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Abstract

The Payne-Whitham model is a macroscopic tra�c ow model, usually

known as the two equation Payne’s model, incorporating two independent

parameters denoted by c0 and � .

It is implemented by producing an adjoint model, derived from the lineari-

sation of the Harten, Lax and van Leer scheme (HLL).

The purpose of this dissertation is to �nd the value of these parameters which

give the optimal solution when using the model. This involves calculating the

cost function, J , and minimising its gradient using data assimilation meth-

ods.

The results show that the system was insensitive to � but demonstrated

good resilience for c0.
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1 Introduction 1

1 Introduction

1.1 Background

Much work has been done, particularly over the past thirty years, on tra�c

ow problems generally based upon a stochastic approach. Just by sur�ng

the web, many studies based on varying theories may be found, among the

most popular are those derived from Lighthill Whitham and especially H J

Payne.

However, when the tra�c density becomes high, the model can be considered

as a continuum process (i.e. suitable for motorways or busy roads) but it

must be remembered that such theory will not be accurate for low density

tra�c ow.

The purpose of this dissertation is to further the work begun by Danila Volpi

in her dissertation ‘Estimation of parameters in tra�c ow models using data

assimilation’ 2009 [1], University of Reading, which was based upon Roe’s

numerical scheme using a �nite di�erence method. The current dissertation

uses an HLL (Harten, Lax van Leer) numerical scheme as an alternative to

Roe for numerical modelling of the tra�c ow and applies Data Assimilation

techniques to estimate the parameters of the model.

1.2 Overview

Tra�c problems are a serious global concern with pollution such as experi-

enced in Mexico city, Los Angeles and tra�c jams in most urban centres.

These problems are set to increase given the forecast in growth of tra�c in

the coming decades.

Figures from the Department for Transport for the period 1994 - 2010 show a

steady overall increasing number of licensed vehicles (excluding motor cycles
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Figure 1: Graph from the Department for Transport [2]

and heavy goods). Although the current economic downturn is reected in

the last two years (see �gure 1) the long term prediction is still more vehicles

on the road in the UK and across the world generally. One recent estimate

suggests an additional 5.7 million cars on the UK roads by 2031, a growth of

21% (Living Streets [3]).
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2 Tra�c Flow Models

2.1 Choice of the model

Apart from having stochastic qualities, three categories of simulation models

for tra�c have been developed:

• Microscopic models represent individual vehicle movements such as

their velocity and position. Although precise, they are computationally

very expensive when modelling a large number of vehicles.

• Mesoscopic models represent vehicle movements as groups sometimes
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model can be represented essentially by the continuity equation:

�t + qx = 0:

By de�ning q = �v we can obtain the equation:

�t + (�v)x = 0; (1)

where,

• �(x; t
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eigenvalues and is diagonalisable, or if it’s eigenvalues are distinct real (J C

Strikwerda [5]).

The eigenvalues of matrix A(u) are:

�1 = v + c0; �2 = v − c0

and their corresponding eigenvectors are:

e1 =

 
1

v − c0

!
; e2 =

 
1=48 -30.97 Td [(and)-326(their)6593 Td [(0)]TJ 0 T.9552 T7552==
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and the scheme fails to capture the shock wave, then it may show vehicles

continuing through the red light, which should not, and probably would not,

happen in reality.

The numerical schemes considered for use in this project are discussed in

sections §3 and §4.
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3 Numerical Schemes- Roe’s Algorithm

3.1 Introduction

Roe’s algorithm (P L Roe [6]) is one of the most basic Riemann approxima-

tions. It is a well established scheme for aerodynamics which can be used to

solve a simple form of a macroscopic tra�c model, the Lighthill-Whitham

1-equation model (LW model). Beginning with this, the LW model is essen-

tially the continuity equation (1),

�t + (�v)x = 0;

where �(x; t) is the tra�c density measured in vehicles per km, and �v is the

tra�c ux, given in vehicles per hour.

