On Algorithms for Best [, Fits to

Continuous Functions with Variable Nodes

M.J. Baines

Numerical Analysis Report 1/93

Department of Mathematics
University of Reading
P.O. Box 220
Reading, UK

The work reported here forms part of the research programme of the Oxford/Reading

Institute for Computational Fluid Dynamics.

Abstract

This report gives details of a direct variational approach (with non-standard
variations) used to generate algorithms to determine optimal discontinuous piece-
wise linear and piecewise constant L, fitsto a continuous function of one or two
variables with adjustable nodes.Algorithms are presented which are fast and ro-
bust, and the mesh cannot tangle. An extension to higher dimensions is also

given.

In recent years there has been much interest in the use of irregular grids for the
representation of quantities in computational modelling. This applies both to
economic representation of individual features and tracking of such features as
they move. Two approaches to generate such grids are through best fits with

variable nodes and through equidistribution. Work on linear splines with free

piecewise constant o fits with adjustable nodes on variable triangulations of a
region. One of these algorithms, for piecewise constant functions, is particularly
robust and successful.

The algorithms are demonstrated on various test functions. In one dimension
both the full and approximate methods are fast and robust and give excellent
results without any possibility of mesh tangling. In two dimensions on triangles,
owing to the complexity of the problem, only the simplest algorithm is demon-
strated, on functions with a single severe feature.

The plan of the report is as follows. In section 2 we obtain expeditious natural
conditions in one dimension for the , error between a given continuous function
and a piecewise linear discontinuous function with variable nodes to have an
extremum. These conditions are then used in section 3 as the basis of a new
iterative algorithm designed to obtain the required best fit. The conditions also
have a useful geometrical interpretation. Section 3 also contains results on two
test functions. The ideas of sections 2 and 3 are repeated in section 4 for the

case of piecewise constant functions with variable nodes. Approximate versions

n+1

in (2.7) to obtain

() (7 =0 (210)

The simultaneous solution of (2.8) and (2.10) gives the required solution *(*).
Using for left and right values at the (variable) node (see Fig. la),
(2.10) may be written

R 5) 7 (211)

It follows that, if (%) (%) and (%) 2(1) have the same sign, i.e. if

r rlie on the same side of (%) (see Fig. 2a),

t(7= &7 (212)
irrespective of () (as long as it is continuous), and therefore that * is contin-

uous at the new position of the node. On the other hand, if (%) 2(%) and

(%) 7(%) have opposite signs, i.e. if 1 g lie on the same side of (%)

(see Fig. 2b),

(7 = (3 &7
1 £ £ £ £ £
5 D+ w0 = (7 (213)

in which case * is discontinuous at

(7

Now it is known (Chui [7], Loach ~ Wathen [10]) that for for continuous

*, its jump being bisected by bisected by

79

functions () the best fit amongst discontinuous piecewise linear functions
with variable nodes is continuous, which clearly corresponds to (2.11). The case

(2.12), with a definite discontinuity in * at ¥, therefore cannot correspond to

An algorithm to find optimal piecewise linear , fits with variable nodes can be
constructed in two stages (carried out alternately until convergence is obtained),

corresponding to the particular choices of variations referred to in section 2 above.

Stage (i) ,;=0,(=1)
= 1 OT k2(=1 —|—1) (31)

This stage of the algorithm is governed by (2.8) and corresponds to the best

D

wi(x) = wr1d1() + wi2a(x) (3.3)

(see Fig 1b) and substituting it for wj(x) into (2.8), yielding the equations

W1 k2 b1 ()
hy, = flz) dx (3.4)
]

where hy = 29 — 21, while stage (ii) involves taking the wg(x) which come from

D= W=
W= o=

(3.4) and solving

(f(aj) = wir(z;))” = (f(z;) = wir(z;))* =0 (3.5)

for a new z; (see Fig. 2).
From (2.8) we observe that f(x)— wy(x) must pass through zero at least once
between x,_; and xj. Let xor and xggr be the zeros closest to node j from the

element either side. Then the function

F(x) = (f(z) = wjn(2))* = (f(x) = wir(x))* (3.6)

(c.f. (3.5)) has the properties

F(l‘oL) <0 F(J}()R) > 0, (37)

(excluding the special case w;(2or) = wjr(zor)). It follows that there is at least
one root of F(x) between xqr, and xgr. Choose this root (or the one nearest the
old z; if there are two) to be the new x;. Note that if this root is chosen, all such
roots lie between pairs of intersection points and mesh tangling cannot occur.

