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A Comparison of Potential Vorticity-Based

and Vorticity-Based Control Variables

Abstract

In most operational weather forecasting centres variational data

assimilation is performed using a different set of variables from the

actual model variables. The transformation of variables simplifies the

problem by assuming that the errors in the transformed variables are

uncorrelated. The validity of this hypothesis is key to the accuracy

of the data assimilation. Recently a potential vorticity (PV) based

set of variables has been proposed. These new variables are thought

to exploit more accurately important dynamical properties of the at-

mosphere. Here we present new results, obtained with a simplified

1-D shallow water model, comparing the PV-based variables to the

vorticity-based variables currently used at operational weather fore-

casting centres, including the Met Office. The validity of the funda-

mental assumption that the errors in the transformed variables are

uncorrelated is tested in a variety of dynamical regimes. The results



1 Introduction

Data assimilation is a process for finding initial conditions for numerical

weather prediction (NWP) models. By combining observational data, statis-

tical data, knowledge of atmospheric dynamics and a previous short forecast

the best estimate, or analysis, of the state of the atmosphere is found. Due

to the chaotic nature of the governing equations any errors in the initial con-

ditions may grow rapidly in the forecast and thus data assimilation forms a

vital part of NWP. The assimilation problem is huge, with typically 107 vari-

ables, and special methods need to be found to make the problem practical

to solve.

At the Met Office the data assimilation is performed using a different set

of variables to the model variables. These variables are the control variables

and the choice of these is key to the data assimilation system performance.

The transformation of variables simplifies the problem by assuming that the

errors in the new variables are uncorrelated. One way that is thought to

do this accurately is by using balanced control variables. Here an attempt

is made to separate the balanced and unbalanced modes as it is thought

there is little or no interaction between these flows and so their errors are

uncorrelated. The use of control variables in this way was first introduced

in [8]. Here balance between mass and momentum is implicitly introduced

by combining the balanced parts of mass and momentum fields in a single

variable.

The current control variables used at the Met Office are vorticity-based

and do not represent the separation of balanced and unbalanced modes in all

flow regimes. Recently a new set of control variables has been proposed [2]

that should be valid across all regimes. The new variables use a conserved

quantity, the potential vorticity (PV), to capture the balanced mode. In [14]

the PV-based approach is developed for the 2D shallow water equations on

a sphere and the potential benefits are demonstrated theoretically and ex-

perimentally. These initial results are encouraging. In this study we analyse

the vorticity-based and PV-based variables in the context of a simplified
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1D shallow water equation model and investigate the validity of the funda-

mental assumption that the errors in the control variables are uncorrelated

in various flow regimes.

We start by introducing the theoretical aspects of control variable trans-

forms as they apply to four dimensional variational data assimilation (4D-

VAR). We then derive the vorticity-based and PV-based transforms for the

simplified shallow water equation model. In this simplified context the im-

plications of each transform are examined. We first derive the background

error covariance matrices implied by each control variable transform. This

highlights a key difference between the transforms; whilst the vorticity-based

transform implies static background error statistics the implied background

error statistics of the PV-based transform are state-dependent. Next we test

the validity of the fundamental assumption that the errors in the control vari-

ables are uncorrelated. We test whether the assumption holds as we change

the dynamical regime. We also propose an approximate form of the PV-based

transform and examine the consequences of this approximation on the error

correlations between the approximated variables. From these results we are



model space to observational space. The background error covariance matrix

is defined by B, typically of size O(107 × 107), and Ri is the observation

error covariance matrix, generally of size O(106 × 106). This is a non-linear

least squares minimisation problem and is usually solved incrementally as

discussed in [1].

Incremental 4D-VAR minimises a series of approximate convex quadratic

cost functions for an increment x′
0

J̃ (k)[x′
0
(k)

] =
1

2
(x′

0
(k) − x′b)TB−1(x′

0
(k) − x′b)

+
1

2

n∑

i=0

(Hix
′
i
(k) − di)

TR−1
i (Hix

′
i
(k) − di), (2)

where k is the iteration count and Hi is the linearised observation operator.

