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Abstract. In this paper we consider the problem of time-harmonic acoustic scattering in two
dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering
problems have a computational cost that grows at least linearly with respect to the frequency of the
incident wave. Here we present a novel Galerkin boundary element method, with an approximation
space consisting of the products of plane waves with piecewise polynomials supported on a graded
mesh, with smaller elements closer to the corners of the polygon. We demonstrate via both a
rigorous error analysis and numerical results that the number of degrees of freedom required to
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sues, including conditioning and evaluation of the integrals that arise. We finish the
paper with some concluding remarks and open problems.

We note that the Galerkin method is, of course, not the only way to select a
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then [41] there is also a well-defined normal derivative operator, the unique bounded
linear operator ∂n : H1(G; ∆) → H−1/2(∂G) which satisfies

∂nv =
∂v

∂n
:= n · ∇v,

almost everywhere on Γ, when v ∈ C∞(Ḡ). H1
loc(G) denotes the set of measurable

v : G → C for which χv ∈ H1(G) for every compactly supported χ ∈ C∞(Ḡ).
The polygonal domain Υ is Lipschitz as is its exterior D̄ := R2 \ Ῡ. Let γ+ :

H1(D) → H1/2(Γ) and γ− : H1(Υ) → H1/2(Γ) denote the exterior and interior trace
operators, respectively, and let ∂+

n : H1(D; ∆) → H−1/2(Γ) and ∂−
n : H1(Υ; ∆) →

H−1/2(Γ) denote the exterior and interior normal derivative operators, respectively,
the unit normal vector n directed out of Υ. Then the boundary value problem we seek
to solve is the following: given k > 0 (the wave number) find u ∈ C2(D) ∩ H1

loc(D)
such that

∆u+ k2u = 0 in D,(2.1)

γ+u = 0 on Γ,(2.2)

and the scattered field, us := u− ui, satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(

∂us

∂r
(x) − ikus(x)

)

= 0,(2.3)

where r = |x| and the limit holds uniformly in all directions x/|x|.
Theorem 2.1. (see e.g. [41, theorem 9.11]). The boundary value problem (2.1)–

(2.3) has exactly one solution.
Suppose that u ∈ C2(D)∩H1

loc(D) satisfies (2.1)–(2.3). Then, by standard elliptic
regularity estimates [32, §8.11], u ∈ C∞(D̄ \ ΓC), where ΓC := {P1, . . . , Pn} is the
set of corners of Γ. It is, moreover, possible to derive an explicit representation for u
near the corners. For j = 1, . . . , n, let Rj := min(Lj−1, Lj) (with L−1 := LN). Let
(r, θ) be polar coordinates local to a corner Pj , chosen so that r = 0 corresponds to
the point Pj , the side Γj−1 lies on the line θ = 0, the side Γj lies on the line θ = Ωj ,
and the part of D̄ within distance Rj of Pj is the set of points with polar coordinates
{(r, θ) : 0 ≤ r < Rj , 0 ≤ θ ≤ Ωj}. Choose R so that R ≤ Rj and ρ := kR < π/2, and
let G denote the set of points with polar coordinates {(r, θ) : 0 ≤ r < R, 0 ≤ θ ≤ Ωj}
(see figure 2.2). The following result, in which Jν denotes the Bessel function of the
first kind of order ν, follows by standard separation of variables arguments.

Theorem 2.2 (representation near corners). Let g(θ) denote the value of u at the
point with polar coordinates (R, θ). Then, where (r, θ) denotes the polar coordinates
of x, it holds that

u(x) =
∞
∑

n=1

anJnπ/Ωj
(kr) sin

(

nθπ

Ωj

)

, x ∈ G,(2.4)

where

an :=
2

ΩjJnπ/Ωj
(kR)

∫ Ωj

0

g(θ) sin

(

nθπ

Ωj

)

dθ, n ∈ N.(2.5)

Remark 2.3. The condition ρ = kR < π/2 ensures that Jnπ/Ωj
(kR) 6= 0,

n ∈ N, in fact (see (3.12)) that |anJnπ/Ωj
(kr)| ≤ C(r/R)−n, where the constant C is
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Fig. 2.2. Neighbourhood of a corner.