In fact, from (3.5), the new x; must satisfy

(w;r(7) —wir(x))(f(z;) — ;(ij(l‘) +wjr(x))) =0 (3.8)
from which we either have
w;iL(r;) = wir(z;) (3.9)

or

S(wine) + winla) = f(z;) (3.10)

We shall call (3.9) the intersection construction (independent of the function
(), note) and (3.10) the averaging construction. They are represented graphi-
cally in Fig. 2.
Further information about the direction in which the nodes move may be ob-
tained from the sign of (;). Solving (3.4) for 41 and 2 and using Simpson’s

rule for the integration gives

k1 4 2
k2 2 4

|
W= O

%(kl)‘l’%(km) %(kz)—l- (
5 (r)+5 Cr)+5 Cr)t

where 1, is the mid-point of the element . Hence

() ()

k
) (3 11)
k

:% (j-1) % (j—%)‘l'% (i)+ (j‘_% (312)
() ml)=35) 5 Cip+s (i)t ()
and, from (3.6),
1 1
(j): 3 :]_%‘I‘O(j_%) ’ g :]‘+%‘|‘ (j+%) ’
1
= §(Lo P00 i)+ (max(?_% j+%)) (313)

For sufficiently small . 1 ., 1, therefore, the movement of node is governed
2 2

by the sign of

(2) (314)
moving left if this quantity is positive and right if it is negative.

Since in stage (ii) () is restricted in elements by = , , then in

elements and , respectively,

moving 5

where z; is the previous approximation and z7“ the one currently sought. Sim-

ilarly, if my + mg_1 # 0, the averaging construction (3.10) gives

2 newy __ . .
A — ;= fa™) = (wjn +win) (3.17)

My + Mp_q

Note that the calculation of #7¢ is implicit since f(27“") occurs on the r.h.s.

Near to inflection points the averaging construction (3.10) may well occur
(see Fig. 2b) and the fit obtained by this method will be a (discontinuous) local
minimum.

For regions in which f(z) is convex the new approximation to z; is provided
by the displacement (3.16), i.e. the intersections of lines in adjacent elements
(see Fig. 2a), since in this case the expression f(z) — w is of the same sign
when approached from left or right. The fit is therefore continuous. Where f(x)
has an inflection point the intersection construction is replaced by the averaging
construction (3.17): this occurs when the f(x) — w are of opposite sign when
approached from left or right, as in Fig. 2b. For these exceptional points the fit
obtained by this method will be discontinuous. (One possible remedy is to change
the number of points locally by one, thus breaking the symmetry, a device which
seems to work well.)

In order to simplify the solution of (3.17) it is possible to make use of the
outer iteration to move towards the converged x; by using the l’?ld values at the
previous step in the calculation of f(x). In the very special case my_1 = my =0,
equation (3.15) shows that 2" is indeterminate and there is no advantage in
moving the node at all,

If f(x)is convex we see from (2.12) that the result of the converged iteration
(stage (i) — stage (ii) — repeated alternately) is the best continuous s fit using
piecewise linear approximation. If f(x) is not convex there may possibly be
isolated discontinuities in the fitted function at inflection points, where only a
local minimum occurs. It is possible to replace such a discontinuous function
locally by a continuous approximation, by say simply averaging the two nodal
values (in which case the result is the function value itself). This is of course at
the expense of abandoning the optimal fit at these isolated points. The resulting
approximation may however be used as an initialisation for other algorithms

completely dedicated to continuous best fits, see Loach ~ Wathen [10].

In summary the algorithm is:
1. Set up the initial grid

2. Project elementwise into the space of piecewise linear discontinuous func-

tions on the current grid as in (3.4) (stage (i))

3. Determine the next grid by the intersection construction (3.16) or (excep-

tionally) the averaging construction (3.17) (stage (ii))
4. It the new grid is too different from the previous grid, go to 2.

The algorithm, which is fast and robust, finds in appropriate cases optimal
linear spline approximations with variable knots: indeed, by concentrating on
piecewise linear discontinuous fits, the procedure effectively linearises the prob-
lem and avoids many of the difficulties generated by restricting the search to
continuous fits at the outset.

Each step (i)+(ii) of the algorithm bears a striking resemblance to the Moving
Finite Element procedure in the two step form described by Baines [2] and Baines

Wathen [1]. The similarity is pursued by Baines [2].

