wave).  

 

 
Figure 27: Relative error in wavelength of transmitted wave as grid spacing (and 
therefore incident wave sampling rate) is varied. 
 

Figure 27 shows that the error in wavelength from the numerical solution 

increases as the number of points sampling the wave is reduced. Of particular 

interest is the fact that these four lines are not parallel, that is the error in the 

chirped wave for the low wavelengths increases as the number of sampling 

points decreases. This would suggest that there may be some effect by reducing 

the sampling rate of the wave on the overall error of the solution. However, this 

must be investigated further as this initial approach involved decreasing the grid 



 

7.3. Variation of Chirp in Incident Wave 
 

We now consider an incident wave on a plane of plasma (with fixed electric 

permittivity of 0.25) with a significant amount of chirp to see the error in the 





 

 

Peak 
Number 

Wavelength 
(m) 

Distance (m), 
t=2.0216x10-8 s 

Distance (m), 
t=2.3104x10-8 s 

Phase 
Velocity 
(multiples of 
c) 

Error in phase 
velocity 
(multiples of c) 

1 0.6389 10.575 12.3 1.9910 -0.0090
2 0.687 9.925 11.65 1.9910 -0.0090
3 0.7909 9.175 10.9 1.9910 -0.0090
4 0.8449 8.4 10.15 2.0199 0.0199
5 0.9469 7.5 9.275 2.0487 0.0487
6 1.044 6.55 8.275 1.9910 -0.0090
7 1.18 5.475 7.2 1.9910 -0.0090
8 1.319 4.3 6.075 2.0487 0.0487
9 1.505 3.025 4.775 2.0199 0.0199
10 1.741 1.6 3.4 2.0776 0.0776
 
Table 3: Examination of phase velocities recorded from numerical solution of the 
electromagnetic wave in the plasma 
 

The phase velocities recorded from the numerical solution have a mean of 

2.0170c, with a standard deviation 0.0318c. The phase velocities for the low 

wavelengths tend to be lower than predicted, and for the higher wavelengths are 

greater than predicted. Figure 29 summarizes these findings in terms of the 

sampling rate of the incident wave and t



 

 

There appears to be some increase in error of phase velocity as the number of 

sampling points of the incident wave increases to 11.6 points per wavelength. 

The numerical solution for the other points is within 2.5% of the actual phase 

velocity predicted by theory; this is discussed further in 7.4. 

The wavelengths within the chirped pulse were extracted by examining the 

difference in distance along the y-axis of adjacent peaks in the numerical 

solution, as shown in Figure 30: - 

 

 
2
λ

Figure 30: Schematic of wavelength measurement 
 

A comparison of the wavelengths of the analytic solution to the numerical solution 

is shown in Figure 31: - 
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Figure 31: Relative error in wavelength (in meters) against sampling rate of 
incident wave (points per wavelength) 
 
From Figure 31 it can be seen that for the chirped wave regions sampled at 

greater than 4 points per wavelength, the wavelength from the numerical solution 

is within 5 % of that predicted analytically. Below this sampling rate, the 

numerical solution shows significant deviation from theory reporting a wavelength 

with a relative error of 37%. In general there is also an increase in relative error T(hereaeretwog pssibilitiss  for t isbehwav)Tj
3 Tc 0.0024 Tw 17845 0 Td
iour, ewiteor the mehodology ustedtotr

velength isflawed, for t ist



 

7.4. Conclusions 
 
From the analysis in this section, it is concluded that the use of a Yee grid and 

finite radar pulse has utility in accurately modelling the behaviour of chirped 

electromagnetic waves in plasma. The minimum number of sampling points 

required to use this approach is assessed to be 4 points per wavelength at the 

high frequency end of the chirp. Numerical results in this region for the 

wavelength and phase velocity of the wave propagating in the plasma are within 

5 % and 4 % of the analytical solution respectively. No examination of the group 

velocity has been made in this analysis, and is left as an area for future research. 
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8. Summary 
 
The research within this report has shown that the FDTD has the utility to model 

the propagation of electromagnetic waves in various media. When modelling 

finite radar pulses rather than infinite, time-harmonic incident fields, careful 

consideration must be given to the shape and composition of the numerical grid 

and initial conditions, in particular to reduce the dispersion of the pulse 

perpendicular to the direction of motion. In this report a Gaussian function has 

been utilised to set up a continuous, and differentially continuous, incident pulse; 

which may be up or down chirped.  

 

Numerical results for a time harmonic wave propagating in free space show a 

reduction in the peak amplitude of the electric field of up to 0.5% per time step, 

although this rate is reduced by 35% when the pulse width was doubled. 

 

Analysis of the numerical solutions from the examples considered has shown the 

method used in this report can predict electric field peak amplitudes (as predicted 

by Snell’s law/Fresnel equations) of a reflected wave off a dielectric surface to 

within approximately 60% percent. This accuracy is dependent on the angle of 

incident on the wave, grid spacing chosen and dimensions of the pulse as 

defined in the examples in section 6. Due to the size of this error, this method is 

not recommended for use in determining RCS values of dielectrics, due to the 

requirement to accurately determine reflected electric field amplitudes. 

Additionally a systematic error in the wavelength of the radio wave reflected off a 

dielectric was observed, which may be due to the use of a Gaussian function 

along the length of the pulse, though further research is required to confirm this. 

 

An investigation into the required resolution of the modelled chirped radar pulse 

(incident on a plasma) to produce numerical results which are consistent with 

electromagnetic theory has shown that a sampling rate of four points per 

wavelength appears to be sufficient to ensure the phase information and phase 

velocity of the transmitted pulse is recoverable from the numerical solution. From 
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the results there appears to be some increase in error of the plasma wavelength 

as the number of sampling points increases. It is postulated that this is due either 

to the use of a Gaussian function in the pulse or due to an error induced in the 

methodology of measuring the wavelength in the solution. 

 

The use of a Gaussian function to truncate an infinite sine wave so that a finite 

radar pulse in space can be represented numerically appears to be problematic. 

The analysis in this report has shown that the numerical solution for a finite pulse 

propagating in a dielectric/plasma exhibits dispersion as the computation 

progresses forward in time. Dispersion of the electric field is observed 

tangentially to the direction of propagation of the wave. 

 

Future work in this area would be to investigate different finite difference 

formulations of Maxwell’s equations, and assess their capability to model non-
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Appendix A: Vector identities 
 
Lemma 1 
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Lemma 2 
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