3.2 The Theory

Equation (4) is a continuous function which is very di�cult to solve and

cannot be done analytically. In order to solve it numerically, Roe linearises

the homogenious form in each interval (xi�1; xi), replacing A(u) by matrices
~A(ui�1;ui) which, for any adjacent states uL,uR, the following three condi-

tions are satis�ed:

1. Hyperbolicity: ~A(uL;uR) is diagonalisable with real eigenvalues, �

2. Consistency: ~A(uL;uR)→ A(u) as uL and uR → u

3. Conservation: f(uL)− f(uR) = ~A(uL;uR)(uL − uR)

where f(u
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used in this work. However it did provide the starting point used for the HLL
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A drawback to Roe’s method is that is does not check if the solution is entropy

satisfying, and so could be incorrect and contain unphysical discontinuities.

To deal with this an entropy �x must be added, which will ensure that the

solution obtained is correct.



4 Numerical Schemes- Harten, Lax and van Leer 12

4 Numerical Schemes- Harten, Lax and van

Leer

4.1 Introduction

Part of the data assimilation process is to obtain what is known as the tangent

linear model which involves linearising the Roe Riemann solver. However Roe

has absolute value signs in the numerical ux formula which are di�cult to
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where

fHLLi� 1
2

=
�R
i� 1

2

fi�1 − �Li� 1
2

fi + �L
i� 1

2

�R
i� 1

2

(ui − ui�1)

�R
i� 1

2

− �L
i� 1

2

and were used fo00u
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Where,

• u is a state vector

• i represents spacial points from 0 to N along the direction of ow in

the computational grid

• � is the tra�c density

• v is the mean speed

• � are eigenvalues of the matrix A(u) de�ned in §2.3

• f is the tra�c ux

• L and R signify the left and right states respectively

• s is the source term

• Ucap is the equilibrium speed-density relationship, as in §2.3.

4.4 Results

Figure 4: Density-space relationship at the �nal time step.
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Figure 5: Velocity-space relationship at the �nal time step.

The graphs produced appear almost identical to those for Roe. Since the HLL

method is much simpler and entropy satisfying, no entropy �x is required and

so will be suitable for the remaining stages of the project.
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5 Data Assimilation

‘A data assimilation system consists of three components: a set of observa-

tions, a dynamical model, and a data assimilation scheme where the goal is

to minimise a cost function with the constraints of the model equations and

their parameters.’(A Robinson and P Lermusiaux [8])

It is an iterative process, in two senses, one using time steps where ob-

servations are joined with corresponding forecasts from the scheme, (in our

case the HLL scheme) for input to the cost function. The other is in the

minimisation process where the cost function is minimised to produce the

best values for the system parameters forming the parameter vector, p.

The approach is based on an augmented state vector, z, comprising of the

constants c0 and � plus the state variables � and �v. That is:

z = (c0 � � �v)T

=

 
p

u

!

The data assimilation begins with an initial state x0, and incorporates ob-

servations (current and past) into a numerical model in order to produce a

model state, known as the analysis, which most accurately represents the

current state of the system.

The model uses the observations in time iterations, i.e. observations across

the whole time window can be used (where the time window is given between

(t0; : : : ; tn)). The analysis occurs at t0 and best represents the actual true

state and can be used to make future predictions, such as tra�c forecasts for

a road closure.
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5.1 Four Dimensional Variational Assimilation (4D−Var)

4D−Var is a model based on the minimisation of an associated cost function

which measures the di�erence between the observations and the forecasts

made, weighted by the accuracy of the measurements taken. This project

will use 4D−Var to estimate the state parameters � and c0.

5.1.1 Useful Notation

• 3D−Var, Three-dimensional variational analysis

• 4D−Var, Four-dimensional variational analysis

• Truth, xT , The actual true state, e.g. the true temperature of a room

• Analysis, xa, The analysis is our best estimate of this truth given the

information available

• Background, xb, Prior estimate of the truth before the observations are
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5.1.2 Error Handling

Errors undoubtedly arise in observations which can be caused by numerous

reasons, for example inaccuracies in taking the measurements or as a result of

using faulty apparatus. If the errors are not dealt with then this will result

in an unreliable analysis and so all errors must be minimised for the �nal

analysis.