Here x′
i
(k) = M(ti, t0,x

(k))x′
0
(k), where M(ti, t0,x

(k)) ≡ Mi denotes the linear

evolution operator from t0 to ti of the tangent linear model (TLM). The TLM

is a linearisation of the non-linear model about the current guess trajectory.

The background increment, x′b, is given by x′b = xb−x
(k)
0 and the innovation

vector, di, by di = yoi −Hi[x
(k)
i ].

Further simplification is now needed to handle the background error co-

variance matrix, B, which cannot be stored in memory. This is done by

transforming from model variables to new control variables to perform the

data assimilation. The errors in these control variables are considered to

be uncorrelated with each other and thus the background error covariance

matrix becomes block diagonal and the size of the data assimilation problem

is greatly reduced. The block components of the transformed matrix specify

the auto-correlations of each variable. Effectively the problem of modelling



and its inverse,

z′ = Tx′, (4)

is known as the T -transform. Here z′ are the control variable increments

and x′ the model variable increments. Substituting into the incremental cost

function (2) we obtain,

J̃ (k)[z′
0
(k)] = 1

2
(z′

0
(k) − z′b)TUTB−1U(z′

0
(k) − z′b)

+1
2

∑n
i=0(Hi(MiUz′

0
(k)) − di)

TR−1
i (Hi(MiUz′

0
(k)) − di), (5)

where U is the U -transform on iteration k and (MiUz′
0
(k)) represents the

control variable increment at the initial time transformed to model space

and evolved by the TLM to time ti. It is necessary to transform z′
0
(k) in the

observation term of (5) as the linearised observation operator Hi and the

linear model operator Mi act on model variables and not control variables.

If we now choose U such that

UTB−1U = Λ−1,

where Λ

UTBU



observation is assimilated. Even in this simple scenario it can be shown that

the analysis increment

xa − xb ∝ B(:, j) = (UΛUT )(:, j),

where xa is the model state at time t = 0 that minimises the cost function

(1), B(:, j) is the jth column of the background error covariance matrix B

and a single observation is located at a point j.

In order to identify possible control variables, we use dynamical proper-

ties of the system. Two types of atmospheric motion can be identified as

normal modes of the primitive equations used in numerical weather predic-

tion (NWP), linearised about a simple basic state [3]. One of these motions

is slow and corresponds to a Rossby wave, whilst the others are fast and

correspond to inertial-gravity waves. The slow mode is referred to as bal-

anced, and the fast as unbalanced. This is because in the linear analysis the

slow mode satisfies a linear balance condition. For the most part it is the

balanced motion that is of meteorological significance. It is thought that

a good choice of control variables will involve capturing the balanced and

unbalanced modes in separate control variables since we assume that there

is little or no interaction between these flows. In the linear case the modes

evolve independently and therefore there is no interaction. In the non-linear

case the degree of this interaction will depend in some sense on the degree of

non-linearity.

In the following section we present the current vorticity-based control

variables and an alternative version of control variables based on the potential





The balance equation is a fundamental component of both the vorticity

and the PV-based transforms and is applied to increments in a linearised

form. We let u(x, t) = ū(x, t)+u′(x, t), v(x, t) = v̄(x, t)+v′(x, t) and h(x, t) =

h̄(x, t) + h′(x, t), where ū(x, t), v̄(x, t) and h̄(x, t) are reference states. If we

assume that the reference states satisfy the balance equation (10) to first

order accuracy, then we obtain a corresponding first-order linear balance

equation for the increments, given by

fv′ − g
∂h′

∂x
= 0. (12)

The quantity

q =
1

h

(
f +

∂v

∂x

)
, (13)

or the potential vorticity (PV), is conserved in the simplified SWEs. It can

also be shown that the simplified SWEs, linearised about a simple reference

state, have three normal modes: one slow and two fast. The slow, or balanced

mode satisfies linear balance and is characterised by a linearised form of

the PV. The remaining two fast modes can be related to the geostrophic

departure, aζ
′, defined by

aζ
′ = f

∂v′

∂x
− g

∂2h′

∂x2
, (14)

and the divergence

D′ =
∂u′

∂x
, (15)

where we recall that, in the system defined by (7)–(9), the model variables

do not vary in the y-direction.

