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Abstract

Data assimilation is a means of estimating an atmospheric or oceanic state by com�

bining observational data with a prior estimate of the state� usually from a numerical

model� We look at application of data assimilation to numerical weather prediction

using control theory�

Firstly� we apply observer theory to successive correction methods of data as�

similation to show when they converge in time to the true solution� However� we

mostly focus on �D variational data assimilation schemes� Here the approach is to

minimize a cost function penalizing distance from observational data over a time

interval� subject to the constraint that the model equations are satis�ed� The min�

imization problem can be solved by iterating on the model initial state� which is

referred to as �using the initial state as the control vector��

Our aim is to provide a consistent theoretical foundation which allows for model

error in variational assimilation� We investigate the �correction term technique� in

which a constant correction term approximating model error is added to the model

equations and used as a control vector instead of� or as well as� the initial state�

We use the concept of complete N �step observability to give conditions for a unique

solution of the minimization problem using di	erent control vectors�

We suggest a generalization of the correction term technique in which we use

state augmentation to estimate a serially correlated component of model error along

with the model state� In particular� we consider using a correction term representing

model error that evolves as the model state evolves� We investigate the e	ectiveness

of the constant and the evolving correction term in compensating for di	erent types

of model error using simple linear models� We also use the correction term technique

for a 
D nonlinear shallow water model in the presence of di	erent types of model

error� and �nd that a constant correction term can compensate for non�constant

model error on a signi�cant timescale�
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Chapter �

Introduction

We start with an introduction to data assimilation� particularly focusing on its

application to numerical weather prediction �NWP�� This is followed by an overview



in forecast veri�cation� for archive records and for climate studies� In oceanogra�

phy� on the other hand� the main use of data assimilation is in studies to increase

understanding of ocean circulations� although it is also used in short range ocean

forecasting �����

A wide variety of data assimilation schemes have been proposed and developed

over the last �� years or so� and many of them are taken from state estimation tech�

niques in engineering� We now in



tions over the assimilation interval� and distance from a prior estimate� subject to

the constraint that the solution �the analysis� is consistent with the model dynamic�

s� In the strong constraint approach to the �D variational assimilation problem� the

constraint is that the solution must satisfy the model equations exactly� In the weak

constraint approach� the solution is only required to satisfy the model equations

approximately� and hence some allowance is made for model error�

Meteorological observational data available for assimilation

We now give a brief description of the types of observational data available for use in

operational meteorological assimilation to produce analyses for weather forecasting�

a fuller description is given in the book by Daley �����

Meteorological observations are available on a world�wide scale� and there is

international cooperation on the data collection and distribution to the various na�

tional meteorological centres� A



The quality control of observ



crepancy between noisy data and a prior estimate of the state can produce spurious

inertia�gravity waves ����� Although primitive equation models do in fact exhibit

gravity waves which describe a small amount of the �ow� atmospheric and ocean�

ic �ows at mid�latitudes on the timescale of a forecast are well described by the

relatively slow Rossby waves�

Early NWP models were often quasi�geostrophic� and hence avoided the need

for initialization� since these models produce only Rossby waves� When primitive

equation models became operational for forecasting in the early 
�
�s� initialization

became necessary� Initialization has generally been carried out separately from

the data assimilation procedure� by projection of the solution onto the subspace

described by the Rossby modes ����� or by the process of nonlinear normal mode

initialization introduced by Machenhauer ����� In �advanced� data assimilation

techniques� however� it is possible to incorporate the initialization process in the

assimilation� This may be done in Kalman �ltering applications by projection of



on� but only as computer power increased was this approach further developed and

used extensively in an operational context� The method of optimal interpolation

�OI� suggested by Gandin in 
��� ����� attempts to provide a statistically optimal

estimate of a linear system at a given time� Variants of this method� which are

also applicable to nonlinear systems� have been applied widely for operational data

assimilation in the 
���s and 
���s� The three�dimensional variational assimilation

�or �DVAR� method �
�� can be seen as a di	erent approach to solving the same

problem as OI� and is currently being developed for operational use at several NWP

centres�

In the earlier days of data assimilation� observations were available mainly at

the synoptic and sub�synoptic times� Since observations from satellites have be�

come available� however� some observations are available continuously and it has

become more important that data assimilation techniques should draw upon the

time�tendency information available in the observations� For this reason� there is

much interest at present in the design and development of �D data assimilation

methods� Two examples of such methods include the Kalman �lter� and �D varia�

tional assimilation�

The Kalman �lter� proposed by Kalman in 
��� ���� for engineering applications

can be used as a sequential �D assimilation method� For a linear model and under

certain assumptions� it provides a statistically optimal solution at a given time taking

into account all previous observations� The method in unsimpli�ed form is generally

considered too expensive for use with large operational models in meteorology and

oceanography ����� but various simpli�cations ha









Chapter �

Mathematical Background

Throughout this thesis� we will be looking at data assimilation for meteorology and

oceanography using a framework of mathematical control theory� In the �rst sec�

tion we introduce the general model system� using control theory notation� Then�

in Section ���� we give background on some of the basic concepts of control theory

which will be useful� and state de�nitions and theorems which will be referred to

later on� In Section ��� we give background on nonlinear optimization theory� and

in Section ��� describe descent algorithms that may be used to iterate to an optimal

solution� Sections ��� and ��� provide the background for the variational data as�

similation methods� Finally� Section ��� gives background on probability theory and

the concept of a �most likely� estimate� which is widely used in data assimilation�

In this background chapter� we limit our discussion to discrete systems� since

this is most convenient for application to numerical models of meteorology and

oceanography� Many texts on control theory concentrate on continuous systems�

with only brief reference to the discrete case� However� we treat the discrete case

since the transition from the continuous to the discrete case is not always immediate

�����

��� Introducing the System

To start with� we introduce the general nonlinear model system which we will use

throughout the thesis� and explain what we mean by the true model state and model


�





where �k � U � U is a uniquely de�ned nonlinear solution operator �

�� We now

de�ne the true model state x



IRpk represents the observational error at time tk� In the context of control theory�

the observations are generally referred to as model outputs� If observation times do

not coincide with the timesteps tk� then hk will include temporal interpolation� The

number of observations pk varies with time� and this includes the possibility of no

observations at some timesteps�

Observational error has two components usually referred to as measurement er�

rors and representational errors� The measurement errors are due to errors in the

measurement instruments and in the transmission of information� and the represen�

tation errors are due to errors in hk� More detail on the form of observational error

is given in �����

����� The linear assimilation system

In some cases we will limit our attention to linear theory� and so we consider the

discrete� linear� time�varying model

xk�� � Akxk �Bkuk� ���
�

with xk and uk de�ned as in ���
�� and with Ak � IR
n�n� Bk � IR

n�m� We assume

that Ak is nonsingular and that Bk has rank m for all k� so that speci�cation of x�

and the uj� j � �� ��� k � 
 uniquely determines xk for k � �� We suppose that the

evolution of the true model state xtk satis�es

xtk�� � Akx
t
k �Bkuk � �k� k � �� ��� N � 
� �����

where �k � IR
n is the model error as de�ned in Subsection ��
���

We now suppose that the observations are related linearly to the true model

state as follows�

yk � Ckx
t
k � �k� k � �� ��� N � 
� �����

with yk and �k de�ned as in ����� and Ck � IR
pk�n�

If the assimilation system ����������� is a linearization of the system �����������

about some reference state xok and input u
o
k� then Ak and Ck are the Jacobians of fk

and hk respectively with respect to xk� and Bk is the Jacobian of fk with respect to

uk� all evaluated at �xok�u
o
k�� In this case� the model ����� is often referred to as the

tangent linear model of ����� in data assimilation literature ����� �����


�



����� State transition matrix

For some applications of the linear system� it will be useful to relate the state at

a given time to the state at any earlier time� We therefore introduce the state

transition matrix  �k� j�� for the unforced system

xk�� � Akxk� ���
��

which relates the state at time tk to the state at an earlier time tj as follows� ����

xk �  �k� j�xj �k � j� ���

�

with

 �j� j� � I �j� ���
��

For the system ���
�� the state transition matrix is given uniquely by

 �k� j� �
k��Y
i�j

Ai� ���
��

Clearly we have

 �l� j� �  �l� k� �k� j� �l � k � j� ���
��

and since the matrices Ai are assumed to be nonsingular� we also may de�ne

 �j� k� �  ���k� j�� �j � k� ���
��

For the forced model ���
�� we now have ���

xk �  �k� j�xj �
k��X
i�j

 �k� i� 
�Biui �k � j� ���
��

The relationship ���
�� will be important later on in the thesis�

��� Controllability and Observability

The general aim of control theory is to regulate the state to some desired state by

a suitable choice of the inputs which we are free to choose� The variables we use to

manipulate the state are known as control variables� Generally� the model inputs

are used as control variables� In some cases we might be free to choose the initial


�





De�nition ��� The system ���

�����
�� is completely ��step controllable at time tj

if for any arbitrary state xj at time tj and any desired state xd� there is an admissible

control sequence uj� ���uj���� on the discrete time interval �tj� tj����� which drives

the system to the desired state xd at time tj���

If the system is completely ��step controllable for any time tj� it is completely

��step controllable�

If the system is completely ��step controllable �at time tj� for some �� we might

simply say that the system is completely controllable �at time tj��

De�nition ��� The system ���

�����
�� is completely ��step observable at time

tj if and only if knowledge of the outputs yj�yj��� ���yj���� and of the inputs

uj �uj��� ���uj���� is su�cient to determine the state xj�

If the system is completely ��step observable for any time tj� it is completely

��step observable�

If the system is completely ��step observable �at time tj� for some �� we might

simply say that the system is completely observable �at time tj��

����� Theory for the general linear case

For the linear system ���

�����
��� the following theorems can be used to determine

whether the system is controllable or observable� We �rst introduce the ��step

controllability matrix Cj� for time tj and the ��step observability matrix Oj
�� for time

tj as follows�

Cj� � �Bj��� �j� j � 
�Bj��� � � � � �j� j � �� 
�Bj��� � ���
��

Oj
� �

�
B





�ii� To show that Rank �Oj
�� � n is a necessary condition for complete ��step

observability at time tj� we suppose that the system is completely ��step observable

at time tj� but that Rank �Oj
�� � n� and let uk � �� k � j� ��� j � � � ��

Then there exists a nonzero vector v � IRn� such that

Oj
�v � �� ������

Putting xj � v in ������ with zero input� we have z � �� which violates complete ��

step observability �since we have zero output over the whole time interval �tj� tj�����

although the state at time tj is not zero�� �

W



Later in the thesis� we will want to apply theoretical results involving the concept

of complete ��step observability to the special case of a time invariant system� and

where it is possible� to express the results in terms of the more familiar concept of

complete observability� The following theorem enables us to do this�

Theorem ��� a� If the linear time�invariant system is not completely observable�

then it is not completely ��step observable for all positive integers �	

b� If � � n then the linear time�invariant system is completely ��step observable if

and only if it is completely observable	

Proof

a� We must show that Rank�O�
n� � n implies Rank�O�

�� � n for all positive integers

�� and we do this by showing

Rank�O�
�� � Rank�O

�
n� ������

for all ��

This is clearly true for � � n� We suppose that � � n�
� By the Cayley Hamilton

theorem ���� we have

An �
n��X
j��

�jA
j ������

for some �j � IR� and so CAn can be be written as a linear combination of the rows

of O�
n� and hence ������ holds� Similarly� for any � � n�

A� � �
n��X
j��

�jA
j�A��n� ����
�

and hence CA� is still a linear combination of the rows of O�
n� and so ������ holds

for all positive integers ��

b� It follows from part a� that for any positive integer �� the linear time�invariant

system is completely ��step observable only if it is completely observable� We now

suppose that the linear time invariant system is completely observable� and hence

is completely n�step observable� As noted earlier� complete n�step observability


�



implies complete ��step observability for any � � n� and so part b� of the theorem

holds� �

One further result which will be useful when considering the time invariant case

is the Hautus condition ����� which is given in Theorem ����

Theorem ��� The linear time�invariant system ��	�
����	��� is completely observ�

able if and only if� � 	 � C and � s � IRn�

�A� 	I�s � � and Cs � � 	 s � �	

��� Nonlinear optimization theory

The theory we give here provides background for the variational methods of data

assimilation which we investigate in this thesis� Useful texts for this material include

����� ����� ����� �
��� and �����

����� Preliminaries

A Hilbert space is a complete� linear inner�product space� All the properties of

Hilbert spaces are important for our purposes ����� We denote the inner product

de�ned on a Hilbert space V by � x�y �V� for any two elements x and y � V� We

note that real� n�dimensional Euclidean space IRn with the Euclidean inner product

�or �dot product�� is a Hilbert space� and throughout the thesis use the notation

� x�y ��� xTy ������

to refer to this inner product�

Later in the thesis� we refer to the adjoint of a linear operator� For a linear

operator A from a Hilbert space U to a Hilbert space V� the adjoint operator A� is

the linear operator from V to U for which� for all u � U and v � V

� v� Au �V�� A�v�u �U � ������

In the case where U is IRm and V is IRn� both with the Euclidean product �or dot

product�� A � IRm � IRn is an n�m matrix and we have

� v� Au �� vTAu � �ATv�Tu �� ATv�u �� ������

��



so that AT � IRn � IRm is the adjoint of A�

We consider a nonlinear� real valued function J on V� We suppose that J is

three times di	erentiable at v� � V� and that v��
�v � V represents a perturbation

of size 
 � ��
� 
� in a direction �v from v�� The Taylor series expansion of J about

v� can be written as follows ����

J �v� � 
�v� � J �v�� � 
 � rvJ �v��� �v �V �

� � �v�Hv�v���v �V �O

��
��

������

where the vector rvJ �v�� � V is the gradient of J with respect to v at v�� and

the linear operator Hv�v�� � V � V is the Hessian of J with respect to v at v��

Throughout the thesis� we use this notation to denote the gradient and the Hessian

of a real valued function�

����� Unconstrained minimization

We suppose that we wish to minimize a real valued function J � usually referred

to as a cost function� which is de�ned on a Hilbert space V� The unconstrained

minimization problem we consider is

Problem U 


Minimize J � ie� �nd v� � V such that

J �v�� � J �v� ������

for all v in some neighbourhood N 
 V of v�	

If such a v� exists� it is called a local minimum of J � If the inequality in ������

is strict� then v� is a unique local minimum� If N �v�� � V� then v� is also a global

minimum�

Since we have no constraints� the following is a necessary condition for v� to

minimize J

rvJ �v
�� � �� ����
�

In the special case that the cost function is quadratic in v�

J �



�
� v� Av �V � � b�v �V �c� ������

�




where b � V and c � IR are constants and A � V � V is a linear operator� if A is

a positive de�nite operator� then a minimum v� exists� is unique� and is given by

v� � �A��b� ����� If� however� A is only positive semi�de�nite� a minimum v� exists

but is not unique� since v�� z is also a minimum for any z satisfying � z� Az �� ��

Further� if A is inde�nite� then there is no minimum�

We now return to the general case where J is not necessarily linear or quadratic�

We suppose J is three times di	erentiable� and so can be expanded in a Taylor

series of the form ������� Then� for k
�vk small enough� the quadratic part of the

expansion dominates� so if rv�v�� � �� and Hv�v�� is a positive de�nite operator�

then v� is a unique local minimum of J ����� If Hv�v�� is only a positive semi�

de�nite operator� we can draw no conclusions about v�� because of the in�uence of

the higher order terms in the expansion� However� if Hv�v�� is inde�nite� then v�

cannot be a minimum�

����� Constrained minimization

In this subsection� we consider constrained minimization of a real valued function

J over IRn� which with the Euclidean inner product ������ is a Hilbert space�

The constrained minimization problem we consider is

Problem C �

Minimize J subject to the r constraints

gk�v� � �� k � 
� ��� r� ������

or equivalently

g�v� � �� ������

where r � n and g is a vector of r real valued functions gk � IR
n � IR� k � 
� ��� r

which are continuously di�erentiable	 We further assume that the ve



Lagrangian function associated with Problem C is de�ned to be

L�v��� � J �v� � �Tg�v�� ����
�

where � � IRr is a vector of r Lagrange multipliers 	k� A solution of Problem C�

if it exists� can be found by extremizing the �unconstrained� Lagrangian function L

with respect to v and �� Necessary conditions for an extremal are �����

rvL � �� ������

r�L � �� ������

Any vector v � IRn satisfying ������ can be written in the form

v �

�
B� u

x

�
CA ������

with u � IRn�r and x � IRr� where the n�r components uj may be chosen indepen�

dently� and the r components are determined from the choice of the uj through ������

����� We refer to the n � r variables uj as control variables� and the vector u as a

control vector�

����� Solving Problem C by reducing the control vector

We now describe an iterative method for �nding v� satisfying necessary conditions

for a solution of Problem C by iterating on the control variables� Since this involves

iterating on the control vector u rather than on the full vector v� this technique

is referred to as �reduction of the control vector�� This method was suggested for

application to �D variational assimilation by Le Dimet and Talagrand ��
�� who

used the optimal control approach of Lions ���� rather than the Lagrange multiplier

approach we use here�

Necessary conditions for an extremal of L are given by

ruL � ruJ �v� �GT
u�v�� � �� ������

rxL � rxJ �v� �GT
x�v�� � �� ������

r�L � g�v� � �� ����
�

��



where Gu � IR
r�	n�r
 and Gx � IR

r�r are the Jacobian matrices of g with respect

to u and x respectively� Since the vectors rvgk�v� for k � 
� ��� r are linearly

independent� the Jacobian Gx�v� is invertible�
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����� The steepest descent algorithm

In this case� the direction dk in ������ is simply the direction ruJ �uk�� Gk is the

identity� and �k is chosen to ensure

J �uk��� � J �uk�� ������

In practice� this might be done by setting �k � 
 initially on each iteration� and

halving �k until ������ holds� Alternative step�length choices are given in �����

The advantage of the steepest descent method lies in its simplicity� but the

rather ad�hoc method of �nding the step�length can render it very ine�cient since it

involvesmany evaluations of J andruJ � Further� choosing the direction dk with no

consideration of the previous directions used is not the most e�cient approach� The

conjugate gradient method provides a more sophisticated approach to calculating

�k and dk� and we describe this next�

����� The conjugate gradient method

The aim of the conjugate gradient method �CGM� is to choose the kth descent

direction dk to be a projection of the gradient ruJ �uk� onto a subspace of IR
n

which is orthogonal to dj for j � �� 
� ��� k � 
� Primarily� the CGM addresses an

unconstrained minimization problem with quadratic cost function�

J �



�
� u� Au � � � b�u �� ����
�

whereA � IRn�n is symmetric� positive de�nite� and b � IRn� The method calculates

the optimal step�length �k



where

�k �
� rk�dk �

� dk� Adk �
� �k �

� rk





The INRIA N�QN� minimization algorithm

This minimization algorithm uses the the quasi�Newton update formula ������� in

which Gk� the current approximation of the inverse Hessian� is calculated using a

limited memory BFGS update� It is based on an algorithm by Nocedal� ����� with

an added preconditioning option� and is described in the documentation ���� and in

the paper by Gilbert and Lamar"echal �����

The general inverse BFGS formula� for approximating the new inverse Hessian

Gk�� from Gk is as follows

Gk�� � �I �
sk�yk�T

�yk�T sk
�Gk�I �

yk�sk�T

�yk�Tsk
�
sk�sk�T

�yk�T sk
�� ������

where

sk � uk�� � uk� yk � ruJ �u
k����ruJ �u

k�� ������

The matrix Gk is not stored explicitly in memory� but the product GkruJ �uk� is

calculated from a diagonal matrix Dk and !m pairs of vectors

f�yj� sj� � k � !m � j � k � 
g ������

if k � !m � 
� or just k pairs otherwise� In this way� at the kth iteration with

k � !m � 
� the oldest pair is discarded and a new pair added� The matrix Gk can

be represented using �� !m�
� n�vectors� where !m is an integer supplied by the user�

and this is all that need be stored in memory�

The form of the starting matrix Dkk



The step�length �k in ������ is chosen to satisfy Wolfe�s conditions

J �uk��� � J �uk� � ���
k � ruJ �u

k�� GkruJ �u
k� �� ������

� ruJ �u
k���� GkruJ �u

k� � � �� � ruJ �u
k�� Gkru�u

k� �� ������

where the constants �� and �� must be set in the ranges � � �� �
�
� and �� � �� � 
�

In the algorithm� these are set at the values �� � 
���� �� � ����

The algorithm provides the option of preconditioning by altering the way in

which Dk is speci�ed in ������� In the preconditioned version� Dk is calculated from

Dk�� using a diagonal update formula� and the matrix is now diagonal with respect

to a new inner product to be speci�ed by the user� This change of inner product

is equivalent to a change of orthonormal basis from the canonical basis for IRn� and

this change of basis forms the preconditioning� If the usual inner product is the

Euclidean product� as assumed in the above� then a new inner product could be of

the form

� a�b �L� aTLTLb� ���
��

where L is nonsingular� and the Canonical basis is altered by this change from the

basis fejg� j � 
� ��� n to the basis fL��ejg� Rather than storing the matrix L� or

the new basis� the user provides a subroutine which speci�es how the inner product

is to be calculated�

��� Background on probability theory

This section gives a brief overview of probability theory� The aim is to introduce the

concept of a statistically �most likely estimate�� which is a very important concept

in data assimilation� Before this� we give necessary de�nitions and background on

the Gaussian distribution� References for this theory include ���� �
��� ���� and �����

����� De�nitions

Random variables and probability density functions

A random variable can be thought of as a numerical value associated with a random

event� The range of a random variableX� denoted RX � is the set of all possible values

��



of X� We consider here only continuous random variables� or random variables with

an uncountable range�

An n�vector X of random variables Xj� j � 
� ��� n we refer to as a random n�

vector� or simply as a random vector if its dimension is not to be speci�ed� The

range of a random n�vector we denote RX� where RX � RX�
�RX�

� ����RXn �

Associated with any random variable X is a probability density function �abbre�

viated to pdf�� pX � RX � IR� The pdf of a continuous random variable X describes

how the unit of probability of X is distributed on the real line� The probability

P �a � X � b� that X takes a value between a and b � IR is given by

P �a � X � b� �
Z b

a
pX�x�dx� ���

�

The other fundamental properties of a pdf are

pX�x� � � for all x � RX � ���
��

Z
RX

pX �x�dx � 
� ���
��

We write the pdf of a random n�vector as pX � RX � IRn� where pX is the vector

of the pdfs of the random variables Xj � j � 
� ��� n�

The joint pdf of two random variables X and Y is given by pXY � RX�RY � IR�

with

��a � X � b�
�
�c � Y � d�� �

Z b

a

Z d

c
pXY �x� y� dx dy� ���
��

pXY �x� y� � � for all x � RX � y � RY ���
��Z
RX

Z
RY

pXY dx dy � 
 ���
��

The random variables X and Y are independent if

pXY �x� y� � pX�x�pY �y�� ���

�

The conditional pdf of X� given that Y has taken a value y� �so y� is a realisation

of the random variable Y � is de�ned to be

pXjY�y� �x� �
pXY �x� y�

pY �y��
� ���
��

��



This relation is from Bayes theorem� and it can also be written in the form

pXjY �y



The standard deviation of X is de�ned as

��X� � �VarfXg�
�

� � ������

The covariance of two random variables X and Y is de�ned as

CovfX�Y g � Ef�X � EfXg��Y � EfY g�g� ����
�

and the correlation between X and Y is

CorfX�Y g � EfXY g� ������

If CovfX�Y g � �� then X and Y are uncorrelated � The correlation coe�cient of X

and Y is

��X�Y � �
CovfX�Y g

��X���Y �
� ������

where �
 � ��X�Y � � 
�

By linearity of the expectation operator� we have for matricesA and B of suitable

dimensions

CovfAX� BYg � ACovfX�YgBT � ������

We also note that if X and Y are unbiased� then

CovfX�Yg � EfXYT g� ����
�

By the covariance matrix of a random vector X� we mean the covariance matrix

CovfX�Xg�

����� The Gaussian distribution

We now suppose that a random variable X represents random error� The Gaussian

distribution� also called the Normal distribution� has the following characteristics

that make it suitable for representing errors�


� Continuity

�� An unbounded range

�� Symmetry about the mean �so positive and negative errors are equally likely�

��



�� A �bell�shaped� distribution� which gives small probability to large errors and

largest probability to the smallest errors�

�� Tractability� ie a pdf that is easy to work with�

The Gaussian pdf for a random variable X with mean � and variance �� is given by

pX �x� �

q
�����

exp

�
��x� ���

���

�
� ������

For a random n�vector with mean � � IRn and nonsingular covariance matrix R�

the Gaussian pdf is

pX�x� �



����
n
� �det�R��

�

�

exp��



�
�x���TR���x� ���� ������

����� �Most likely� estimates

The following development broadly follows that of the paper by Lorenc �����

We suppose that xf is a �prior�estimate of a random n�vector X� If we know

that

X � xf � ef � ������

where ef is a random n�vector of the error X�xf � and we know that ef is Gaussian

and unbiased with nonsingular covariance matrix P f � then the pdf of X is given by

pX�x� � k� exp��



�
�x� xf �T �P f ����x� xf��� ������

where k� is a constant� We now suppose that we have a random p�vector Y that

satis�es

Y � CX� �� ��



To do this we need to know pXjY�y� �x�� which by ���
�� is given by

pXjY�y��x� �
pYjX�x�y

��pX�x�

py�y��
� ������

hence

pXjY�y� �x� �
k�k�
k�
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Chapter �

Sequential data assimilation

Sequential data assimilation schemes treat observations as they become available in

time� and then discard them� If a �D data assimilation method� which is designed

to produce an analysis at a single time� is applied repeatedly� this can be seen as

sequential data assimilation� �D sequential data assimilation methods� however�

are designed so that an analysis should gradually draw closer to the true model

state� as more observations are processed� In control theory� dynamic observers are

designed for this very purpose� and so observer theory is very relevant to sequential

data assimilation� An example of an observer originally designed for engineering

applications which is being investigated for use in data assimilation� is the Kalman



are available frequently� Using observer theory� we are able to give conditions for

the linear� time invariant case under which the successive correction analysis will

converge in time to the true solution� In Section ���� we compare the Cressman

successive correction scheme with a robust observer in data assimilation for a simple

example� These experiments serve to illustrate how an observer which is designed for

temporal convergence to the true solution can perform much better than successive

correction scheme designed for an analysis at a single time�

��� Background on �D data assimilation schemes

By ��D� data assimilation schemes we mean schemes that are designed to give an

analysis at a single time� and do not attempt to take into account the time�tendency

of the observations� This section gives a brief overview of a few �D data assimilation

schemes that have been used in the past and to date� and which we use or refer to

in this thesis� We �rstly outline successive correction methods� which are some of

the earlier schemes to have been proposed and implemented� We then introduce

the method of optimal interpolation� on which the schemes currently used in many

meteorological centres are based� Finally� we describe the �D variational assimilation

��DVAR� method which is being developed for operational use at several centres as

an intermediate stage in the development of �D variational assimilation ��DVAR�

schemes�

The material in this section is intended to be only a brief outline of the methods

discussed� A more in�depth overview of data assimilation methods and further

references are given in the review paper by Ghil and Malenotte�Rissoli ���� and the

books by Daley ���� and Bennett ����

����� Successive correction schemes

Successive correction schemes were introduced to meteorology in the 
���s for op�

erational objective analysis� by Bergth"orson and D�o�os ���� and by Cressman ��
��

The Cressman scheme ��
� was designed for systems with few observations� widely

scattered� which are to be �tted as closely as possible� This method was intend�

��



ed to improve on the earlier polynomial spline methods ����� ���� by being more

suitable for use over larger areas with less dense data coverage� and by being com�



�l�m�th element of the matrix W 	i
 is given by

W
	i

lm �

�R	i

m �

� � d�lm

�R	i

m �� � d�lm

� l � 
� ��� n� m � 
� ��� pk� �����

where R	i

m is the radius of in�uence at the ith iteration for observation m �ie� the

mth component of yk�� and dlm is the distance between observation m and grid point

l� In the original paper introducing this method� � iterations were carried out with

di	erent radii of in�uence ��
��

����� Optimal interpolation

The method of optimal interpolation �OI� has been widely used in operational data

assimilation for NWP in the 
���s and 
���s ����� Important references for the

method include the papers by Gandin ���� and Lorenc ����� The OI method was

designed for a system in which observations are linearly related to the model state�

We suppose that we wish to estimate xtk� and that we hav �



as discussed in ����� The OI method is in fact not truly optimal since it does not

update the error covariance matrix Pk of the background estimate in a way that

takes into account the earlier observations which have already been assimilated�

The Kalman �lter does this� but the extra cost involved is large� The OI method is

sometimes more realistically referred to as statistical interpolation� ����� Although

designed for a linear system� the method can be extended for use in a system in

which the observations are nonlinearly related to the model state�

yk � hk�x
t
k� � �k� �����

with yk� xtk and �k as de�ned in ������ and where hk � IR
n � IRpk is a nonlinear

operator� This can be done by linearizing ����� about xbk� We describe this approach

in a little more detail in the context of the nonlinear extension to the Kalman �lter

in Section ����

����� �D variational assimilation� and the PSAS method

The three dimensional variational assimilation ��DVAR� method takes a di	erent

approach to minimizing the function ������ Rather than solving equations ����� and