Observation errors are often correlated especially if they are the result of

measurements taken using the same apparatus. These error correlations can

be represented in error covariance matrices for calculation purposes. The

background error covariance matrix B (de�ned only for t0), and the observa-

tion error covariance matrix R are known but can be hard to produce when

they are formed from multiple sources.

With a large number of observations these matrices are very expensive to

invert as B is of size n · n and R is of size p · p where n is the size/length of

the state vector and p is the number of observations. (E Kalnay [10])

5.2 Generic Cost Function

As previously mentioned, 4D−Var is de�ned as the minimisation of the fol-

lowing cost function which measures the di�erence between the observations

and the forecasts, weighted by the accuracy of the measurements, with the

general formula given by:

J(x) = (x− xb)
TB�1(x− xb) + (y− h(x))TR�1(y− h(x)): (5)

So our analysis can be written as:

xa = minxJ(x):



5.2 Generic Cost Function 19



5.3 Cost Function as applied 20

5.3 Cost Function as applied

For simplicity the background term of the cost function has been removed

in the application of this dissertation. The removal is permitted if enough

observations exist, although it is also sensible to do where the background

values are not known su�ciently accurate. Time permitting, we could ex-

periment with including background values, however, as is said it is simpler

to start without it.

Hence, the cost function (5) becomes:

J(p) =
nX
i=0

(yi − hi[xi])
TR�1

i (yi − hi[xi])

=
nX
i=0

(yi − hi[xi])
2R�1

i

=
nX
i=0

�
(�oi − �i)2R�1

� + (voi − vi)2R�1
v

�
where

• yi is the observed value of xi

• hi is the observation operator

• xi ≡

 
�i

vi

!
• �i is the value of � at position i

• vi is the value of v at position i

• �oi is the observed value of � at position i

• voi is the observed value of v at position i
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• R�1
� is the observation error covariance matrix for �

• R�1
v is the observation error covariance matrix for v

This adaption of the cost function is calculated in the HLL scheme.

5.4 Minimisation of the Cost Function

The minimisation of the cost function is the method used to solve the param-
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where, �
@xi
@p0

�
=

�
@(mi�1(xi�1))

@p0

�

=

�
@(mi�1(xi�1))

@pi�1

��
@(mi�2(xi�2))

@p0

�

=

�
@(mi�1)

@pi�1

��
@(mi�2)

@pi�2

��
@(mi�3(xi�3))

@p0

�

=

�
@(mi�1)

@pi�1

��
@(mi�2)

@pi�2

�
:::

�
@(m0)

@p0

�

= Mi�1Mi� ip)M
@
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For further details on the adjoint model, see section §7.

Perturbations �c0 and �� of c0 and � are allowed where �c0 and �� are �%

(1 ≤ |�| ≤ 10) of the initial values assigned to c0 and � respectively. The

new values (c0 + �c0) and (� + ��) are used by the HLL scheme to calculate

a new value for the cost function J(p), p =

 
c0 + �c0

� + ��

!
.

The same values of the perturbations are used in the adjoint model to cal-

culate the gradient of the cost function evaluated at � and c0 using the new

values of the perturbations �c0 and �� .

For example,

��n =
@J

@�

����
t=n

represents the gradient of J with respect to � at time n.

It is this gradient and the corresponding cost function which are used in

the minimisation to obtain the optimal parameters values.
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5.5 Data Assimilation for Parameter Estimation

Figure 6: Example of 4D−Var assimilation in a numerical forecasting system,
graph from [13].

In the graphical representation of the 4D−Var approach, Figure 6, the blue

line is the previous forecast and the red is the corrected forecast after the

model has been run. It shows that the model is minimising the distance

between the forecast trajectory and the observations. This distance is mea-

sured by the cost function, J(p), which calculates the weighted sum of the

squares of these distances. 4D−Var is used re-iteratively to minimise the

cost function with respect to p, the parameter vector.