Another important dimensionless parameter used to characterise the flow

regime is the Burger number,

Bu =

√
gH

fL
, (16)

where H is a characteristic depth scale. The Burger number is a measure of

the relative importance of rotation and stratification in the flow. It is the
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ratio of the Rossby number and the Froude number,

Fr =
U√
gH

. (17)

The Froude number is the ratio of the advective velocity to the gravity wave

speed, cg =
√
gH. In most deep atmospheric motions Fr is small, i.e. the

advective velocity is much less than the gravity wave speed.

We now derive the vorticity-based and PV-based transforms for the sim-

plified SWE model.

3.1 Vorticity-Based Transform

The vorticity-based control variables are the streamfunction ψ′, velocity po-

tential χ′ and ’unbalanced pressure’ or, in the case of the SWEs, the residual

unbalanced height h′
res. Here the rotational wind is assumed to be totally

balanced. The Helmholtz decomposition is used to separate velocities into

rotational and divergent parts. In 1D the Helmholtz decomposition reduces

to the equations

ζ ′ =
∂v′

∂x
=
∂2ψ′

∂x2
, (18)

and

D′ =
∂u′

∂x
=
∂2χ′

∂x2
. (19)

The velocities u′ and v′ are given by

u′ =
∂χ′

∂x
, (20)

and

v′ =
∂ψ′

∂x
. (21)

The linearised balance relationship used in the vorticity-based transform, in

terms of the increments ψ′ and h′, is found by differentiating (12) with respect

to x and regarding all of v′ as ’balanced’. Thus we obtain

f
∂2ψ′

∂x2
− g

∂2h′
b

∂x2
= 0, (22)
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Step 3 Solve
∂2χ′

∂x2
= D′ (25)

for χ′ subject to periodic boundary conditions. The solution is unique

up to an additive constant.

Step 4 Store mean values of u′ and v′. These are otherwise lost through differ-

entiation.

Equations (23) for ψ′ and (25) for χ′ are solved with periodic boundary

conditions. The solutions are unique up to an additive constant provided the

right hand side has a zero mean value. In both cases the right hand sides are

derivatives of periodic functions and therefore will always have a zero mean

value. The solutions are therefore unique up to a constant and we choose this

constant such that the mean value < ψ′ > of ψ′ is zero and the mean value

< χ′ > of χ′ is also zero, where < · > indicates the mean of the variable.

In solving (23) for ψ′



Step 2



where the reference states v̄, h̄ and q̄ are either the first guess, or background

states, on the first outer loop of the incremental 4D-VAR, or updates to the

background on subsequent outer loops.

For the PV-based transform we define the balanced variables v′
b and h′

b

such that they satisfy the linear balance equation

fv′
b − g

∂h′
b

∂x
= 0 (32)

and the linearised PV equation. To derive the linearised PV equation we

follow [13] and start by linearising (31) around a varying reference state

q(x, t



and
∂v′

u

∂x
− q̄h′

u = 0, (36)

i.e. the unbalanced variables do not contribute to the PV increment.

Re-writing these equations using the balanced and unbalanced stream-

functions ψ′
b and ψ′

u gives the following four equations

f
∂2ψ′

b

∂x2
− g

∂2h′
b

∂x2
= 0, (37)

∂2ψ′
b

∂x2
− q̄h′

b = q′h̄, (38)

f
∂2ψ′

u

∂x2
− g

∂2h′
u

∂x2
= aζ

′, (39)

∂2ψ′
u

∂x2
− q̄h′

u = 0, (40)

where aζ
′ is defined by (14). These equations, with appropriate boundary

conditions specified later in this report, define four variables ψ′
b, ψ

′
u, h

′
b and h′

u.

