On Appro on n Meshless Me hods

, , , , , ,

The

N. M. A. M. r.

$$_{N}=$$
 $_{p}$ $_{ij}=$ $_{p}$ $_{p}$

• 1 r = 1 1/4 • 11 j = 1 ... If p.
• 11 ve m/hr re ir ve/h ø tehes j f f f reife fer re

(ff pp m • 1/4 f pr• 11 f f reife fer j • 1/4 p 1./4 ...

$$_{i} = _{i}$$

4 J.M. Melenk

$$|\mathbf{e}_{i}\rangle = \mathbf{e}_{i}^{\mathsf{N}} \mathbf{k}_{\mathbf{X}}$$
 $\mathbf{e}_{i}^{\mathsf{P}} \mathbf{e}_{i}$ $\mathbf{k}_{\mathbf{X}}$

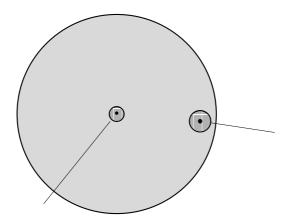
12 The notion of optimality

$$\label{eq:local_problem} \mathsf{L}_n = \underbrace{\begin{smallmatrix} \bullet & \mathsf{L}_{\mathsf{D}} & \mathsf{L}_{\mathsf{D}} \\ \mathsf{E}_n & \mathsf{X} \\ \dim \mathsf{E}_n & \mathsf{n} \\ \mathsf{u}_{\P} \mathsf{Y} & \mathsf{v}_{\P} \mathsf{E}_n \\ \end{smallmatrix}}_{\mathsf{D}} \mathsf{k}_{\mathsf{D}} \mathsf{k}_{\mathsf{D}}$$

 $p_{\perp \lambda}$ $r_1 p_1 \dots r_n$

2 Polynomial Reproducing Systems

6 J.M. Melenk



Proof of Theorem 2.6. $\mathbf{r}_{i} = \mathbf{r}_{i} = \mathbf{r}_{i}$

$$\mathbf{k}_{\mathbf{F}} = \mathbf{i} \mathbf{k}_{\mathbf{H}^{\mathbf{S}} \downarrow \mathbf{B} \hat{\mathbf{F}} | \mathbf{I}} = \mathbf{f}_{\mathbf{S} \mathbf{I} \mathbf{a} \mathbf{b}} \mathbf{g}$$

Net a relative por a Net-

$$N^{G} = \begin{cases} X^{ij} & \text{if } i \\ i & \text{if } i \end{cases}$$

with title per V Ner ar with a

Corollary extstyle Let \mathbb{R}^{d} be Lipschitz dom in. Assume that the b s e_i of Theorem 2.6 & tisfy, ddition y, n ore, p condition, i.e., for some . **2** ℕ e 🌶 ి e

$$p_i$$
 r f 2 Nj 2 e_i g

there exists

$$\text{ke} \quad \text{Ne} \, (k_{H^s})_l \qquad ^{\min\{p-1;k\}-s} \text{ke} \, (k_{H^k})_l \qquad -$$

$$\mathbf{i} \qquad \mathbf{i} \qquad \mathbf{i} \qquad \mathbf{i} \qquad \mathbf{i} \qquad \mathbf{i}$$

. Mar ar a aparas e. , a Mar

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

vthe

i a Mar

or would be the second of the

Exercise 2.14. $\mu = \mu_{\star} = \mu_{\star}$

. Mark . 1 m. . Maph r • . 1

Exercise 2.15. $\mathbb{M}_{+} \oplus \mathbb{M}_{+} \oplus \mathbb{M}_$

Remark 2.16. Maraproxist or ,) Massage 14 or , 1 Massage 14 or ,

The state of the s

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

Remark 2.17. • \mathbb{N}_{1} • \mathbb{N}_{2} • \mathbb{N}_{3} • \mathbb{N}_{4} • \mathbb

Remark 2.19. At a 1) $(M_A + 1 + 1)$ $(M_A +$

$$\rangle = \langle \cdot \cdot \cdot \mathbf{N} \rangle$$

16 J.M. Melenk

• nd ssume the corering condition

, r

$$k \qquad -k \qquad \frac{\sqrt{-}}{k_j} \qquad \frac{k_j}{k_j} \qquad \frac{-k}{k_j} \qquad \sqrt{-}$$