independent of n and x
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to an exterior scattering problem for the Helmholtz equation dates back to Brakhage
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where L̃0 := 0 and, for j = 1, . . . , n, L̃j :=
∑j

m=1 Lm is the arc-length distance from
P1 to Pj+1. Define

φ(s) :=
1

k

∂u

∂n
(x(s)), for s ∈ [0, L],(3.8)

where L := L̃n, so that φ(s) is the unknown function of arc-length whose behaviour
we seek to determine. Let

Ψ(s) :=

{

2
k

∂ui

∂n (x(s)), if s ∈ (L̃ns
, L)

0, if s ∈ (0, L̃ns
),

so that Ψ(s) is the physical optics approximation to φ(s), and set ψj(s) := u(x̃j(s)),
s ∈ R, where x̃j(s) ∈ Γ+

j ∪ Γj ∪ Γ−
j is the point

x̃j(s) := Pj +
(

s− L̃j−1

)

(

Pj+1 − Pj

Lj

)

, −∞ < s < ∞.

From (3.5) and (3.6) we have the explicit representation for φ on the side Γj , that

φ(s) = Ψ(s) +
i

2
[eiksv+

j (s) + e−iksv−
j (s)], s ∈ [L̃j−1, L̃j], j = 1, . . . , n,(3.9)

where

v+
j (s) := k

∫ L̃j−1

−∞

µ(k|s− t|)e−iktψj(t) dt, s ∈ [L̃j−1, L̃j], j = 1, . . . , n,

v−
j (s) := k

∫ ∞

L̃j

µ(k|s− t|)eiktψj(t) dt, s ∈ [L̃j−1, L̃j], j = 1, . . . , n.

The terms eiksv+
j (s) and e−iksv−

j (s) in (3.9) are the integrals over Γ+
j and Γ−

j , respec-
tively, in equation (3.5), and can be thought of as the contributions to ∂u/∂n on Γj

due to the diffracted rays travelling from Pj to Pj+1 and from Pj+1 to Pj , respectively,
including all multiply diffracted ray components.

So the equation we wish to solve is (2.9), and we have the explicit representa-
tion (3.9) for its solution. At first glance this may not appear to help us, since the
unknown solution u appears (as ψj) on the right hand side of (3.9). However, (3.9)
is extremely helpful in understanding how φ behaves since it explicitly separates out
the oscillatory part of the solution. The functions v±

j are not oscillatory away from
the corners, as the following theorem quantifies. In this theorem and hereafter we let

uM := sup
x∈D

|u(x)| < ∞(3.10)

and note that ‖ψj‖∞ ≤ uM , j = 1, . . . , n.
Theorem 3.2 (solution behaviour away from corners). For ǫ > 0, j = 1, . . . , n,

and m = 0, 1, . . ., it holds for s ∈ [L̃j−1, L̃j] that

|v+
j

(m)
(s)| ≤ 2Cǫm!uMk

m(k(s− L̃j−1))−1/2−m, k(s− L̃j−1) ≥ ǫ,

|v−
j

(m)
(s)| ≤ 2Cǫm!uMk

m(k(L̃j − s))−1/2−m, k(L̃j − s) ≥ ǫ,

where Cǫ is given by (3.7).
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confirming that the series (2.4) converges for 0 ≤ r < R. Further, the bound (3.14)
justifies differentiating (2.4) term by term to get that, for x ∈ Γj−1 ∩ G, ∂u

∂n (x) =
kF (kr), where

F (z) :=
π

Ωjz

∞
∑

n=1

nanJnπ/Ωj
(z), Rez > 0, |z| < ρ.(3.15)

Since | cos z| ≤ e|Imz|, z ∈ C, so that | cos zt| ≤ e|Imz| for z ∈ C, 0 ≤ t ≤ 1, we see
from (3.13) that, for Rez > 0,

∣

∣nanJnπ/Ωz ∈
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with R = R(s, t) :=
√

(a
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and, using (4.6) and since N/(j − 1) ≤ 2N/j,

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−αy−α−ν−1

j−1 ≤ cν+1k
ν+1

(

2N

j

)q(α+ν+1)

.(4.12)

Combining (4.10)-(4.12) we see that, for j = 2, . . . , N ,

ej ≤ Cνc
2
ν+1

kN2ν+3
.(4.13)

For j = N + 1, . . . , NA,q, recalling (4.4) and the choice of N∗, and then using (4.11),

yj − yj−1 = yj−1

(

yj − yj−1

yj−1

)

≤ yj−1

(

yN − yN−1

yN−1

)

≤ yj−1
q

N − 1
≤ 2yj−1

q

N
.