���
�� the approach is to iterate to the minimizing solution xak� The gradient of �����

with respect to xk is

rxkJ � P��
k �xk � xbk� � CT

k R
��
k �Ckxk � yk�� �����

and this may be used in a gradient method to iterate to the optimal solution� We

describe a few such methods in Chapter �� Section ����

The �DVAR method is currently being developed for implementation for opera�

tional data assimilation at several meteorological centres� with plans for extension to



In general� the dimension pk of the observation vector is much smaller than the

dimension n of the model state xk� for meteorological applications it might be t�

wo orders of magnitude less� and even less for oceanographic applications� The

advan





MOE �

Covf�k� �jg � �� Covf�k�x
f
�g � �� Covf�k�x

f
�g � �� �j� k� ���
��

We note that� from ���
�� and ME�� we have

Covfxtj� �kg � �� �k � j� ���
��

and similarly� from ���
�� and OE� we have

Covfxtj� �kg � �� �k � j� ���

�

As mentioned above� we assume that the error covariance matrices Qk� Rk and

P f
k are nonsingular� All covariance matrices for a random vector with itself are

symmetric positive semi�de�nite� and are positive de�nite if they do not contain

null variances or perfect correlations ��
�� We assume that this is so� Assumption

ME
 that model error is unbiased is in fact not restrictive� if we have

Ef�kg � #�k �� �� ���
��

we can de�ne

�k



A necessary condition for a minimum is that rxkJ �xk� � �� ie

�P f
k �

���xk � xfk� � CT
k R

��
k �Ckxk � y�k� � �� ����
�

It can be shown ���� that the best estimate xak is a unique� global minimumof ����
��

and satis�es

xak � xfk �Kk�y
�
k �Ckx

f
k� ������

where Kk � IR
n�pk is the Kalman gain matrix given by

Kk � P f
k C



It can be veri�ed that eak and �k are uncorrelated because of the relation ���
���

Further� efk�� is unbiased since e
a
k and �k are� and we have

P f
k�� � AkP

a
kA

T
k �Qk� ����
�

We can now apply the Kalman �lter equations ������ and ������ to �nd



The other assumptions on model error and observational error are as before� includ�

ing the assumption that model error and observational error are uncorrelated�

The analysis given for the standard Kalman �lter in equations ������ and ������

still holds for producing the best estimate or analysis xak based on x
f
k� y

�
k and their

error covariance matrices� The expressions ����
� and ������ for the analysis error

covariance are also unchanged� since the forecast error and observational error are

still uncorrelated� The expression for the new forecast error efk�� given in ������ is

also unchanged� but because model error is now serially correlated� equation ���
��

no longer holds� and model error and analysis error are now correlated� Hence� the

expression ����
� for the new forecast error covariance matrix must be modi�ed as

follows�

P f
k�� � Covf�Ake

a
k � �k�� �Ake

a
k � �k�g

� AkP
a
kA

T
k �AkCovfe

a
k� �kg � Covfe

a
k� �kgA

T
k �Qk� ������

or� de�ning the covariance matrix of analysis and model errors as

P aq
k � Covfeak� �kg� ������

we have

P f
k�� � AkP

a
kA

T
k �AkP

aq
k � P aq

k AT
k �Qk ������

It now remains to specify P aq
k�� from P aq

k � This is given by

P aq

k�� � �I �KkCk��AkP
aq

k �Qk�G
T
k � ����
�

Finally� Qk�� is calculated from Qk as follows

Qk�� � GkQkG
T
k � Sk� ������

So� for serially correlated model error� we have the standard Kalman �lter equations�

except that the evolution of the forecast error covariance ����
� is modi�ed to �������

and in addition we must propagate the covariance matrix of analysis and model

errors as expressed in equation ����
�� and the model error covariance matrix �������

We note that serially correlated observational errors can be dealt with in a similar

way� if we assume model error is uncorrelated in time ����� In this case the equation

��



for the analysis error covariance propagation would be modi�ed� and we would need

to work out the propagation of the covariance matrix of forecast and observational

errors� It is also possible to allow for serial correlations in both model error and

observational error ����� but at greater complication still�

����� The extended Kalman �lter

We now consider the extension of Kalman �ltering theory to the nonlinear� stochastic

dynamic system

xtk � fk�x
t
k�uk� � �k� ������

with observations nonlinearly related to the state as follows

yk � hk�x
t
k� � �k� ������





with observations

yk � hk�x
t
k� ������

de�ned as in ���
�������� assuming no model error or observation error� A dynamic

observer for ������������� may be written in the form

xk�� � fk�xk�uk� �Gk�yk � hk�xk��� ������

where xk is an estimate of the true model state xtk� and the feedb



and the error equation corresponding to ������ is

ek�� � �A�GC�ek� ������

and therefore

ek � �A�GC�ke�� ������

Hence� to satisfy the condition ek � � as tk � �� the eigenvalues of �A�GC��

denoted by 	i�A�GC�� must satisfy the condition

j	i�A�GC�j � 
 �i � 
� ��� n� ������

In certain cases it is possible to choose the feedback matrix G so that the matrix

�A � GC� has any speci�ed eigenvalues� and in particular� it is possible to ensure

that the condition ������ holds� Theorem ��
 gives su�cient conditions for this to

hold �����

Theorem ��� If the system ��	������	��� is completely observable� then it is pos�

sible to choose the matrix G in ��	�
� so that the eigenvalues of �A � GC� take

prescribed values	

����� Eigenstructure assignment

The inverse eigenvalue problem of assigning eigenvalues to the system ����
� allows

some freedom in choosing the corresponding eigenvectors in the case p � 
� and

since we have some freedom in choosing the eigenvectors also� our problem now

is one of eigenstructure assignment ����� We now describe how we can choose the

eigenstructure of the dynamic observer ����
��

We suppose that the conditions of Theorem ��
 hold� and that the set of eigen�

values we wish to assign is

$ � f	�� 	�� ���� 	ng� ������

where

	i � C� j	ij � 
� and 	 � $
 #	 � $ for i � 
� ���� n� ������

��



We letD � diagf	ig and letX be the modal matrix of right eigenvectors of �A�GC�

and Y be the modal matrix of �AT �CTGT �� Then our problem is to choose G and

X to satisfy

�A�GC�X � XD� ����
�

or� equivalen



is still some freedom to choose the �i if p � 
� We can use this freedom to ensure

that our selected eigenvalues are as insensitive as possible to perturbations in A�C

and G and thus that the system is robust





This method for improving the robustness of the system can not be guaranteed

to converge to the minimumpossible value of k�Y T ���kF � but in practice it has been

found to reduce its value signi�cantly�

An algorithm for a robust observer


� Calculate the QR decomposition of CT into

CT �
h
%Qc� Qc

i �	
 Ro

�

�
�
 � ���
��

�� For each i � 
� ��� n�

calculate the QR decomposition of �A� 	iI�Qc into

�A� 	iI�Qc �
h
%Si� Si

i �	
 Ri

�

�
�
 � ���
��

�� Choose columns from each of the Si to be columns of the �rst guess Y� in such

a way that Y is invertible�

�� For i � 
� ���� n� modify the columns �i of Y as follows�

�a� calculate the QR decomposition of Y�i � f��� ����i����i��� ����ng into

Y�i � � %Zi� zi�

�
	
 %Yi

�

�
�
 � ���
��

�b� project the vector zi into space Si to satisfy condition a� and then nor�

malize�

�i � SiS
T
i zi�kSiS

T
i zik� ���
��

�� Repeat Step � until k�Y T ���kF reaches a local minimum�

�� Using the Y found� let the feedback matrix be G where

GT � R��
o
%QT
c �A

TY � Y D�Y ��� ���
��

��





a theoretical extension of successive correction schemes to �D� This could provide

a way to make successive correction schemes more appropriate for use in a modern

application of data assimilation in which observations are available more frequently�

����� Successive correction schemes as observers

Here we suppose that a successive correction method is to be used for data assimi�

lation with observations available frequently� and we show how it may be regarded

as an observer� If an observer is applied over an assimilation interval� then the

analysed solution over that interval does not satisfy the model dynamics� but the

observer dynamics� Hence� considering a sequential data assimilation method as

an observer gives a di	erent way of understanding some of the properties of the

analysed solution�

In particular� by considering a successive correction scheme using observer theory�

we are able to consider theoretical convergence in time of the scheme to the true

model solution� In the data assimilation literature� the issue of whether a successive

correction scheme converges generally refers to the question of whether the successive

iterations or corrections �at a single analysis time� bring the analysis close to the

true solution at that time ����� In general� however� observations from more than

one time are needed to determine the true state uniquely� Here� we consider whether

the successive correction technique converges in time to the true model state�

We suppose that the evolution of the true model state is given by the linear�

time invariant system

xtk�� � Axtk �Buk� k � �� ��� N � 
 ���

�

as de�ned in ���

� and we suppose that we have observations available at every

timestep� related to the true model state by

yk � Cxtk� k � �� ��� N � 
 ���
��

as de�ned in ���
���

The successive correction method� with a constant number s of corrections� �nds

an analysis xak from a prior estimate xbk using the following iteration

x
	i��

k � x

	i

k �W 	i��
�yk � Cx

	i

k �� i � �� ��� s� 
� ���
��

��



with x
	�

k � xbk� and x

a
k � x

	s

k � and where theW

	i
� i � 
� ��� s represent the weighting

matrices used in the successive corrections� After manipulation� the method can be

written for theoretical purposes in the form

xak � xbk � %W 	s
�yk �Cxbk�� ������

where the matrix %W 	s
 is given by the recursion

%W 	i��
 � W 	i��
�I � C %W 	i
� � %W 	i
� i � 
� ��� s� 
� ����
�

with %W 	�
 � W 	�
�

From an analysis xak at time tk� the prior estimate for the next timestep� x
b
k���

is found using the model equations

xbk�� � Axak �Buk� k � �� ��� N � 
� ������

Substituting ������ into ������ gives

xak�� � Axak �Buk � %W 	s
�yk�� � Cxbk���� ������

which expresses the successive correction method in the form of a dynamic observer�

Subtracting ���

� from ������ and using ���
�� gives the following equation for the

evolution of the error ek � xak � xtk�

ek�� � Aek � %W 	s
�C�Axtk �Buk��C�Axak �Buk��� ������

or

ek�� � �A� %W 	s
CA�ek� ������

Hence� the successive correction scheme converges to the true model state xtk in time

if the eigenvalues of �A � %W 	s
CA� have modulus less than unity� The weighting

matrix %W 	s
 plays a similar r!ole as the feedback matrix G in the observer ����
��

The matrix C in ������ has been replaced by the matrix product CA in �������

because ������ uses observations at time tk��� rather than at time tk as the observ�

er ����
� does�

If observations are available less frequently� then xak�� is speci�ed by ������ when

observations are available� and is equal to xbk�� given in ������ when observations

��



are not available� If observations are available every rth timestep� then the error ek

satis�es

er	k��
 � �A� %W 	s
CA�Ar��erk� ������

and hence the successive correction scheme converges to the true model sate in time

if the eigenvalues of �A� %W 	s
CA�Ar�� have modulus less than unity�

Discussion

In Section ��� on dynamic observer theory we discussed how the feedbac



The theta method for the �D heat equation

The 
D heat equation on z � ��� 
�� t � ��� T �� with a point heat source of strength

�
�
at z � �

�
is�

vt � �vzz �



�

�z �




�
�� ����
�

where 
 is the Dirac delta function� For this equation� with initial condition

v�z� �� � ��z�� ������

and zero boundary conditions

v��� t� � �� v�
� t� � �� ������

the �theta method� discretisation for some 
 � ��� 
� is

xk��j � xkj �
�&t

&z�

n
�
� 
�
�xkj � 

�xk��j

o
� sj&t ������

with initial condition

x�j � ��j&z�� ����
�

and zero boundary conditions

xk� � �� xkJ � �� ������

where xkj � v�j&



where the state xk at time tk



Ci�j � 	j��
�z�obsi
�z

�

Ci�j�� � obsi





assimilation is� but it does not have the spatial shape of the true solution� Fig� ���

shows the case p � 
� where only one observation is available right near one of the

boundaries of the domain� using R � ���� In this case� the data assimilation has only

a small impact on the results� Increasing R to ���� so that the radius of in�uence

extends all the way across the spatial domain� convergence is still slow� as Fig� ���

shows�

The robust observer

Very good results are achieved using eigenvalue set $b� in which we assign to the

observer system �ie� to the matrix �A � CG�� the system eigenvalues multiplied

by ��
�� In this case convergence to the true solution is achieved in fewer than ��

timesteps using � observations� as Fig� ��� shows� Using eigenvalue set $a� in which

the eigenvalues to be assigned are evenly distributed between ���� and ��� gives

less pleasing results� From this it seems that it is important for good convergence

to reduce the modulus of all the eigenvalues� as we do when assigning eigenvalue set

$b



produces much faster convergence in data sparse areas� This serves as an example

of how designing the feedback matrix of an observer to ensure temporal convergence

to the true solution can improve on the empirical spatial smoothing of a successive

correction method� The robust observer design itself� involving eigenstructure as�

signment� however� would be too expensive for systems with very large dimension�

and hence for application to operational data assimilation�

��
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Chapter �

�D Variational assimilation

�D variational methods of data assimilation were introduced to meteorology by

Sasaki in his paper of 
��� �
��� These schemes seek to �nd the model state which

minimizes some cost function over a particular assimilation interval� subject to con�

straints on the model state� Most typically the constraints require that the model

state should satisfy the dynamical model equations over the assimilation time period�

Sasaki put forward two approaches to variational assimilation� In the strong

constraint approach� the solution is constrained to satisfy the model equations ex�

actly� In the weak constraint approach� the model equations are required to hold

only approximately� allowing for model error� Sasaki�s papers �
��� �
��� �

�� �
���

deal with methods of solving these minimization problems analytically for simple�

continuous models�

Various methods for solving the strong constraint problem are outlined in �����

One method is to iterate on the model initial state rather than on the model s�

tate over the whole assimilation interval� This technique of �reducing the control

vector� which we outlined in Chapter �� Section ���� signi�cantly reduces the cost

of variational assimilation� In this case the initial state is the control vector� The

method was introduced to meteorology in the mid 
���s in the papers by Le Dimet

and Talagrand ��
�� Lewis and Derber ����� Lorenc ����� and Courtier and Talagrand