 $(x) = (x + 1)^{4} x \bullet (x + 1) = (x + 1)^{4} x \bullet (x + 1)$

2 Bibliographical Remarks

. Mr. ar.a . . Mr. N . M. pr . . M. r. . . Ma

Exp $mp \in 3.4$. A. $\frac{1}{3} = \frac{1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{2 \mathbb{N}_0 \cdot r \cdot pp + 1}{3} = \frac{p_1}{3} \frac{d';k}{d';k} = \frac{p_1}{3} \frac{d$

• .1		(] ⁴ ,	• rpr. , \mathbb{R}^d
1;0) -) -	0	
1;1) -) -) ₅		, , _
1;) -		0	, -
;0) -		0	
;1) -	<u>,</u> 5)		
;) ;—) - /		

1 Analysis of a class of RBFs

 \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i} \mathbf{r}_{i}

Assumption 3.5. Property \mathbf{r} range \mathbf{r} \mathbf{r}

$$^{-1}$$
 kk $_{\downarrow}$ $^{-}$ $_{\downarrow}$ kk $_{\downarrow}$ $^{-}$ 8 2 \mathbb{R}^{d}

. M. 11 • 9 = 11 1 1 • A pr , 5 12 pr

Exercise 3.6. Partially P_{1} P_{2} P_{3} P_{4} P_{4} P_{5} P_{5

Proposition Let stisfy Assumption 3.5. Then

Proof. Para
$$\mathbb{R}^{\mathbf{d}}$$
, Para Para $\mathbb{R}^{\mathbf{d}}$ to $\mathbb{R}^{\mathbf{d}}$

Theorem ightharpoonup Let Assumption 3.5 be ightharpoonup id. Then for distinct points ightharpoonup ightharpoonupg nd 2 the stered interps tion problem:

Find 2 N = p f k
$$ik$$
 j = g such that ik j = ik

* unique so ution, hich * tisfies

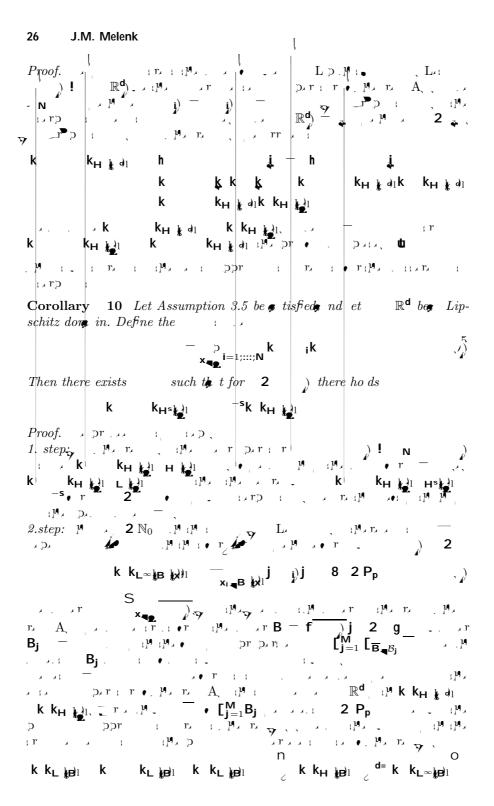
h
$$i = 82$$
 N

• nd

 $k_{i} = \frac{1}{d} - C \quad ix_{k} = k_{i} \quad k_{j} = k_{j}$

Corollary (stability of scattered data interpolation.) Let be Lipschitz done in (or $-\mathbb{R}^d$). Let $N = f_i j - g$ beg Lipschitz dom in (or $-\mathbb{R}^d$). Let $_{\mathbf{N}}$ $-\mathbf{f}_{\mathbf{i}}\mathbf{j}$ - suppose Assumption 3.5. Then for $\mathbf{2}$