By �nding the minimum value of this sum we are able to obtain the required

values for � and c0.
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6 Tangent Linear Model

6.1 Introduction

The Tangent Linear Model is essentially the Jacobian of the nonlinear model

operator and is therefore derived directly from the HLL model (A Lawless

[11]) by keeping the statements of variables themselves unchanged and then

adding the related derivatives of these statements. It is required as an in-

termediate stage to obtain the adjoint model, however note that any logical

comparisons remain as in the HLL model. This stage involved the lineari-

sation of the HLL model, for further background theoretical details see N

Nichols [14].

6.2 Theory of the TLM

6.2.1

A typical linearisation model is of the form

xi = mi(xi�1)

= mi�1mi�2:::m0(x0)

= m(x0; ti; t0)

where m is the non-linear model and x0 is the state at the initial time t
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ture positions and what appear to be random uctuations in the constants,

i.e. the relaxation and anticipation constants when observing real tra�c

events. This is achieved by including a randomly generated value for �p in

the model. Hence,

xi + �xi = m(x0;p + �p; ti; t0): (9)

Applying a Taylor series expansion to (9) gives:

xi + �xi = m(x0;p; ti; t0) +) +
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where

X =

0BBBB@
x1

x2

...

xn

1CCCCA
where x1 to xn are the variables required to obtain Z.

Then the tangent linear code for this is:

�Z =

�
@f
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v. Both plots should tend to zero.

The non-linear model (HLL) is run twice, once with unperturbed values for

� and c0 giving m(p), and once with perturbed values for � and c0, giving

m(p + �p). The perturbation vector is given by �p =

 
�c0

��

!
. Following

this, the tangent linear model is run once with the perturbed � and c0 to

give M�p.

The total perturbation, m(p + �p)−m(p), is then compared with it’s linear

component, M�p. (Y Li et al [17]) This is performed by calculating the

relative error as shown below.

The relative error is given by:

‖m(p + �p)−m(p)−M�p‖
‖M�p‖

· 100

where, ‖x‖ =

s
NP
i=1

x2
i is the L2 norm.

Once this was calculated, the logarithmic relative error was plotted against

decreasing perturbation sizes, �, where � = 100; 10�1; 10�2; 10�3; 10�4; 10�5

for the velocity plot, and from 100 to 10�6 for the tra�c density plot. The

graphs obtained are shown below:
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Figure 7: A graph to show the correctness of the TLM after 200 timesteps
for tra�c density.
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7 Adjoint Model

7.1 Introduction

The adjoint model produces the gradient of the cost function which is an

intrinsic part of the minimisation process.

The adjoint variables represent the gradient of the cost function with respect

to the model variables. The TLM starts from the initial HLL values and

calculates the variation between the unperturbed and the perturbed values

for the tangent linear model at t = tmax; the adjoint model will start with

the �nal values produced by TLM and run backwards in both space and time

to estimate the initial state vector values i.e. at t = 0.

7.2 Theory of the Adjoint Model

In order to obtain the adjoint of a linear model, it must be presented in the

form xn+1 = Mxn. The adjoint is then x̂n = MT x̂n+1. Adjoint models are

very useful for computing the derivatives of a function which has numerous

input variables, and so is particulary good for parameter and/or state vector

estimation.

The Adjoint model was generated from the TLM model by ‘reversing’ the

logic/code and exchanging the derivatives on either side of statements; where

they did not exist, the statements remain unchanged.

7.3 Examples

7.3.1 General Example

For example, take the following linear model of two variables y; z with

yn+1 = �yn + �zn

zn+1 = �yn + �zn:



7.3.2 Code Implementation Example 32

This can be written as

 
y

z

!n+1

=

 
� �

� �

! 
y

z

!n

;

i.e. xn+1 = Mxn where x =

 
y

z

!
and M =

 
� �

� �

!
f 9.49.350� �
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0BBBB@
�û(j; i)

�ĥ(j; i+ 1)

�ĥ(j; i)

�ŝ

1CCCCA=

0BBBB@
1 0 0 0

−�t
�x

1 0 0
�t
�x

0 1 0

�t 0 0 1

1CCCCA
0BBBB@

�û(j; i)

�ĥ(j; i+ 1)

�ĥ(j; i)

�ŝ

1CCCCA :

Therefore the corresponding code for the adjoint model of �u (in TLM) is:

�û(j; i) = �û(j; i)

�ĥ(j; i+ 1) = �ĥ(j; i+ 1)−
�

�t

�x

�
· (�û(j; i))

�ĥ(j; i) = �ĥ(j; i)−
�

�t

�x

�
· (−1) · (�û(j; i))

�ŝ(j; i) = �ŝ(j; i
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where the triangular brackets denote the inner product.