�
��� ����� and to oceanography by Thacker and Long ����� It is currently being

developed for implementation as an operational data assimilation scheme at several

national meteorological centres �
���

��



Derber ���� suggested carrying out �D variational assimilation� adding to the



��� The strong constraint approach

In the strong constraint approach� model error is neglected and we work with the

model

xk�� � fk�xk�� k � �� ��� N � 
� �����

We suppose that we have observations given by ����� and a background estimate of

the initial state given by ������

����� The method

In the strong constraint approach to variational assimilation� we aim to minimize a

cost function J with three components�

J � Jb � Jo � Jc� �����

where Jb penalizes distance from the background estimate� Jo penalizes distance

from the observations� and Jc ensures that the solution has required smoothness

properties� so that the process of initialization �or part of it� mentioned in Chapter 


can be incorporated in the optimization procedure� The work in this thesis does not

include the component Jc for simplicity� although it is important in operational

applications of data assimilation ��
�� ����� �
��� that use more complex models and

fewer observations than we use in our idealized experiments�

The strong constraint problem we address is

Problem S

Minimize� with respect to x�� ���xN

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�hj�xj�� yj�
TR��

j �hj�xj�� yj�� �����

subject to ��	��

The matrices P��
� � IRn�n and R��

j � IRpj�pj are symmetric positive de�nite

weighting matrices which re�ect the accuracies of �x��xb�� and of �hj�xj��yj�� If the

inverse covariance matrices of the errors �� and �j are known and are nonsingular�

these can be used as weighting matrices� and under certain assumptions this choice


�



leads to a statistically optimal analysis� We discuss this further in Section ��� where

we also consider model error� Some detail on how the matrices P��
� and R��

j are

prescribed in practice is given in �
��� ��
��

We now use the theory of Chapter �� Section ���� on reducing the control vector

to give a method for solving the constrained minimization problem Problem S � We



We note that� since x�� ���xN have been calculated from the current guess of the

control vector� the vectors �k of Lagrange multipliers can be calculated recursively

backwards from the condition ���
���

The system of equations ���

�� ���
�� is known as the system of adjoint equations

for the model ������ or as the adjoint model� In this context� the Lagrange multipliers

are known as adjoint variables� and we refer to the vectors �k of adjoint variables

as adjoint vectors�

We can now evaluate the gradients of L with respect to the control vectors� The

gradient with respect to the initial state is given by

rx�L � rx�J � F T
� �x���� ���
��

� P��
� �x� � xb�� �HT

� �x��R
��
� �h��x�� � y��� F T

� �x���� ���
��

� P��
� �x� � xb��� ��� ���
��

where the additional adjoint vector �� � IR
n is de�ned via the relation ���

� with

k � �� This gradient can be used in a descent algorithm� such as one outlined in

Chapter �� Section ���� to improve our guess of the control vector� We summarize

this procedure in the following algorithm�

Algorithm IS


� From a guess of the control vector x��

calculate the model states x�� ���xN using the model equations ������

�� From the end condition ���
��� calculate the adjoint vectors �N��� ����� using

the model states calculated in Step 
�

�� From ��� calculate rx�L using ���
��

�� Use the gradient rx�L in a gradient algorithm to obtain a better guess of the

control vector x�� and repeat until convergence criteria are satis�ed�

����� The incremental approach for Problem S

Although the method of reducing the control vector signi�cantly reduces the expense

of �D variational assimilation� further reductions in its expense are still required to


�



make it feasible for operational implementation� The incremental approach ����

was suggested to allow �exibility to incorporate simpli�cations which will reduce

the expense of the method� We �rst describe the incremental approach� and then

describe the approximations that can be made to reduce expense�

Expanding the nonlinear model ����� in a Taylors series about the �background�

state xbk obtained from a model run using the model with xb� as the initial state� we

have for a small perturbation �xk of xk�

xbk�� � �xk�� � fk�x
b
k� � Fk�x

b
k��xk � o��xk�� k � �� ��� N � 
� ���
��

where Fk�xbk� is the Jacobian of fk with respect to xk evaluated at x
b
k� and o��xk�

represents the higher order terms in the expansion� Since ����� holds at xbk� we have�

after neglecting higher order terms�

�xk�� � Fk�x
b
k��xk� ���

�

which is referred to as the tangent linear model �TLM�� For mid�latitude meteoro�

logical models� Lacarra and Talagrand ���� have shown that the the TLM is a fair

approximation to the full nonlinear model for periods of up to around �� hours�

The observations yk are related to the perturbation �xtk � �x
t
k � xbk� as follows

yk � hk�x
t
k� � �k � hk�x

b
k � �xtk� � �k ���
��

� hk�x
b
k� �Hk�x

b
k��x

t
k � �k� k � �� ��� N � 
� ���
��

The incremental approach to solving Problem S proceeds as follows� Firstly� a

background run is performed from a background guess xb� of the initial state� using

the full nonlinear model ����� to calculate the terms xbk� The minimization problem

is then to �nd the optimal increment or perturbation �x� to xb�� by minimizing a

cost function of the form

J ��x�� �



�
�xT�P

��
� �x� �




�

N��X
j��

�Hj�x
b
j��xj � dj�

TR��
j �Hj�x

b
j��xj � dj� ������

subject to the constraints ���

�� k � �� ��� N � 
� where

dk � yk � hk�x
b
k�� ����
�


�



Since all the constraints ���

� are linear� we now have a cost function which is

quadratic in the control vector �x�� and so a unique global minimum to this problem

exists if the Hessian of J with respect to �x� �satisfying the constraints ���

�� is

positive de�nite� We give conditions for this to hold in Chapter �� Section ���� The

adjoint equations are� in this case�

�k � F T
k �x

b
k��k�� �HT

k �x
b
k�R

��
k �Hk�x

b
k��xk � dk�� k � �� ��� N � 
�������

�N � �� ������

but using ����
� and ���
�� we see these are the same as the adjoint equations ���

�

of the full� nonlinear system� except that the higher order terms of ���
�� have been

neglected in the forcing in ������� and that the Jacobian Fk is evaluated at xbk�

If �x�� is the control vector which solves the incremental problem� then x
�
� ��

xb� � �x��� �and hence the model states x
�
�� ���x

�
N found from this initial state� is a

good approximation to the solution of the full� nonlinear mimimization problem�

provided the TLM is a �valid� approximation to the full nonlinear model�

The incremental approach can be used to further reduce the cost of �D variational

assimilation by performing the background run to calculate the xbk using the full

nonlinear model ������ but carrying out the iteration on �x� at lower resolution� The

iteration at lower resolution could also be performed using a simpli�ed �and hence

less expensive� version of the TLM� Research is also being carried out on variants

of the incremental approach� These include applying the incremental approach at

lower resolution� perhaps using multi�grid strategies �this is the so�called multi�

incremental approach�� and interspersing several �inner loop� iterations with an

�outer loop� nonlinear run� in which a new background �eld for the next inner

loop iterations is obtained� One question being looked at both theoretically and

practically� is whether the low resolution inner loop iterations give improvements

which correspond to an improvement at full resolution� and whether these methods

do converge to a solution of the full nonlinear problem�

Several centres planning to implement the adjoint method for large models are

developing simpli�ed or modi�ed tangent linear models for the minimization using

the incremental approach� This gives a way of overcoming some of the problems of


�



the adjoin



Since  T �k� j� is the adjoint operator of  �k� j� with respect to the Euclidean inner

product� we see one reason why the adjoint equations are so�called�

Hence we have the following property�

� %�k� �xk � � � %�k� �k� j��xj � � �  T �k� j�%�k� �xj � ������

� � %�j � �xj �� for all k � j ����
�

where %�k and %�j solve the unforced adjoint equations ������� and where �xj and

�xk solve the tangent linear model ���

��

����� Adjoint model development

Clearly� the derivation of the adjoint model is a major part in the setting up of the

adjoint method� Here we outline a few di	erent approaches to the derivation of the

adjoint model which might be used in the wider context of optimization problems�

One approach is to work with a continuous� rather than a discrete version of the

model� In this case� the calculus of variations is the appropriate theory for �nding

conditions for extrema of an optimization problem �we give some background on the

calculus of variations� and an overview of this approach in the report ������ Using

the method of Lagrange multipliers �which in this case are functions� to deal with

the model constraints� the adjoint model is given by the Euler Lagrange equations�

and an expression analogous to equation ���
�� can be found for the gradient of the

Lagrange functional with respect to the initial state� This leads us to a continuous

analogue of Algorithm IS� involving the model equations� the adjoint equations and

the gradient of the Lagrangian functional with respect to the initial state� In general�

these will have to be discretized in some appropriate way so that the problem can

be solved numerically� In application to data assimilation� this approach has been

used in ���� for example�

A disadvantage of this approach� however� is that in general� the discretized ad�

joint equations will not in fact be the true adjoin



The approach most generally taken in the development of adjoint models for

data assimilation is that it is better to �nd the adjoint of the discrete model� so that

theoretically at least� we can obtain an exact expression for the required gradient�

�
��� We use this approach in the work described in this thesis� and work out the

adjoint of the discrete models which we wish to use �by hand�� For very large and

complex models� however� this would be a much more di�cult task�

A di	erent approach to deriving the adjoint model is to work directly from the

model computer code� Each assignment statement in the computer code can be

treated as a constraint to be multiplied by a Lagrange multiplier� Di	eren



The other advantage of the correction term technique is that it can account for

schematic model errors� and it is suggested in ���� that by application to many cases�

this method could yield an estimate of the model�s systematic error in each timestep�

Further� the correction term found for an assimilation interval could be used in a

subsequent forecast to counteract model error here too�

In the correction term technique� the model error is approximated by

�k � ske� k � �� ��� N � 
 ������

where the sk � IR are predetermined constants� and e � IR
n is a constant correction

term to be determined� Hence we work with the model

xk�� � fk�xk� � sk



Enforcing r�k
L � � for k � 




Problem LS

Minimize� with respect to x�� ���xN� ��� ��� �N��

J �



�
�x� � xb��

TP��
� �x� � xb�� �




�

N��X
j��

�hj�xj�� yj�
TR��

j �hj�xj�� yj�

�



�

N��X
j��

�Tj Q
��
j �j ������

subject to ��	�
��

where the symmetric� positive de�nite weighting matrices  TD
(�)Tj
/T9 1 



In the nonlinear case� however� a cost function J with multiple minima corre�



covariance matrix P� for the next assimliation interval� and also gives us a way of

calculating the accuracy of a forecast initiated at time tN �

In this advantage of the Kalman �lter lies also �arguably� the biggest drawback

for its application in operational assimilation in meteorology and oceanography�

compared to other methods of �nding the same statistically optimal solution� This

drawback is the h



The adjoint method

We consider here the technique of reducing the control vector for solving Prob�

lem LS� In this case� we have N � 
 state vectors plus N model error vectors as

variables� and N sets of model constraints ����
�� If we use x� and ��� ��� �N�� as

N � 
 control vectors� we can uniquely determine the remaining variables� the N

state vectors x�� ���xN from the N constraints ����
�� The constrained minimization

problem Problem LS is equivalent to the unconstrained optimization problem of

extremizing the Lagrangian function

L � J �
N��X
j��

�T
j���xj�� � fj�xj�� �j�� ������

where ��� ����N � IR
n are N vectors of Lagrange multipliers�

Using the method of reducing the control vectors described in Chapter �� Sec�

tion ���� the solution can be found by iterating on the control vectors x� and

��� ��� �N��� as follows� From a guess of the control vectors� the model states x�� ���xN

are calculated using the constraints ����
�� As before� this ensures that r�k
L � �

for k � 
� ��� N � and again� enforcing rxkL � � for k � 
� ��� N � yields the same

adjoint equations

�k � F T
k �xk��k�� �HT

k �xk�R
��
k �hk�xk�� yk�� k � 
� ��� N � 
� ������

�N � �� ����
�

As before� the gradient with respect to the initial state is given by

rx�L � P��
� �x� � xb��� ��� ������

where the additional adjoint vector �� � IR
n is de�ned via the relation ������ with

k � �� The gradient with respect to the model error vector �k for k � �� ��� N � 
 is

given by

r�kL � Q��
k �k � �k��� k � �� ��� N � 
� ������

These gradients can be used in a descent algorithm� such as one outlined in Chap�

ter �� Section ���� to improve our guess of the control vectors� We summarize this

procedure in the following algorithm�

��



Algorithm ISME


� From a guess of the control vectors x� and ��� ��� �N���

calculate the model states x�� ���xN using the model equations ����
��

�� From the end condition ����
�� calculate the adjoint vectors �N��� ����� using

the model states calculated in Step 
�

�� From �N��� ������ calculater�N��L� ���r��L andrx�L using ������ and �������

�� Use these gradients in a gradient algorithm to obtain a better guess of the

control vectors x��and ��� ��� �N��� and repeat until convergence criteria are

satis�ed�

In practice� this algorithm is expensive for operational data assimilation� since

it involves iterating on N control vectors of dimension n� A second problem is that

the conditioning of the problem minimizing the cost function simultaneously with

all these control vectors could be very poor� ���� �����

We mention here� however� an attempt to solve a similar problem by Thacker

and Long ���� in the context of a simple oceanographic model� Rather than trying to

recover the model error vectors �k� they attempt to recover unknown model forcing

terms �wind stresses� from the data� although they mention that model error is

accounted for via uncertainty in the forcing� They look at the question of data

su�ciency� and �nd that if forcing is to be recovered with the initial state� a huge

amount of extra data is needed� muchmore than they could expect to be available in

practice� They also mention that the problem of recovering model forcing with the

initial state is ill�conditioned and requires many iterations of the descent algorithm�

��



Chapter �

The correction term technique

We described the �correction term technique� for �D variational assimilation in�

troduced by Derber ���� in Chapter � Section �� Here we take a further look at

both theoretical and practical aspects of using a correction term as a control vector�

instead of or as well as using the initial state as a control vector�

In Section ���� we look for conditions for uniqueness of the solution to the �D

variational assimilation problem using the initial state� the correction term and both

together as control vectors� Using the initial state as the control vector� uniqueness

depends on the condition of complete N �step observability of the system� We show�

however� that in general conditions for a unique solution using the correction term as

a control vector are di	erent� and so it might be possible to determine uniquely the

initial state from the data and not the correction term� or vice versa� In each case

adding a background estimate of the control vector to the cost function guarantees

uniqueness in the case of data insu�ciency� This point has been considered in data

assimilation using the initial state as the control vector ���� but not in published

work using the correction term technique� We look at uniqueness of the solution

using both control vectors together by using the technique of state augmentation�

and by relating conditions for observability of the augmented system with conditions

for observability of the original system�

In a practical context� we compare the performance of the di	erent control vec�

tors using a simple linear model� We compare the ability of each control vector to

compensate for errors in the initial state and for model error which is constant in

��



time� We also examine the impact of the number of observations on the results�

and the use of a background estimate of the correction term� The experiments are

described in Section ���� and the results are presented and discussed in Section ����

In Section ��� we summarize the theoretical and practical results of the chapter�



correction term as the control vector w







This approach is justi�ed because of the validity of the tangent linear model over

the assimilation length scales and is necessary because of limitations of computa�

tional resources �Chapter �� Section ��
�� Further� and importantly� the incremental

approach gives us a minimization problem with a unique solution under certain

conditions which w



Problem AISCT

Minimize with respect to x�� ���xN� e�

J �



�

N��X
j��

�Cjxj � yj�
TR��

j �Cjxj � yj� �����

subject to ��	��	

In ����� the matrices R��
j � IRpj�pj are assumed to be symmetric positive def�

inite� and to represent the relative accuracies of the observational data� Ideally�

they should be the inverse observational error covariance matrices� We consider

modi�cations of Problem AISCT involving background terms later�

Since Rank�Ak� � n and Rank�Bk� � m for all k by assumption� speci�cation

of x� and e uniquely determines the model state at all subsequent times� Hence x�

and e can be used as control vectors� and we view Problem AISCT as that of �nding

an optimal initial state �IS� and correction term �CT��

If we consider the correction term to be �xed �for example� if we assume that

there is no model error� or that model error is represented by a known bias�� the

initial state is the control variable and we have the familiar strong constraint �D

variational assimilation method outlined in Chapter �� Section ��
� Here we will

refer to this as Problem AIS�

Problem AIS

Minimize J de�ned in ��	�� with respect to x�� ���xN� subject to ��	��� with e �xed	

The problem addressed by correction term technique� using the correction term

only as the control vector� we refer to here as Problem ACT � In this case we assume

the initial state is known�

Problem ACT

Minimize J de�ned in ��	�� with respect to x�� ���xN� e� subject to ��	��� with x� �xed	

One of our objectives in this chapter is to give conditions under which Problems

AISCT � AIS and ACT have a unique solution�

�






����� Using the initial state as the control vector

In this subsection we consider Problem AIS � which consists of constrained mini�

mization of ����� subject to ������ with e �xed� so throughout this subsection e is

assumed to be given�

Our aim is to �nd conditions for a unique minimum x� of ProblemAIS� In terms

of the initial state x�� ���
�� can be written

%J �



�
xT�

%AISx� � %b
T
ISx� � %cIS � ���
��

where %bIS � IR
n� %cIS � IR� and the Hessian matrix AIS � IR

n�n is given by

%AIS �
N��X
j��

 T
j C

T
j R

��
j Cj j� ���

�

From the theory of Chapter �� Section ���� a necessary condition for x� to be a

minimum is that rx� %J vanishes� ie�

%AISx� � %bIS � �� ���
��

Any x� satisfying ���
�� is a minimum since %AIS is positive semi�de�nite� and

it is unique if and only if %AIS is positive de�nite or equivalently if and only if

Rank� %AIS� � n� We now link this condition of uniqueness to the observability of

the system�

The observations ����� may be related to x� and e using ����� as follows�

yk � Ck� kx� � %Bke� � �k� k � �� ��� N � 
� ���
��

which may be written as

ONx� � YN � TNe�DN � ������

where

ON �

�
BBBBBBBBBB�

C� �

C�

BBBBBBBB



and

YN �

�
BBBBBBBBBB�

y�

y�
���

yN��

�
CCCCCCCCCCA
� DN �

�
BBBBBBBBBB�

��

��

���

�N��

�
CCCCCCCCCCA
� ������

We note that ON � O�
N � the N �step observability matrix at time t� de�ned in

equation �������

If there is no observational error� then the right hand side of ������ is known� In

Chapter �� Section ���� we de�ned complete N�step observability at time t� as the

ability to determine uniquely the state x� from the observations yk and speci�ed

inputs Bke� k � �� ��� N � 
� It was proved in Theorem ��� that the system is

completely N �step observable at time t� if and only if Rank�ON � � n� and therefore

N �step observability is a necessary and su�cient condition to determine a unique

initial state x� in this case� We note� however� that only if the model ����� is a

perfect representation of the evolution of the true model state xtk� will the solution

x� of ������ represent the true initial state x
t
��

In practice� the observational error is not negligible� It is therefore not possible

in general to estimate x� exactly from the data� since the observational errors are

unknown� Hence we attempt to �nd a least�squares estimate for x�� which can be

done by solving Problem AIS� If the observational errors �k are unbiased� Gaussian

and uncorrelated in time with covariance matrices Covf�k� �kg � Rk� and if the

model ����� is a perfect representation of the evolution of the true model state� then

this least squares estimate of x� is themost likely estimate of xt�� If these assumptions

on the observational error statistics and on the model accuracy do not hold to a good

approximation� then our estimate x� will not be a good approximation to the most

likely estimate�

The question of whether ProblemAIS has a unique solution depends on complete

N �step observability� as we now show�

De�nition ��� We say that the linear time varying system ��	�����	�� containing

observational error is completelyt



Theorem ��� Problem AIS has a unique solution if and only if the system ��	�����	��

is completely N�step observable at time t�	

Proof

From the previous discussion� it su�ces to show that Rank � %AIS� � n if and only if



Hence� Rank� %AIS� � n if and only if Rank�ON� � n� �

Theorem ��
 is a recasting for our data assimilation problem of a known result

in �ltering theory that the time�varying system ����������� is completely observable

if and only if %AIS is positive de�nite for some N � �����

We now specialize to the time�invariant case� which is given by

xk��



does not tell us whether complete observability is su�cient for uniqueness if N � n�

but Theorem ��
 does� Since in most applications of data assimilation in meteorology

and oceanography� the number of timesteps over which observations are available is

far less than the dimension of the system �ie� N �� n�� this is an important point�

Hence� using the concept of complete N �step observability is important for our

application not only because it allows generalization to a time�varying system� but

also because it can be used to give a condition for uniqueness of the data assimilation

problem that depends on the length of the assimilation interval� and the particular

time t� at which the assimilation is started�

W



Proof

The Hessian matrix �P��
� � %AIS� is the sum of a positive de�nite and a positive

semi�de�nite matrix� and hence is positive de�nite� �

����� Using the correction term as the control vector

Here we consider the case where x�



given in �
��� �

�� and ����� Our problem is rather di	erent� however� since we only

look for a constant input� and because we consider the discrete� time�varying case�

Since observational errors are not negligible in reality� we seek a least squares es�

timate of the correction term e from the observational data by solving ProblemACT �

We now give conditions under which this problem has a unique solution�

Theorem ��� Problem ACT has a unique solution if and only if Rank�TN � � m	

Proof

With the matrix %U de�ned as in ������� we have

%ACT � T
T
N
%UT %UTN � ������

Since %U is positive de�nite� we have� by the same argument as in Theorem ��
� that

Rank� %ACT � � m if and only if Rank�TN � � m� ������

�

It is interesting to note� however� that complete N �step observability is neither

a necessary nor a su�cient condition for a unique solution of Problem ACT � Hence�

given the same set of observations� it is possible that Problem AIS has a unique

solution but Problem ACT does not� and vice versa� We show this by means of

simple counter�examples� in the case where m � n and the matrices Bk are equal

to the identity matrix� We note that the result does not rely on the fact that the

observations y� contain information about the initial state� but not the correction

term�

Theorem ��� Complete N�step observability at time t� is neither a necessary nor

a su�cient condition for a unique solution of Problem ACT 	

Proof



We consider the system ����� with

A� �

�
BB� 
 


� 


�
CCA � A� �

�
BB� 
 


�
 


�
CCA � ����
�

and Bk � I for k � �� 
�

To show that completeN �step observability is not a necessary condition for a unique

solution of Problem ACT � we give an example in which

Rank�O�� � �� Rank�T�� � �� ������

We suppose that the data set is given by ����� with

C� � ��� 
�� C� � ��� 
�� C� � �
� 
�� ������

In this case

O� �

�
BBBBBB�

C�

C�A�

C�A�A�

�
CCCCCCA
�

�
BBBBBB�
� 


� 


� �

�
CCCCCCA
� ������

T� �

�
BBBBBB�

�

C�

C�A� � C�

�
CCCCCCA
�

�
BBBBBB�
� �

� 



 �

�
CCCCCCA
� ������

and so ������ holds�

To show that complete N �step observability is not a su�cient condition for a unique

solution of Problem ACT � we give an example in which

Rank�O�� � �� Rank�T�� � �� ������

If the data set is now given by

C� � ��� ��� C� � �
� ��� C� � �
� 
�� ����
�

we have

O� �

�
BBBBBB�
� �


 �

� �

�
CCCCCCA
� T� �

�
BBBBBB�
� �


 �


 �

�
CCCCCCA
�

C���
T*
(B)Tj
�



and so ������ holds� �

We have� however� the following special case as an example where complete

�N�
��step observability is a necessary and su�cient condition for a unique solution

of Problem ACT � We consider again the time invariant system �������������� The

experiments we describe in Section ��� are for a time invariant system� and so

Theorem ��� is relevant for this case�

Theorem ��� For the time invariant system ��	������	��� with m � n and B non�

singular� Problem ACT has a unique solution if and only if the system ��	������	���

is completely �N � 
��step observable	

Proof

We need to show that Rank�TN � � n if and only if Rank�ON��� � n�

We let T � � TNB��� and note that since B is nonsingular� Rank�TN � � n if and

only if Rank�T �� � n�

For the time invariant system� we have

ON�� �

�
BBBBBBBBBB�

C

CA

���

CAN��

�
CCCCCCCCCCA
� T � �

�
BBBBBBBBBBBBBB�

�

C

C�A� I�

���

C�AN�� �AN�� � ��� I�

�
CCCCCCCCCCCCCCA

������

Since each row of T � can be written as a linear combination of rows of ON��� we

have that Rank�T �� � Rank�ON���� Further� since each row of ON�� can be written

as a linear combination of the rows of T �� we have that Rank�ON��� � Rank�T ���

Hence Rank�ON��� � Rank�T �� � n if and only if Rank�TN � � n� which proves

the result� �

Finally� we show that a unique solution to Problem ACT can be guaranteed

provided we add a background term to the cost function� In this case� ProblemACT

is modi�ed to


�




Problem BCT

Minimize with respect to x�� ���xN� e

J �



�
�e� eb�TQ���e� eb� �




�

N��X
j��

�Cjxj � yj�
TR��

j �Cjxj � yj� ������

subject to ��	�� with x� �xed	

In ������� eb � IRm is a background estimate for e� and Q�� � IRm�m is a sym�

metric� positive de�nite matrix� ideally representing the inverse covariance matrix

of �e� eb��

Although it is known in the data assimilation literature that a background term

is needed in some cases to give uniqueness to ProblemAIS� the applications of Prob�

lemACT �ie� applications of the correction term technique� mentioned in Section ��


did not use a background term for the control vector� Wergen ��
� added an extra

term to the cost function which acted as a background term which constrained just

one of the three model �elds to be close to zero�

In analogy to the working of the previous subsection� the Hessian of J with

respect to e is �Q�� � %ACT �� and the following result holds�

Theorem ��� Problem BCT has a unique solution	

Proof

The Hessian matrix �Q�� � %ACT � is the sum of a positive de�nite and a positive

semi�de�nite matrix� and so is positive de�nite� Hence Problem BCT has a unique

solution� �

It could also be deduced from the results in Bennett and Miller�s paper ��� on the

importance of a background estimate of the initial state� that when terms represent�

ing model error are estimated� a background estimate for these terms is su�cient

for uniqueness in the linear case�


��



����� Using both the initial state and the correction term

as control vectors

We notice that the system ����������� can equivalently be written as

xk�� � Akxk �Bkek� ����
�

ek�� � ek� k � �� ��� N � 
� ������

with observations

yk � Ckx
t
k � �k� k � �� ��� N � 
� ������

It is helpful to rewrite this system as the augmented system

wk�� �Mkwk� ������

yk � %Ckw
t
k � �k� ������

where wk � IR
n�m� Mk � IR

	n�m
�	n�m
 and %Ck � IR
pk�	n�m
 are given by

wk �

�
BB� xk

ek

�
CCA � Mk �

�
BB� Ak Bk

� I

�
CCA � %Ck �

�
Ck �

�
� ������

In this augmented system� wk is the augmented state vector and w� is the augmented

control vector� The augmented state transition matrix is % �k� j�� and we have

% �k� �� � % k �

�
BB�  k

%Bk

� I

�
CCA � ����
�

Problem AISCT can now equivalently be written

Problem AISCT

Minimize with respect to x�� ���xN� e

J �



�

N��X
j��

� %Cjwj � yj�
TR��

j � %Cjwj � yj� ������

subject to ��	���	

In this form� we see that Problem AISCT is just Problem AIS applied to the sys�

tem ������� and so the theory of Section ����
 applies here� From Theorem ��
 we


��



know that Problem AISCT has a unique minimum if and only if the N �step observ�

ability matrix %ON has rank �n �m�� where

%ON �

�
BBBBBBBBBB�

%C�

%C�
% �

���

%CN��
% N��

�
CCCCCCCCCCA
� ������

We now consider observability of the augmented system ������������� in terms

of observability of the original system ������������ Observability of the augmented

system concerns the ability to determinew� or equivalently x� and e from the obser�

vations� and observability of the original system concerns the ability to reconstruct

x� from the same observations� We now show that the following result holds�

Theorem ��
 Necessary conditions for Problem AISCT to have a unique solution

are that the original system ��	�����	�� is completely N�step observable at time t�

and that Rank�TN � � m	

Proof

From Theorem ��
� Problem AISCT has a unique solution if and only if Rank� %ON� �

�n�m�� with %ON given in �������

Since

%C



Hence� Rank�ON� � n� or equivalently by Theorem ���� complete N �step observ�

ability is a necessary condition for a unique solution of Problem AISCT �

By a similar argument� we have that Rank�TN � � m is also a necessary condition

for a unique solution of Problem AISCT � �

One simple example for which Problem AISCT has a unique solution is the case

where C� and C� both have rank n� �as is the case in our experiments where we use

the full set of observations�� as we now show�

We suppose v � IRn�m is arbitrary and that %ONv � �� Then by ������

ONv� � TNv� � �� ������

and by equation ������

Ck kv� � Ck
%Bkv� � �� k � �� ��� N � 
� ������

With k � � we have

C�v� � �� ������

and hence v�



where

M �

�
BB� A B

� I

�
CCA � %C �

�
C �

�
� ���
��

The following result is also applicable to the system we use in the experiments

we describe in Section ���� and we use it later�

Theorem ��	 For the time invariant system ��	
��� ��	
�� with m � n and B

nonsingular� Problem AISCT has a unique solution if and only if Rank�C� � n	

Proof

By Theorem ��
� Problem AISCT has a unique solution if and only if the augmented

system ������� ������ is completelyN �step observable� We show that if Rank�C� � n�

the system ������� ������ is not completely observable� and hence not completely ��

step observable for any � by Theorem ��� Part a�

By the negation of the Hautus condition �Theorem ����� the system is not com�

pletely observable if there exists a non�zero vector v � IR�n and 	 � C such that