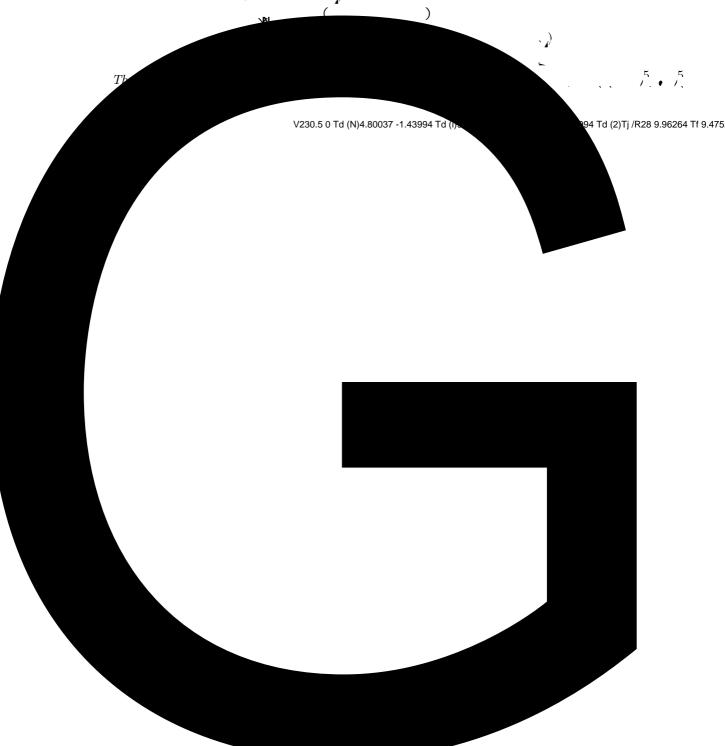
$$k \qquad k_{\text{H}} \ \ \text{k}_{\text{\tiny L}}$$



r.M. B r 144

1 Approximation Theory

Assume that g characters, g et g et g is Lipschitz done in g e. For g characters, g et g is Lipschitz done in g e.



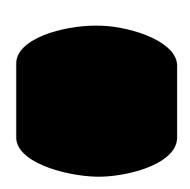
Apr wis property of the prope

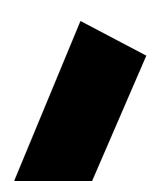
Remark 4.4. The second of the property of the

• pn, r () (M, M, pM, r, (r, ()) (M, , , M, , , M, p)) M i p, - / () (M, M, p, ()) = ; • r 6 , M, i i, M pn (• () , p , (M, pn, , pn) • (

Exercise 1.5 Lus

1 - 1 M x 1 M x 1 M x x 1





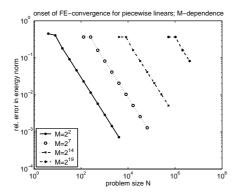
Exercise 4.8. () = ,

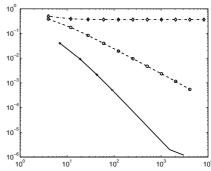
 $\mathbf{v}_{\mathbf{q}}\mathbf{v}$ ke $\mathbf{k}_{\mathbf{H}}$

5 Examples of operator adapted approximation spaces

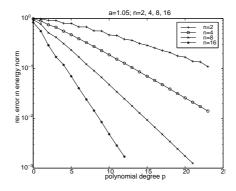
Par par (Mar) (Ma ppr 1 propara • (Ma ppr 1 p.a.), Maa p.a. Mar) (Ma ppr 1 propara • (Ma ppr 1 • • 1 • • 1 • • 1 e), a p.a. a. 1 1 ra 1 (Ma ppr 1 • • 1 • • 1 e), a

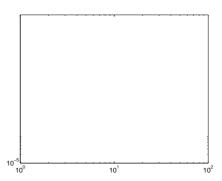
1 A one dimensional example





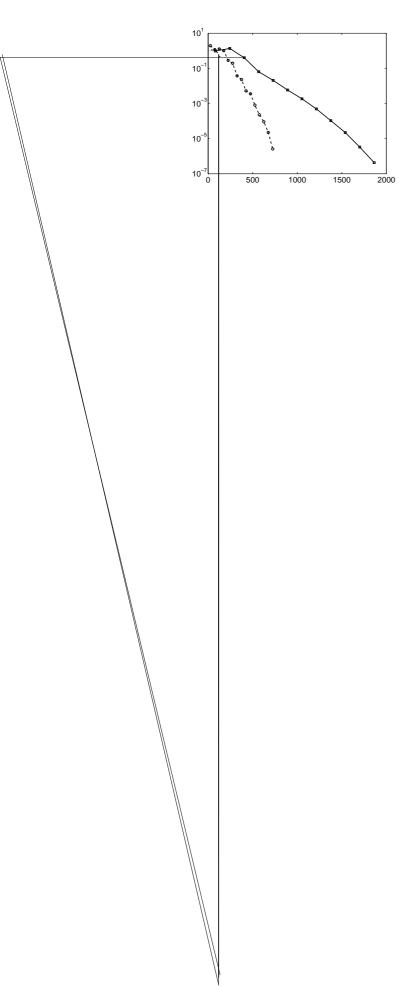
· riff iar iff p o (r.i. independent)