Also, from (4.6),

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−1/2y

−ν−3/2
j−1 .

Using these bounds in (4.10), we see that the bound (4.13) holds also for j = N +
1, . . . , N +NA,q. Combining (4.8), (4.9), and (4.13),

‖f − P ∗
Nf‖2

2,(0,A) ≤ Cν c̃
2
ν(N +NA,q)

kN2ν+3
≤ Cν c̃

2
ν(1 + log(kA/c∗))

kN2ν+3
,

using (4.5). Hence the result follows.
We assume through the remainder of the paper that c∗ > 0 is chosen so that

kLj ≥ c∗, j = 1, . . . , n.(4.14)

For j = 1, . . . , n
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We then have the following error estimate, in which uM is as defined in (3.10) and we
abbreviate ‖ · ‖2,(0,L) by ‖ · ‖2.

Theorem 4.3.
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for N ≥ N∗, where N∗ and Cs are as defined in theorem 5.2.

Note that we will take c∗ = 1 and η = k
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6. Numerical results. There has been much work on the optimal choice of
the parameter η in (2.9) (see e.g. [3, 37]). Here we choose η = k as in [28]. We
also set c∗ = 1 and restrict attention to the case ν = 0. For higher values of ν the
implementation of the scheme is similar. Note that, with c∗ = 1 and ν = 0, there are
approximately N degrees of freedom used to represent the solution on the intervals
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meshes Γ+
p and Γ−

p , for some side p), it holds that |(ρj , ρm)| = sin(ko)
√

o/(kS1S2),
where S1 and S2 are the lengths of the two-subintervals, o the length of the overlap.

As a numerical example, we consider the problem of scattering by a square with
sides of length 2π. In this case n = 4 and Ωj = 3π/2, j = 1, 2, 3, 4. The corners of the
square are P1 := (0, 0), P2 := (2π, 0), P3 := (2π, 2π), P4 := (0, 2π), and the incident
angle is θ = π/4, so the incident field is directed towards P4, with P2 in shadow (as
shown in figure 6.1, where the total acoustic field is plotted for k = 10).

Fig. 6.1. Total acoustic field, scattering by a square, k = 10. Incident field is directed from the
top left corner towards the bottom right corner.

In figure 6.2 we plot |ϕN (s)| against s for k = 10 and N = 4, 16, 64, 256. As we
expect, |ϕN (s)| is highly peaked at the corners of the polygon, s = 0, 2π, 4π, 6π
and 8π (which is the same corner as s = 0), where ϕ(s) is infinite. Except at these
corners, |ϕN (s)| appears to be converging pointwise as N increases. (We do not plot
ϕN (s) itself which is highly oscillatory.)

In order to test the convergence of our scheme, we take the “exact” solution to be
that computed with a large number of degrees of freedom, namely with N = 256. For
k = 5 and k = 320 the relative L2 errors ‖ϕN −ϕ256‖2/‖ϕ256‖2 are shown in table 6.1
(all L2 norms are computed by approximating by discrete L2 norms, sampling at
100000 evenly spaced points around the boundary of the square). For this example,
theorem 5.3 predicts that, for N ≥ N∗, ‖ϕ− ϕN ‖2 ≤ CN−1, where C is a constant.
Thus theorem 5.3 predicts that, for N > N∗, the average rate of convergence,

EOC :=
log(‖ϕ− ϕN ‖2/‖ϕ− ϕN∗‖2)

log(N/N∗)
≥ 1 − Ĉ

log(N/N∗)
∼ 1

as N → ∞, where Ĉ := log(‖ϕ−ϕN ‖2/C). This behaviour is clearly seen in the EOC
values (defined with N∗
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analysis will have relevance for representing certain components of the total field. For
example, in the case of 2D convex curvilinear polygons, something close to the mesh
grading we use may be appropriate on each side of the polygon, especially at higher
frequencies when the waves diffracted by the corners become more localised near the
corners. In the case of three-dimensional scattering by convex polyhedra it seems to
us likely that the mesh we propose will be useful in representing the variation of edge
scattered waves in the direction perpendicular to the edge.

Acknowledgement The authors gratefully acknowledge helpful discussions with
Markus Melenk (Vienna) and Johannes Elschner (WIAS, Berlin).

REFERENCES
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