�M � 	I�v � �� ���

�

%Cv � �� ���
��

or equivalently

�A� 	I�v� �Bv� � �� ���
��

�I � 	I�v� � �� ���
��

Cv� � �� ���
��

where v��v� � IR
n�

Suppose that Rank�C� � n� Then there exists a non�zero v� such that Cv� � ��

Let v� be given by

v� � B���A� 	I�v�� ���
��

and 	 � 
� Then ���
��) ���
�� or equivalently ���

�� ���
�� hold for a non�zero

vector v� and 	 � 
� Hence� if Rank�C� � n the augmented system is not completely

observ



The fact that Problem AISCT has a unique solution if Rank�C� � n follows from

our previous remarks which showed that this is true for the general time�varying

system with Rank�C�� � n� Rank�C�� � n� �

By Theorem ���� we know that we can guarantee a unique solution to Prob�

lem AISCT by adding a background estimate of the augmented control vector w� to

the cost function� and so we formulate the following problem�



Proof

We note that ���
�� can equivalently be written

J �



�

N��X
j��

�Djwj � zj�
TS��j �Djwj � zj�� ���
��

where Dj � IR
	pj�m
�	n�m
� S��j � IR	pj�m
�	pj�m
 and zj � IR

pj�m are given by

Dj �

�
BB� Cj �

� I

�
CCA � 6 1 Tf
47 0 TD
(I)Tj
10 0 TD
(R)Tj
/T11 1 Tf
35 -20.9998 TD
(	)Tj
/T13 2T/T7 1 Tf
19 39998 TD
14 Tf
50 -12 TD
(�)Tj
/T17 1 Tf
52 -109.9998 TD
(�)Tj
0 72.9998 TD
(B)Tj
0 25 TD
(B)Tj
0 26 TD
(�)Tj
/T7 1 Tf
57 -55.999R TD
(6 1 Tf
47 1 T2199 -20.0002 TD
(�)Tj
/T11 1 Tf
27 0 TD
(�)Tj
/T13 179.9999 32.0002 TD
(j)Tj
/T61 1 Tf
39.99
60 -7 TD
(141 Tf
26j
-80 99 TD
(�)Tj
/T11 082.9999 -20.000�
(
)Tj7.68ET
q
6 0 0338.6)Tj6 1 40706.044 cm
/Im1 Do(�)Tj
/T13(C)Tj
.24 0 0338.64 60
57 620.340N TD
(�)Tj
/T7 1 Tf
45.9957 -55.999Q TD
(6 1 Tf
47 9 Tf
16.1899 -20.0002 TD
(�)Tj
/T11 1 Tf
26.9999 0 TD
(�)Tj
/T17416.14857 -55.9997 TD
(�)Tj
0 72.9998 TD
(C)Tj
0 25 TD
(B)Tj
0 21 Tm
(A)Tj
/T7 1 Tf
16.14j
0 26 TD
(�)Tj
/T5 �)Tj
119 0 Tc
(z)Tj
/T13 1 Tf
25 7.0002 TD
(j6Tj
/T9 1 Tf
31.9999 -7.0002 TD
(�)Tj
/T17 1 Tf
16.1
52 -109.9998 TD
(�)Tj
0 72.9998 TD
(B)Tj
0 25 TD
(B)Tj
0 26 TD
(�)Tj
/T5 6 Tf
52.9
57 -55.999y TD
(C)Tj
/T13 0 Tf
25.0001 7 TD
(j5j
/T13 18 9-7.000e TD
(�)Tj
/T13 16.1899 -20.000b TD
(�)Tj
/T17406.14857 -55.9997 TD
(�)Tj
0 72.9998 TD
(C)Tj
0 25 TD
(B)Tj
0 21 Tm
(A)Tj
/T7 1 Tf
34.14j
0 20 TD
(�)Tj
/T6  1 Tf
27 0 TD
(��)Tj
/T7 1 Tf
43 0 TD
(�)Tj
/T6 1 Tf
14 ��(
��)Tj
-1703.1541 1[(Sinc-1000(e)-th TD
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/T17408Tj
119 0 TD
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or equivalently

ONv� � �� ����
�

Hence� there exists a non�zero vector v � IRn�m such that !ONv � � if and only if

there exists a non�zero vector v� � IR
n such that ONv� � �� It follows that !ON has

rank �n�m� if and only if ON has rank n� which proves the result� �

In Section ���� we present a summary of the theoretical results in this chapter�

We now compare the performance of the initial state� correction term and both

together as control vectors practically� in experiments with a simple model�

��� Description of the experiments

The aim of these experiments is to compare the performance of variational assimi�

lation using the di	erent control vectors� the initial state� the correction term and

the augmented control vector containing the initial state and the correction term�



The true model state

We suppose that the true model state xtk satis�es ������ started from the true initial

state xt� is given by

�x�j�
t � 
� j � 
� ��� n� ������

Model error

As a source of model error� we suppose that the constant source term is omitted

from the model equations� Hence� in the �imperfect� model� s is set to zero�

Observations

We suppose that we have error free observations at p of the 
� grid points at every

timestep on the interval ��� ��



subject to ����
�� where R�� � �
N
I � IRp�p� and Q�� � qI � IRn�n� The matrices

R�� give equal weight to all observations� and are not supposed to represent error

covariances� The value of q is sometimes taken to be zero� in which case we do not

constrain the size of the correction term to be small�

The adjoint model is

�k � AT�k�� �CTR���Cxk � yk�� k �
N

�
� 
� ��� �� ������

with

�N
�

� �� ������

The gradients of the Lagrange function L associated with J with respect to the

control vectors are

rx�L � ���� ������

reL � 7.0001 TD
(e)Tj
/T92 -7.0001 TT001 TD
(e)Tjs TD
(x)Tj
TD
(n)Tj
/999 -7 TD
(�)Tj
/T6 1 Tf
751 0T8 7j4r8 1 Tf
22 -7.002s7-h-21 1 Tf
9 TD
0 Tc
(�)T00011(e)Tj
/TTf
53.9999 0 TD
2.000�8TD
0 Th011(e)Tj-2999 0 TD
(N)Tj
ET
q
6.48 0 0 -.48 315.336 588.968.1m
/49

�xn� k



where the control vector u might be the initial state� correction term or the aug�



Calculating � rk��� %Adk �

From ������ and ���
�
� we have

%Adk � �rk � rk�����k� ���
���

Everything on the right hand side of ���
��� is known by the timewe need to evaluate

� rk��� %Adk �� so %Adk can be evaluated easily�

Calculating � dk� %Adk �

This expression can be built up using the following iteration� Starting from

�� � dk� ���
���

	� � R��C��� ���
���


� � 	T� 	�� ���
�
�

for i � 
� ��� N
� � 
 we let

�i � �i��i���� ���
���

	 i � R��C�i� ���
���


i � 
i�� � 	Ti 	 i� ���

��

where

�i��i����
�



Case a
 Perfect model� unknown initial state

In this case� the �rst guess of the initial state is

x�j � �� j � 
� ��� n� ���

��

rather than �������

Case b
 Imperfect model� known initial state

The source term s is assumed to be zero in this imperfect model� but this time the

true initial state is known�

Case c
 Imperfect model� unknown initial state

Here we use the imperfect model of Case b with the �rst guess initial state speci�ed

in Case a�

Data assimilation is carried out over the time interval ��� ����� where observations

are available� We then suppose that no more observ





Experiment �b
 Imperfect model� known initial state

In this case we still expect that the minimization problem has a unique solution�

but the optimal initial state found will not be the true one� but that which gives

the solution of the imperfect model which is closest to the observations�

The true initial state is known� and the minimization iterations are started from

this value� If a di	erent start guess for the initial state is used� the same results

are found� but this generally takes a couple of iterations more� Fig� ��� shows that

when the full set of observations are used �p � 
��� a smooth initial state is found

with a higher value at the position of the source point� If fewer observations are

used �Fig� ��� shows the results when p � ��� the initial state obtained is no longer

smooth� but matches the true solution at the observation positions� However� the

model dissipation soon acts to smooth out the solution�

The best results in each case are in the middle of the assimilation interval� at

t � ����� This tendency of the variational assimilation method to give a closest �t to

observations in the middle of the assimilation interval has often been noted �
��� In

this case of an imperfect model� the method does not produce the true initial state

but �nds one for which the ensuing solution throughout the assimilation interval is

closer to the observations� In this way� the e	ects of model error� rather than building

up in time� have been spread throughout the assimilation interval� as noted in ��
��

Although the assimilation has improved the results at t � ���� the bene�ts at t � 


are much smaller� because the forecast has been carried out with an uncorrected

imperfect model�

����� Experiments using the correction term as the control

vector

Here we carry out data assimilation using the correction term as a control vector�

and with x� �xed� Comparison of these results with those using the initial state as

the control vector gives a comparison of the e�ciency of the two control vectors in

each situation� We also examine the use of the background term �
�e

TqIe in the cost

function� with di	erent values of q� We look �rst at the situation of the imperfect



�



model with known initial state� since this problem is more naturally treated by using

the correction term as a control vector�

Experiment �b
 Imperfect model� known initial state

Since the system is completely observable and N

� � n�
� we know that ProblemACT

has a unique solution� Since in Case b the initial state is known and model error is

constant in time� this method should �nd a correction term which exactly represents

the model error� and hence be able to reproduce the true solution�

Fig� ��� shows this to be so when p � � using q � �� If the correction term

found is used in the forecast started at the end of the assimilation interval �t � �����

the forecast using this corrected model matches the true solution exactly� The

number of iterations taken in this case is 

� very similar to the number taken in

Experiment 
a using the initial state as the control vector� and as in that case� the

number of iterations decreases when fewer observations are used� When only one

observation is used with q � �� �Fig� ����� the results are still good�

Experiments were also carried out using the background term with q � 
� For a

given value of p� fewer iterations were needed to satisfy the stopping criterion than

using q � �� but the results were very slightly less accurate�

Experiment �a
 Perfect model� unknown initial state

Again� we expect a unique solution� but not the true solution� The method will �nd

the correction term for which the model started from a wrong initial state is as close

as possible to the observations�

In these experiments the correction term is not included in the forecast following

the assimilation� This is because the correction term is supposed to compensate for

the errors in the initial conditions throughout the assimilation period� and since the

model is perfect� an improved solution at the end of the assimilation interval �at

t � ���� will give an improved forecast�

If p � 
�� ie� the full set of observations are used� �Fig� ��
�� the solution is

closest to the true solution about halfway through the assimilation interval� At the

end of the assimilation interval� it is hard to judge whether the assimilation has










which gives the bene�ts obtained using each of the control vectors separately� while

keeping the extra cost at an acceptable level� As illustrated above� there are some

situations in which using the initial state as the control vector� and other situations

in which using the correction term as the control vector works particularly well� If

we do not know before starting the assimilation which control vector is better for

the situation� we would like to be able to use both together and obtain the same

bene�ts as if the preferable control vector had been chosen� This is examined here

by looking at Cases a and b using the augmented control vector� We then look

at Case c� the more general situation of an imperfect model with unknown initial

state� to see whether by using the augmented control vector we can obtain the true

solution in this case�

From the theory of Section ���� we kno



perform many more iterations of the descent algorithm than using just one control

vector� In this case� �� iterations are used in the case p � �� though fewer iterations

are needed when fewer observations are used� ��� iterations for p � 
��

Increasing q reduces the number of iterations required� however� These results

show that when both control vectors are used� the background term is essential for

sensible results� and that an appropriate choice of q is important to save extra cost�



not have a unique solution using q � � and p � 
��

Adding the background term �using q � ��� ensures uniqueness and results in

good solutions� although for smaller values of p the results are not completely smooth

at the beginning of the assimilation interval� Figs� ��
� and ��
� show the results

for p � � and p � 
�� respectively� with q � 
� In all cases the match to the true

solution is very good at the end of the assimilation� and the forecast initiated at this

time using the correction term found in the assimilation maintains a perfect match

to the true solution�

Increasing the value of q to 
� gives a smoother solution for smaller values of p�

and reduces the number of iterations needed� Howw
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��� Summary and conclusions

In this chapter we have looked at both theoretical and practical aspects of using

the correction term as the control vector compared with using the initial state as

the control vector� and also of using both control vectors together� Here we brie�y

summarize the theoretical results of Section ���� and giv







the correction term should not be included in an ensuing forecast�

In all experiments with unknown initial state in which the correction term was

used as a control vector� using a background term with a large weight constraining

the correction term to be small �ie� a large value of q� was vital for sensible results



tion� The �rst is the problem of reducing the number of iterations needed when

both control vectors are used� This could be achieved by suitable preconditioning of

the descent process� but we do not take this any further in this work� Secondly� the

question arises of ho



Chapter �

Accounting for model error in

variational assimilation

We start this chapter with a discussion on the problem of how to account for model

error in data assimilation� In particular� we note that the assumptions made on



evolving correction term as a control variable produces a signi�cant improvement in

the results�

The theoretical part of our work described in this chapter has been published in

a shorter form in ��
��

	�� Background on representing model error

In �D variational assimilation using the strong constraint approach� which is cur�

rently being developed for operational application in meteorological centres� model

error is neglected� Recently� however� the problem of how to account for model error

in variational assimilation in a cost e	ective way has begun to receive more attention

��
��

Studies in predictability which explicitly attempt to represent the e	ects of model

error on forecast error� �
������������ show that the impact of model error on forecast

error in meteorological models is indeed signi�cant� The study in ���� leads to the

conclusion that the predictability limit of a forecast might be extended by two or

three days if model error were eliminated� However� there is a lack of quantative

information on model error in such forecast models� even of its size relative to that

of the model state� Hence� the problem arises of how to represent model error in

data assimilation�

The Kalman �lter does account for model error� and in the Standard Kalman

�lter model error is treated as serially uncorrelated� unbiased random error� In Chap�

ter �� Section ��� we also discussed other approaches to weak constraint variational

assimilation which make the same assumptions about model error� An interesting

paper by Dee ���� however� questions the validity of this representation of model

error� Using an analysis of model error similar to that given in Chapter �� Subsec�

tion ��
�� here� he argues that since model error in general depends on the model

state� it is likely to be serially correlated� In Chapter �� Section ��� we gave back�

ground on how the Kalman �lter can be modi�ed to deal with serially correlated

model error� but this involves a large increase in the expense of the method� which

�unless in simpli�ed form� is already thought to be too expensive for operational


��





a serially correlated component of model error along with the model state� In

Section ��� we giv



which is made up of serially correlated errors and serially uncorrelated random

errors� We therefore write

�k � Bkek � q�k� �����

where the vectors q�k are serially uncorrelated� random n�vectors� the matrices Bk �

IRn�m are prescribed matrices as before� and the vectors ek � IRm represent the

serially correlated component of model error� We suppose that we know how the

error ek evolves in time� and for now write this in a very general form�

ek�� � gk�xk� ek� � q��k� �����

where gk � IR
n� IRm � IRm is some function to be speci�ed� and the vectors q��k are

serially uncorrelated random m�vectors�

As we discussed in Section ��
� we know very little about the form of the model

error� and in practice will have to specify ������ ����� in a very simple form which

re�ects any knowledge of model error we do have� We giv




���� Examples of how model error can be speci�ed

i� Serially uncorrelated model error

Setting all the ek in ����� to zero we have

�k � q�k� �����

in which case model error is a serially uncorrelated random vector� as assumed in

the Standard Kalman �lter�

ii� Constant model bias error

Setting

�k � Bkek � q�k� �����

ek�� � ek� ���
��

allows for a constant vector of unknown �dynamical parameters� as discussed in

����� If this form of model error is purely deterministic �ie� q�k � ��� this represents

the correction term technique of Chapter �� In Derber�s paper ���� introducing the

correction term technique� the matrices Bk were the n� n identity multiplied by a

time�varying scalar and by the time�step length &t� to re�ect the r!ole of this form

of model error as a correction to the time derivative of the model equations� As

discussed in Chapter �� we expect this form of model error to be appropriate for

representing constant errors in the forcing or in the boundary conditions�

iii� Model error evolving with model evolution

In Section ��
� we discussed that model error is likely in general to depend on the true

model state� and hence to change with the �ow� In this case model error evolution

might be approximated by

�k � Bkek � q�k� ���

�

ek�� � Gkek� ���
��

where Gk � IR
m�m represents a simpli�ed form of the model state evolution� This

might be an appropriate approximation to model error evolution if model error


��



represents truncation error� This is similar to the form of serially correlated model

error which was suggested in the paper by Daley ���� in formulating a Kalman

�lter allowing for serially correlated model error� which we discussed in Chapter ��

Section ����

The matrices Bk in ����� allow for a serially correlated component of model

error with dimension m which may be less than or greater than the dimension n

of the model state� In Chapter � we showed how using m � n can lead to greater

e�ciency in the correction term technique if the source of model error is known to

be localized� We now consider how including the possibility that m � n can allow

for greater �exibility in the speci�cation of model error�

We may partition the serially correlated component of model error in r sub�

vectors of dimension s �where rs � m�� and write

�k � Bkek � q�k� ���
��

ek�� � gk�wk� � q��k� ���
��

where this time

Bk � �B
	�

k � B

	�

k � ��� B

	r

k �� ek �

�
BBBBBB�
e
	�

k

���

e
	r

k

�
CCCCCCA
� ���
��

where e	�
k � ��� e
	r

k � IRs and B

	�

k � ��� B

	r

k � IRn�s� The following examples illustrate

how this generalization might be useful�

iv� Model error growing in time

Here� rather than using a constant correction term to represent model error as in

the correction term technique� we allow for a correction term which can increase or

decrease linearly in time� In this case model error has the form

�k � Bkek � q�k� ���
��

ek�� � ek� ���

�


��





vii� Piecewise constant model error

Here we suppose that the assimilation interval �t�� tN � is broken into r subintervals

over whic



the evolution of the augmented state vector� We suppose that as before� w





of including a background term for e� in the cost function�



where �k � IR
n� �k � IR

m� and where Gk � IR
m�n is the Jacobian of gk with respect

to xk� and *k � IR
m�m is the Jacobian of gk with respect to ek� With

%P��
� �

�
BB� P��

� �

� Q��
�

�
CCA � ������

where P� � IRn�n and Q� � IRm�m are the covariance matrices of �x� � xb�� and

�e� � eb�� respectively� equation ����
� becomes

rx�L � P��
� �x� � xb��� ��� ������

re�L � Q��
� �e� � eb��� ��� ������

with �� and ��



extra control vector e� and its gradient� although the dimension m of these might

be much less than n� The increased dimension of the augmented control vector also

means that the part of the descent algorithm which uses the gradient information

to improve a guess of the control vector will be more expensive� A larger problem�

however� is that the conditioning of the problem using the augmented control vector

approach will be altered� and as a result� more iterations and hence more model

and adjoint runs may be needed� as we found in the experiments of Chapter � using

both control vectors�

	�� Using an evolving correction term


���� Introduction

In the experiments of Chapter �� we saw that the correction term technique is

successful in correcting for model error which behaves like a constant forcing term�

Here� we consider the upwind discretization of the linear advection equation in

which model error is present due to dissipation� The model error can be expressed

as truncation error� and since this depends on the true model state� it will change

in time with the model state� In this section� we consider the generalized correction

term technique supposing that the correction term representing model error evolves

with the model equations�

The model has the form

xk�� � Axk� ������

and we try to compensate for model error using an evolving correction term ek � IR
n�

where

xk�� � Axk � ek� ������

ek�� � Aek� ����
�

We consider using the initial state x�� the initial correction e� and both together

as control vectors� We note that when the initial correction e� is used as a control

vector� the dimension of the augmented model system and its adjoint is twice that

of the original system and its adjoint� We noted in the previous section that this can


��



be av



The scheme can be written as a matrix system as follows�

xk�� � Axk� ������

in which xk � IR
n is the state at time tk� where n � J � and A � IRn�n is given by

A �

�
BBBBBBBBBB�

�
� �� � �

� �
� �� �

� � � � � � � � �

� � �
� ��

�
CCCCCCCCCCA
� ������

The upwind scheme is �rst order accurate and stable provided � � 
�

We run the model ������ with c � 
� using N � ��� J � ��� so &t � �
��
and

&z � �
��
� Hence� � � �

�
and the model state has dimension n � ��� Since c � 
� the

square wave represented by the initial conditions is advected all the way round the

model domain to its starting position on the time interval ��� 
��

The true model state

With � � 
� the upwind discretization yields the true solution of the pde ������ on

the model grid� ie� there is no model error� So� to compute the true model state xtk

on the model grid speci�ed above� we used the model ������ with � � 
� choosing

&t � �
��� &z �

�
��� and with initial conditions �������

Observations

We suppose that we have error free observations at p of the �� grid points at every

timestep on the interval ��� �� �� ie for
N

� � �� timesteps� and that after this no further

observations are available� Hence� the observations are given by

yk � Cxtk� k � �� ����
N

�
� 
� ������

where the observational matrix C � IRp�n has a simple form since the observation

positions coincide with the grid points� The positions of the observations used in

each case are shown in the �gures�


��



The minimization algorithm

The minimization algorithm used is the conjugate gradient descent method� imple�

mented as described in Chapter �� Section ����

The experiments

We minimize the cost functional

J �



�
eT�Q

��
� e� �




�

N
�
��X

j��

�Cxj � yj�
TR���Cxj � yj�� ����
�

subject to

xk�� � Axk � ek� ������

ek�� � Aek� k � �� ���
N

�
� 
� ������

where R�� � �
N
� IRp�p� and Q��

� � qI � IRn�n







no erroneous spikes in the data sparse areas� Fig� ��� shows the good results obtained

using �� observations� and




���� Case b�� Imperfect model� unknown initial state

Using the initial state as a control vector

The results using the initial state as the control vector are the same whether the

true initial state is known or not� but the minimization procedure requires a few

more iterations if it is not known�

Using an evolving correction term as the control vector

If the �rst guess of the unknown initial state is taken to be zero� the evolving

correction term must make up for very large errors� Fig� ��� shows the results using

the full set of observations� and Fig� ��
� shows the results using p � ��� The

solution produced is the right shape� under�estimating the true solution in the �rst

half of the assimilation interval� and over�estimating it in the second half� In these

experiments it is not appropriate to include the evolving correction term in the

forecast period�

Using both control vectors

Fig� ��

 shows the solution produced using the full set of observations and q � 
�

However� the stopping criterion had not been reached when the minimization was

terminated after 
�� iterations� The solution improves on the solution started from

the true initial state� and on the solution obtained using the initial state only as the

control vector� Using the evolving correction term in the forecast reduces the e	ect

of model error as before� If the value of q is increased to 
�� the initial state control

vector appears to have too much in�uence� and the solution is less accurate at the

initial time� Using larger values of q also results in a deterioration of the quality of

the forecast� and does not succeed in reducing the number of iterations of descent

algorithm to less than 
��� Fig� ��
� shows that fairly good results are still achieved

using �� observations� Fig� ��
� shows that the results using only � observations are

poorer� but still an improvement on the background solution�


�
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	�	 Summary and conclusions

Summary of the theory

We began this chapter with a discussion on why it is important to account for

model error in data assimilation� and on some of the limitations of the approach

taken to model error in the standard Kalman �lter� We then considered a general

representation of model error made up of serially correlated and serially uncorrelated

components� and gave examples of di	erent representations of model error which

might be suitable in di	erent situations� We suggested that the technique of state

augmentation could be used in data assimilation to estimate the serially correlated

components of model error along with the model state� This leads to a generalization

of the least squares problem of Chapter � to deal with serially correlated model error�

The correction term technique can be interpreted as giving an optimal solution

to this general data assimilation problem in the case that model error is a constant

bias error with no sequentially uncorrelated component� We also suggested a gener�

alization of the correction term tec





Chapter �

Experiments with a shallow water

model

Here we describe experiments using a 
D nonlinear shallow water model which

includes topography and rotation� In these experiments we aim to investigate to

what extent the conclusions of the experiments in Chapters � and � hold in the

context of more complex dynamics� We compare using the initial state� a constant

correction term and both together as control vectors� In particular� we aim to see

whether the constant correction term can compensate for model error on a signi�cant

timescale� when the model error depends on the model state� and hence changes in

time� Further� since the correction term technique involves changing the model

equations by adding on the correction term� we want to check that the correction

term produced in the assimilation does in fact represent an approximation of model

error� These experiments are carried out in an idealized context with a full set

of observations which are not corrupted by noise� We also begin to look at the

situation in which fewer� noisy observations are available� Finally� we check whether

assimilation using the correction term technique can result in a better forecast than

assimilation using the initial state as the control variable� This is important to

check� because in Wergen�s study ��
� using the correction term technique produced

good results during an assimilation interval� but had a detrimental impact on the

ensuing forecast� A briefer description of the results from these experiments has

been published in ��
��


�






for x � ��� ��L�� t � ��� T �� The discretization is carried out with &x � �
J
� &t � �

N
�

with discrete variables approximating the continuous variables as follows�

�kj � ��j&x� k&t�� ukj � u�j&x� k&t�� vkj � v�j&x� k&t�� �
�
�

for k � �� ��� N � j � �� ��� J � 
� The discretization uses centred time and space

di	erencing� except for the di	usion terms� in which forward time di	erencing is

used for stability� The discrete model is

mk��
j � mk��

j �
&t

�&x
f�ukj�� � ukj ��m

k
j�� �mk

j �� �u
k
j � ukj����m

k
j �mk

j���

����kj���
� � ��kj���

��g

�g
&t

�&x
f��kj�� � �kj ��Hj�� �Hj� � ��

k
j � �kj����Hj �Hj���g

��&tfnkj � �
&t

&x�
K�mk��

j�� � �m
k��
j �mk��

j��� �
���

nk��j � nk��j �
&t

�&x
f�vkj�� � vkj ��m

k
j�� �mk

j �� �v
k
j � vkj����m

k
j �mk

j���g

��&tfmk
j � �

&t

&x�
K�nk��j�� � �n

k��
j � nk��j��� �
���

�k��j � �k��j �
&t

&x
�mk

j�� �mk
j��� � �

&t

&x�
K��k��j�� � ��

k��
j � �k��j��� �
�
��

for k � 
� ��� N � 
� j � �� ��� J �



n�j � n�j �
&t

�&x
f�v�j�� � v�j ��m

�
j�� �m�

j �� �v
�
j � v�j����m

�
j �m�

j���g

��&tfm�
j � �

&t

&x�
K�n�j�� � �n

�
j � n�j��� �
�
��

��j � ��j �
&t

&x
�m�

j�� �m�
j��� � �

&t

&x�
K���j�� � ��

�
j � ��j��� �
�
��

where the initial conditions are to be speci�ed�

Since discrete models which include arti�cial di	usion do not always converge

to the correct solution of �
�
���
���� the PC scheme was compared in ���� with

a method �Glimm�s method� which has been proved to converge to the physically

correct solution� The PC scheme was found to give good agreement to corresponding

solutions of Glimm�s method for several test cases involving hydraulic jumps�

After coding up this model in Fortran 

� we tested it by comparing results

with those obtained in two of the examples given in ����� We describe one of these

examples here� since it was modi�ed to provide the example to be used for our

experiments� The Coriolis parameter is set at the value for ��o North� ie f �


���� � 
���s��� We use a spatial discretization of 
�� grid points� so J � 
���

In the �rst experiment of the paper� there is no topography� but a hydraulic jump

evolves for certain Rossby and Froude numbers from smooth initial conditions given

by

u�x� �� � U cos�x�L�� �
�

�

v�x� �� � �� �
�
��

��x� �� � �m � Uf�U��� cos��x�L� � ��m � U����
�

� cos�x�L�g� �
�
��

where the length of the domain is ��L� �m � g�m where �m is the mean depth of

the �uid� and U is a constant� In our case� we ensured the required Rossby number

Ro � U�fL � 
 and Froude number F � U��
�

�
m � 
 were satis�ed by choosing the

constants L� U and �m as

U � 
ms���



Since &x � ��L�J � we have &x � ���� � 
��m� or approximately ��km� We chose

a timestep to satisfy �t
�x
� �

��
� so &t � �����
��s �which is approximately one hour


� minutes�� As in the paper ����� we chose K � ��� � 
��m�s���

Results from this test case were plotted in non�dimensional form� and seen to

give good agreement with the corresponding �gures in ����� Our model was also

tested on the examples given in ���� which include topography� and found to agree

with the results in the paper in these cases� too�


�� The data assimilation problem

We de�ne the model state xk � IR
�J at time tk to be the vector

xk � �m
k
�� ���m

k
J��� n

k
�� ��� n

k
J��� �

k
�� ��� �

k
J���

T � �
����

and we de�ne the correction term to be the vector e � IR�J given by

e � �e
	m

� � ��� e

	m

J��� e

	n

� � ��� e

	n

J��� e

	�

� � ��� e

	�

J���

T � �
����

We suppose that we have observations over timesteps t� to tN��� The data assimi�

lation problem we address is to minimize

J � Jo �



�
eQ��e �
����

with respect to the control vector or vectors being used� subject to the constraint

that the model equations �
�����
�
�� hold� where the observational part of the cost

function Jo is to be speci�ed later� The matrix Q�� is given by qI where I is the

identity matrix� and di	erent values of q are used in the experiments� We suppose

that there are a large number of observations� and so do not include a background

of the initial state in the cost function�

����� The adjoint model

We wish to minimize the cost function J subject to each of the model equation�

s �
�����
�
�� with �
�
����
�
�� and the relations �
�
����
�
��� and we introduce a