Proof. Partial la praction de la pra

Theorem 1 Let \mathbb{R} be str-st ped ith respect to \bullet . Let \bullet tisfy n exterior cone condition it \bullet ng \bullet . Let \bullet 2 k, so \bullet e (5.6). Then there exists such that



Let \mathcal{L}_{1} \mathcal{D}_{1} \mathcal{D}_{2} \mathcal{D}_{3} \mathcal{D}_{4} \mathcal{D}_{3} \mathcal{D}_{4} \mathcal{D}_{4} \mathcal{D}_{4} \mathcal{D}_{5} $\mathcal{D}_$

 $\mathbf{e} = \mathbf{j} = \mathbf{j} = \mathbf{j} = \mathbf{j}$

 $\frac{\text{elast}}{p} = p \quad \text{f} \quad \text{if} \quad \frac{1}{p} = \frac{1}{p} \text{if} \quad 2 \text{ H}_{p} \text{g} \qquad \text{if} \quad \text{i$

Theorem 1 Let \mathbb{R} be a r-sh ped ith respect to \mathbf{z} . Let \mathbf{z} tisfy n exterior cone condition ith nge \mathbf{z} . Let \mathbf{z} $\mathbf{z$

Proof. ... d

Remark 5.18. Papr • • Para 1, Papr • pr a ria •

Further examples

The Land of the Market of the Part of the

42 J.M. Melenk

for some numbers $_{ij}$ 2 \mathbb{R}_{\bullet} $nd \bullet _{0}$ 2 1 k).

) M, M. 1. D 1 .). 1 11 M1. T

$$\mathbf{e}^{\mathsf{T}} = \frac{\mathsf{X}}{\mathsf{X}} \times \mathbf{I}_{\mathsf{I}\mathsf{J}} \cdot \mathsf{I}_{\mathsf{I}\mathsf{J}} \cdot \mathbf{e}^{\mathsf{T}}_{\mathsf{0}}$$

$$\mathbf{e}^{\mathsf{T}} = \mathbf{e}^{\mathsf{T}}_{\mathsf{I}\mathsf{J}} \cdot \mathbf{e}^{\mathsf{T}}_{\mathsf{0}}$$

$$N = P^{j,1} T_{j}$$
 $\Rightarrow f_{j,j;i} j = \frac{1}{j} g \begin{pmatrix} 1 & j \end{pmatrix}$

1 4

$$\mathbf{k}_{\mathbf{p}}$$
 $\mathbf{k}_{\mathbf{p}}$ $\mathbf{k}_{\mathbf{p}}$ $\mathbf{k}_{\mathbf{p}}$ $\mathbf{k}_{\mathbf{p}}$

$$\mathbf{N} = \mathbf{P}^{\mathbf{1}} \mathbf{T}$$

Exercise 6.3. Let T . • r . p

$$N = p_{j} T_{j} \qquad p \quad f_{+j,m} j_{n,-j} \qquad 2 \quad j \qquad g$$

46 J.M. Melenk

Remark 6.5.

If Marray (M. M. . . .) respectively and the property of the pro

גם אן גאון מוגאן. • אוג ו • ומקג מקגאוגק ג a part of the specific of the

7 Enforcement of essential boundary conditions

. Put is $P_{ij} = x \cdot r_{ij} \cdot x_{ij} \cdot r_{ij} \cdot r_{ij}$ 1, , 1x Tx

. 1 • .1 Ma Gar r pr par and that ppr t pla i z rijiz. r j

Non-conforming methods: | M. . . . M. r . . r . . r . . Mr a Man all man

Lr ipirii P4 1 11 ب الإيد رالار ا

1 Conforming methods

Triffs and Other port of part NH constitution $\mathbf{I} \bullet \mathbf{N} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