We can now derive the PV-based transform in the context of the model (7)

to (9) using equations (37) to (40) and the divergence equation (19). We have

five variables ψ′
b



with

x′ =




u′

v′

h′


 ,

and

z′ =




ψ′
b

h′
u

χ′




is given by solving the following sequence of equations:

Step 1 Solve
∂2ψ′

b

∂x2
− f q̄

g
ψ′
b = q′h̄ (41)

for ψ′
b subject to periodic boundary conditions. The right hand side is

known from the model variable increment fields. The equation has a

unique solution provided q̄ > 0.

Step 2 Solve

f q̄h′
u − g

∂2h′
u

∂x2
= aζ

′ (42)

for h′
u subject to periodic boundary conditions. As before the right

hand side is known from the model variable increment fields and the

equation has a unique solution provided q̄ > 0.

Step 3 Solve
∂2χ′

∂x2
= D′ (43)

for χ′ subject to periodic boundary conditions. The solution is unique

up to an additive constant.

Step 4 Store mean values of u′ and v′. These are otherwise lost through differ-

entiation.

Equation (41) is found by substituting h′
b = f

g
ψ′
b from (37), the linear

balance equation, into equation (38). Here we have integrated (37) twice

with both constants of integration defined to be zero, as was done for the
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Met Office variables. Equation (42) is found by substituting ∇2ψ′
u from

equation (40) into equation (39).

Equation (43) is solved with periodic boundary conditions for χ′ and has

a unique solution up to an additive constant provided the right hand side has

a zero mean value. The right hand side is a derivative of a perio





the practical implementation of the U -transform in the incremental 4D-VAR

algorithm.

In equation (46) the unbalanced streamfunction ψ′
u is found by solving

(44). The right hand side of (44) is known and must have a mean value of

zero for the equation to have a solution. In the optimisation algorithm we

minimise the cost function in control space and therefore the condition that

the mean of q̄h′
u is zero may not be satisfied unless explicitly enforced. It is

not straightforward to do this, since q̄ is varying in x and is modified on every

outer iteration. However, it is possible to adjust the mean of h′
u, < h′

u >,

on each inner iteration so that < q̄h′
u > is zero. This can be achieved since

we are always able to subtract a constant from h′
u such that < q̄h′

u > is

zero. Note that it is not a simple case of setting < h′
u >= 0; < h′

u > will

be non-zero and change on each inner iteration. The constant then must be

added to h′
b to preserve the degrees of freedom in h′. The mean of the full

height increment is therefore split between h′
b and h′

u.

The problem could be avoided by choosing to approximate q̄ by a con-

stant. An approximation of this sort was made in [2]. In the simplified SWEs

context this would mean that we are simply able to explicitly set < h′
u >= 0

and so q̄h′
u will always have a zero mean value. We then store the mean of the

full height increment solely in h′
b. This approximation is also desirable from

an operational perspective since the transform would be less computationally

demanding. In the following section we consider the possible implications of

making this approximation in the PV-based transform. We note that ap-

proximating q̄ to any constant would achieve this type of simplification. We

therefore choose to approximate q̄ = f/ < h̄ >, where < h̄ > is the mean of

the linearisation state fluid depth.

19







COV (h′, h′) and COV (v′, v′). The statistical model is much more compli-

cated for the PV-based variables and, whilst BV is static, the PV-based im-

plied background error statistics include the linearised PV q̄. Thus the PV-

based transforms have introduced state-dependence into the implied back-

ground error statistics.