Lagrange multiplier for each of these model equations�










for k � N� ��� 
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	Nj � �� pNj � �� �Nj � �� �
����

for j � �� ���� J � 
�

����� The gradients of L with respect to the control vectors

The partial derivatives of the Lagrangian L with respect to the variables making up

the initial state x� are given by

�L

�m�
j

� �	�j � 	�j �
&t

�&x�
K�	�j�� � �	

�
j � 	�j���� �
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�� Description of the experiments

����� The true model state

For our experiments� we suppose that the true model state is de�ned by a run of

the model with certain parameters and initial conditions� We use the values of

f � J � L� &x� &t� and K speci�ed in Section 
�
� but this time we use di	erent

initial conditions and a non�zero bottom topography� This low spatial resolution

was chosen so that the dimension of the control vector would not be too large� It

was noticed� however� that when the model was run at twice the spatial resolution�

the results were not signi�cantly di	erent� In Experiments 
 and �� the model is

run for 
�� timesteps �N � 
���� and we take the assimilation interval ��� T � to

represent 
�� timesteps�

The bottom topography is as given in ����� by

H�x� � Hc�
 � �x�
L

�
���a�� � � �x�

L

�
� � a� �
��
�

where Hc is half the initial water depth� We take a to correspond to a length of ten

grid points� The shape of the bottom topography is shown in Fig� 
�
�

We de�ne the true model initial state to be given by a �uid depth of 
m� and

zero velocities� so we have �taking g � 
�ms���

m�
j � �m�s��� �
����

n�j � �m�s��� �
����

��j � 
�m�s��� �
����

for j � �� ���� J � 
� From this initial state� motion is initiated as �uid �ows down

from the ridge in the centre of the domain� A wave travels in each direction across

the domain� This is illustrated in Fig� 
�
 which shows the true solution at the initial

time and also after �� and after 
�� timesteps�

����� Observations

In Experiments 
 and �� we suppose that we have a full set of observations� ie�

observations of all the model state variables for all 
�� timesteps� These observations



�



are the same as the true model state� In Experiment �� we also carry out experiments

in which we suppose that observ



therefore

�
	m
k
j � g

&t

�&x
f��kj�� � �kj ��Hj�� �Hj� � ��

k
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compromise between a better approximation of the inverse Hessian using a high

value of !m� and lower CPU time with a low value of !m�

����� The experiments

Experiment �

The aim of this experiment is to compare the performance of the di	erent control

vectors in the presence of di	erent types of model error� and of error in the initial

state� A full set of observations� uncorrupted by error� is used� The following cases

are investigated�

Case a� Perfect model� unknown initial state

In this case there is no model error� but the true initial state �
������
���� is un�

known� The background estimate of the initial state is

m�
j � �m�s��� �
����

n�j � �m�s��� �
��
�

��j � 
�m�s��� �
����

for j � �� ���� J � 
�

Case b� Omission of topography� known initial state

In this case the model error is type i� above� but the true initial state is known�

Case c� Omission of rotation� known initial state

In this case the model error is type ii� abov



Experiment �

Experiment �� Case b� is repeated using observations corrupted by observational

noise� and using fewer observations� also corrupted by observational noise� The aim

here is to check to what extent the conclusions of Experiment 
 still hold in this

more realistic case� rather than to explore the impact of increasing or reducing the

number of observations� The following cases are investigated�

Case e� Observations with random error

Experiment 
b is carried out using observations corrupted by noise as described in

Subsection 
�����

Case f� Fewer observations with random error

Experiment 
b is carried out using fewer observations corrupted by noise� We sup�

pose that observations �of all the state variables� are available only at every fourth

timestep�

Experiment �

In Experiment 
 we compare the performance of the di	eren



Case h� Omission of rotation� known initial state

In this case the model error is type ii� above� but the true initial state at the

beginning of the assimilation interval is known�


�� Results from the experiments

����� Experiment �� Comparing di�erent control vectors

The �gures referred to here can be found at the end of this section�

Case a� Perfect model� unknown initial sate

Fig� 
�
 shows the true solution� and the background solution started with the wrong



assimilation interval� The results shown are for q � 
� Using q � 
�� the correction

term found is smaller� and so in this case the solution is closest to the true solution

at the end rather than in the middle of the assimilation interval� For larger values of

q fewer iterations are needed� for q � 
� �� iterations are needed and using q � 
��

�� iterations are needed� which is similar to the number of iterations required using

the initial state as the control vector� When q is increased further� however� the

results are much poorer� The points we make here on the impact of di	erent values

of q are consistent with the conclusions w



equation �
����� the actual model error at each timestep depends on the m��eld�

Fig� 
�
� shows that the correction term derived in the assimilation is a correction

to this �eld only� and so it is reasonable to assume that the correction term found

in the assimilation does indeed represent the temporal average of model error� The

errors still existing in the ���eld at the end of the assimliation interval are presum�

ably due to the fact that this average does not perfectly represent the actual model

error� However� it is signi�cant that the correction term represen





of � is corrected� except at the ridge� The omitted topography and rotation are

compensated for as when the initial state is used as the control vector in Cases b�

and c�� After the assimilation� quite large errors remain in the ���eld�

When the correction term is used as the control vector� the �� and n��elds are

quite close to the true solution at the end of the assimilation interval� but them��eld

has larger errors� The solution no longer underestimates the ���eld at the end of the

assimilation interval as was the case using the correction term as the control vector

in Case a�� In this case using the correction term happens to give the best �t to the

true solution at the end rather than in the middle of the assimilation interval� This

could be explained by the fact that the correction to the ���eld� shown in Fig� 
����

is much smaller than it is in Case a� �Fig� 
�

�� The correction to the m��eld in

�Fig� 
���� is similar to that obtained in Case b� �Fig� 
�
��� but is slightly larger�

This might explain why there are larger errors in the m��eld at the end time in this

case than in Case b�� The n��eld produced is very similar to that produced in Case

c� using the correction term as the control vector�

The results using both control vectors together in this case are very good as can

be seen by comparing Fig� 
�
� with the true solution of Fig� 
�
�� Fig� 
�
� shows

that indeed the errors using both control vectors are much smaller than those using

either one of the control vectors� and that these errors are almost zero except for

those in the n��eld� The results shown in the �gures were obtained using q � 
� and

the iteration was terminated after ��� iterations� before the convergence criterion

had been satis�ed�

Experiments using other control vectors

We mention brie�y an attempt at using a couple of the other control vectors men�

tioned in Chapter �� Section ��� in Experiment 
� We used the spectral form of

model error� and a piecewise constant form using three subintervals� Using the

spectral form of model error for Cases b� and c�� the results were similar to the

results obtained using the correction term which w



Using the piecewise continuous form� problems arose in the iteration process

which were probably due to large di	erences between the three correction terms� It

should be possible to rectify this situation� however� and this would be an interesting

topic for further work�

����� Experiment �� Fewer observations and observational

error

The aim of Experiment � is to check whether the conclusions of Experiment 
 still

hold in the presence of observational error and when there are fewer observations

available� We therefore repeat Experimen



term is used as a control vector� approximately three times as many iterations were

required� Surprisingly� though� the number of iterations required when both control

vectors are used together is about the same as when the whole set of observations

are used�

When the correction term is used as the control vector with q � � �Fig� 
�����

the solution produced by the assimilation is very spiky throughout the assimilation

interval� as was found in the experiments of Chapter �� Also as in Chapter ��

increasing the value of q smoothes the solution� Fig� 
��� shows the results obtained

using q � 
� However� in this case the results using q � 
� although smooth� were

much less accurate� It may be� then� that an alternative method for smoothing the

solution is needed when using the correction term as a control vector with fewer

observations available�

When both control vectors are used together� the solution obtained is signi��

cantly smoother than when either the initial state or the correction term is used

alone� Using q � � produced a smoother initial state than using q � 
� but using

q � 
 produced a smoother solution at later times than using q � � �Fig� 
��� and

Fig� 
�����

����� Experiment �� The impact of assimilation on a fore	

cast

Experiments �g and �h were �rst carried out performing an assimilation over just

�� timesteps �rather than 
�� timesteps as in Experiments 
 and ��� or on the time

interval t � ��� T
�
�� using the results to initiate a forecast for the interval �T

�
� T ��

The experiments were then repeated using assimilation and forecast intervals of 
��

timesteps each� In this case the assimilation was carried out on the interval ��� T ��



demonstrates the e	ects of the model error over this time interval� Starting a forecast

with an imperfect model at time T
�
from the true state at that time is equivalent

to suddenly removing the topography in the middle of a model run� In addition to

the existing motion� there are now also waves travelling towards the centre as the

�uid �lls the area where ridge used to be� Because of this� the forecast from the

true state at time T

�
using the imperfect model very quickly diverges from the true

solution�

We now describe the results of starting a forecast from the assimilation analysis

at time T
�
� comparing the results using the initial state and using the correction

term as the con



Over this time interval� the waves reac



control vectors� If the initial state is used as the control vector in the assimilation

interval� the ensuing forecast shows an improvement over the background solution

in the middle of the forecast� but not at the end� all the bene�t of the assimilation

is lost by the end of the forecast�

However� when the correction term is used as the control vector during the

assimilation interval� the solution at time T

�
is closer to the true state� and hence

the forecast is better than when the initial state is used as the control vector in the

assimilation� This is true whether the correction term is included in the forecast or

not� and it is hard to judge whether or not including it is bene�cial in this case�

Experiment �h was repeated using the longer assimilation and forecast intervals�

The results for this case are shown in Fig� 
��
 and Fig� 
���� Here� much the same

conclusions hold as for the shorter time interval� except that in this case a better

forecast is achieved by using the correction term in the assimilation but not in the

forecast�
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�� Summary and Conclusions

Experiment �
 Comparing di�erent control vectors

In Experiment 
 we compared the e	ectiveness of the initial state� the �constant�

correction term and both together as control vectors in compenstating for errors

in the initial state� for two types of model error� and for a combination of these

errors during an assimilation interval� This extends the experiments of Chapter �

since the model dynamics are more complex� and because the model error depends

on the model state and so is not constant in time� Generally� the conclusions of

the experiments of Chapter � are found to hold here� too� We found that the

in





Experiment �
 The impact of assimilation on the forecast

In Experiment � we test whether the improvement in the solution at the end of an

assimilation interval� produced by assimilation using each of control vectors� results

in an improvement in a subsequent forecast� This is carried out for both examples

of model error� In the case that model error is due to the omission of topography�

using the initial state as a control vector gives a signi�cant improvement over the

background solution not only in the assimilation interval� but also in the forecast�

Using the constant correction term as a control vector gives a good improvement

during the assimilation interval� but if the correction term is not included in the

forecast� the forecast soon deteriorates� and becomes worse than if no assimilation

had been performed� These results can be explained by examining the impact of

starting a forecast with an imperfect model from the true solution at the end of the

assimilation interval� It is the impact of using a di	erent model for the assimilation

and forecast that causes the forecast to deteriorate quickly� We note that this

situation could be alleviated by gradually phasing out the correction term during

the assimilation interval using the predetermined scalars of equation ������� as was

done in the original paper on the correction term technique ����� When we include

the correction term in the forecast� however� the forecast is good� better than the

forecast produced using the initial state as the control vector in the assimliation�







is used as the control vector� complete N �step observability at time t� is a necessary

and su�cient condition for uniqueness in the case where the cost function consists

of observations from the time interval �t�� tN���� We showed however� that complete

N �step observability at time t� is neither a necessary nor a su�cient condition for

uniqueness when the constant correction term is used as a control vector� This

means that in some cases the set of observations may contain enough information

to specify uniquely the initial state but not the correction term� and vice versa� We

showed that if both the initial state and the correction term are used as control

vectors� a necessary but not su�cient condition for uniqueness is that conditions for

a unique solution using each of the control vectors individually hold� In the time

invariant case� we showed that a necessary and su�cient condition for uniqueness

using both control vectors is that a full set of observations is available� In each case�

adding a background estimate of the control vector to the cost function guarantees

uniqueness� These results could be applied more widely in control theory in cases

where we wish to determine a constant input from the outputs�

In Chapter �� we addressed the question of how to allow for a more general

form of model error in �D data assimilation� and in �D variational assimilation

in particular� We considered a general� stochastic representation of model error

consisting of serially correlated and serially uncorrelated components� The di	erent

representations of model error that have been suggested for use in data assimilation

can be expressed using this general form� We considered the technique of state

augmentation for estimating the serially correlated component of model error along

with the model state in the context of data assimilation� and formulated a general

least squares problem for data assimilation allowing for serially correlated model

error� This formalism allows us to interpret the correction term technique in a

stochastic sense as a method for estimating a constant model bias�

We suggested a �generalized correction term technique� in which the serially

uncorrelated part of the model error is neglected� and the augmented initial state

is used as an augmented control vector� The generalized correction term technique

can therefore allow for various di	erent forms of serially correlated model error� In

particular� it can allow for model error which evolves as the model state does� The

�
�



theory we present also allows for the dimension m of the correction term to be less

than the dimension n of the model state� which could reduce the expense of the

assimilation if the e	ects of model error are known to be localized to a certain area�

As well as considering theoretical aspects of accounting for model error in varia�

tional assimilation� we carried out experiments using the correction term technique

and generalized correction term technique with simple models exhibiting di	erent

types of model error�

In Chapter � we compared the initial state� the constant correction term and

both together as control vectors in a heat equation model in which model error was

due to the omission of a constant source term� Using the correction term as a control

vector compensates very well for this model error� and using the correction term in

an ensuing forecast gives very good results� We also noted that using the initial

state as a control vector partially compensates for the e	ects of model error� and

that using the correction term as the control vector� it is possible to compensate to

some extent for errors in the initial state� Using both control vectors together is

very e	ective in this example if we have model error and an unknown initial state�

However� this requires about four times as many iterations of the descent algorithm

as when only one of the control vectors is used�

In these experiments we also investigated the impact of using a background

estimate of zero for the correction term in the cost function� with di	erent values

of the weighting q� We found that if the correction term is expected to correct for

constant model error� best results are obtained with a small value of q� However� if

the correction term is being used to compensate for errors resulting from a wrong

initial state� it is important to use a large value of q� We also tried using a correction

term with dimension less than that of the model state� Concentrating the correction

term around the source point produced good results in far fewer iterations than

before�

In Chapter �� the simple model we used was the linear advection equation with

the upwind scheme discretisation� The model error in this example is due to severe

dissipation� Using the constant correction term as a control vector has no impact

on thesev91 TD.9(using)-13







control vector indicate that this problem of reducing the num
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