We show results for two examples, in Fig. 3(a),3(b).

(a) tanh 20(05) 11 interior nodes
(b) 10 =19 420 1+ 400(07)*> 9 interior nodes

In each case the fixed interval is [0,1] and the initial grid is equally spaced.
Example (a) is a severe front with a single inflection. Example (b) is a test
example suggested by Pryce [11].

In each example the trajectories of the nodes (i) are shown as they move
towards their final positions together with the function (ii) and the fit obtained
(iii). The process is taken to be converged when the ., norm of the nodal position
updates is less than 10™*. The number of iterations appears on the ordinate axis
of the trajectories. In general an extra order of magnitude reduction is obtained
in the 4 error over the equispaced case.

Although the theory has been derived only for ! functions numerical ex-

periments show that the algorithm also gives optimal fits to functions which are

only piecewise . A simple example shows that the intersection construction
drives one node towards an isolated slope discontinuity (. Fig. 2(a)), where it
remains while the fits either side converge.

The algorithm also gives piecewise linear best fits to functions which have
isolated discontinuities. In this case there are extra jump discontinuity terms in
(2.7) arising from the variation of the integral which vanish only when a node is
located at a discontinuity itself. In numerical experiments nodes move towards

such a point from either side where they remain while once again the fits either

side converge. This can be understood in terms of an isolated discontinuity, being

Tk

Tk—1

o
~%
o
o
oy %
.
~%
o
oy %
o

is negative where intersects in element 1 and positive where intersects
in element (see Fig. 4). There is therefore at least one root between these
points which may be chosen as the new position of ;. Moreover, if this root is

chosen, all roots (for different) are separated by these intersections and mesh

tangling cannot occur.
FPurther information about the direction in which the nodes move can be

obtained from the sign of (). Using the trapezium rule for the integration in

(4.7) gives

1 2
E— 5 k1 kL k
2
1
J L 3 J J-1 j-1
, 1 , , 2
J IR 3 J J+1 J+i
2
-1 L
J J J -1
4 4 2 2 2
— 1 >
J J+]-|—§
J—1 J J+1 J—1 J+1]_%]‘_|_%
i3 its
J=1 J g+l J—1 J+1
I JR J

gL JR

to be almost as good, for which convergence proofs can be given, and which are
very useful for generalisations to higher dimensions.

These algorithms are based upon using interpolants of the function f(x) at
each stage of the iteration, rather than the function itself. The resulting fit is
therefore not to f(x) but the interpolant of f(x) at the limit. The degradation
is rather small, however, and the algorithms have very positive advantages.

We begin this time with the piecewise constant fits of section 4. Instead of
fitting f(x) we shall fit the current linear interpolant f;(x) (linear in each element)

at each stage of the iteration. This means that (4.7) becomes

= (F o) + F12) 5.)

and that (4.14) becomes
1
Swiz +win) = fr(z;). (5.2)

Since fr(x) is linear in each element to the left and right of node j, it is possible

to write down the solution of (5.2) for a; (called here 27*) which (using (5.1))

J

is given (see Fig. 4) by

o AU C) = 20 () + S(i) .
|f(zj+1)=f ()| [fey)—flay—1)l

Az ? Az
J+% J—%

max

This simple iteration replaces the two stage iteration of section 4. If it converges,

the limit values satisfy

F@ip) = f(@5) = f(@5) = f(5) (5.4)
and the grid is the one that produces equi-spaced f(x}) .

Convergence of the algorithm may be discussed via (4.13). Note that the
O(h3) term of (4.10) is now missing so that the node j moves to the left or the right
according as whether (4.13) is positive or negative. Thus, except in the vicinity
of nodes where (4.13) changes sign, nodal movement is uni-directional. We may
exclude the possibility of (4.13) changing sign by assigning fixed nodes to points

of maxima, minima and inflection points of f(x). Between these fixed points the

(NI

(I

satisfied if (3.14) is not zero. By fixing nodes at the inflection points and at points
when (®)() vanishes, this condition is satisfied and convergence may be proved
as before. Finally, we observe that for the quadratic interpolant the solution in

-space is equispaced points on the particular quadratic AQ()= ¢(()) which
passes through the points 4 %(4+ B) B, between any two points 4 and g
for which the intersection construction is unique, i.e. away from inflection points.

Finding the points ; still requires the inversion of the functions g or , however.