A simple approach . My part ppr . My take r is $2 \ \frac{1}{0}$, which is $2 \ \frac{1}{0}$, and $2 \ \frac{1}{0}$, which is $2 \ \frac{1}{0}$, which is 2

$$V = V_N$$
 for $K_L \longrightarrow K_L \longrightarrow K_H \longrightarrow K_H \longrightarrow K_H \longrightarrow K_L \longrightarrow K_$

_ X

$$\mathbf{p};\mathbf{N} = \left(\begin{array}{ccc} \mathbf{p};\mathbf{N} & \mathbf{p};\mathbf{1} & \mathbf{I} \\ \mathbf{p};\mathbf{N} & \mathbf{p};\mathbf{1} & \mathbf{I} \end{array}\right) \left(\begin{array}{ccc} \mathbf{1} & \mathbf{I} \\ \mathbf{0} & \mathbf{I} \end{array}\right)$$

 $\mathbb{P}^{\mathbf{k}} \mapsto \mathbb{P}^{\mathbf{k}} \left(\mathbf{2} \quad \mathbf{k} \quad$

Mapr . . Mara . La

$$\text{ke. } \bullet : \mathsf{N} \mathsf{K}^{\mathsf{L}} \, \underbrace{\hspace{-.1cm} \downarrow \hspace{-.1cm} 1}_{1} \qquad \text{ke. } \bullet : \mathsf{N} \mathsf{K}^{\mathsf{H}} \, \underbrace{\hspace{-.1cm} \downarrow \hspace{-.1cm} 1}_{1} \qquad \qquad \mathsf{k}^{\mathsf{k}} \mathsf{ke} : \mathsf{K}^{\mathsf{H}} \mathsf{K} \, \underbrace{\hspace{-.1cm} \downarrow \hspace{-.1cm} 1}_{1}$$

 \mathbf{e}^{\prime} \mathbf{p}^{\prime} \mathbf{N} = \mathbf{p}^{\prime} \mathbf{e}^{\prime} \mathbf{N} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime} \mathbf{p}^{\prime}

2 Non conforming methods: Lagrange Multiplier methods and collocation techniques

$$\mathbf{h} = \mathbf{h}_0 \quad \mathbf{i}_{\mathbf{H}} = \mathbf{k} \mathbf{e}_{\mathbf{I}} \times \mathbf{H}$$

```
52
                           J.M. Melenk
Exercise 7.8. \mathbb{N} 
                                                                          Mark of the results o
   אַנג גויין גייין איר בי ני איר אוין גויין, איין גייין
                                         (Marie ra Maria), a sar rate
               o 1. Ma aiM a Ma ppr pr 12 araa 1 12 iM ro ra
    гр и А рг
                           Non conforming methods: penalty method
                                                                                                                                                                     M. r
       . M 1 M 1
                                             \langle e_N \rangle = \langle e_N \rangle \langle e_N \rangle = \langle e_N \rangle 8 2 N
          , r., \bullet (P) (P) \to r ppr ( ) (P), \bullet , \bullet
                                                 . M. ir • r • iM pr. .
       La sa Mar o ! 1 Mar o ! o Mario Mar a o . ), a
                                                                            ra pra, a a
 Theorem (penalty methodje Let \mathbb{R}^d be Lipschitz dom in. Let . Assume (2^k) is the solution of (7.1). Let (7.1) so (8)
                                                                                                               - \qquad \qquad \qquad \mathbf{j}_{\mathbf{e}_{\mathbf{e}}} - \mathbf{e}_{\mathbf{e}} \mathbf{e}_{\mathbf{e}} \qquad on \mathbf{e}_{\mathbf{e}} \quad .
Assume that the pproximation so ce _{\mathbf{N}} ^{-1} ) \bullet tisfies:
                                                                  v<sub>=</sub>V<sub>N</sub> ke k<sub>L k→1</sub> kre )k<sub>L k→1</sub>
                                                                                                              \mathsf{k}_\mathsf{L} oldsymbol{arphi}_1 \quad \mathsf{kr} \quad \mathcal{k}_\mathsf{L} oldsymbol{arphi}_1 \quad \overset{\mathsf{k}-1}{}
  Then there ho ds for
                                                                                                                       independent \ of \ \ {\it s} \ \ nd
                                                                                                                  n O -1 -1=k-= 1=k-1= k-1
                           ke` e`NkH ⊌ı
```

Setting – ith the optime \bullet ue $-\frac{\mathbf{k}-1}{2}$ gives

ke` e'nk_H <u>p</u>i

Remark 7.10. Mark r_1 p_1 $\mathbf{2}^{-k-1}$ p_2 $\mathbf{2}^{-k-1}$

Proof of Theorem 7.9. Proof of Theorem 7.9.

