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Abstract

Incremental four-dimensional variational data assimilation is a method
that solves the assimilation problem by minimizing a sequence of approximate
‘inner loop’ functions. In any implementation of such a scheme a decision must
be made as to how accurately to solve each of the inner minimization prob-
lems. In this paper we apply theory that we have recently developed to derive
a new stopping criterion for the inner loop minimizations, that guarantees
convergence of the outer loops. This new criterion is shown to give improved

convergence compared to other commonly used inner loop stopping criteria.
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1 Introduction

Four-dimensional variational data assimilation (4D-Var) is a method to estimate
the model trajectory most consistent with the available observational data over a
particular time window through the minimization of a nonlinear cost function. A
major advantage of this technique over previously used asssimilation methods is
that the dynamical forecasting model is used as a constraint on the assimilation.
Early studies showed how this allows a 4D-Var assimilation to infer information
from observations in a dynamically consistent way (for example, Courtier and Tala-
grand 1987, Thépaut and Courtier 1991, Rabier and Courtier 1992, Thépaut et al.
1993). However, in its full, nonlinear formulation 4D-Var is very computationally
demanding and so methods of simplification are needed before operational imple-

mentation is possible. The most successful of these used currently is the incremental
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where Hj; is the linearization of the observation operator H; around the
(k)

state x; at time ¢; and L(t;, %5, x®)) is the solution operator of a linear

model linearized around the nonlinear model trajectory.
— Update x(()kﬂ) = x(()k) + 5x(()k)

(K)

e Set analysis x* = x;

For an exact method the linear model L(t;, to, x(k)) is equal to the linearization of the
discrete nonlinear model S(¢;,ty,%o), but in practice an approximate linearization
is often used (for example, Lorenc et al. 2000, Mahfouf and Rabier 2000). It was
shown by Lawless et al. (2005a, 2005b) that incremental 4D-Var with an exact
tangent linear model is equivalent to a Gauss-Newton method applied to minimize

the nonlinear cost function (1). We now review this equivalence.

2.2 Gauss-Newton algorithm

The Gauss-Newton method is an approximation to a Newton iteration, in which the
second order terms of the Hessian are neglected (Dennis and Schnabel, 1996). To

illustrate this we consider a general nonlinear least squares problem
, 1 N P
min 7 (x) = 5 || £6<) [3= 50 "E(x), (©)

with x € R", which we assume to have an isolated local minimum x*. We write

VJI(x) = J™(x), (7)
VI (x) = J'I+Qx), (8)
gv eﬁc)i| i i nj ume rbea (8



To see the link with incremental 4D-Var, we note that (1) can be written in the

form (6) by putting

B; /% (%o — x)
~1/2 o
£(x,) = R, (HO:[XO] ¥6) ' (12)

R, (Hy[xa] — ¥3)

Then, as was shown by Lawless et al. (2005a, 2005b), if we apply the Gauss-Newton
iteration to the nonlinear cost function (1), the step given by (11) is equivalent to
the minimization of the inner loop cost function (3). Thus incremental 4D-Var is
equivalent to a Gauss-Newton iteration and we can use the theory for the Gauss-

Newton method to analyse the behaviour of incremental 4D-Var.

2.3 The truncated algorithm

In practice the inner loop cost function of incremental 4D-Var is minimized using an
iterative procedure, such as a conjugate gradient method. Such minimization meth-
ods employ a stopping criterion to determine when the solution has been found
to sufficient accuracy. Hence the minimum of the inner cost function is not found
exactly, but only to within the degree of accuracy determined by the stopping cri-
terion. In the context of the Gauss-Newton algorithm this can be considered as a
method in which the step (9) of the algorithm is solved inexactly. Thus we obtain
the truncated Gauss-Newton (TGN) algorithm

Solve for 6x*):  (F(x®)TT(x*)))ox® = —[J(x®)TF(x®) + 1)), (13)

Update: xBHD) = x®) 4 5x®) (14)

where r*) is the residual arising from the premature termination of the inner loop
minimization. Convergence of the TGN algorithm is guaranteed by the following

theorem, first stated in Lawless et al. (2005b) and proved in Gratton et al. (2004):

Theorem 1 Assume that B < 1 and that on each iteration the Gauss-Newton

method is truncated with
| 2®) o< By || I(xP)TE(xE)) ||, (15)
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where

A= 1| T (xM)I(x5)) Q™) |l
T4 || (IT(x®)I (x0)) 1 QE) |2

Then there exists ) & 0 such that, if | xo — x* ||2< 7, the truncated Gauss-Newton

Br < (16)

iteration (TGN) converges to the solution x* of the nonlinear least squares problem

(6).