The procedure for the validity test is as follows, where M is an operator

and MT is its adjoint.

1. We begin with a random perturbation �x.

2. Then, the TLM code is applied, giving M�x.

3. The adjoint model is then applied to M�x to obtain MTM�x.

4. Calculate 〈M�x;M�x〉.

5. Calculate


�x;MTM�x

�
.

6. Check that 〈M�x;M�x〉 =


�x;MTM�x

�
.

When this test was done, 〈M�x;M�x〉 and


�x;MTM�x

�
produced the same

value, from which it was concluded that the adjoint had been coded correctly.

(Lawless et al [19])
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8 Implementing the Minimisation

When the adjoint model had been obtained and veri�ed, the gradient of the

cost function J was calculated and tested to ensure correctness.

The gradient, ∇J , of the cost function, as determined by the HLL scheme, is

calculated within the adjoint model. This value is then used in the gradient

test, described in §8.1, to ensure that the adjoint model is working correctly.

The gradient, ∇J , is given by equation (8).

The outputs from the adjoint model are �� and �c0 where

��n =
@J

@�

����
t=n

; �cn0 =
@J

@c0

����
t=n

:

As explained in §5.4, ��n is the gradient of J with respect to � at time n and

�cn0 the gradient of J with respect to c0 at time n.

To be con�dent that these values are the correct gradient calculations of J ,

the gradient test was applied.

8.1 Gradient Test

The HLL scheme calculates the cost function J(x;p) for given values of c0 and

� . It then uses perturbed values of these parameters to produce a perturbed

value of J , given by:

J(x;p + ��p):

Using the Taylor expansion:

J(x;p + ��p) = J(x;p) + ��pT∇J(x;p) +O(�2):

Rearranging:

J(x;p + ��p)− J(x;p)

��pT∇J(x;p)
= 1 +O(�):
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Now de�ne

�(�) =
J(x;p + ��p)− J(x;p)

��pT∇J(x;p)

where � takes the values 1; 0:1; 0:01; :::; 10�11 and �p =

 
1p
2

1p
2

!
.

For values of � that are small, but quite not zero, �(�) should show a con-

stant value close to 1 (Navon et al [20]). Figure 9 clearly shows �(�) = 1

over an interval of 6 orders of magnitude. �’s lower limit is restricted by the

accumulation of rounding errors arising in the computer used.

Figure 9: A graph showing �(�) against �.
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Figure 10: A graph showing (�(�)− 1) against �.
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9 Results

The purpose of the project is to determine the optimal values for � and c0

which produce the closest match between the forecast and observed measure-

ments.

To do so, the HLL scheme and the adjoint model are combined with the com-

puter module CONMIN to minimise the cost function, J , and the modulus

of it’s gradient, ∇J , for all speci�ed time steps. To verify that 4D−Var is

suitable to obtain the parameters, it is necessary to investigate the e�ects

of altering the initial ‘guess’ values of � and c0, together with changing the

size of the time window, t, and adjusting the amplitude of the noise on the

observations, represented by the observation error covariences (�� and ��v).

For testing purposes, a random number generator was used to generate uc-

tuations of the u values to produce the observation values used by the cost

function.

Although ∇J is one of the factors of the minimisation process, it should be

noted that it is not possible to solve exactly for ∇J = 0, which is the reason

a user speci�ed convergence attribute, EPS, is embedded within CONMIN.

Note: in CONMIN, EPS imposes convergence when

‖∇J‖ ≤ � ·max{1; ‖p‖};

where � is the value of the EPS attribute.