 $|_{\Phi_{i}, \quad \Phi_{i}, N} |_{K} = \bigwedge_{\Phi}^{\Lambda_{i} \Lambda_{i} N} |_{\Phi_{i}, \quad K}$

rix

. Mx • .1 1 x

54 J.M. Melenk

Rem r. 7.11.

Remark 7.16. La , Marina pr. a , Mar

. Moreover, we have the second of the secon

Lemma 1 Set

Ţ Meshless Methods 57 • , x x r x 14 , 114 1 $\mathbf{v} = \mathbf{v}_{N}$ \mathbf{k}_{0} \mathbf{k}_{1} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{2} \mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} \mathbf{k}_{4} \mathbf{k}_{2} \mathbf{k}_{3} \mathbf{k}_{4} $\mathbf{$ Rem ri 7.20. M. ppr : pr p. n. . N. : p : . . M. r. A Results from Analysis Theorem A 1 (universal extension operator) Let \mathbb{R}^d begin Lipschitz dom, in. Then there exists, increase for the \mathbb{R}^d begin \mathbb{R}^d ith the fo o ing properties:

(i) For \mathbf{c} ch $\mathbf{2} \mathbb{N}_{0}$, \mathbf{c} $\mathbf{2} \mathbb{1}$). Such that $\mathbf{k} \in \mathbf{k}_{\mathbf{W}} \times \mathbf{p}_{\mathbf{k}} = \mathbf{d}_{\mathbf{l}}$ $\mathbf{k}_{\mathbf{k}} \cdot \mathbf{k}_{\mathbf{W} \mathbf{k}; \mathbf{p}} = 1 \quad fo$

Proof. .. to the p. .. to Theorem A 2 (multiplicative trace theorem) Let \mathbb{R}^d be Lipschitz don, in, 2. Then there exists, constant such that f for

• • 2 s) the to ce of - • je s tisfies

 $k_{-0} \cdot k_{L_{-\frac{1}{2}}} = k_{0} \cdot k_{L_{-\frac{1}{2}}}^{1-1=\frac{1}{2}} \stackrel{d}{s_{1}} k_{0} \cdot k_{H}^{1=\frac{1}{2}} \stackrel{d}{s_{1}}$

 $k \in \mathbb{R}_{\mathbb{R}}$

(Maria (Marana a Cata)

 $\mathbf{r}_{-}(\lambda,\mathbf{p}_{-})$

C Approximation with adapted function systems

C 1 The theory of Bergman and Vekua

$$\mathbf{e}$$
, \mathbf{e} , \mathbf{x} , \mathbf{e} , \mathbf{e} , \mathbf{e} , \mathbf{e} , \mathbf{e} , \mathbf{e}

Maria Maria de la compania del compania del compania de la compania de la compania del compania

Lemma C 1 Let \mathbb{C} be simply connected Lipschitz domain. Fix $_0$ **2** . Let H = f j ho omorphic on g nd q) <math>g g. Then there exists ging $r \neq p$ ith the fo o ing properties:

- 1. $so e^{s}es$ (C.1) for $e^{s}ery$ **2 H**.
- 2. For every so ution \bullet of (C.1) there exists, unique **2 H** such that

n the st to estimates, the const nt depends on, s nd the differents oper tor.

- 44 - 1 - 4

Rem r. C.2. P. . . • L p p n . r p. . P. . . radistraparir a and strape per emple of the control

Lemma C Let \mathbb{R} be st r-st ped ith respect to \bullet \circ . Let the dispercement field $\mathbf{u} = \mathbf{v}$ i $\mathbf{2}$ k \circ for some $\mathbf{2}$ \mathbb{N} . Let \circ $\mathbf{2}$. Let be the ho omorphic functions, pper ring in the represent tion forms. (5.14), hich, re unique y determined by stip, ting = 0. Then

$k k_{H^k} \downarrow_1 k k_{H^{k-1}} \downarrow_1 k u k_{H^k} \downarrow_1$

depends on y on the 1 mé const nts, upper bounds on here \bullet nd o er bounds on.