The generalisation of these techniques to two dimensions raises a number of dif-
ficulties. In principle, the same approach yields algorithms for obtaining best
discontinuous fits to given continuous functions on a tessellation of the plane.
The solution of the nodal position stage of the algorithm is more difficult, how-
ever, and requires additional numerical techniques. Furthermore, there is not
the same simple connection in two dimensions between discontinuous linear fits
and continuous ones. With these important provisos, however, we describe meth-
ods and algorithms which obtain good representation of sharp functions in two
dimensions, and generalise to higher dimensions.

Let ()beagiven !function of the two variables and in a domain £

and let () be a member of the family 7 of linear functions on a triangular

* 2
k k

A -
k Wg =W,

EE
B
B
B

A

X%
[}
bl

A

Choosing 6z, 6y = 0 and 6w to be in the space of piecewise linear discontin-
uous functions gives for the best discontinuous fit, denoted by w*, z* and y*, the

conditions

where ¢r1, ¢r2, ¢rs are local linear basis functions in the element & (see Fig. 6b).
As other choices, remembering that éx;,6y; must lie in the space of piecewise
linear continuous functions, and letting «; (see Fig. 6a) be the two-dimensional

linear finite element basis function at node j, we may set (separately)

ox; =, 0y; =0, 0w; = wiox;

and (6.9)
ox; =0,0y; = a;, 0w; = w;(Syj
(c.f.(2.9)) in turn in (6.7) to obtain
| A Gey) = ey ash ds = 0 (6.10)
j—star

for 2% and y7, where i = (n1,ny) and “j-star” indicates the spokes, i.e. the union
of the sides of the triangles, passing through the node j at z7%,y%, (see Fig. 7).

The simultaneous solution of (6.8) (6.10) gives the required solution w*(z*, y*).
Note that (6.10) can be written

5 [- wisle))? — eag) — wiolen)) amds =0 (6.1

1=t
where ¢ runs over the spokes ¢; to {, of j-star, and w4, wec refer to the values of
w on the spoke looking anticlockwise and clockwise, respectively. Another useful

form is
£

(weale,y) = wic(z, y){(f (2, y)

=10

(sl y) — wic(e,y)} amds =0 (6.12)

An algorithm to find the best discontinuous linear 5 fit with variable nodes is
constructed in two stages (carried out repeatedly until convergence), correspond-
ing to the choice of variations referred to in section 6 above.
Stage (i)

i=0 ;=0 = k1l k2 OT 3 (71)

This stage of the algorithm corresponds to the best 5 fit amongst discontinuous
piecewise linear functions on a prescribed grid, as in (6.1),(6.2), and (6.8) above.

Stage (ii), variations

i= 3 =0 5 . ;=0 (=12) (72)
Stage (ii), variations

i=0 = 5 oy =0 (=12) (73)

Stage (ii), which combines and (or) variations to give variations in
“following the motion” in the (or) directions, corresponds to finding ; (or

;) such that (6.10) (or (6.11)) holds. Geometrically, we see from (7.2) or (7.3)

k ke ket

2 1 1
k

= — 76
n 121 (76)
11 2

where j is the area of the triangular element

The other problems, those of finding ; satisfying (6.10) with ;, =

J J

and ; satisfying (6.11) with ;= , ;, are more difficult non-linear problems.

To make progress we shall hold the ;in () constant in solving for the new ,

and embed the associated iteration in the overall iteration, as in the “averaging”

construction algorithm of section 3. Similarly for the ;. This device was used

in section 3 (equation (3.17)) to obtain converged solutions for in effect a

70
“lagged” form of the equation being solved as the overall iteration converges.
Let = ; , . denote the elements surrounding the node and let ;

denote the edges of the element emanating from node (see Fig. 7). Then

(6.12) may be written

Le

wal) wel)

=10
1 2
() 5Cal)+ wl) - =0 (77)
Since () is restricted in element by = , , =0, thenif j is

the value of the fit obtained from stage (i) at node in element , we have in

Y

element

() = DR i) (78)

where 1 =()k, & = ()k, to be substituted into (7.7).

(1+1) (%)

(1+1)

where

= (7 10)

= (3,4 %c)j £ (711)

(ea e §) ki (712)
:g_; (o) aa wle) a3
(¢ 0 o wle) wle D7 50 (713)

and (provided that 2 4) solved for . The integrals in (7.13) may be
evaluated by a quadrature rule. Both Gaussian quadrature and the trapezium
rule have been tried. In the latter case (7.13) simplifies considerably with little
degradation to the results.