9.1 Veri�cation

The �gures below are graphical representations of J and ‖∇J‖ against the

CONMIN iteration number. Figure 11 clearly shows J decreasing and then

converging to a value after three iterations. Whereas Figure 12 illustrates

‖∇J‖ decreasing steadily and approaching zero after seven iterations. These
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two graphs demonstrate the minimisation process and a�rm that CONMIN

has been implemented correctly.

Figure 11: A graph to show J against the iterations.

The data for the graphs was produced using the values:

ctrue0 = 50 cguess0 = 55

� true = 5 � guess = 4:5

� = 1 · 10�5

and the time window, t = 3:75 · 10�3.
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low iteration numbers.

9.2.1 Varying c0

In the results below the superscripts g, e and t stand for guess, estimate and

true values respectively, and � is the CONMIN iteration number.

It is expected that when cg0 and � g are given values with a greater di�erence

from their true values, the minimisation will take longer to process, i.e. more

iterations will be required to produce a close estimate. If they deviate too

far, then the model might not produce close values.

cg0 10 20 40 50 55 60 80 100
� g 4.5
t 5 · 10�3

� 10�6

ce0 50 50 50 50 50 50 50 50
� e 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
J 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3 10447.3
∇J 1113.6 24162.6 7919.5 932.8 5551.7 3906.1 10738.4 4876.2
� 20 11 13 13 15 10 14 9
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cg0 10 20 40 50 55 60 80 100
� g 4.5
t 5 · 10�3

� 0.7
ce0 49.443 49.443 49.443 49.443 49.443 49.443 49.443 49.443
� e 124469.6 190869.8 161542.0 167884.9 188998.3 216759.4 169437.1 136860.9
J 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3 12546.3
∇J 0.8 0.6 0.7 0.7 0.6 0.4 0.7 0.8
� 32 29 27 26 28 33 29 29

Table 2: c0 varying with � = 0:7

This is a general point concerning the results, that the solution may be

reached when the speci�ed level of convergence is obtained, irrespective of

whether minimisation has been completed.

When the same values are used with less perfect observations, the model

still manages to reach a close value for c0, of 49.443. However this change

has caused � e to have extremely large values (see Table 2) which do not ap-

pear to correlate with the values of c0. However, J converges to 12546.3 and

∇J tends to zero suggesting that minimisation has occurred.

9.2.2 Varying �

Varying � g had no e�ect on the value of ce0 in the tests conducted as can

be seen in Tables 3 and 4. In each of these cases, a good value of ∇J that

approached zero was recorded, although the values of � e were far from the

true value especially so for the higher value of �.

From this, it can be concluded that minimisation was achieved giving a good

value of c0 despite � varying and hence the process appeared to be highly

insensitive to the parameter � (for reasonable values).
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cg0 55
� g 3 4 5 6 7 10 15 30
t 5 · 10�3

� 0.01
ce0 50.01 50.01 50.01 50.01 50.01 50.01 50.01 50.01
� e 48.92 48.29 48.29 48.28 48.29 48.29 48.29 48.29
J 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8 10447.8
∇J 0.051 0.017 0.045 0.158 0.028 0.005 0.084 0.037
� 29 24 21 22 22 25 22 16

Table 3: � varying with � = 0:01

cg0 55
� g 3 4 5 6 7 10 15 30
t 5 · 10�3

� 0.7
ce0 49.443 49.443 49.443 49.443 49.443 49.443 49.443 49.443
� e 158542 131612 187058 99929 162814

49.443

49.443
1584

�

15854249.44349705849729492814
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Despite expecting the time interval to have an e�ect on the results, Ta-

ble 5 shows that the model attained very good estimates for the parameters,

regardless of t. Table 6, with a larger value of �, produce similar values for

c0 and the cost function, however � uctuated widely and the gradient to a

lesser extent.