Proof: See Gratton et al. (2004). O
In the next section we demonstrate how this theorem may be used to determine a

suitable stopping criterion for the inner loop of incremental 4D-Var.

® Defining a suitable stopping criterion

As stated in the introduction, it is important to choose carefully the stopping cri-
terion for the inner loop minimization of incremental 4D-Var. If too few inner
iterations are performed, then the outer loop iterations may not converge to the so-
lution of the original problem. Although this may not appear to be a problem if we
are not running many outer loops, it does mean that with too few inner iterations
the system may diverge and the final analysis may be further from the truth than
the first guess. Hence even in the case where only a few outer loops are performed,
adequate minimization of the inner loop is necessary. However, we also wish to
avoid performing too many iterations on the inner loop. If the current outer iterate
x(¥) ig far from the true solution, then iteration of the inner minimization to too
high an accuracy may result in extra computational work which does not lead to
increased accuracy in the outer loops. We discuss some common ways in which the
inner loop minimization is stopped and then use the theory of Section 2 to propose

a new stopping criterion.

3.1 Choice of criterion

Since we know that the gradient of a function is zero at its minimum, a natural
method for stopping the inner iteration is to stop when the norm of the gradient of

the inner loop cost function falls below a specified tolerance. If we use € to denote



a user-set tolerance and use subscript m to denote the iteration count of the inner

loop, then we can write this criterion as

(C1) Absolute norm of gradient

I VTG lla< e (17)

m

An alternative stopping criterion from optimization theory is to stop when the
relative change in the inner loop cost function itself is less than a given tolerance

(Gill et al.



A comparison of this with (13) reveals that rga) =V
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We first consider the relative computational costs of the three experiments, not-
ing that for this system, with the inner loop at the same spatial resolution as the
outer loop, the inner and outer iterations are of comparable cost. We see from Fig-
ure 2 that the experiment using criterion (C1) takes the most iterations to converge.
After the first few iterations of each inner loop the function value remains almost
constant, while the gradient norm continues to decrease. Thus many inner itera-

tions are performed which have little eff
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with the least amount of work.

5.3 Premature termination of outer loops

In practical data assimilation the outer loops are not usually run to complete conver-
gence, so it is important to understand the effect of the different inner loop stopping
criteria where the outer loops are stopped prematurely. For example, if limited
computing resources are available, then it may be necessary to stop the assimilation
after a given amount of computation. If the inner and outer iterations are of similar
cost, this corresponds to stopping after a fixed number of iterations. From Figures 2
and 3 we see that after the first few iterations the assimilation using stopping cri-
terion (C3) always gives a lower value of the cost function than the assimilations
using the other criteria. It is possible in such a case that the inner-loop gradient
norm will be lowest in the assimilation using stopping criterion (C1), for example if
the experiment with imperfect observations is stopped after 10 iterations. However,
when the solution to the inner problem is added onto the linearization state to give a
new outer iterate, the gradient of the nonlinear cost function may be very different.
In fact, we see that if we choose to stop the assimilation after a fixed number of
outer loops (as is often done in practice), then not only is the cost function highest
for the experiment using criterion (C1), but the gradient norm is also highest for

this experiment.

5.4 Summary

From the experiments in this section the new stopping criterion (C3) is seen to be the
most useful of the three convergence criteria proposed. It avoids the performance
of excessive inner iterations, while providing faster convergence of the outer loop
cost function and gradient. This conclusion seems to hold whether the outer loops
are converged or whether they are stopped after a fixed amount of computational
work. Hence the numerical experiments support the conclusion from the Gauss-
Newton theory that a relative gradient stopping criterion is a more natural way
of stopping the inner loop in incremental 4D-Var. However, the usefulness of this

criterion depends on a good choice of the tolerance. We consider this question in
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Figure 4: Convergence of (a) cost function and (b) gradient for experiment with
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then the final solution may not be close to the minimum of the nonlinear cost
function. However, if the inner minimization is solved to too great an accuracy, much

computational effort is wasted for very little gain. In this study we have proposed
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