Two real solutions of (7.9) may be regarded in simple situations as analo-
gous to the “intersection” solution and “averaged” solution encountered in the
1-D case discussed in section 3, corresponding to convex or concave parts and
inflection points of the function |, respectively. In the present two-dimensional

case the dimensionality and the many contributions to blur the simple

Since the non-tangling property in one-dimension is no longer guaranteed,
there may still be the possibility of nodes being carried across element boundaries,
leading to triangles with negative area. In these situations a relaxation parameter
is introduced which restricts each node to stay within the surrounding triangles.
Even then there are rare occasions when a triangle area may go negative, in which
case a local smoothing can be applied as an emergency measure, and the algorithm
continued. These features greatly reduce the effectiveness of the algorithm and
prompt the simplified algorithm described in section 9.

The calculation of y(t1) proceeds in a similar way.

This algorithm gives an approximate optimal discontinuous linear fit on trian-
gles. To obtain a useful continuous piecewise linear approximation we may take

an average of the ;; values at a given node from each adjacent element to

give an approximate nodal value —;, or use the present approximation as a first

guess in an algorithm dedicated to finding a continuous best fit.

In summary the algorithm is:
1. Set up the initial grid

2. Project () elementwise into the space of piecewise linear discontinuous

functions on the current grid using (7.5) (stage (i))

3. Determine the next grid by solving (7.10) (and its -direction counterpart)

with a relaxation factor to prevent tangling (stage (ii))

4. If the new grid is too different from the previous grid or if the , error is

decreasing, go to 2.

Results are shown in Fig. 8(a-c) for three examples, each being a sharp front

with a different orientation:
(a) tanh 20(%)
(b) tanh 20(+ 1)
(c) tanh 20(% 4 2 %)

all on the unit square with 49 interior grid points. In each case the initial grid is

uniform (Fig. 8)

Figure 8(a) shows the grid and profile for example (a) after convergence of
the algorithm, while Figures 8(b) and 8(c¢) show the corresponding results in the
case of examples (b) and (c), respectively. Note that the profiles show piecewise
continuous linear plots (obtained by averaging at the nodes) whereas the true
plots should be piecewise linear discontinuous.

The 5 errors are shown in Table 1. Errors from the corresponding piecewise

linear continuous function (obtained by averaging nodal values) are shown in

brackets.
Initial error | Final error No. of steps
(a) | 377 107° 237 107° 40
(249 1072?) | (528 107?)
(b) | 406 107° 589 107° 80
-2 -5
-3 -4
-2 -4
2
x y

O S (81)

L 90k
With as the characteristic function ;() on element (Fig. 6¢), and
taken successively, as in section 4, to be the local “hat” function associated

with node we have that the conditions for the best piecewise constant , fit to

(), denoted by ; *and 7, are (cf. (6.8)-(6.10))

J

* =0 82
L (52
ke 2
|) rrlo) i =0 (83)
j—star k=ky
where -star is as in Fig. 8, ; is as in Fig. 7a, runs over the elements
surrounding node and
ke
)= Pl (84)
k=k1

By solving (8.2) and (8.3) simultaneously, we obtain the required fit *()
This leads to the following algorithm.
Stage (i)
i= i=0 = (85)

This stage of the algorithm corresponds to the best 5 fit amongst piecewise

constant functions on a prescribed grid ((8 6))

LA £« JAR] - {A £« 7 {
=0

new new

=0

Initial error | Final error | No. of steps
(a) 1.8 1.55 1073 40
(b) 1.8 8.54 107* 40
(c) 1.84 2.34 1073 20

Table 2: L, errors for piecewise constant best fits.

boundary. Again this cleans up a lot of the noise generated by the special be-
haviour of the boundary nodes and the resulting pollution as it spreads into the

interior.

Now, following section 5, we develop simplified forms of the two-dimensional
algorithms in sections 6-8, using the current interpolant during the iterations
instead of the function itself.