It should be noted that as t increases, since �t remains constant throughout,

more observations are used in the cost function and hence in the minimisation

calculations.

cg0 55
� g 4.5
t 0.00025 0.00125 0.0025 0.00375 0.005 0.00625 0.0075 0.0125
� 10�6

ce0 50 50 50 50 50 50 50 50
� e 5.007 5.001 5.001 5.001 5.001 5.000 5.000 5.000
J 4:8 · 102 2:5 · 103 5:1 · 103 7:8 · 103 1:0 · 104 1:3 · 104 1:6 · 104 2:7 · 104

∇J 2.6 4:3 · 106 8:9 · 10 1:7 · 106 5:6 · 103 1:2 · 107 1:4 · 107 4:4 · 106

� 11 31 11 28 27 18 30 20

Table 5: t varying with all other parameters remaining constant, using � =
10�6.
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cg0 55
� g 4.5
t 5 · 10�3

� 10�6 10�4 10�3 10�2 10�1 100 2 5
ce0 50.000 50.000 50.001 50.009 49.938 49.185 48.237 44.023
� e 5.000 5.045 5.493 48.290 1211698 123999.7 23747 163.2
J 10447.3 10447.3 10447.3 10447.8 12158.0 12563.6 12563.6 12425.6
∇J 5551.7 64.3 2.5 0.0 4.6 0.5 4.8 0.4
� 15 13 14 28 35 28 28 14

Table 7: � varying with all other parameters remaining constant.

9.2.5 Further Investigations

Further investigations were conducted, some of which are included in Tables

8 and 9 below. The tests involved varying two or more parameters at the

same time and using more extreme values for the parameters. This tests the

model’s resilience when using exaggerated values.

The �rst observation from Table 8 is that c0 was estimated accurately ir-

respective of the values of c0, � or �, within the given ranges. � also approx-

imated well for small � even though it’s initial value deviated signi�cantly

from the true value. However for larger values of �, as � g approached it’s

true value, the estimated value became highly inaccurate.

This agrees with the previous comments about the insensitivity of � which

receives further support from the results in Table 9, where extreme values

of � g, providing that � ≤ 1, did not prevent the attainment of very good

values for ce0. For higher values of � (> 1), as � increased, the values for cg0

deteriorated despite good values for ∇J and an increasing time window.
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cg0 80 74 68 62 56 50
� g 3 3.4 3.8 4.2 4.6 5
t 5 · 10�3

� 10�6 10�5 10�4 10�3 10�2 10�1

ce0 50.000 50.000 50.000 50.001 50.009 49.938
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11 Conclusion

Many other tests were run apart from those results included in section §9 and

in most cases a good estimate value for c0 was obtained. However, the values

for � were often very far from the true value as was ∇J from the expected

value of near zero. Even when ∇J was near zero, � still did not approach

it’s true value.

We explain the result of � varying and having marginal a�ect on the other

values by saying the system is � insensitive.

We can further explain the failure of ∇J to tend to zero in all cases by

the convergence factor in CONMIN, that resulted in the process completing

with good (convergent) values for c0 and the cost function before minimisa-

tion of ∇J had been achieved. With a more powerful and accurate computer

it is possible to increase the machine accuracy parameter and adjust the EPS

value for CONMIN which would allow convergence to occur at a later stage in

the processing, thereby allowing more opportunity for minimisation to occur.

The programs, although tested as well as could be in the time allowed, are

still likely to contain errors which further testing could eradicate if time

permitted. Also more tests could be made with di�erent combinations and

magnitudes for the parameters used by the model to improve the perfor-

mance.

The model exhibited resilience to a wide range of guess values (for cg0 and � g),

generally achieving a good estimate for c0. Good resilience was also recorded

in the test for values of the covarience factor � ≤ 1.

It was also concluded that � had insigni�cant inuence on the minimisa-

tion of J and hence in estimating the state variable.
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It had been hoped to use real data collected from the M25 motorway but

this stage was not reached because of time restriction, but it is anticipated

that this will be done following the completion of this dissertation.
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12 Appendix A- Glossary

Anticipation: the changes made by drivers to changing tra�c conditions

around them. Used in Payne’s equations.

Continuity equation: di�erential equation that describes the conserva-

tion of a conserved quantity.