4.2 The Correlation of Control Variables

We now test the assumption that the errors in the vorticity and PV-based

control variables are uncorrelated. If the control variables are indeed rep-

resenting the balanced and unbalanced flows, then we should see very little

correlation between the balanced and unbalanced variables. However, if the

vorticity-based variables are not representing the balanced flow well in the

low Burger regime we would expect to see a correlation between ψ′ and h′
res.

We are also in a position to consider the consequences of using an ap-

proximate q̄ = f/ < h̄ > in the PV-based transforms. This can be achieved

by looking at the correlation of the approximated PV-based variables.

We start by briefly introducing the two-time-level semi-impli



and

φ = gh.

This form of the equations is chosen as it is a more convenient when applying

the SISL scheme [11].

Applying the SISL scheme as in [5] to the equations (50)–(52) gives the

following time-discrete equations

un+1
a − und

∆t
+ α1

[
φx + g˜



parameter f = 0.01s−1. The orography is given by

H̃(x) = Hc

(
1 − x2

a2

)
for − a ≤ x ≤ a (56)

= 0 otherwise (57)

with a = 40∆x, Hc = 7.6m in the high Burger regime and Hc = 0.019m

in the low Burger regime. For the high Burger experiments the mean depth

< h >≈ 40m and for the low Burger experiments < h >≈ 0.1m.

4.2.2 Correlation Experiment: Method

It is assumed in the data assimilation that the errors in the control variables

are uncorrelated. We now investigate the truth of this assumption. We look

at correlations of the errors in the vorticity and PV-based control variables

where we fix the Burger number to be either high or low and vary the Rossby

number. We also try to assess the effect of using an approxim314489(l)0.220551(e)0.04902447906(b)-¯245057]TJ
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and

< ψ′ >=
ψ′

1 + . . .+ ψ′
N×M

N ×M
; (61)

also

< ψ′h′ >=
(ψ′

1h
′
1 + . . .+ ψ′

N×Mh
′



In the high Burger case the fast gravity waves cover the length of the do-

main in time N∆x√
gH
s. We choose to remove this signal from the time-difference

fields by choosing a time interval of N∆x√
gH
s.

In the low Burger number experiments the dominant gravity wave is

actually stationary and tied to the orography, as we discuss in S
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variable correlations ψ  Bu





5 Summary and Conclusions

Control variable transforms in data assimilation have a dual function. Firstly

they are a necessity due to the size of the background error covariance matrix.

Secondly, they are used to introduce important physical relationships into

the data assimilation. We show how the control variable transform is used

in 4D-VAR and that the key assumption is that the errors in the control

variables are uncorrelated. This simplifies the data assimilation problem but

also implicitly models the background errors as

B = UΛUT .

We then derive two sets of control variables for a simplified SWE model,

the vorticity-based and the PV-based versions, which attempt to exploit

properties of balance. We are then able to derive, in this simple case, the

implied background statistics for each transform. This highlights several

key differences in the two transforms. Most importantly that the implied

background statistics for the vorticity-based transforms are static whilst the

PV-based transforms are state-dependent as they involve the linearised form

of the PV.

We then test the assumption that the errors in the control variables are

uncorrelated. We are able to validate our hypothesis that the PV-based

variables capture the balanced motion in both high and low Burger regimes,

whilst the vorticity-based transforms fail in the low Burger regime. This

suggests that the PV-based control variables are a much better ch



These results suggest that the PV-based variables are superior to the

vorticity-based variables in several vital areas: the PV-based variables imply

a state-dependent matrix B and the assumption that the errors in the PV-

based variables are uncorrelated is valid in all regimes tested.

The obvious next step is to compare control variables in assimilation

experiments. This would involve identical twin 4D-VAR experiments using

single and incomplete sets of observations. The success of the experiment

should be assessed against how well the balanced flow is represented in the

analysis. To do this we can look at the PV in each analysis and compare this

to the true PV. This work is currently being carried out as part of a PhD

research project and will be published in a subsequent report.
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