We begin with the piecewise constant case of section 8. Replacing f(x,y) by

its linear interpolant fr(x,y), (8.9) becomes

we = L(fin + fio + o) (0.1)

where
Jri = flagisyn), ©=1,2,3 (9.2)

and the k2 are the three vertices of the triangle k.
When f(x,y) is replaced by fr(x,y)in (8.9) or (8.10), the integrand is quadratic

in x or y, leading to

(ea 1) (e jo) %(it) (e 5)=01(93)

[ONRIN W)
—
.3

o

g
<
~
|

=~
[N}

S(4 o) 3 1 }ww)Jré (e jo) %(it wc) (e j)=0(94)

it gt

Ls
LA]
=10
Ls
LA] I
=10
LA, C
mA -
Ls
LA] I
=10

new

b | =

new

J 7 - jlA 7eC

new

7 g - jlA HC

7 LA mC - g
new new
J J - mA mC

/
new
J
LA] /

4

4

o

by the spokes of j-star. Any positively averaged value will therefore intersect
one of the spokes (the one with steepest f) at a point closer to (z;,y;) than the
mid-point of the spoke, thus ensuring a displacement which cannot cause tangling.

These arguments suggest a modification to (9.10), taking £ to be in the direc-
tion of the maximum slope of f along the spokes of j-star, giving § = é, say, and
replacing the weights W, of (9.9) in (9.10) by the positive weights

Wit = |foa — fec| AL |sindy). (9.11)

This modification gives the correct behaviour in the direction of steepest f but

new new

also ensures no tangling in any direction. The point (27, y7*) is restricted to
lie on the spoke of j-star with the greatest slope.

The resulting algorithm is very simple to code and much faster and more ro-
bust than the full algorithm of section 8. Also it requires no relaxation parameter
or test to see if the grid has tangled. A particularly easy version which simply
takes the W, = 1 is also viable. Graphs for the three problems of section 8 are
shown in Figs. 10 (a)-(c), with the initial grid of Fig. 8, and the corresponding

errors are shown in Table 3:

Initial error | Final error | No. of steps
(a) 1.8 2.37 x 107° 15
(b) 1.8 2.36 x 1072 15
(c) 1.84 6.00 x 1072 15

Table 3: Ly errors for the algorithm of section 9.

The corresponding approach for piecewise linear fits will use as interpolant a
function which must be higher order than linear in any triangle but the precise
choice will depend on a balance between simple quadrature and accuracy. For
example, a bilinear interpolant or a full quadratic interpolant could be used, the
latter being harder to integrate, the former being more subject to singularity.
We shall not pursue the analysis here except to note that, by analogy with the

1-D piecewise linear case, it is the intersection construction which will dominate

In particular, in the one-dimensional linear case the fits obtained are optimal
piecewise linear continuous fits a.e.

In two dimensions the algorithms are less robust and harder to implement,
needing relaxation parameters to prevent mesh tangling. Simplified versions have
therefore been developed which avoid mesh tangling and hence the need for these
parameters.

We demonstrate in the Appendix the strong connection between piecewise
discontinuous fits in one dimension and equidistribution. The extension to three
dimensions is straightforward. The main difference in the theory is that in (6.7)
the two types of integral are over tetrahedra and their faces. The spokes of -star
then become the faces of the triangles which have node as a vertex. A very
simple algorithm in 3-D which avoids mesh tangling is then (9.10), the being
the edges emanating from node and with the , taken equal to 1.

Apart from the grid generation aspects, this approach is also seen as an in-

[11] Pryce, J.D. (1989). On the Convergence of Iterated Remeshing, IMA J. Num.
An., 9. 315-335.

[12] White, A.B. (1979). On the selection of equidistributing meshes for two-point
boundary value problems, STAM J. Numer. An., 16, 473-502.

In this section, following Carey Dinh [6], we derive asymptotic equidistribution

results for the linear and constant cases in one dimension, showing the link be-

tween equidistribution and approximation by piecewise discontinuous linear and

k k
k
T T
" "
Tk Tk
T
/
Sk 27
T
k * 2
Tk—1
Tk
k
Tk—1
"
N
1
/
k k-1 1
k-1 k k
T n
" 2 4
1
To k=1
4 "
1
To

~

"

Tk

Tr—1

"

"

"

10.

Figure Captions

. Basis Functions in One Dimension

. Linear Fits to (a) Convex and (b) Non-convex Functions

Results for Piecewise Linear Fits in One Dimensions

(i) Trajectories (ii) Function (iii) Fit
Constant Fits to (a) Monotonic and (b) Non-monotonic Functions

Results for Piecewise Constant Fits in One Dimension

(i) Trajectory (ii) Function (iii) Fit

Basis Functions in Two Dimensions

. Node Connections in Two Dimensions

Results for Piecewise Linear Fits in Two Dimensions

Results for Piecewise Constant Fits in Two Dimensions

Results for the simplified algorithm of section 9 for Piecewise Constant Fits

in Two Dimensions.