. 1 1 1 1 1 r , U

Then **m** is defined on $\frac{1}{1-1}$ \bullet nd

Lemma C Let \mathbb{C} be it r-sh ped ith respect to and ssume that \mathbb{C} . Then for \mathbb{C} \mathbb{C} be it r-sh ped ith respect to and ssume that \mathbb{C} \mathbb{C}

- I. Babuska, U. Banerjee, and J. Osborn. Survey of meshless and generalized nite element methods: a uni ed approach. In Acta Numerica 2003, pages 1{125. Cambridge University Press, 2003.
- I. Babuska, G. Caloz, and J. Osborn. Special nite element methods for a class of second order elliptic problems with rough coe cients. SIAM J. Numer. Anal., 31:945{981, 1994.
- 8. I. Babuska, R.B. Kellogg, and J. Pitkaranta. Direct and inverse error estimates for nite elements with mesh re nements. Numer. Math., 33:447{471, 1979.
- I. Babuska and J. M. Melenk. The partition of unity method. Internat. J. Numer. Meths. Engrg., 40:727{758, 1997.
- I. Babuska and J. Osborn. Can a nite element method perform arbitrarily badly? Math. Comput., 69:443{462, 2000.
- 11. T. Belytschko, L. Gu, and Y.Y. Lu. Fracture and crack growth by element-free Galerkin methods. Modelling Simul. Mater. Sci. Eng., 2:519{534, 1994.
- 12. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Comput. Meth. Appl. Mech. Engrg., 139:3{47, 1996.
- 13. T. Belytschko, Y.Y. Lu, and L. Gu. Element-free Galerkin methods. Internat. J. Numer. Meths. Engrg., 37:229{256, 1994.
- T. Belytschko, Y.Y. Lu, and L. Gu. A new implementation of the element-free Galerkin method. Comput. Meth. Appl. Mech. Engrg., 113:397{414, 1994.
- 15. J. Bergh and J. Lefstrem. Interpolation Spaces. Springer Verlag, 1976.
- S. Bergman. Integral operators in the theory of linear partial di erential equations. Springer Verlag, 1961.
- 17. S. Bergman and J. Herriot. Application of the method of the kernel function for solving boundary value problems. Numer. Math., 3:209{225, 1961.
- 18. S. Bergman arato J. Herriot. Numerical solution of boundary-value problems by the method of integral operators. Numer. Math., 7:42(65, 1965.
- 19. T. Betcke and N.L. Trefethen. Reviving the method of particular solutions.

 SIAM Review, to appear. 20 Td Td (op)Tj 9.95056 0 Td (er Td (g.)T 8.96638rlad (Tj 44)Tj /R
- 20. H. Blum and M-Dobrowolski. On nite element methods for elliptic equations on domains with corners. Computing, 28:53{61, 1982.
- 21. J. Bramble and S.R. Hilbert. Estimation of linear functionals on sobolev spaces with application