Convection: changes in the mean tra�c velocity caused be vehicles joining

or leaving the ow. Used in Payne’s equations.

Cost function: measures the bias between the observations and the model.

Data Assimilation: is the incorporation of observational data into a nu-

merical model to produce a model state which most accurately describes the

observed reality.

EPS: is the user supplied convergence parameter to CONMIN.

Hyperbolic: a system of partial di�erential equations is hyperbolic if for

xp + A(x)xq; A(x) is diagonalisable and has real eigenvalues.

Insensitive Parameter: ability of a model or system to be una�ected by

widely ranging values of the parameter.

Relaxation: the tendency of tra�c ow to approach an equilibrium ve-

locity. Used in Payne’s equations.

Stochastic process: a process whose behaviour is essentially non-deterministic,

that is the system’s subsequent state is a combination of the process’s pre-

dictable actions and a random element.
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Tangent Linear approximation: An assumption used in applications of

tangent linear models and adjoint models that the evolution of small per-

turbations in nonlinear models may be approximated by tangent linear (and

adjoint) equations for �nite time intervals (ref: 1).

TLM: Tangent Linear Model. A model, comprising tangent linear equa-

tions, that maps a perturbation vector, �x(t1) = M�x(t0), from initial time

t0 to forecast time t1. Where, M is the tangent linear operator and x is the

model state vector.

Tra�c ow model: formulates the relationships between tra�c ow char-

acteristics
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13 Appendix B

13.1 Data Flow Diagram

13.2 Program Outlines

13.2.1 Introduction

All programs were written in Fortran using the Plato development applica-

tion, a brief description of their function and the data input/output �les is

given below. A Control �le is maintained of the initial values used by HLL

together with other parameter values that are required to be passed between

programs.
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13.2.2 Roes

The �rst program of the unlinearised model from which the HLL program

was developed.

13.2.3 HLL 2�les

The Fortran implementation of the HLL model starts from initial values of

the state vector and produces an output �le of u at the �nal time step. The

constants c0 and � are then randomly perturbed and the model re-run. The

cost function is calculated for each condition.

Output:

Control �le output �le containing parameter values

HLL lin state output �le of containing values of u at each x position for each

time step

HLL 01 output �le of �nal values of u using unperturbed values

HLL 02 output �le of �nal values of u using perturbed values

HLL
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each time step

Output:

TLM 01 containing �nal time step values of �u

13.2.5 ADJ

The program performs the Adjoint model processing, but in the reverse order

to processing by HLL and TLM. (i.e. starting at the �nal time and working

backwards to the start time, and within each time step beginning with the

greatest x value and working backwards to the smallest.) Again the equiva-

lent HLL values of u are used at the start of each 0x0 step (HLL values being

accessed in reverse order to which they were produced) together with the

�nal time step values of �u from TLM for the �rst time step only.

The program includes the calculation of the inner products using the output

of TLM and ADJ, to verify the correct working of the system.

Calculates inner product 1 = (�c0)2+(��)2+(�u)2 (using the TLM �nal delta u

�le values). Equivalent of (M�x):(M�x).

Calculates inner product 2 = ��:�
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The program includes the calculation of the gradient of the Cost function

for use by CONMIN as detailed below:

∇J = 2 · (�ĉ0 + ��̂)

Input:

Control �le containing parameter values

HLL lin state containing all values of unlinearised u (to be used at the start

of each ‘x’ step)

TLM �nal delta u containing �nal time step values of �u.

HLL observs containing values of observations values at each x position for

each time step

Output:

Control �le updated to contain �nal values of �ĉ0 and ��̂

Results of inner products calculations.

13.2.6 Merge err



13.2.7 CONMIN 57

13.2.7 CONMIN

CONMIN is a computer subroutine that �nds the values of c0 and � that

produce a minimisation of the cost function. In summary, it is called from a

small Fortran program and then repeadily calls HLL and ADJ to calculate

the J and ∇J respectively until convergence of the values is achieved.

13.3 Control �le values

Record 1: N , c0, �
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