- 50. M. Griebel and M.A. Schweitzer. A particle-partition of unity method | part IV: Parallelization. In M. Griebel and M.A. Schweitzer, editors, Meshfree Methods for Partial Di erential Equations, volume 26 of Lecture Notes in Computational Science and Engineering, pages 161{192. Springer, 2002.
- M. Griebel and M.A. Schweitzer. A particle-partition of ynity method | part V: Boundary conditions. In S. Hildebrandt and H. Karcher, editors, Geometric Analysis and Nonlinear Partial Di erential Equations, pages 517{540. Springer, 2002.
- 52. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.
- 53. P. Grisvard. Singularities in Boundary Value Problems. Springer Verlag/Masson, 1992.
- 54. D. Hagen. Element-free Galerkin methods in combination with nite element approaches. Comput. Meth. Appl. Mech. Engrg., 139:237{262, 1996.
- 55. W. Han and X. Meng. error analysis of the reproducing kernel particle method. Comput. Meth. Appl. Mech. Engrg., 190:6157{6181, 2001.
- 56. I. Herrera. Boundary Methods: An Algebraic Theory. Pitman, Boston, 1984.
- 57. K. Hellig, U. Reif, and J. Wipper. Weighted extended b-spline approximation of Dirichlet problems. SIAM J. Numer. Anal., 39(2):442(462, 2001.
- 58. T. Hou. Numerical approximations to multiscale solutions in partial di erential equations. In J. Blowey, A. Craig, and T. Shardlow, editors, Frontiers in numerical analysis (Durham, 2002), pages 241{301. Springer, 2003.
- 59. T. Hou, X.-H. Wu, and Z. Cai. Convergence of a multiscale nite element method for elliptic problems with rapidly oscillating coe cients. Math. Comput., 68(227):913(943, 1999.
- 60. A. Huerta, T. Belytschko, S. Fernandez-Mendez, and T. Rabczuk. Meshfree methods. In R. de Borst, T.J.R. Hughes, and E. Stein, editors, Encyclopedia of Computational Mechanics. Elsevier, to appear.
- 61. A. Iske. Multiresolution Methods in Scattered Data Modelling. Number 37 in Lecture Notes in Computational Science and Engineering. Springer Verlag, 2004.
- 62. J.W. Jerome. On rewidths in Sobolev spaces and applications to elliptic boundary value problems. Journal of Mathematical Analysis and Applications, 29:201{215, 1970.
- 63. J. Jirousek and A. Venkatesh. Hybrid-Tre tz plane elasticity elements with p-method capabilities. Internat. J. Numer. Meths. Engrg., 35:1443{1472, 1992.
- 64. J. Jirousek and A.P. Zielinski. Survey of Tre tz-type element formulations. Computers and Structures, 63(2):225{242, 1997.
- 65. E.J. Kansa. Multiquadrics{a scattered data approximation scheme with applications to computational uid-dynamics{I surface approximations and partial derivative estimates. Computers and Mathematics with Applications, 19(8/9):127{145, 1990.
- 66. E.J. Kansa. Multiquadrics{a scattered data approximation scheme with applications to computational uid-dynamics{II solutions to parabolic, hyperbolic, and elliptic partial di erential equations. Computers and Mathematics with Applications, 19(8/9):147{161, 1990.
- 67. I.V. Kan

- 69. O. Laghrouche and P. Bettes. Solving short wave problems using special nite elements; towards an adaptive approach. In J. Whiteman, editor, Mathematics of Finite Elements and Applications X, pages 181{195. Elsevier, 2000.
- S. Li, H. Lu, W. Han, W. K. Liu, and D. C. Simkins. Reproducing kernel element method. II. Globally conforming ^m Cⁿ hierarchies. Comput. Methods Appl. Mech. Engrg., 193(12-14):953{987, 2004.
- 71. T. Liszka and J. Orkisz. The nite di erence method at arbitrary irregular grids and its application in applied mechanics. Computers & Structures, 11:83
 95, 1980.
- 72. W. K. Liu, J. Adee, and S. Jun. Reproducing kernel particle methods for elastic and plastic problems. In D.J. Benson and R.A. Asaro, editors, Advanced Computational Methods for Material Modeling, pages 175{190. AMD 180 and PVP 268, ASME, 1993.
- 73. W. K. Liu, W. Han, H. Lu, S. Li, and J. Cao. Reproducing kernel element method. I. Theoretical formulation. Comput. Methods Appl. Mech. Engrg., 193(12-14):933(951, 2004.
- W. K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity I: Formulation and theory. Internat. J. Numer. Meths. Engrg., 45:251{288, 1999.
- 75. W.K. Liu and S. Li. Reproducing kernel particle hierarchical partition of unity II: Applications. Internat. J. Numer. Meths. Engrg., 45:289{317, 1999.
- 76. A. I. Markushevich. Theory of functions of a complex variable. Chelsea Publishing Company, N.Y., 1965.
- 77. A.-M. Matache, I. Baband Skildal/6282exhiMac

- 88. J. Nitsche. Über ein Variationsprinzip zur Lesung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Univ. Hamburg, 36:9{15, 1970/71.
- 89. J. T. Oden and A.

- 109. H. Wendland. Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal., 21:285{300, 2001.
- 110. H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.
- 111. T. Zhu and S.N. Atluri. A modi ed collocation method and a penalty formulation for enforcing essential bounadry conditions. Comp. Mech., 21:165{178, 1998
- 112. W.P. Ziemer. Weakly Di erentiable Functions. Springer Verlag, 1989.